
A .Net Based Resource Sharing Framework

by

Xiaohan Lin

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in The Field of Information Technology

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

© Massachusetts Institute of Technology 2006. All rights reserved.

Author
Department of Civil and Environmental Engineering

May 8, 2006

Certified by........

Associate ProfessorProfessor
11~~ ~John R. Williams

of Civil and Environmental Engineering
Thesis Supervisor

..^ , I A

V - - %If

Accepted by

Andrew Whittle
Chairman, Department Committee for Graduate Students

MSUCHUSTS INrUE
OF TECHNOLOGY

JUN 0 7 2006 ARCHIVW6LIRI
LIBRARIES

i

2

A .Net Based Resource Sharing Framework

by

Xiaohan Lin

Submitted to the Department of Civil and Environmental Engineering
on May 8, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in The Field of Information Technology

Abstract

This thesis presents an Internet resource sharing architecture. It allows users to access
and utilize unused computer resources, such as CPU cycles and storage, without an
expert's knowledge. It achieves this by providing a number of abstract services that
hide some of the complexity inherent in distributed computing. In recent years, Grid
Computing has been proposed as a solution for Internet resource sharing. However,
Grid Computing as presently implemented does not address the need of the large
majority of the users. In this thesis, we propose a different approach to achieve
Internet resource sharing called the Realm.

The Realm Framework offers a lightweight layer on top of the Microsoft .Net
Framework so that the programs that can be migrated to .Net Framework can also uti-
lize the shared resources through the Realm Framework. By leveraging the Microsoft
.Net Framework, the Realm Framework avoids tedious re-working in this fast-paced
world of technology by sitting on the top of the full-featured, coherent and up-to-
date development platform. The Realm Framework applies current technologies such
as Web Services, the Common Language Runtime (CLR) and popular encryption
algorithms.

In this thesis a versatile runtime system and a set of extension interfaces in C#
programming language is developed. The modularized software package offers a lay-
ered programming model for distributed-application developers with different levels
of proficiency. Two utilities that are helpful for maintaining a distributed system are
also developed, namely, a dynamic domain-name based inter-realm communication
scheme and a distributed debugger.

Examples of applying the Realm Framework to several typical scenarios are shown,
including embarrassingly parallel problems that require little communication between
computing nodes, parallel computing problems that require intensive message-passing
between the computing nodes, and universal storage systems that are based on storage
media and the messenger-like applications that require a sophisticated communication
scheme.

Thesis Supervisor: John R. Williams

Title: Associate Professor of Civil and Environmental Engineering

Acknowledgments

First, I am very grateful to Professor John R. Williams for his kind support, endless

curiosity, and contagious excitement throughout my 5 years at MIT; for his continuous

encouragement on my ideas and projects; and for his always taking time out of his

busy schedule to discuss any problems, including personal suggestions and support

during a legal issue. It has been a great pleasure to work as a student under his

supervising.

Thanks to my PhD committee, who made this thesis possible. Thanks to Professor

Steven Lerman and Dr. Judson Harward, for their curiosity and valuable suggestions

to my research.

I would also like to thank Professor Feniosky Pena-Mora. I learned a great deal

from him during my first year of study at MIT.

Also, thanks to my friends at MIT, especially to the lab-mates of the Intelligent

Engineering Systems Laboratory (IESL). They made MIT fun to stay.

Special thanks to Joan McCusker, and other administrative staff in CEE depart-

ment. Their help and advice made my study at MIT a smooth experience.

And of course, my lovely wife, for her patience and understanding during the last

year, my busiest year, my first year of marriage. Thank you for offering the spiritual

support.

Lastly, I would like to thank to my parents, who stay far away at the other end of

the earth. It is the time to reward you, my dad and mom, for making all these things

possible.

6

Contents

1 Introduction 15

1.1 Managed under The Digital Kingdom 15

1.2 Thesis Goals 17

1.3 Thesis Outline . 17

2 Historical Review and The Realm Idea 21

2.1 Computer Clusters vs. Integrated Supercomputers 21

2.2 Ancestors and Siblings of The Realm Framework 23

2.2.1 The Old-school Systems 23

2.2.2 Recent Efforts toward Modern Internet Resource-Sharing . . . 25

2.3 The Realm Framework . 28

2.3.1 Potential Application Scenerios 29

2.3.2 Features to be Implemented 35

2.4 Research Topics and Challenges 36

2.4.1 Accessibility . 36

2.4.2 Programmability 37

2.4.3 Reliability 38

2.4.4 Efficiency 39

2.5 Context and Conclusion 39

3 The Realm Runtime System 41

3.1 The Development Platform: .Net Framework and C# 41

3.1.1 Limitations of the Traditional Systems 42

7

3.1.2 Advantages of U'

3.2 The Realm Distributed

3.2.1 Goals of Design

Resource '.. . q',JU S r Run.s&..L t im(s

Resource Sharing RuntimE

.· .·

3.2.2 System Design

3.2.3 Process Management

3.2.4 Intercommunication between the Worker P

3.3 Accessibility

3.3.1 Realm Setup

3.3.2 Seed Programming

3.3.3 Seed Debugging

3.4 Programmability

3.4.1 The Bottom Level Interface

3.4.2 The Parallel Computing Interfaces

3.4.3 The Universal Object Storage Interfaces .

3.4.4 The Messenger Interface

3.5 Reliability

3.5.1 Security

3.5.2 Fault-Tolerance and Adaptive Parallelism

Parallel Applications

3.6 Efficiency

3.6.1 Runtime Efficiency

3.6.2 Communication Efficiency

3.7 Conclusion.

4 The

4.1

4.2

4.3

System
.

.

.

Irocesses

.

.

.

.

.

.

.

.

.

.

.

for Embarrassingly

.

.

.

.

.

Embarrassingly Parallel Applications

Typical Network Setup

64 bit RSA5 Encryption Cracking

Movie Making Using POV-Ray

5 The Communication-intensive Parallel Applications

5.1 Typical Network Setup

8

Uing the N. Pr:mpwnrl a.n (4 43

44

44

45

47

49

51

51

53

55

55

56

58

62

63

64

64

70

72

72

74

74

75

75

76

79

83

83

..............................

...............

5.2 Simulate the Mixture of Fine Solid Particles and Fluid Using Lattice-

Boltzmann Method . 84

5.2.1 The Lattice-Boltzmann Method 84

5.2.2 Simulate the Fine Particles 86

5.2.3 Domain Decomposition 87

5.2.4 Results 88

5.3 Distributed Discrete Element Method 92

5.3.1 Domain Partitioning 93

5.3.2 Results and Comparisons 97

6 The Storage Applications 99

6.1 Typical Network Setup . 99

6.2 Saving Data on The Local File System 100

6.3 Save Data into Gmail Account . 100

6.4 A Virtual File Browser for the Universal Object Storage 102

7 The Messenger Application 103

7.1 Problem Introduction 103

7.2 A Simple Supply Chain Communication System 104

8 Supporting Components 109

8.1 The Dynamic DNS System 109

8.2 The Realm Debugger 111

8.3 Limitations 112

9 Conclusion 115

9.1 Summary 115

9.2 Contributions 116

9.3 Future W ork . 117

9.4 Final Words 119

9

10

List of Figures

2-1 Parallel systems since 1993

2-2 Microsoft HPC network (from Microsoft)

2-3 The simple Master-Slave style parallel computing topology.......

2-4 The MPI-style parallel computing topology

2-5 The interaction between a Universal Object Storage node with other

nodes .

2-6 The channeled communication style

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

4-1

4-2

Components in the Realm Framework

Structure of a Realm worker.

Creation of the Worker processes

Runtime control components

Communication scheme

The WorkerI interface (Worker manager on Windows)

The WorkerI interface (Worker manager on Windows)

The .Net Remoting message chains (from Microsoft)

The .Net Remoting message with authenticaion in SOAP format. . .

The .Net Remoting negotiating step

The secured .Net Remoting.

The default scheduler used in the Realm system.

Comparison of efficiency.

The typical network setup for the master-slave style parallel computing.

Performance for different partition size.

22

24

30

32

33

34

45

46

48

49

51

54

56

66

67

69

69

71

73

76

78

11

.

4-3 Performance for different network setup (partition size=2 1 6) 78

4-4 Performance for different network setup (partition size=2) 79

4-5 Movie frames generated by the distributed POV-Ray based on the

Realm Framework . 81

5-1 Performance for different network setup (partition size=2 87

5-2 2D Lid-driven flow .. 88

5-3 Blood flow in a branched blood vessel 89

5-4 Thick mixture in a blender 90

5-5 Particles accumulating around a hole 90

5-6 Convergence of the time cost 91

5-7 The D global partitioning using a reference axis 96

5-8 Spheres in a cynlinder (512 spheres) 97

6-1 Gmail account used for Universal Object Storage 101

6-2 The virtual file browser 102

7-1 The parties in a supply chain 105

7-2 Supply chain emulator interfaces 107

8-1 The Realm Dynamic DNS System 111

8-2 The Realm Debugger interface 113

12

List of Tables

5.1 Communication Channel performance comparison (Blender, 8 nodes). 92

5.2 DEM Parallel Partitioning performance comparison (2048 spheres, 8

nodes) .. 98

13

14

Chapter 1

Introduction

1.1 Managed under The Digital Kingdom

In English literature, the word Realm originally meant "A royal jurisdiction or do-

main; a region which is under the dominion of a king; a kingdom."' Today, a Realm

is primarily a synonym for a world other than our own. The word Realm is often

used in fantasy books or movies. It is also seen in some technical fields. For exam-

ple, in Java EE, Realm refers to a database containing users, usergroups and their

roles 2. Optionally a Realm manages user-passwords, certificates and authentication

logic. Also a Realm can refer to a Web domain. A common feature of this term

under all these contexts is that it describes a populated entity that is well under

control, composed of multiple function units, and more importantly, accessible 3 by

some particular protocols.

This thesis seeks to bring the advantages enjoyed by a physical Realm of individ-

uals into the world of computing by presenting and developing the Realm Framework,

that makes it easy for computer users on the Internet to share their computer resources

in a coordinated and secure manner. Within the computational Realm, processes are

able to 1) work together to solve large-scale computational problems that are not

possible for any single machine to handle. 2) put together different types of storage

'Webster's Revised Unabridged Dictionary (1913).
2 The roles are sets of permissions to access server-resources.
3 Both internally among the components and externally to the guests.

15

that can be accessed by a common protocol, and 3) talk to neighbors in a reliable

manner.

The Realm Framework allows ordinary computer users, especially those using

Microsoft Windows to share their idle processing powers (CPU cycles) or their stor-

age space without help from an expert. On the other hand, Realm programmers

can write software programs for the Realm Framework so that a Realm can solve

computational problems by taking advantage of the shared resources. A Realm is

simply a distributed computing system. Unlike its predecessors, such as MPI and

Grid Computing, however, the Realm Framework offers easy installation, good pro-

grammability, a standard communication interface and several other features that

will be discussed in this thesis.

By making it easy for people to share their computers' idle processing power

or storage space, the Realm Framework creates many new possibilities. Since the

majority of computers are running Microsoft Windows Operating Systems, the Realm

potentially has a large supply of resources that it can consolidate. This is a significant

advantage over the traditional parallel systems that are usually running on clusters

of Unix machines. Moreover, because it allows inexperienced computer users to share

their resources, the Realm Framework can be used to build extremely large computing

networks without investing in expensive hardware. We have tested an 1024-node

Realm without crashing the system. The number of nodes supported can potentially

be much larger. With the help of the inter-Realm communication facility discussed in

Chapter 8, there can be an unlimited number of computers in the Realm world. This

offers affordable solutions to most companies and organizations, even in developing

countries.

In fact, the Realm Framework has been successfully used to solve a number of

problems in engineering [23, 36, 38]. One problem simulates the dynamics of an oil-

sand mixture. The simulator was based on the Lattice-Boltzmann method [6, 28]

and a simplified version of the Discrete Element Method (DEM [8]). In a typical

execution, the Realm utilized eight computers and successfully finished the simulation

after three days and transferred around 1.2 gigabytes of data. Another simulator was

16

also developed using the Realm Framework and the Discrete Element Method. In a

subsequent effort we have successfully migrated Scott's Johnsons PhD code [21] to

the distributed environment and made it a convenient simulation package in which

end-users are virtually unaware of the existence of the Realm that supplies automatic

partitioning and job scheduling. The thesis describes these applications in Chapters

4 to 7.

1.2 Thesis Goals

Distributed computing is not a new topic. However, with the development of new

technologies, such as XML, Web services and Common Language Runtime (CLR) in

recent years, it needs a renew effort to explore the novel possibilities that a distributed

computing system can bring. This thesis proposes the idea of the Realm Framework

and the detailed implementation of the runtime system. We show that the Realm

Framework goes beyond the traditional approach of managing distributed resources

by demonstrating that:

1. it is easily accessible for both end-users and Realm programmers, and thus

facilitates the building of large scale computing networks,

2. it is reliable even in a potentially hostile, open network,

3. it is versatile and can be adapted to many application scenarios,

4. it is extensible.

We compare the Realm Framework with its predecessors and siblings. We show

that it is a useful alternative of MPI, Grid Computing and other distributed systems

when solving some problems. We also note some disadvantages of the Realm system.

1.3 Thesis Outline

The thesis first presents the idea of the resource sharing framework, then the imple-

mentation of the Realm runtime system. The following chapters discuss use cases in

17

four distinct categories. We emphasize the sharing of processing power sharing be-

cause parallel computing is the most obvious useful case. The rest of the thesis deals

with those miscellaneous topics that do not fit naturally into the former chapters.

Historical Review and The Realm Idea

Chapter 2 presents the motivations of this study. We first highlight the current

trend that the supercomputing world favors computer clusters instead of integrated

supercomputers. We follow this trend and briefly review various systems that have

a similar design. The Realm idea is then proposed as an alternative to the other

systems to fit the need of today's users. Research topics and challenges are identified,

and the remainder of the thesis addresses their solutions.

The Realm Runtime System

We first explain why we choose the .Net Framework and C# programming language

as the development platform. Then a general architecture of the Realm Framework is

given. The research topics mentioned in Chapter 2, mainly accessibility, programma-

bility, reliability and efficiency, are discussed in detail.

Four Typical Use Cases of The Realm Framework

Chapter 4, 5, 6 and 7 focus on application programming and performance compar-

isons. We demonstrate how the Realm Framework can be used in four typical scenar-

ios: embarrassingly parallel computing4 , communication-intensive parallel computing,

Universal Object Storage and messenger-like applications. We develop them to show

the capability of the Realm system.

4 The "embarrassingly parallel computing" is a term referring to those problems that can be
partitioned into smaller independent jobs.

18

Supporting Components

Two very useful tools are furnished by the Realm system. The dynamic domain

name system enables the user to identify and locate a resource by using a fixed

hostname; the Realm debugger helps the application programmer develop Realm-

based applications more quickly. They are discussed in Chapter 8.

19

20

Chapter 2

Historical Review and The Realm

Idea

In this chapter, we review the previous work and current efforts for sharing compu-

tational resources over a computer network. We also identify the requirements and

desired features that current Internet users would expect from the resource-sharing

system. With these new requirements in mind, we proceed to identify the research is-

sues and challenges we are facing when developing a new resource-sharing framework.

In general, this chapter raises the problems to be solved by the rest of the thesis.

2.1 Computer Clusters vs. Integrated Supercom-

puters

During the past ten years, there has been a trend in the Supercomputing world-

more and more people are choosing multiple clustered machines instead of one single

mainframe supercomputer. Figure 2-1 shows the result of a survey by TOP500 This

chart illustrates the architectures/systems that people have been using since 1993.

For each year, the top 500 super computing systems are categorized into six different

architectures denoted by different grey levels. Before 1998, there were few practical

21

'See web site http://www.top500.org/

Figure 2-1: Parallel systems since 1993.

clustered systems, while in 2003, almost half of the top 500 super computer systems

reported were computer clusters. The attraction of clusters lies in the (potentially)

low cost of both hardware and software and the control that builders/users have

to scale-up their systems to meet demand. There is generally a large difference in

the usage of clusters and their more integrated counterparts: clusters are mostly

used for capability computing while the integrated machines primarily are used for

capacity computing[34]. In capability computing the system is employed for one or a

few programs for which no alternative is readily available in terms of computational

capabilities. In capacity computing, the system is employed to the full by using

most of its available cycles for many, often very demanding, applications and users.

However, as clusters become on average both larger and more stable, there is a trend

to use them also for capacity computing, which has been dominated by integrated

machines [34].

22

2.2 Ancestors and Siblings of The Realm Frame-

work

2.2.1 The Old-school Systems

SETI@Home is one of the early efforts to share CPU cycles across the Internet.

SETI@home was originally developed to analyze radio telescope signals by connect-

ing and using computers ("volunteers") in homes and offices around the world. This

approach, though it presented some difficulties, has provided significant computing

power and has led to a unique public involvement in science. SETI@Home targets

embarrassingly parallel problems only, and their efficiency of computing but not porta-

bility or standard compliance. Besides, there was no differentiation of "roles", such as

"computing facility" and "storage", among volunteer computers since SETE@Home

only shares idle processing power.

An almost identical system for embarrassingly parallel problems is the distributed. net

[17]. Instead of being dedicated to just one project as SETI@Home does, distributed.net

is the Internet's first general-purpose distributed computing system. It has success-

fully done some truly large-scale supercomputing jobs, such as cipher challenges and

Optimal Mark Golomb Rulers [16]. In spite of these significant achievements, dis-

tributed.net, as well as SETI@Home, are not capable of handling problems that

require communication between worker nodes. They do not offer coordination of

node-to-node messaging which is critical in a true parallel computing system.

The Message Passing Interface (MPI) standard is the most commonly used parallel

computing framework for computer clusters. It goes well beyond the simple master-

slave topology demonstrated by SETI©Home and distributed.net. The history of MPI

dates back to 1992, when a common standard for parallel computing was proposed

[13]. Most MPI implementations have been written for Unix platforms which provide

convenient tools and libraries for process control, networking and storage. In practice,

each Unix machine is a computing worker. They are inter-linked by a high-speed

network connection. They usually share files through a Network File System (NFS)

23

Head
Node

Private .Network

~ MS~Mp'1
. , ln1efconoed. "

t • _ ..• -.'t ."_ • "f._ _ i .. _ - - -

I
I
I

-'--"1'--"--'-'.
I
I
I
I

ComPute Compute Compute
NOde No<ie NOde

Figure 2-2: Microsoft HPC network (from Microsoft).

[33] .

Microsoft Corporation has recently launched its High Performance Computing

(HPC) project. After some investigations, we found that it is actually aimed at

porting MPI to the Windows platform [26]. By doing this, the HPC project at

Microsoft actually combines MPI and the Windows services such as file sharing and

index services. The difference between Microsoft's implementation and the traditional

MPI is that Microsoft HPC follows a master-slave topology with a head computer

managing the computing nodes.

SETI@Home, distributed.net and MPI are just three examples of the old style dis-

tributed system. The common characteristics (or limitations) of these early systems

are:

1. Many of them do not support node-to-node communication.

2. Some of them are ad-hoc, not for the general purposes. For these systems,

distributed functionality has to be written from the scratch for each application

(e.g. SETI@Home).

24

3. Old systems were built on top of early technologies that may not be attractive

for today's ordinary users and application developers.

There has been much work done by different groups of people more recently. These

projects embrace new technologies such as new programming languages, XML and

advanced Remote Procedure Call (RPC) systems. They are discussed in the following

section.

2.2.2 Recent Efforts toward Modern Internet Resource-Sharing

We have investgated a fairly comprehensive list of projects that aim to build modern

distributed resource sharing systems. The technologies and designs of these systems

are so diverse that we are not able to elaborate them one by one. In this section we

provide a partial list as an introduction to these projects. The quoted comments are

direct copies from their respective Web sites. We have benefited from various aspects

of the projects listed below. For an exhaustive list of these projects, please refer to

the distributedcomputing.info Web site 2

1. Bayanihan. An academic work called "volunteer computing" was carried out

at MIT [31, 30]. The approach was based on the use of Java Applets.3 Java

code was loaded into web browser's Java Virtual Machine (JVM), and subse-

quent computational instructions were received from the web server. The im-

plementation was not complete, though, probably due to the lack of advanced

software tools and network communication technologies. Anyway, this work

provides some useful information about topics such as reliability under a hos-

tile environment where malicious volunteers exist [31] and eager scheduling for

embarrassingly parallel applications. We will discuss some of these topics later.

The Bayanihan project is no longer maintained.

2 More information is available at http://distributedcomputing.info/devel.html. The Bayanihan
project is not listed there.

3Java Applet can run in Web browsers. It is a small piece of code downloadable from the Web
site and executable on the local machine.

25

2. Globus Toolkit. "The globus Toolkit is an open source software toolkit used for

building Grid systems and applications." "It is a fundamental enabling technol-

ogy for the Grid, letting people share computing power, databases and other

tools securely online across corporate, institutional, and geographic boundaries

without sacrificing local autonomy."

3. Gridbus. "The Grid Computing and Distributed Systems (GRIDS) Laboratory

at the University of Melbourne is actively engaged in the design and develop-

ment of next-generation parallel and distributed computing systems and appli-

cations. The Lab's flagship "Open Source" project, called the Gridbus Project,

is developing technology that enables GRID computing and BUSiness. The

Gridbus project team is developing cluster and grid technologies (middleware,

tools, and applications) that deliver end-to-end quality of services depending on

user requirements. They include Economic Grid Scheduler, Cluster Scheduler

(Libra), Grid modeling and simulation (GridSim), Data Grid broker, GridBank,

and GUI tools for workflow management and composition of distributed appli-

cations from (legacy) software components.

4. N1 Grid Engine. Sun Microsystems' N1 Grid Engine finds idle resources on a

LAN of Sun Solaris systems and uses them for your distributed application. N1

Grid Engine is available for Solaris, Linux, Mac OSX, AIX, HP/UX, Irix, and

Windows Linux.

5. Alchemi. Alchemi is a .Net Grid Computing Framework. It is "a grid computing

framework for Windows with the primary goal of being easy to use". It provides

a) a programming environment to develop grid applications and b) the runtime

machinery to construct grids and run grid applications. It is being developed

as part of the Gridbus Project but unfortunately not compatible with other

components of Gridbus system.

The long list of these projects does tell something. Driven largely by the needs of

business-to-business computing, new communication standards have evolved. XML

26

based technologies, such as SOAP, have been adopted by a large number of software

companies, including IBM, Microsoft and Sun. Also, the Microsoft Windows plat-

form has become the major operating system for desktop computers. Given the rapid

emergence of advanced tools and packages on Windows, such as the .Net Framework

and their integrated development environment, research on developing a modern dis-

tributed computing environment for Windows is indeed worthwhile. Ideas aiming to

embrace recent technologies and be applicable on Windows platform thrived, espe-

cially between 1996 and 2003.

These projects demonstrate great creativity and intelligence. It is unfortunate

that none of these projects was proved to be a significant one of the current most

influential technologies. Most of the small projects are no longer maintained. This is

probably due to the limited functionality, limited financial support or less attractive

design. For example, those having no support for node-to-node communication, such

as Bayanihan, found it difficult to expand their user base.

The current commercial or other continuously supported projects, such as Globus,

Gridbus and Sun N1, have not established their significance in any industry, though

the quality of them is indisputable. Some projects also published their method-

ologies as standards. In particular, Grid Computing has been acknowledged as the

most promising of future Internet resource-sharing methodologies. The concept of the

grid, borrowed from the "electricity grid", is referred to as the sharing of computation

power and storage resources [39]. The interfaces for individual grids are not standard-

ized. The communication protocols between grids are also vendor-specific. In 2002,

the Open Grid Service Architecture [1] was proposed to define stateful grid services

with lifetime management and other semantic descriptions about grid resources. The

main idea of stateful grid services is to use Web services to define the grid resources

associated with state information. The current Web services framework available for

grid services is the WS-Resource Framework [15]. Other than the tools provided with

these systems, third-party support is seldom seen for these "open standards."

In my view, the limited usage of the current products and the reluctant compli-

ance to their standards are due to their lack of accessibility and programmability for

27

inexperienced computer users and ordinary programmers. For example, the OGSA

standard comprises a fairly demanding list of functionality. The implementation,

Globus Toolkit, is thus unavoidably complicated. This makes its installation and

application programming difficult. Even for just understanding the full system, the

learning curve is steep. Also, backward-compatibility is often overlooked for those

software packages that have limited number of users. Although this is actually an

optimal strategy to shorten the development cycle, the application developers suffer

from the inconsistency. More importantly, greatly the complicated design of these

toolkits makes some of these projects lag behind schedule. For example, while the

Globus Toolkit version 2 had not firmed its standing in the market; its underlying

technologies, which were mostly based on the C programming language and direct

socket connections, were obsolete. The far more stable version 3 took some time to

introduce XML and Web services into the implementation.

One project meriting discussion in greater detail is the Bayanihan project. It

proposed a Web based distributed computing methodology and a runtime system

that had the capability of running distributed code based on Java. Although it is

actually more a proof-of-concept prototype system, some parts of the author's study

are very helpful, especially the reliable scheduling for master-slave applications under

the attack of malicious volunteers. His work also provided a pool of application

scenarios. It is an important reference for this thesis.

In general, the old-fashioned and modern distributed systems still lack a lot of

desirable features. We have analyzed the experiences and a few lessons from these

previous works. We then proceed to propose our own idea.

2.3 The Realm Framework

We propose the Realm as a new idea for sharing computer resources across the Inter-

net. The Realm Framework seeks to meet the requirements of the majority of Internet

users and distributed application programmers by using the most recent technologies.

The computer resources it is expected to support include processing power (typical

28

parallel computing task), storage and mobile devices. Due to the lack of the necessary

software tools to write and test code on mobile devices such as the PDAs and cell

phones4 , mobile device support is not in the implementation described in this thesis.

We only glimpse the idea of distributed devices in this section.

In this section we demonstrate the Realm idea with a series of potential use cases.

With this general outlook, we then derive the feature set that the Realm Framework

most have.

2.3.1 Potential Application Scenerios

All scenarios except the use of distributed mobile devices have their corresponding

sample applications detailed in the later part of this thesis. Please refer to Chapter 4

through 7. As we have mentioned above, the distributed mobile device idea lacks the

support of development tools and thus was not implemented. For the same reason,

the distributed mobile device scenario is very general instead of being realistically

detailed.

Master-Slave: The Computing Style for Embarrassingly Parallel Problems

We usually call a problem "embarrassingly parallel" if the work-flow of solving the

problem can be partitioned into completely independent parts. For example, when we

use the naive brute-force solution to crack an encrypted password, the trial-and-error

steps do not rely on any information other than the pass code to be tried. A simple

master-slave topology is commonly employed in practice (Figure 2-3).

The master dispatches jobs to the slaves one by one and collects results from the

slaves. In spite of the fact that only a small portion of the real world problems can

be solved in a truly embarrassingly-parallel approach, this simplest form is an ideal

start-point of studying various aspects of a distributed/parallel computing system.

This is because the independence of the sub-parts makes adaptive parallelism and

fault-tolerance easier to achieve than in other applications. In particular, since the

4This is mainly due to the device's capability but not the mobile technology in general.

29

,ss

Figure 2-3: The simple Master-Slave style parallel computing topology.

30

individual processes need not be aware of each other, the master can easily re-schedule

the sub-jobs in case of failures or malicious attacks. The early projects SETI@Home

and distributed.net, demonstrated the typical model for solving embarrassingly par-

allel problems.

Communication-intensive Parallel Computing: The Computing Style for

a Broader Range of Problems

While the master-slave model covers a number of applications, these represent only a

fraction of the variety of parallel applications. In particular, most parallel applications

today, such as those written with MPI, assume a message-passing model. In this case,

the computing nodes that have been assigned to a distributed job are aware of the

existence of each other. They can also locate the other nodes and send or receive

data to and from the others. Typical engineering problems, such as fluid modeling,

require this kind of distributed computing model because these problems are usually

not able to be partitioned into completely disjoint sub-jobs. The message-passing-

based distributed computing system typically needs much more maintenance and

programming work to be usable and stable. The Realm Framework assimilates MPI's

model (Figure 2-4) when it is used to solve complicated problems for which the simpler

master-slave model is not applicable. Due to the added complication of the message-

passing, the Realm system, like MPI, provides little support for situations where

nodes leave or join the job at unexpected times. It does not support re-scheduling

and fault-tolerance if running in the message-passing style. For these reasons, this

computing model is best working over a group of closely clustered machines or within

a private network.

The Realm idea is different from the previous systems in a few ways. First of

all, people do not have to wait for the completion of the application program. They

can access the intermediate results even while the program is still running, which

is difficult to achieve with MPI. Also, the Realm has direct support for developing

a message-passing-based application. Since Grid Computing solutions all aim at

general purpose resource management, they still need a runtime system to do parallel

31

Parallel Computing Process

Figure 2-4: The MPI-style parallel computing topology.

computing. A sample of this combination is MPICH-G2 [22]. Programming and

management of this system, however, tends to be difficult because MPI and Grid

Computing are two distinct systems. There are compatibility issues to be solved,

which in turn restrict the stability and usability of the MPICH-G2 system.

Universal Object Storage

Data storage is another computer resource that can be shared across the Internet.

Many protocols and systems have been developed to achieve reliable and efficient file-

sharing. For example, using Microsoft Windows platforms, the computers talk in the

SMB 5 protocol [25] to read or write files on the other computers; the systems with

MPI usually apply NFS [33] to share a common hard drive space so that computing

processes running on different machines have consensus for data input and output.

In Globus' grid computing solution, gridftp is applied so that a huge data file can be

distributed and saved over a group of grid points [1]. The common characteristic of

all of them is that they are file-based. The modern Object Oriented (OOP) program-

ming languages, such as Java and C#, deem all data to be objects. Extracting and

identifying objects safely from files is tedious work and not consistent with the the

5SMB stands for Server Message Block. Microsoft uses the so called NT LM 0.12 variant on its
Windows Operating System.

32

Node 3

Read

Node I Node2

Realm Server

Control Sequence
_ _ _ _ _ __I_

...... I Node n I

Figure 2-5: The interaction between a Universal Object Storage node with other
nodes.

goal of OOP. Also, some of the previous systems are not adaptive to the modifica-

tion of the network configuration. For example, on Windows, we need to search the

remote file again if the computer name or the share point has been changed. This

needs considerable administrative work and is not flexible.

The Realm concept includes support for distributing data objects, not files, with

a fixed retrievable Internet name. From the application programmer's point of view,

they can save and retrieve data objects directly with a string which does not depend

on the location and the backend storage media. To achieve this, a Universal Object

Storage process runs on the machine that offers the shared storage as shown in Fig-

ure 2-5. The backend storage media can be virtually any readable media with optional

writing capability, accessible by the machine running the shared storage. The storage

process acts like a broker between the data user and the backend storage media. To

be "universal", the accessing interface is common across all nodes.

One disadvantage of the Universal Object Storage model is the capacity of data

it can support. Since the object needs to be instantiated and the object is passed

as a whole, for huge objects such as an extremely long data array, this burdens the

system memory and the network. A work-around is to avoid putting everything in a

container object. Instead, we can divide them into fine-grained objects. This works

33

] Universal Object Storage Node

"' Object 1 I

(Object 1 (physical form))

Underlying Storage Media

Node I Node 2 I Node3 No...... n

Channel 0 (public) Channel Channel..

Figure 2-6: The channeled communication style.

well for the sample applications we have written with the Realm Framework.

Working as an Instant Messenger

The capability of message-passing, node-coordination and address-lookup makes the

Realm possible middleware for an Instant Messaging system. By providing a number

of channels with pre-defined security configurations, the Instant Messaging mode

satisfies the requirements of most Instant Messenger functions (Figure 2-6). For

example, in a group meeting, the general messages pass through channel 0 which is

a public channel. Channel 0 reads all messages passed to it and broadcasts them to

all the meeting participants. In case person A needs to talk to person B privately

when the meeting is going on, person A acquires a channel, say channel three, and

configures it as a private one with only two participants, A and B. The Realm then

notifies B to initiate the talk. In Figure 2-6, node 2 and 3 are communicating through

the private channel 1. The channels support file and image transfer by wrapping them

into objects.

The model can be used not only for person-to-person communication, but also for

business transactions. A simple application for the logistics industry is demonstrated

in Chapter 7.

The Prospect of the Mobile Device Network

What if the Realm concept generally introduced above is applicable to mobile devices?

This will bring us to a new way of consuming Internet resources. PDAs or cell phones

can be used to view the real-time progress of a parallel job; shipping and delivery

34

information can be directly accessible from the bar code reader which is in the Instant

Messaging network of a supply chain. All of these are done by a single system. The

productivity of individuals or corporations can be greatly improved.

2.3.2 Features to be Implemented

From the typical scenarios listed above, we can derive a set of features that need to

be implemented to realize the Realm.

1. The Realm Framework must be easy for programmers and end users to use.

2. The Realm Framework maintains a runtime system that can manage and exe-

cute code written for it.

3. The Realm Framework maintains a messaging system that is able to reach any

participants within the Realm, and preferably has a scheme to communicate

with other Realms.

4. The Realm Framework maintains a location system that records the address of

each node of the Realm, and offers a convenient method to reach them.

5. The Realm Framework is sufficiently versatile to support various use-cases men-

tioned above.

6. The Realm Framework should have developer's tools, particularly a debugger

designed to support distributed applications, to facilitate application program-

ming.

7. The Realm Framework must be secure and robust, and ready to be exposed to

the public network.

8. The Realm runtime system needs to be reasonably reliable in terms of network

or hardware failure.

35

9. The Realm Framework incorporates the most recent technology, and is incre-

mentally implemented with short development cycles to make sure its up-to-

date.

2.4 Research Topics and Challenges

Although distributed computing is not a new research area and there have been

many previous accounts and prototypes available, realizing the features mentioned

above and implementing a functional Realm system with the most recent technolo-

gies involves several challenges. These can be classified generally into accessibility,

programmability, reliability and efficiency. In this section we discuss all these issues

that have to be faced when developing the Realm Framework.

2.4.1 Accessibility

We define the accessibility as how easy we can use the system. To an end-user, the

usability of a software system is a significant issue. This is especially true for ca-

sual computer users. For old systems like MPI, this problem is unimportant because

their targeted users are limited to those knowledgeable about the Unix system. Also,

MPI systems are usually dedicated machines co-located together without an ordinary

computer user sitting in from of them, MPI-like system designers tend not to worry

about the ease-of-use problem. However, the Realm idea allows more people to join

the share-pool. As I have mentioned before, the majority of computers are running

Microsoft Windows, and most computer users are not professionally trained in sys-

tem setup and administration. The Realm system must be intelligent enough to do as

much work as it can by itself, but offer detailed configuration options when necessary

as well. The Realm system should support at a minimum the Microsoft Windows

platform, and possibly others as well. This was difficult previously, but with the sup-

port of virtual machines, this can be done with a careful implementation. Finally, for

end-users, a Graphical User Interface (GUI) is always welcome. Although GUI de-

velopment is usually less diffcult than system development, this inevitably introduces

36

added complexity in implementing the Realm system.

2.4.2 Programmability

Programmability under our context means how well the distributed system can ad-

dress developers with widely differing backgrounds and development goals. Or in

another word, a well-programmable system should be versatile under different use

cases. A distributed system is not interesting if it is not useful. The Realm idea is

to provide middleware so that people can run distributed software on it and benefit

from the resource-sharing capability offered by the Realm system across the network.

As programming framework, the Realm system is not obliged to directly support the

needs of the end-users. The applications, such as the parallel program to crack an

encrypted code or a universal storage program that supports the SQL server as its

backend storage media, are actually written by the application developers. They de-

cide how to make use of the Realm Framework. How conveniently they can use the

Realm Framework to write application software is critical to the future of the Realm

concept.

The Realm Framework offers multiple layers of programming interface to fit the

needs of the programmers with a diverse background. For example, researchers in

engineering may feel comfortable with a parallel programming interface that has

encapsulated parallel computing techniques such as the ghost area, time step syn-

chronization or even automatic domain partitioning. They do not like and they do

not need to know what is going on at the backend. A higher-level abstraction close

to the real engineering problems is what they want. On the other hand, some more

professional programmers may feel that they could use the Realm Framework as a

skeleton to build a mobile-device network. Since the mobile-device network is not yet

supported in Realm system, they can pick a lower development layer from the Realm

system to build an extension for their specific mobile devices.

37

2.4.3 Reliability

Because of its open nature, the Realm Framework is more prone to faults or attacks

than other forms of distributed computing systems. The Realm system, as a reliable

software package, should be both fault tolerant and robust with respect to any possible

malicious behavior.

Fault tolerance includes dealing with the situations such as node crashing or leav-

ing, and malfunctioning. The former problem is usually called stop failure [24]. This

is the simplest form of fault and has been studied thoroughly. The latter form repre-

sents both accidental malfunctioning and intentional malfunctioning where the node

intentionally submits erroneous results. It is also called Byzantine failure [24] in some

of the literature. The Byzantine failure is more difficult to handle. Early systems for

simple embarrassingly parallel problems are believed to support fault tolerance for

stop failure. The Bayanihan project also suggested a simple scheme to examine the

ability of a computing node to guard against Byzantine failure. More sophisticated

systems vary in supporting fault tolerance because it is extremely challenging to de-

velop a full-functioned system that is always fault tolerant. For example, MPI paid

little attention to fault tolerance. In Realm system development, we have decided to

consider fault tolerance only in the case of embarrassingly parallel problems. More

general forms of fault tolerance are beyond the scope of this thesis.

To protect the Realm system against attack, two things need to be considered.

The first is runtime security. When passing executables around the network, there

should be a guarantee that running the code is safe. Restrictions on file system

access, network access and so on are often imposed. Some virtual machine systems

allow us to run client code in a restricted sandbox. Both Java and .Net Framework

have this functionality. In Java, the Java Applet always runs in the Java sandbox

[35]. The Bayanihan project has already taken advantage of this [31]. For .Net, the

programmers can specify security restrictions to code from the Internet 6. We apply

this technology when we develop the Realm runtime system. The other issue to be

considered is network security. A system exposed to the wild Internet is automatically

6 Related topics are available at MSDN.

38

an open target for remote attack. Without considering security, reliability is hard to

guarantee. Encrypting connections in the Internet environment has become a common

requirement for most of distributed systems, especially for commercial usage. Open

Internet connections can leak critical information to a third party. An authentication

scheme is also necessary to limit the service to authorized users. An unguarded

universal storage can quickly break down if someone intentionally sends huge data

objects to it. There are many important previous works we can refer to, such as

Kermit [20], the secure HTTP scheme, and a series of encryption algorithms. It is

still challenging to pick and weld these technologies into one integrated package. In

Chapter 3, we will discuss the .Net Remoting secure communication method used in

the Realm system.

2.4.4 Efficiency

Another challenge in developing a distributed system is how to make it efficient. Ef-

ficiency can further be divided into two types, runtime efficiency and programming

efficiency. By choosing an efficient programming language such as C# or Java and

carefully considering the programmability issues mentioned above, programming ef-

ficiency is easily achieved. Runtime efficiency has multiple facets. The executables

themselves may or may not be efficient, depending on the compiler and underly-

ing runtime system we use; using different communication protocols will also affect

performance; design and implementation in general, including synchronization, load

balancing and so on, also affect the efficiency. There are trade-offs among these

aspects of efficiency which also add complications to the research.

2.5 Context and Conclusion

We aim to build a new computer resource-sharing framework that satisfies the needs

of today's users and incorporates the most recent technologies. In this chapter, we

presented the potential use-cases for a new resource-sharing system within the context

of current technology and modern users. We then shortlisted a set of features that

39

are desirable in this context. When we develop such as system, there are indeed many

challenges and interesting research topics we have to address. We will demonstrate

how we solve them in the next chapters.

40

Chapter 3

The Realm Runtime System

We have reviewed the previous work in Chapter 2 and proposed a new distributed

system, called the Realm, which has many features favored by today's end-users and

application programmers. In this chapter, we present a Microsoft .Net based imple-

mentation of the Realm concept. We begin by discussing the disadvantages of some

previous implementations of distributed systems and then explain the advantages of

using XML-based technologies and the Common Language Runtime to implement the

Realm system. We then present the design of the system and demonstrate how the

Realm system achieves: 1. better accessability than earlier systems to help more peo-

ple use it, 2. better programmability than conventional parallel computing system for

different levels of programmers, 3. better reliability in the context of today's Internet

environment, and 4. quality runtime efficiency without sacrificing functionality.

3.1 The Development Platform: .Net Framework

and C#

Many people in the parallel computing world like to talk about extreme performance.

The software program running under a parallel computing framework has to be very

fast in execution. Under this context, fully-compiled binary files are commonly used

as the executables. Programming languages that can be compiled in this way are

41

often chosen for this purpose, as is the case of MPI. In MPI, C/C++ are the default

programming languages. Other programing languages available for MPI, such as Java,

are not seen in a significant number of cases, though the Java binding for MPI does

work [4]. The available programming tools are then limited to the C libraries and

C-related programs that have only a small function set. Moreover, they are developed

by a number of different companies or organizations and thus suffer the problem of

incompatibility.

We use the Microsoft .Net Framework and the C# programming language as

the underlying platform to develop the Realm system. The .Net Framework offers

numerous components for us to develop the Realm system. The Common Language

Runtime (CLR) is similar to Java bytecode and it offers virtual machine many

desirable features, especially platform-independence.

3.1.1 Limitations of the Traditional Systems

Using traditional programming languages such as C and C++ suffers from the fol-

lowing limitations.

1. The fully-compiled, machine-code based binary is not suitable for large scale

Internet sharing. Imagine a hybrid network consisting of some Microsoft Win-

dows machines, some Apple Mac machines and some machines running Linux.

The application programmer would prepare three executables for a single job so

that she or he can take full advantage of the computing network. This not only

burdens the application programmer, but also complicates the management of

the executables and computing nodes.

2. The C programming language is not Object-Oriented. Without the features of

OOP, software programs written in C are not easy to re-use and extend.

3. The native machine-code executables have some disadvantages compared to

virtual machine based executables. For example, garbage collection and correct
1For CLR related standards, check http://msdn.microsoft.com/netframework/ecma/.

42

memory usage are usually the responsibility of the programmer in machine cold

executables. The development cycle is often longer than in those projects using

Java or C#. The software quality needs to be checked with extreme caution.

4. Without integrated, advanced and high-performance programming packages,

those features today's users mostly favor will take an unreasonably large amount

of time to implement. For example, it would be expensive and redundant to

develop another Web service layer from scratch. The Globus' Grid Computing

implementation collects many third party software packages to take advantage

of recent technologies 2. This implementation is nevertheless troublesome to

keep updated when any one of its component packages releases a new version.

Moreover, because those third party packages follow a different programming

style or even use different programming languages, putting them together is far

more difficult than using them individually.

3.1.2 Advantages of Using the .Net Framework and C#

1. The .Net Framework supports the CLR, which is an advanced and platform-

independent runtime format. C# source code can be compiled into CLR byte-

code and distributed to other machines for execution without worrying about

the host operating system and hardware architecture. This enables us to ex-

pand available resources much more broadly than in older systems. Besides,

the CLR allows some advanced functions such as versioning. These ease the

management of executables.

2. The C# programming language is Object-Oriented and comes with many very

useful programming tools for code re-usability.

3. In the .Net Framework, the CLR runs in a virtual machine rather than directly

accessing memory. The virtual machine offers efficient garbage collectors and is

2For example, the most recent version of Globus Toolkit 4 needs Java, Ant, C compiler, C++
compiler, tar, sed, zlib, gmake, perl, sudo, JDBC compliant database, gpt, IODBC, Tomcat and
gLite pre-installed to support Web services enabled Grid computing.

43

immune to memory leakage in most situations . Programming within the .Net

Framework is fast, and it is easy to write high-quality code.

4. The .Net Framework offers many libraries and components ready to be used by

the application programs. Without any other software package, the Realm is

still able to provide a rich set of features.

5. The C# and CLR are open standards. More and more software developers are

becoming C# programmers and distributing CLR-based executables 4. C# is

also easy to learn. For these reasons, we do not have to worry about a shortage

of programmers.

3.2 The Realm Distributed Resource Sharing Run-

time System

3.2.1 Goals of Design

To demonstrate the benefits of the new concept of distributed computing, and to

explore the different aspects of this idea in general, we have developed the Realm

runtime system with Microsoft .Net and the C# programming language.

We have the following goals in designing this system:

1. To maximize the accessibility and programability so that the system will be

used by a large number of end-users and application programmers.

2. To meet the high standards of Internet security so that the system can be

immediately deployed on the Internet.

3. To be as efficient as possible in terms of runtime and programming time.

4. To be versatile so that researchers can take advantage of it in many use-cases.

3C#, as well as Java, is not perfectly free from memory leakage, though it supplies garbage
collecting. However, in most cases, we will not encounter the memory problem.

4 They are also called "managed code".

44

I- 1

r------------------------------IRealm (Local Network) I

Realm Server Realm :
ealm Web Service Workers I

II AID Services - - - - - - - - J

I Event Services

I Seed Services

IAccount Services

I Address Services

I Realm Manager

I Mise Services

Figure 3-1: Components in the Realm Framework.

In this section, we examine the general design of this software framework and

discuss the approach we take to achieve these goals.

3.2.2 System Design

The basic components of the Realm system are showed in Figure 3-1. This is a

master-slave architecture in which we call the master computer a Realm Server and

the slave computer a Realm Worker. Noted that this "master-slave" topology has

no relationship with the embarrassingly parallel model we will discuss later. In the

context of the embarrassingly parallel model, the master computer is not the Realm

Server. Instead, the master computer in that situation refers to one head Worker

and the slaves are all other Realm Workers assigned to the job. Actually, we could

design in a way that we assign the Realm Server as the master node in the case of

embarrassingly parallel problems. We do not do this because the Realm Server would

be heavily burdened with two tasks in this strategy. Computation should be passed

to the Realm Workers as much as possible. The computing is done through a number

of Worker processes. Workers (Figure 3-2), the computers that hold the Worker

processes, are distributed either within the local area network or over the Internet.

Programs running as Worker processes are coded in the CLR runtime. The ap-

plication program is normally a CLR dynamic loaded library (DLL) with entries

45

Realm Worker

Figure 3-2: Structure of a Realm worker.

accessible by the Realm system. We call the DLL a Seed, a vivid name suggesting its

duty-a small mobile unit that can be passed to another system and do its predefined

job. The Realm Framework stores the DLLs in a component called the Seed Pool.

Abstract Seed types, as the skeletons to develop Realm applications, are categorized

based on their usage. Some often used Seed types are: MultiStore for the message-

passing style parallel computing, Star for embarrassingly parallel programs, Storage

for Universal Object Storage, and Messenger for Messenger-like programs. Typically,

the application programmers of the Realm application populate functions based on

these abstract classes to do their specific jobs, such as scientific simulation or business

transaction.

It is time to introduce the Net Application Domain (NAD). Similar to MPI's

"Communication Group", each Realm job, which is executed by a group of Workers,

is assigned a NAD so that the job can be easily identified and located. The NAD facil-

itates identification and communication of Worker processes in a Realm application.

One difference between a NAD and MPI's Communication Group is that the NAD

is not just for communication. It provides a shared memory block for these worker

processes which can be accessed from the Internet. The shared memory block, so

called Global, is critical for Realm-based applications. If Realm users want to access

information about a Realm application or to control the application, they can do this

46

by reading or writeing Globals. Any serializable objects in C# can be stored as Glob-

als. Different from the Universal Object Storage discussed later in this chapter, the

Realm Globals reside directly on the Realm Server and are lost if the Realm Server

is shutdown or restarted. Also, to make sure the Realm Server is not brought down

by a large volume of data, each Realm job has an upper limit on the Global storage

size.

3.2.3 Process Management

The Worker processes are managed by the Realm Server. On the Worker machine,

the current computer operator has little control of the processes other than defining

the maximum number of processes, defining the Worker's role (Computing, Storage

or Messenger), and the ability to shutdown the Realm Worker system. The process

management scheme proposed in this design has the following features:

1. Each individual Realm job is identified by a NAD ID, which is unique across

the network. Each NAD ID is separated into two parts. One is the Realm's

Internet ID (supported by the Dynamic DNS system discussed in Chapter 8)

and the other is a unique ID for the job inside the Realm. So for each Realm

job, there is a universal name that can be used to locate it.

2. An individual computing process running on a Worker machine is identified by

an integer starting from 0. This is similar to MPI. This abstraction is necessary

because using IP address or other means complicates the programming, and

this is a familiar way that most MPI programmers understand.

3. Computing threads inside the "SandBoxes" (see Figure 3-2 on page 46). The

idea of a SandBox is borrowed from Java Applet [35]. Introducing the concept

of SandBox not only makes the managing of individual threads much easier; it

also provides a security boundary between the system and Realm executables.

4. A SandBox listens to commands through a .Net Remoting Channel on a spe-

cific port. The .Net Remoting is an RPC sub-system that offers an excellent

47

Port 8175

Node2

Seed SandBox

Seed SandBox

- - ----------

111.1i3. t~, ~~ -~ - ---- --

-- ------------

I L~IJ~.:::t~~l

- - --- - ---'

Seed SandBox
- -

1 :'i~...~/'~I _

- - -~ - ~ -- ~

Figure 3-3: Creation of the Worker processes.

abstraction for network communication. The underling connection can be TCP,

HTTP or even a customized connection protocol. We will discuss how to use

.Net Remoting to build a flexible and secure communication scheme in this

chapter.

5. On port 8075 of each Worker machine, there is a .Net Remoting service PlantBox

used to listen for Realm commands. Commands issued to this port are usually

for the creation and termination of Worker processes.

Figure 3-3 describe how computing threads are created. Upon receiving a job

request from the Realm Server through port 8075, the Worker machine fetches the

proper DLL (Seed) from the corresponding service of the Seed Pool on the Realm

Server. SandBoxes are created, and free network ports are opened. The SandBoxes

publish new Remoting services through these ports. The SandBoxes report the new

port numbers to the Realm Server so that the Realm Server and other Realm Workers

are able to contact the SandBoxes. The Worker processes are then created inside the

SandBoxes, following the security policies imposed by the SandBoxes.

When it receives any commands or data, a SandBox passes the information to the

Worker process. This is done by calling corresponding methods of the Seed object.

These methods should be implemented by the application programmers.

48

Realm RTC Components

External Services

Pause

Kill

Figure 3-4: Runtime control components.

To allow users to issue instructions to a Realm job, there must be an interface

between the Worker process and the user. The Remoting service exported by the

SandBox is not enough because it is used for an individual computing threads but

not all the Worker processes of a Realm application. To achieve runtime control, the

Realm Server is a reasonable entity for hosting the interface. In fact, as shown in

Figure 3-4, the Realm Server has two sets of process control services. The external

services are exposed through an HTTP Remoting channel as Web services. This allows

users to control the Realm application from the Internet using any tools provided they

follow the standard of Web services. The internal services are exposed as Remoting

services, too, but are only used inside the Realm. Note that the boundary between the

Realm and the external world is not necessarily the same as the boundary between a

Local Area Network (LAN) and the Internet. For a message-passing style application,

a Realm is indeed running inside a LAN for the sake of performance. However, other

applications can take advantage of the security communication layers offered by the

Realm Framework to form a safe virtual private network on the Internet.

3.2.4 Intercommunication between the Worker Processes

Many parallel computing algorithms are not embarrassingly parallel, which means

they require communication among Worker processes. Even for the problems that can

49

be partitioned into independent sub-jobs, a communication system is still needed in

our design because the master node is not placed on the Realm Server, but resides on

one of the Worker processes. To allow intercommunication, a powerful communication

scheme is developed. In Figure 3-5, there are three methods for a Worker process to

send data to another Worker. The first method is "quick messaging". Small amounts

of data can be sent at once to the other thread through the Realm Server. This is

not suitable for a large volume of data because the Realm Server tends to be much

busier than the Worker machines in terms of network connections. This motivates the

need for a second communication method, the "big object messaging". When sending

data, the sender actually only sends a reference message to the other Worker via the

Realm Server, telling the other Worker process that there are data ready to be picked

up. This avoids a network traffic jam on the Realm Server but may introduce a small

latency. This second method allows the receiver to decide whether and when to pickup

the data. This may reduce the network traffic. The last communication method is to

connect directly. This is allowed in the framework but is not recommended because

Worker machines are much more vulnerable to failures than the Realm Server because

they run jobs and the jobs are mostly computationally intense. If a Worker process

fails, other Workers sending messages to it may stall or even crash. The Realm

Server, however, has a mechanism to detect failure by pinging the service of each

Worker machine periodically. In case of failures, the other Worker processes will at

least get this failure notification before or after sending messages to the failed one.

The first two methods only involve short messages to and from the Realm Server,

which is very similar to the event system used in many operating systems. For this

reason, this scheme was named the "Event Sub-system".

Communication reliability is guaranteed by a reference number attached to each

message, and a re-sending loop on the sender side. On the receiver side, special

handling of received messages ensures the uniqueness of a single message as well as

the order of the messages.

In this section we have discussed the general structure of the Realm Framework

and its components. We also demonstrated how these components work together.

50

direct contact
with 2

Figure 3-5: Communication scheme.

As has been mentioned in the last chapter, we have faced challenges in considering

the accessibility, programmability, reliability and efficiency of the Realm. In the next

sections we will show.how we solve these problems.

3.3 Accessibility

The Realm system is designed to be easy to use for end-users, who may even be

casual computer users with very limited knowledge about any computer systems.

The application programmers, although supposed to be more knowledgeable than

ordinary users, commonly favor great usability so that they can develop applications

more productively. In this section we demonstrate the basic procedures to run a

Realm system as well as write code for it.

3.3.1 Realm Setup

Setting up a Realm has two steps-the Realm Server setup and the Realm Worker

setup. Both of these have a default setup scheme for the majority of users. This

"impatient" scheme does not require any modification of the configuration files, and

starts the system with just a click on the executable files. The Realm Server is a

Windows console application (RealmServer .exe). When launched, the Realm Server

51

program activates the Event System, Web services and the Seed Pool in a chain. It

also waits for network connections on ports 8080 and 8081. In all cases, the 8080

port, which handles requests from the outside the Realm, should be open to the

Internet. Whether the port 8081, which handles requests from inside the Realm, is

open to the public depends on the actual problems and the parallel computing style

we are using. By default, the 8080 port supports HTTP connections with encryption

and authentication, while port 8081 supports TCP connections with authentication

only 5. More possibilities for the communication channels are discussed later in this

chapter. The RealmServer.exe needs to read a series of environmental variables pre-

defined in the "env.bat" 6batch file. These variables tells the Realm Server where

the configuration files and executables are, and the location of the Dynamic DNS

server, which is discussed later. The default settings do not have the Dynamic DNS

configuration; in this case Internet users can only use IP addresses to locate the shared

resource.

The Realm Worker is an application called WorkerI.exe on the Microsoft Windows

platform, or a console program called WorkerC.exe on other platforms that support

Mono 7. The WorkerI.exe starts a GUI on the Worker computer, as shown in Figure

3-6. The end-users use this GUI to communicate with the Realm Server and control

the behavior of the Worker processes. The GUI begins with a log-in form to join

the Realm. The parameters, such as the role (computing, storage or messenger),

the maximum number of processes and user's identification need to be filled in and

passed to the Realm Server. After joining the Realm, the end-users can choose Realm

applications from the list of Seeds. The execution of the Seeds is defined to be either

network or local by the application developer when they wrote the program. In

"network" execution, the Realm Server spreads the executables over the network,

which is the typical mode for a parallel computing application. In "local" execution,

the Worker machine starts the code, typically used for storage and messenger type

5In Chapter 5, we will show a comparison to explain why we use this setup by default.
6 0r the C-Shell script "env.sh" under FreeBSD.
7Mono is an open source framework which is very similar to .Net Framework. It is available at

http://www.mono-project.org.

52

applications.

The GUI also allows the end-users to get information about the running jobs. As

we have mentioned before, the jobs are identified by a unique NAD ID. With this

ID we can fetch the data objects stored as the Globals, check the number of Worker

processes, know which Realm Workers are assigned to the job and control (pause,

resume or stop) the job. One inconvenience of using the NAD ID is that the system-

generated NAD IDs are long and often not human-readable. To facilitate people

using the framework, the Realm system allows an alias to be assigned to the job.

Although internally everything is bound to the NAD ID, the more user-friendly alias

offers great flexibility. The WorkerI.exe GUI also provides some other useful functions

like management of the local Worker processes and the ability to communicate with

other end-users. Most of the functions in WorkerI.exe are supported in WorkerC.exe,

too, in a command-line fashion with help from another program called SeedRun.exe

for code execution over the network. Unlike MPI, the Realm Worker is added to the

network with little or no configuration. This is more like the style proposed in the

Bayanihan project, where the "volunteers" can visit the Web front-end of the server

and load the executables at any time from anywhere.

3.3.2 Seed Programming

Microsoft Visual Studio comes with a convenient programming GUI for C# and can

be used to develop Realm applications. It supports many useful features such as

code auto-completion, syntax highlighting and an integrated environment for code

writing, compiling and debugging. The only additional work is to put the Realm's

development library GridLib.dll into the library reference list. Additonally, a Realm

Seed template package has been developed for Visual Studio. With this package, the

application programmers can create a skeleton project from the template without

worrying about the library reference. For those who do not want to pay for Visual

Studio, free alternatives are also available. The Visual Studio has a slimmed-down free

version called "Visual Studio Express". Another development GUI is the open source

53

f'------ --,

I
I

Local
local
local
Local
Nehi..Jork
Local

Figure 3-6: The Worker I interface (Worker manager on Windows).

54

software package called "SharpDevelop." 8 It has a similar interface and functionality

as Microsoft Visual Studio but is free and comes with the full source code. For all these

development GUIs, the .Net Software Development Kit (SDK) must be pre-installed

9

The Realm programming interfaces encapsulated in the GridLib.dll are fully doc-

umented. The code examples are also available for reference and a quick start.

3.3.3 Seed Debugging

We acknowledge that debugging a distributed application is different in many ways

from the ordinary code debugging task. There are debuggers that come with Microsoft

.Net SDK as well as the open source Mono SDK. However, these debuggers are not

aware of the existence of the Realm Framework and are not designed for distributed

computing. To support the application developers debugging their code under the

Realm Framework, we provide a debugger that is specifically designed for the Realm

system. It comes with a GUI that looks familiar to Microsoft Visual Studio users.

Other than common tasks, such as setting break points, showing values of the variables

and stepping forward, the Realm debugger also identifies Worker processes and is able

to debug and control individual Worker processes. The debugger is described in detail

in Chapter 8.

As we have seen in this section, the implementation of the Realm system achieves

the goal of ease-of-use and ease-of-programming. By doing this, the Realm system is

likely to attract more attention from people than previous systems.

3.4 Programmability

The Realm Framework provides a rich set of interfaces in a layered model. There

are multiple interface layers from the bottom level that deals with the Realm system

8 SharpDevelop is available at http://sourceforege.net/projects/sharpdevelop/.
9 The MSD)N Web site has all the information for the software mentioned except SharpDevelop

in this paragraph.

55

Realm Bottom Layer

Figure 3-7: The Worker! interface (Worker manager on Windows).

internals to the top one with interfaces for very specific real-world problems (Figure 3-

7). These interfaces allow the application developer to use the Realm system for many

problems often seen in engineering or develop extensions to support more features.

The previous systems commonly did not consider programmability as a significant

issue. For MPI, runtime performance is the top priority. Other than basic message-

passing interfaces, there are no problem-specific functions. Grid Computing solutions

usually do not consider application-level programmability because they are developed

to support general-purpose resource management. The Realm Framework considers

programmability as an important factor and tries to support as many use-cases as

possible. In this section we generally discuss the bottom and top level interfaces.

Detailed descriptions for the intermediate levels are available in the programming

reference 10.

3.4.1 The Bottom Level Interface

At the bottom level, the programmers interact directly with the other components

of the Realm system. To program in this layer, a programmer needs to consider at

10Available in the code package.

56

least two parties-the Realm Server and the other Realm Workers. The request and

command passed to the Seed are all wrapped in a Messages object, which is actually

a hash table. Multiple requests or commands can be packaged into one Messages

object. All requests or commands are in the form of an EventData object. From

the EventData object, we can extract message ID, source, message type and some

other useful information. The bottom level interface does not specify the meaning

and the action to take following this information, and so the application programmer

has to define the set of actions to take upon receiving a message and supply the

implementations of these operations. To talk to the Realm Server and the other

Realm Workers, the application developer has three options as described before: the

quick message mode, the big object mode and the direct connection mode. For quick

messaging, the sender puts an EventData object defined as a quick message into the

Messages object and passes it to the Event services (see Figure 3-1) on page 45 on the

Realm Server. The Realm Server will tag the EventData object with a serial number

and then send it to the receiver. For bigger objects, the sender puts the location of an

object pool instead of the objects themselves into the EventData object. The object

pool, usually another Remoting service initiated by the sender, must be implemented

by the application developer and has to consider issues such as garbage collection,

object identification and so on. To retrieve the big objects, the receiver must resolve

the object pool location conveyed by the EventData object and be able to fetch the

object by itself. For direct connection between the sender and receiver, the sender

gets the location of the receiver from the Event Sub-system and send the Messages

object directly to the receiver.

When a job starts, the Realm Server sends initialization messages to the Seed.

These messages must be handled and the application programmer has to carefully

decide what to do at start time so that all necessary services and objects have been

initialized. Also, at any point of time, the Realm Server may send commands such

as pause, re sume, stop or new-node-added. They should also be correctly handled to

maintain a stable Realm runtime environment.

From the above walk-through, we realize that the bottom layer programming

57

requires high proficiency and extreme caution. At this level the Realm Framework

offers little abstraction. For example, the Event Sub-system is hardly a manager of

the messages; it is just a information relaying server. Nevertheless, at this layer the

application programmer gets great flexibility in customizing the system.

3.4.2 The Parallel Computing Interfaces

On the top layer, two parallel computing interfaces are provided.

The Embarrassingly Parallel Interface

A programming model that is especially appropriate for embarrassingly parallel ap-

plications is the master-slave model (see Figure 2-3 on page 30). In this model, the

computational job is divided into a sequence of sub-jobs that are independent from

each other. The master Worker process dispatches these sub-jobs in-order to the slave

Worker processes. Each Worker process does the sub-job and then puts the result

into a collection of data or simply returns the result to the master Worker process.

The master process receives a ready message after the slave process finishes the job

and is ready for a next task.

On the master side, the application programmer needs to at least implement

GetNextJob() and PutResult() methods so that the Realm system knows what to do

next and how to handle the result. Both of these functions pass a system generated

sub-job ID as a reference. The application developer uses this ID to identify the

result returned from the slave process. By default, the Realm system applies eager

scheduling [10] discussed later to dispatch sub-jobs to the slaves. The developer

may also want to implement the GetScheduler() function if she does not like the

default scheduler. Developing a new scheduler takes time and in most cases, the

eager scheduler is sufficient in terms of both reliability and performance.

On the slave side, the application programmer only need implement the DoJob(

method. The job object from the master side is passed to the DoJob(method. The

returned object of this function is the computation result. So by default, the slaves

58

return the results directly to the master process.

By implementing only three methods-GetNextJob(), PutResult() and DoJob(),

an inexperienced application developer is able to write a robust master-slave style

distributed program in a very short time. With this high-level abstract interface

offered by the Realm Framework, parallel programming is made easy. The application

developer does not have to take care of the scheduling nor node management but can

just focus on the implementation of the core computational task.

The Communication Based Interface

The communication-intensive parallel computing interface resembles the MPI's func-

tionality with several enhancements (see Figure 2-4 on page 32). The general idea

of the communication-based interface is to let the Worker processes communicate

conveniently with each other. The communication based interface uses a series of

consecutive integers starting from 0 to identify the Worker processes assigned to the

job, just as MPI does. The data transfer in MPI is through plain TCP connections.

On the sender's side, the data have to be packed in a specific order in an array. The

receiver has to unpack the array with caution. The MPI's application programmer

has to take significant time to make sure this works in the expected way. An unno-

ticed error can easily cause the execution to fail. Simpler than MPI's implementation,

the Realm Framework's interface uses a facility called InBox to manage the received

objects. For example, sending an object to Worker process "2" from "1" is as simple

as:

,// Identify myself.

if (this.id = = 1)

// Send object "obj" to "2".

this.SendObj(2, obj);

59

The data sender is never blocked in the Realm System. Receiving an object is

very different in our system compared with MPI's implementation. Object Oriented

Programming (OOP) shows its potential here. The InBox is provided as a container

for received objects. The application programmer defines an InBox for each Worker

process that the current Worker process wants to receive data from. Upon receiving

the objects, the system delivers the objects into the correct InBox corresponding

to the object sender. The InBox is a very powerful tool because its behavior can

be greatly modified by changing the InBox's properties. For example, the variable

InBox.order specifies how those arrived objects line up:

· .·

//First in first out.
inBoxl . order=InBox. FIFO;

//Only preserve the last object.

inBox2. order=InBox.LAST;

· . .

//Oldest object.
obj 1=inBoxl .pop();

//Last object.
Obj2=inBox2. pop ();

Also, MPI provides different methods for handling the data transferring, such as

blocking and non-blocking connections. The diversity of these functions brings flexi-

bility to application development. The Realm system provides a similar functionality.

For example, to block the process when the local computing node has not received

new data from one node but leave the other nodes unblocked, we can simply use the

following code:

60

{

///Blocking receiving.
inBoxl .mode =InBox.BLOCEING;

,///Non-b o c k i n g

inBox2. mode=InBox. NONBLOCKING;

· . o

,//Blocked here if no object.

obj 1=inBoxl .pop ();

,//Always return immediately

,//null if no object.
()bj2=inBox2. pop ();

}

Sometimes we have to process the received data immediately but do not want to block

the execution in the blocking mode or loop repeatedly in the non-blocking mode. This

is hard to achieve in MPI because MPI does not provide event-handling functionality.

A possible solution in MPI is to fork off another process or start a thread to listen to

the network in blocking mode. Upon received the data we want, the listening thread

interrupts the main thread so that the data can be immediately processed. This is

rather complicated, and programmers need to exercise caution in writing a correct

implementation. Fortunately, in the Realm Framework, application programmers are

freed from all these complexities. They can supply as many event handlers as they

want to process the data upon receiving them as illustrated in the code fragment

below:

,//Add event handler.

inBoxl . Ereceiving +=

61

System. EventHandler (receiving);

}

private void receiving (... ...)

{

//handle the event.

}

There are some other functions supported by the Realm Framework, such as Glob-

als, Dynamic DNS system and accessibility to the Universal Object Storage. These

functions make the communication-intensive computing interface superior to its par-

allel computing counterparts in terms of programmability. The Realm Global realizes

a shared memory over the network. Since the Realm Globals are accessible at any

time from anywhere provided the client submits necessary credentials, the end-users

can watch the progress of the parallel computing job and retrieve the intermediate

results from the Realm Globals. Other than the Global, the Dynamic DNS system

enables a universal location for each parallel computing job; the Universal Object

Storage provides an Object-Oriented counterpart of the data file. In Chapter 5, we

will demonstrate how we can put these capabilties together to solve real-world prob-

lems.

3.4.3 The Universal Object Storage Interfaces

The Universal Object Storage supports distributed applications. It offers a distributed

solution to keep data objects. A Universal Object Storage Seed acts like a middleman.

All such Seeds have a uniform interface for data input and output. They each require

an underlying storage medium, often a hard-drive or a database server, so that the

data object can be saved in a physical form (see Figure 2-5 on page 33).

As a common requirement, the Universal Object Storage Seed has to implement

GetType(), Read(), Write(), List() and Delete() functions. The function GetType()

should return the capability of the server, such as writable, deletable, permanent and

62

any combinations of the supported functions. A reference ID is passed to the Read()

function and the data object is returned to the caller; the Write() function takes the

data object and a reference ID as the inputs and saves the data object on the backend

medium; the function List() returns the reference IDs that match the pattern of the

input; the Delete() function removes the data object previously saved on the medium

according to the reference ID.

There are some other functions that can also be implemented, including Re-

name()o1l, Hide() 12 and so on. As a minimum, the Read() function must be im-

plemented. In Chapter 6, we will show how to write Universal Object Storage code

based on an unusual backend media-an email account and use it as a virtual file

system.

3.4.4 The Messenger Interface

The messenger interface takes maximum advantage of the Event Sub-system to build

a secure, multi-channeled communication tool kit (see Figure 2-6 on page 34 for

the general idea.). By default, 256 channels are created at start-up for each Meeting

job. Each Messenger Worker process can acquire one or more channels, and later it

can release the channels acquired. Each channel can only be acquired by one process,

called the channel's head, until it is released. The head of the channel specifies allowed

participants and a password to protect the channel if necessary. During the execution

of the Meeting job, each process talks to the channel instead of specific users. Among

the channels, channel 0 is always acquired by the initiator of the Meeting job, and

is always open to everybody, though usually protected by a password. This model

operates like a meeting: channel 0 is like the meeting room, the head of channel zero

is like the holder of the meeting, and during the meeting, the participants can talk

to each other in small groups (channels other than 0). The channel supports any

serializable objects, not limited to simple strings. Unlike the communication parallel

'Rename() is called by the system when the client wants to rename the object.
12 Hide() is called by the system when the client wants to make the object invisible. The detailed

information of these functions is available in the programmer's reference of the Ream system.

63

computing interface, the messenger interface uses a user-specified string to identify

the meeting participants instead of a system-generated integer.

An application developer needs to implement Invited() and Received() functions

when using the Messenger Interface. The Invited() function is called by the system

when another process initialized a channel that allows the current process to join;

the Received() function is called so that the current process can process the message

received from the channel. There are a minimum set of functions that an application

developer must know before writing software using the Messenger Interface: Open-

Channel() for acquiring a channel, SendToChannel() for broadcasting in the channel,

GetChannelList() to get a list of channels and Channel.Release() to release a channel.

We have used this Messenger interface to build a quite complicated application

for the supply chain industry. The detailed information can be found in Chapter 7.

3.5 Reliability

Reliability is an important issue especially for a distributed system connected to the

Internet. It is also a challenging topic because reliability has many aspects and most

of them are hard to tackle. Two major topics in reliability are security and fault-

handling.

3.5.1 Security

For a distributed system, runtime security and Internet security must be guaranteed

before the system is put into use. The MPI system relies on the security setup of the

operating system, without considering it as a significant issue. On the other hand,

there are many papers published about Grid Computing security [5], which offer a

rich resouce we can refer to.

Runtime Security: Sandbox

We restrict the local resources that a Worker process can use by supplying a Sandbox

as a wrapper for the executables. This guards the Worker computer from malicious

64

code. The Sandbox is actually a .Net application domain (AppDomain). In .Net, we

can define security policies for each application domain. The current implementation

of the Realm Framework does not supply a hierarchy of policies from which the

application programmer can select. The default policy only allows file access to the

working directory of WorkerI.exe but allows unrestricted Internet access. Reading

environmental variables is also allowed, which provides a quick and easy way for the

Worker process to interact with the local computer. Currently the default policy is

the only one supported, but expansions are possible.

Internet Security: Secure Remoting Channels

There were two major problems identified when the framework was initially designed.

One is that the Realm web services should feature a user authentication and en-

cryption system to protect the Realm community from open attack. A compromised

Realm can be a disaster because there are a large number of computers inside a

Realm. More seriously, the Worker machine may not be dedicated to the Realm but

just sharing its idle resources. There may be very important sensitive information

on the Worker computer. Internet security is a top issue in developing the Realm

Framework.

Considering the ease-of-use goal of the software development, the network security

module should be transparent to the application programmer, in the sense that they

should not have to change the way they write code. They should program as if

there was no security module active. The .Net Remoting Framework provides a

mechanism to allow programmer to modify the default behavior of the messaging

channel (Figure 3-8). At the client side, the method call proceeds through a chain

of sinks (people can implement their own custom sinks, for example, to perform

data encryption) and onto a transport sink that is responsible for sending the data

across the network. At the server side, the call passes through a similar but inverted

pipeline, after which the call is dispatched to the object. This makes it possible to

solve the two problems. The Realm approach is to create a custom sink that can

do user authentication and encryption. Often we may only require either one or the

65

Figure 3-8: The .Net Remoting message chains (from Microsoft).

other due to consideration of communication performance in cases where the network

security is not a serious issue. For this reason, the Realm system actually provides

two custom sinks, one for user authentication and one for data encryption. When

they are used together, the encryption sink needs to sit between the network and the

authentication sink so that the authentication information is also encrypted.

Starting with the .Net version 2, .Net Remoting supports a fairly complicated

authentication mechanism. By default, the Remoting client needs to be a Windows

machine and the authentication goes through the Microsoft Network's Windows au-

thentication service. However, this does not work for Internet users who do not rely

on an integrated Windows authentication service. User authentication in the Realm

Framework utilizes a very simple authentication sink. Figure 3-9 shows a sample

SOAP message that imitates a Web method call when we use the authentication sink

alone. The client-side sink inserts a user name and encrypted password as user cre-

dentials into the SOAP header section. There is no multiphase hand-shaking process

involved in user authentication; the user name and password are provided in one

request. The credentials are currently provided in the Remoting configuration files.

The encryption of the data is a little bit more complicated. There is no encryption

support for .Net Remoting in .Net version 1.0 and 1.1. At that time the only choice

for us was to write an encryption sink used in the .Net Remoting sink chain. The

most recent version of the .Net Framework is 2.0. It is the first version to support

66

Figure 3-9: The .Net Remoting message with authenticaion in SOAP format.

a secured .Net remoting channel. It is easy to change the default, non-secured TCP

or HTTP channel to a secured one by setting the secure property to true in the

remoting configuration file. In this setup, however, we have to supply a valid X.509

[19] file for each computer in the Realm, including the Realm Server and all the

Realm Workers. Also, this file is shared by all the Worker processes on the Worker

computer. If a malicious process is running on the same machine with other Worker

processes, the malicious process can steal the certificate and break the encryption

of the communications related to any of the Worker processes on this computer.

Moreover, since encryption can often have a strong negative impact on the system's

performance, we intend the encryption schema of the Realm Framework to be flexible,

so that we can choose the optimal solution suitable for the actual environment. For

these reasons, we implemented an encryption Remoting sink that is believed to be

the best solution for the Realm Framework.

The encryption sink is inserted in a position close to the network. On the client

side, it should be at the end of the send-message chain, while on the server side,

it is at the very beginning of the receive-message chain. This is to make sure that

the server encryption sink and the client encryption sink are linked together directly

67

<SOAP-ENV: ... >

<S OAP-ENV: Header>
<h4: Demo Credentials href"kef-3"
xmln s:h4=" http :/ s ch emas. micro s o ft. c om/clr s

oapfmessageProperties" SOAP-
ENC:ro o t=-" 1 "1>

<al: soapaddon id="ref-3" xmlns:al ... >
<username id="ref-6" >jrw</usernam e~
<passwd id="ref-7">1-250<passw d>
<encoder id="ref-8">foo</enc o der>
<al: soapaddon>
</S OAP-ENV: Header>
<S OAP-ENV: Body>
...........

<IS OAP-ENV:Body>

</S OAP-ENV: Envelope>

and no communication bypasses the encryption. The protocol resembles how a Web

browser establishes a secure connection to a Web server using Secure Socket Layer

(SSL). First of all, all data connections are encrypted using symmetric encryption

algorithms, such as 3DEC and RC2. These algorithms are ready to use in the .Net

Framework. The symmetric encryption means that we use a single key to encrypt

and decrypt the data. The problem of using symmetric encryption algorithms for an

Internet connection is that both parties of the connection must know this key before

they initiate their conversation. The encryption key should not be passed without

encryption over the network. Hard-coding the key into the Realm system is obviously

an awkward design and in fact offers no security to the system because the Worker

program is available to anyone who is interested in the Realm Framework.

The encryption sink uses a mechanism that involves asymmetric encryption to

pass the key. For the asymmetric encryption method, a private key is used to decrypt

the data and a public key is used to encrypt the data. In this mechanism, both of

the Remoting server and the client maintain a hashtable that stores the symmetric

encryption key and along with the identity of the communication partner. The client

sink also maintains a list of public/private key pairs . When the client is sending a

message to the server, the client side sink checks whether a symmetric key is available

for the destination server. If there is no key available, the client sink initiates a special

request to the server side Remoting service. The message contains a dynamically

generated public key for an asymmetric algorithm. This request will be caught by the

server-side encryption sink. The server sink then dynamically generates a symmetric

encryption key and encrypts this symmetric key using the public key provided by

the client. The encrypted key is then returned to the client sink, as is illustrated in

Figure 3-10. The client sink decrypts the key and removes the asymmetric key pairs.

The communication can then be established using the key and the corresponding

symmetric algorithm. All subsequent communications are symmetrically encrypted,

illustrated in Figure 3-11.

This mechanism for data encryption is not perfect. It currently lacks support

for an asynchronous Remoting request. Fortunately the Realm system is based on

68

Figure 3-10: The .Net Remoting negotiating step.

Figure 3-11: The secured .Net Remoting.

69

synchronous usage of the Remoting services only. The mechanism does not consider

potential impostor or Denial of Service (DoS) attacks. For example, a third party

can pretend to be the Remoting server to communicate with the client, while at the

same time pretending to be the client to communicate with the real Remoting server.

Future work may introduce a third party to avoid this impostor attack. The current

system may be vulnerable to DoS attack, too. Examinations and further development

are needed to evaluate the vulnerability under the DoS attack and protect the system

from being compromised.

The Realm system combines the authentication sink and the encryption sink to

offer a secure and very flexible communication solution. In the following chapters we

show how we can use them in real-world applications.

3.5.2 Fault-Tolerance and Adaptive Parallelism for Embar-

rassingly Parallel Applications

Although fault-tolerance is hard to implement for all use cases, it is nevertheless

necessary for the embarrassingly parallel case, because we want to run the embar-

rassingly parallel applications over a loosely coupled network, typically a group of

computers sparsely located all over the Internet, in the same way SETI@Home and

distribute.net do. We also need adaptive parallelism which allows dynamic Worker

allocation so that the running jobs can take advantage of the maximum power that

the Realm network can provide. We achieve these goals by borrowing an idea from

the Bayanihan project.

The Bayanihan project used an extended eager scheduling [10] mechanism to sup-

port adaptive parallelism and fault-tolerance [31]. In the Realm Famework, it is

implemented as the default scheduler accompanying the embarrassingly parallel com-

puting interface mentioned earlier in this chapter. The structure of the scheduler is

shown in Figure 3-12. Each sub-job has a "done" flag which is set when a Worker

returns the result for that sub-job. The sub-jobs are linked in a circular list. A

LastJob pointer keeps track of the the last sub-job that has been dispatched. When

70

.: ... Master Node
Scheduler

Job 0; Done=True; Job 1001; Done=False;
l: |SID=I; Trial=False; SID=Null; Trial=False;

: Job 1; Done=False; Job 1000; Done=False;
SID=7; Trial=False; SID=Null; Trial=True;

Last Job (Job Ring) A
Last Job (Job Ring)

z
0Ready o.

Get Job

z0
0.

rP
Figure 3-12: The default scheduler used in the Realm system.

a new Ready notification is received from a slave Worker, the master Worker moves

the LastJob pointer forward to seek a new sub-job for the slave Worker. If the master

Worker finds a new sub-job, it will pass the sub-job object to the slave. Since the job

list is circular, if all sub-jobs have been assigned, the LastJob pointer will rewind to

the beginning of the list. In this case, the eager scheduling allows the scheduler to seek

further ahead in order to find any job that has not been finished yet. This behavior

guarantees that slow Workers do not cause bottlenecks because the fast Workers will

bypass slow ones and repeat the job. It also avoids hanging the execution because

of stalled or dead Worker processes. Further, this eager scheduling does not require

a pre-defined set of Workers. Any "Ready" Workers can be assign a new sub-job if

available, and any sub-job not finished by a failed Worker will be taken care by other

Workers.

The fault-tolerance capability offered by the scheduler is not activated by default

because it requires the programmer to implement more functions. The fault-tolerance

implementation in the Realm Framework is based on spot-checking and backtracking.

The scheduler keeps track of the handler (slave Worker) of each sub-job. It also

maintains a list of trial-jobs and the expected result for each of them. In the example

shown in Figure 3-12, job 1000 is the trail one. The trail jobs are randomly assigned

to the Workers with a trial ratio. For example, a trial ratio can be set to 1% if we

want roughly one trial among one hundred jobs. If for the trial job the slave returns a

wrong result, the slave Worker is then disabled by the master. All the jobs that have

71

been done previously by this slave Worker are flagged as not done by backtracking.

This mechanism has been proven to work very efficiently [31].

In practice, deterministic results are not available for all problems. For some

probability related problems, such as Monte-Carlo simulation, this mechanism is not

applicable because we can not offer a list of sub-jobs with pre-determined results.

Anyway, computational fault is rarely seen nowadays. We do not activate the fault-

tolerance module in most of our applications, in order to shorten the programming

cycle and improve the runtime performance.

3.6 Efficiency

3.6.1 Runtime Efficiency

There may be some concern about the efficiency of the CLR and .Net Framework as

to whether they are suitable for high performance computing. In particular, the CLR

code is a partially-compiled image similar to Java byte code. As for Java executables,

the CLR code needs a Just In Time (JIT) compiler to convert the image to the

machine-specific code. This would appear to be fairly inefficient. We acknowledge

this concern and have done some studies at an early stage of development.

During the early design, the runtime efficiency issue was addressed by using a test

case inspired by Matlab 13 A scheme that manipulates a large volume of data in

native code (written in C) was developed and matrix inversion of a dense matrix was

tested. The "product" function was mapped into the "Matrix" data type. This data

type is seen on the third level of GridLib (Figure 3-7). The usage of this function is:

{

· . .

Matrix ml, m2;

m2=Matrix. inverse (ml);

13Documents for Matlab scripting language and modules are available on web site
http://www.mathworks.com/

72

Elliciency Comparison
90

I
I

80 I
I
I

70
I

I
I
I

60
I

I

-;;-so
I

I

~ I

I

j: 40

I

30
I

20

10
,

0
0 100 200 300 400 SOO 800

Matrix Size

Figure 3-13: Comparison of efficiency.

An experiment to measure the efficiency of the different code was executed. Three

types of code were studied: natively compiled code, pure CLR code using primitive

types (arrays of double-precision values) and CLR code with advanced data types

(linked list of objects). The time cost for different sizes of matrix and different

programming methods are plotted in Figure 3-13 14.

Not surprisingly, the native-code based matrix manipulation is the most efficient

one. However, the difference between CLR code using primitive data types and

native code is not significant. The time is approximately doubled in CLR code,

but still within the same order of magnitude. The CLR code might be regarded as

"moderately efficient". The idea of wrapping native functions for large-volume data

manipulation does not significantly improve the performance but can be useful for

some memory-intensive or computation-intensive jobs. For this reason, we did not

actively develop a set of native-code based mathematics libraries to be used in the

computational intensive applications. In any case, if extreme performance is truly

a concern, the application programmers can still link the Realm runtime system to

some high performance packages such as LAPACK [3]without too much work.

14Time measured is only the time for product calculation.

73

3.6.2 Communication Efficiency

There is another efficiency issue. Since the communication channels are usually based

on XML/SOAP 15, which tags all data entities, the actual data volume transferred

carries overhead. Also, for large XML documents, parsing takes significant time and

memory. Unfortunately, in scientific computing, large data sets are very common.

These factors reduce efficiency in communication.

To address this problem, we have done some experiments to find out the extent

to which the communication efficiency is influenced by use of XML/SOAP. These

experiments are discussed with specific application scenarios in the rest of the thesis.

3.7 Conclusion

In this chapter, we presented the detailed implementation of the Realm runtime

system. Some utilities other than the core system, such as the DNS system and

the debugger, will be described in Chapter 8. We explained why we choose the

.Net Framework and C# programming language as the development platform of the

Realm system. With the goals of design in mind, we have described the general

architecture of the Realm system, and discussed how we achieved the requirements

of accessibility, programmability, reliability and efficiency. We can conclude that the

design and implementation indeed meet the goals of the project.

We will demonstrate how the Realm Framework can be used to solve real-world

problems in the following four chapters.

15We do have another option to use the binary data form. However, this approach breaks the
accepted XML/SOAP standards.

74

Chapter 4

The Embarrassingly Parallel

Applications

The programming model for embarrassingly parallel computing has been described

in the previous chapter. This model, although very simple, can be used in many

applications. In this chapter, we first discuss some issues that need to be considered

when using the embarrassingly parallel computing interface provided by the Realm

system, then proceed to demonstrate its application on two problems: cracking 64

bit RSA code and frame-rendering to make movies using the Persistence of Vision

Raytracer (POV-Ray 1).

4.1 Typical Network Setup

Like SETI©.Home and distributed.net, the embarrassingly parallel application for the

Realm system runs in a loosely coupled network such as the Internet. The typical

setup is presented in Figure 4-1. Since there are far more uncertainties-such as po-

tential attack and disconnection-in the Internet than in a private local network, full

security protection is applied, both authentication and encryption. Remoting encryp-

tion sinks need to be plugged into the Remoting sink chain for all communications.

'POV-Ray is a popular 3D rendering engine available at http://www.povray.org/. It allows using
a script to generate 3D images.

75

Realm Server

uthentication Sink

Encryption Sink
uthentication Sink
Master Node
(Jobs)

(Scheduler)

Slave Node
(Job a)

Figure 4-1: The typical network setup for the master-slave style parallel computing.

The first node loading the Worker Seed is the one that initializes the application.

It is also the master. The Realm Server loads the Worker Seed into idle Worker

computers as slaves. When the slave Worker is initialized, it sends the "Ready"

message to the master and begins the computation.

4.2 64 bit RSA5 Encryption Cracking

Cracking an encrypted message is possibly the most popular application that an

embarrassingly parallel system would like to try. For example, the distributed.net has

a specific project called" RCS Project". The RCS Project uses its computing network

to search RSA encrypted messages on a daily basis. This popularity is possibly due

to the simplicity of the cracking procedure: we simply try all the possible values of

the key to decrypt the encrypted message until we find a match.

RSA5 is an asymmetric algorithm. The goal of cracking it is to find out the

private key. In our case, the size of the private key is 8 bytes, or 64 bits, so the

number of possible keys is 264, or 1.8 x 1019. This is obviously too many for a single

computer to process. With the embarrassingly parallel computing interface of the

76

Realm Fram:nework, we can divide the total work into sub-jobs, each of which only

processes a small number of key candidates. Each Worker process returns a string

of either "FAILURE" or the actually message body if a match is found. The RSA

algorithm provides a few bytes at the beginning of the encrypted message. This allows

us to tell whether a match is found by comparing the decrypted message with the

encryption code itself. The master node prints the number of keys tried and the time

consumed. In our test, the original message being encrypted is, "The quick brown

fox jumps over the lazy dog."

Now we study the computing speed under the Realm system. First, we compare

the ideal speed and actual speed we get. The partition size2is 216, 28, and 2 keys.

For example, in the case of the 216 partition, the master Worker increments a 6-byte

unsigned integer by 1, and passed these 6 bytes of data to an individual slave. The

slave Worker process appends 2 bytes to the end of the received data to form an 8 byte

key. The performance of different setups of the network is also compared in two other

charts-the original .NET Remoting TCP/HTTP channel with optional authentication

and encryption support. As expected, the partition size has a significant impact on

the overall speed. If the partition is small, the slave Worker processes need to spend a

larger portion of time in communicating with the master Worker process (Figure 4-2.

The master is also kept busier in handling requests with a smaller sized partition

than with a larger partition. We also find that for a reasonable partition size of 216,

what kind of Remoting setup we use is really a trivial issue, as shown in Figure 4-3,

because the time used for communication only takes a tiny share of the total time.

For a small partition size, however, the Remoting style used in the application has to

be seriously considered, as is suggested by Figure 4-4.

The last thing to clarify here is that we have actually never truly discovered the

original message from the encrypted one because the the total computational work

to crack a 4 bit key is too huge.

2A partition contains the keys that should be tried by a slave node in one execution. The partition
size refers to the number of keys in the partition.

77

120.09

_ .1.0000
"Cl18000

I6000-14000 .

(J) 2000

o
1 -2 . 3 4 5.' 6 7 8

'Node ..Nu~r

~ ..2 ke'ys~ob
--II- 21l keys~oo
~24,6 ..keys~ob

Figure 4-2: Performance for different partition size.

120.09

_ 1.0000
"Cl

B 80PO
I6000.-14000 .

(J) 2000

o
1 -2 '3: 4 5 6 . 7 .8.

~ode Nuim~r

~auth+_encrypt
-ll-auth ony.
- ~ - encrypt-'ony

Figure 4-3: Performance for different network setup (partition size=216).

78

.120.99

~ ..10000
'C.18099
,I 6000,-',14000 -

.f,/) 200b

o
1- -2 -3::4 5" 6-. .'7.' 8,

Node Nurmer.- "'\. -".

_ auth+ encrypt
auth ony

~ .,--:*- enc'J:Ypt-'ony

Figure 4-4: Performance for different network setup (partition size=2).

4.3 Movie Making Using POV-Ray

In this section, we demonstrate how we make a movie using the POV-Ray software.

The role of POV -Ray is to render a series of image frames. In this test case, we used

a group of FreeBSD machines instead of the computers running Microsoft Windows

to test the capability of the Realm Framework running on platforms other than Win-

dows. Due to the limitation of the Mono Framework we chose as the replacement for

the .NET Framework, we did not chain up any Remoting sinks. The Realm Server

was still running on Windows.

Also, to avoid overwhelming the master Worker with a pile of large images, the

slave Worker did not return the image to the master Worker. Instead, it saved the

image to a Universal Object Storage node and returned a string specifying whether

it was successful in rendering an image. To achieve this, the Seed MovieMaker uses

the Universal Object Storage functions like this:

{

79

//Initialize the proxy object by its location.

UniversalStorage uos = new UniversalStorage(

"Frames. moviemaker. realm . i e s . mit . edu");

if (uos=--null) return
"Failed: -Cannotfound-the-storage .";

if (!uos. IsWritable) return
"Failed: Device is -Read-Only,");

uos . Write(JobID, ImageObject);

}

In the above sample, the image is saved in the Universal Object Storage at the

location "Frames.moviemaker.realml.iesl.mit.edu" with the JobID as the key. Later

on, the user can retrieved these image frames by using the JobID as a reference.

Each sub-job object the master sends to the slave is actually a text message

containing a POV-Ray script. The master calculates the parameters for the job and

embeds them into the script. On the slave-Worker side, this script was passed to the

"povray" program for image processing under the current working directory. Upon

finishing the processing, the slave process picked up the image file generated and

sends it to the Universal Storage node. The generated frames are shown in Figure 4-

5. We did not compare the performance of the same code on Windows because the

image processing by POV-Ray is the most time-costly step, which is irrelevant to the

Realm's performance.

80

camJotl02.bmp

camJotl08.bmp

cam.:..rohOS.bmp

.camJ0tl07.bmp

!

j
j
i
i
!
i I

L _ J
:cam_rotlOLbmp

Figure 4-5: Movie frames generated by the distributed POV-Ray based on the Realm
Framework.

81

82

Chapter 5

The Communication-intensive

Parallel Applications

In the last chapter, we presented the applications that use the embarrassingly parallel

computing interface to solve the real-world problems. However, only a small portion of

the problems can be perfectly partitioned into independent sub-jobs. In this chapter,

we demonstrate how we solve more complicated problems with the communication-

intensive parallel computing interface.

5.1 Typical Network Setup

Unlike the master-slave network topology we used in the last chapter, the network

setup for the more general parallel applications is less flexible. The communication;

intensive parallel interface is not adaptive-once a group of Workers have been assigned

to the job, no other Workers can be added, and no participants can be removed. For

this reason, the connections inside the Realm should not be on the unreliable Internet.

Also, the number of the Worker machines is most likely much smaller than in the

master-slave style computing. A private LAN is always preferred in this case because

we can save processing time by benefiting from high-speed data transfer rates, and by

removing the encryption or even the authentication Remoting sinks. The following

applications are tested on an 8-node co-located computer cluster with a mixture of

83

Windows and FreeBSD machines. They are significantly more complicated than those

applications we have in Chapter 4, and so we discuss them in more detail.

5.2 Simulate the Mixture of Fine Solid Particles

and Fluid Using Lattice-Boltzmann Method

This problem comes from the oil industry. In recent years, the price of fossil oil has

been dramatically increasing. This makes mining the "sand oil", which was once not

profitable considering the cost to mine it, a very potentially profitable source of oil

production. The sand oil is actually a mixture of petroleum oil and sand particles.

Simulating its movement under pressure helps people to optimize the locations of

wells and the other technical parameters of their operation.

Simulations for fluid dynamics is commonly very computationally intensive. The

application that we discuss here is a simulator based on the Realm's communication-

intensive parallel computing interface. It simulates the motion of the solid particles

and the fluid under various conditions. To simplify the problem, we assume the

solid particles are infinitesimal and apply a very simple mechanism to handle their

interaction with the fluid.

5.2.1 The Lattice-Boltzmann Method

Scientists and engineers usually describe a fluid flow by introducing a representa-

tive control-volume element on which macroscopic mass and momentum are con-

served. This leads to a "macroscopic" mathematical model, governed by the Navier-

Stokes equation [9]. More recently, "bottom-up" particle methods, such as Lattice-

Boltzmann, have been formulated based on a microscopic model derived from statis-

tical particle mechanics [6, 7, 29, 32]. The motion of the fluid particles is described

by particle velocity distribution functions valid at each element (lattice-grid point).

The method calculates physical variables such as velocity and pressure by tracking

the probability distribution of fluid particles moving in different directions.

84

The Lat;tice-Boltzmann equation is given by:

fi(x + -iAt, t + At) = fi(x, t)-fieq(x, t))

where the fi is the concentration of particles that travels with velocity i . With the

discrete velocity &i the particle distributions travel to the next lattice node in one

time step At. The relaxation parameter T determines the kinematical viscosity of

the simulated fluid, according to

2T - 1
v = dx2/dt

6

The discrete velocity vectors in 2D have the following value and direction:

{ dx/dt, i = 0, 1, 3, 5, 7

vf/dx/dt, i = 2, 4, 6,8

where c = dx/dt is the ratio between lattice size and time step.

The equilibrium distribution function fie q is calculated as

fieq = wip(+ 3 u + 9 (- iu-)2 _ 3 (-u))

where w = 4/9, Wl = W3 = = 7 = 1/9, and w 2 = 4 = W6 = 8 = 1/36. The

macroscopic density p and velocity vector ii are governed by the distribution functions

Ii=o f = p
8E i=o fii =

The Lattice-Boltzmann equation simulates a slightly compressible fluid; consequently,

the fluid pressure p is given by p = cp where the speed of sound is given by cs =

85

5.2.2 Simulate the Fine Particles

The solid particles in our context are modelled is infinitesimally small, which means

we can omit their sizes compared to the simulation area. Also we assume they are of

equal weight and there is no energy damping in collision. These three simplifications

significantly reduce the complexity of the problem. Without these simplifications, the

movement of particles is usually simulated by the Discrete Element Method (DEM)

[8]. However, coupling the DEM and Lattice-Boltzmann methods under the parallel

computing environment is a great challenge. In the current stage, we separately

handle the DEM and Lattice-Boltzmann simulations using the Realm Framework.

Coupling them is proposed as a future work.

The "zero particle size" assumption allows us to simply use one lattice point to

characterize the spacial properties of a solid particle. This is not only beneficial to

the simulation algorithm itself, but also to the partitioning of the domain. We do

not have to do any special handling for the solid particles in domain decomposition,

since the particles do not have any other spacial properties other than a location

represented by the lattice points.

The "same weight" and "zero energy lost" assumption further frees us from the

need to calculate interactions among the particles. This is simply because from New-

ton's law, after two identical spherical objects collide without energy lost, they will

each assume the momentium of the other. In practice, we do not have to consider the

collision between two particles, because there is nothing changed except a swapping of

particle numbers. It saves us from the neighbor sorting and sophisticated mechanics

that have to be treated in DEM.

It is true that these assumptions may not be applicable for all cases. Nevertheless,

this does help us to explore the potential of the Realm Framework in solving this kind

of problem.

The particles are mainly driven by the fluid pressure and the shear stress due to

the fluid viscosity. The effects of gravity and buoyancy are omitted in our case.

86

Ghost Area ,
/
0

tf)

::r S-
o t:Jen-- - 0> - 8
'"1 ~CD "- S.~

Figure 5-1: Performance for different network setup (partition size=2.

5.2.3 Domain Decomposition

The computational domain is partitioned into sub-domains to be processed by dif-

ferent worker machines. There are two methods of decomposition over the space of

the simulation, 1 dimensional or multi-dimensional (Figure 5-1). In the 1D partition,

the whole domain is split in one direction, either vertically or horizontally, whereas

in the multi-dimensional partitioning, the domain is divided into two directions for

2D simulation or three directions for 3D simulation, resulting in a few rectangular or

prismatic sub-domains. Previous work [32] showed that multi-dimensional decompo-

sition is not superior to 1D decomposition for the lid-driven cavity problem[18] in a

2D domain. In this simulator only 1D vertical decomposition was studied, but this is

sufficient to illustrate the important points.

The simulation program maintains a LatticePoint class. At the end of each time

step when the computed value at the "ghost" 1 LatticePoint need to be exchanged,

each worker simply sends out the LatticePoints objects within the ghost area to its two

neighbors. Any solid particles, instantiated as Particle objects, are also transferred

to the neighbors if they are inside the ghost area. In the simulation, we use blocking

and the first-in-first-out InBox property (described in chapter 3) to receive "ghost"

LatticePoints and Particles.

1In parallel computing, we often use a "ghost" area to link two adjacent partitions. The ghost
area is the overlapping part of the two partition.

87

Figure 5-2: 2D Lid-driven flow.

5.2.4 Results

The results are stored on the Realm Server in the form of Globals. The Globals are

different from the inter-Worker communication data since they are accessible from the

Internet via Web services and SOAP messaging. The Realm system gives users the

power to access data from virtually everywhere on the Web in a machine-independent

manner. In the simulation here, a real-time Graphical User Interface (GUI) program

was written to monitor the velocity distribution in an intuitive way. Figure 5-2 shows

a simulation for the pure fluid without particles. It simulate the famous lid-driven

flow [18]which has been thoroughly studied. In the lid-driven cavity flow simulation,

the boundary meets the no-slip condition. The Reynolds number is 1000 and top lid

velocity is 0.2 m/s. In Figure 2, velocity is profiled from low to high with colors from

blue to purple. The lattice size is 400 by 400, divided into 8 sub-domains. The gray

lines denote the sub-domain boundaries. The lid is at the top boundary.

88

Figure 5-3: Blood flow in a branched blood vessel.

Our final goal is to achieve 3D simulation with a high density of solid particles.

For this we have developed a 3D simulator and tested it on three situations: blood

flow in a branched blood vessel (Figure 5-3), a thick mixture in a blender (Figure 5-4)

and particles accumulating around a hole under fluid flow (Figure 5-5). All of these

simulations have been tested on an 8-node cluster with the management of the Realm

system. We still follow the 1D partitioning for these cases. The partitioning planes

are perpendicular to the longest axis of the containers.

Figure 5-6 shows a comparison for the performance of the code when applied

to the blood vessel flow simulation. Theoretically the time cost2 should converge

to zero when more computer nodes are added in. Due to the communication cost,

however, this is not true in practice. From the figure we can roughly identify a limit

at around 10,000. This should be the actual communication cost for the simulation,

2We evaluate the time spent on one execution of the simulation program. It is not the sum of all
the CPU times spent on the nodes.

89

Figure 5-4: Thick mixture in a blender.

Figure 5-5: Particles accumulating around a hole.

90

1JJOOO .

100000 :c:

80000
~-
~ 60000
t=

40000

20000

o

-+- Extr apolation .

---Data

~ 'b ~ "\ ~ ,,~' .~ '~ '0" :~
N'odeNu~er

Figure 5-6: Convergence of the time cost.

because we use ID domain decomposition and the number of ghost lattice-points are

identical for each sub-domain regardless of the total number of nodes. Notice that

if the total number of nodes is very large, adding more nodes will only burden the

Event Sub-system and the total time cost is expected to increase.

Since the performance is an important consideration, we also investigated the

overall runtime efficiency under different Remoting configurations 3 so that the ap-

plication programmer can have an idea of how to get maximum throughput from

the Realm system. We evaluate the time-to-finish of the simulation using Remoting

HTTP or TCP channels, with binary or SOAP formatter. The results are compared

in Table 5.1. We measured a best performance for the TCP binary channel, while the

HTTP SOAP channel lags behind all the others. The differences between different

formatters are much greater than the differences between protocols, which means the

message format is more influential than the protocol. The SOAP message format

introduces a significant overhead, consistent with what we hypothesized in Chapter

3. For this reason, we recommend the binary channel for those applications involving

3They are done without the Authentication and Encryption sinks.

91

Table 5.1: Communication Channel performance comparison (Blender, 8 nodes).

HTTP SOAP HTTP Binary TCP SOAP TCP Binary
Time Cost (s) 97030 47990 94450 32110

significant inter-node communications.

5.3 Distributed Discrete Element Method

Meshless, or particle-based methods, such as the Discrete Element Method (DEM),

are computationally intensive for large-scale problems. Distributed computing has

the potential to alleviate the limitations of using a single computer. The limitations

are commonly in computing power and storage, the resources that can be aggregated

by the Realm Framework. We studied the implementation of a distributed solution

for DEM problems. The following overview describes some aspects of the solution.

The computational challenges associated with DEM can be broken down into two

phases: contact detection and contact resolution. Contact detection first needs to

find closely placed objects and then identify whether two neighboring objects are

in physical contact. The contact resolution phase calculates the forces due to the

contact and integrates them to update the momentum of the objects. A sorting step

in contact detection is necessary. Usually the neighboring sorting uses a much simpler

method to find neighbors than detailed contact identification. This avoids the O(N2

cost associated with the all-to-all check using the expensive contact identification

method.

Fortunately we do not have to deal directly with these issues. We use the C#

based DEM software developed by Dr. Scott Johnson [21]. This software package is

designed for a single computer. It solves the general DEM problems with an easy to

use interface. My work focuses on the parallelization of the software. For this reason

I only discuss the issues that are related to the parallelization.

92

5.3.1 Domain Partitioning

It has been a common practice in parallel computing that a 3D space is divided into

overlapping partitions according to the special features of the simulation domain. A

ghost area is used to guarantee the coherence of the computing across sub domains

that are individually computed on worker nodes. This method was also used in the

fluid-particle simulation mentioned above.

After carefully studying the characteristics of the DEM problem, another parti-

tioning method was used. This method divides the physical objects, usually solid

particles, into distinct groups. Each group contains a number of objects. One Worker

process is assigned to each object group. No spatial shadow area is needed. Instead,

particles are tagged as "tangible" if they have neighbors with particles in another

group. So this mechanism is highly related to the result of the neighbor sorting. For

each time step, the contact identification involves an additional procedure to check

the "tangible" tag of each particle. If the particle is tangible, the Worker fetches

information from other groups that host those particles that are the neighbor of the

tangible particle. As you can see, we do not have to manually place a fixed ghost

area, nor do we need a complicated partitioning method. In practice, the neighbors of

the tangible particles are fetched from the other Worker processes on a an as-needed

basis.

There are several reasons to choose this parallelization scheme. Firstly, the shapes

of the space can be extremely irregular, for example, a few convoluted blood vessels.

The boundaries may move or even change shapes. Human intervention in the sim-

ulation is often unavoidable if space-based static partitioning is used. Secondly, for

DEM, static spatial partitioning may result in a bottle-neck situation in which most

of the particles are jammed into a very small number of computing nodes. This may

cause the execution to fail or waste significant computing power on the idle nodes.

Moreover, dividing the space into regular sub-spaces creates problems when the size

and shape of the objects are very irregular, because big objects can cover more than

one sub-space in some extreme cases. Lastly, the nature of DEM allows the contact-

93

based partitioning because it relies on discrete particle interaction.

There are some issues raised by this approach. The first one is when and where

we should do the neighbor sorting. A naive way is to have a dedicated node to do

the neighbor sorting after a number of time steps. In this way we can reuse the

non-parallel code for neighbor sorting. However,the neighbor sorting could take a

significant portion of time for even a small number of particle objects in the 3D case.

For this reason, neighbor sorting should also be parallel. At the same time we should

keep the communication cost small. This is challenging because the neighbor sorting

should be done globally and the consensus is hard to make without the information

of all the particle objects.

Let us first study a partitioning method that can be used in this parallelization

scheme. A perfect partitioning divides the particles into equal sized groups with

minimal dependence. This reduces both load balancing and communication cost.

The partitioning problem, for the simplest case of dividing the particles into two

groups, can be reduced to a typical problem of Graph theory. If each contact pair

is deemed an undirected edge, then the particles form a graph. The partitioning

problem is then equivalent to the Minimum Graph Bisection problem [14], which

reads:

A bisection of a graph G = (V, E) with an even number of vertices is a pair of

disjoint subsets V1, V2 of equal size. The cost of a bisection is the number of edges

c = (a, b) E such that a G V1 and b E V2. The problem of Graph Bisection takes

as input a graph with an even number of vertices and returns a bisection of minimum

cost.

Unfortunately, the Minimum Graph Bisection problem is NP hard, meaning there

is no reasonably efficient algorithm to solve it, especially for the case of DEM in

which a large number of vertices (particles) are common. Approximate solutions are

available[12]. However, these solutions are hard to parallelize. We therefore propose

another method, following the procedure below.

1. Each Worker process holds around the same number of objects.

94

2. Each Worker knows a pre-determined reference axis.

3. At the beginning of a super time-step 4, each Worker computes the location of

the projection for each object. These locations are pre-sorted into discrete bins.

Say, if the bin size is 3, then an object at 4.3 will be sort into a bin that covers

3 to (Figure 5-7). It is possible that one object may belong to more than one

bin depending on its size.

4. Each Worker sends all its bins to all other Workers.

5. After a Worker receives all bins from all other Workers, it then counts the

number of objects from the first bin and extracts the IDs of the objects that

should be assigned to it in the following time steps. For example, if the number

of objects is 10000 and there are 10 Worker nodes, the Worker number "3" will

have the objects from the 3001st to 4000th according to the reference axis. For

an object covering more than one bin, only the first bin is considered.

6. Each Worker then compares the ID of the objects received from the last step

and the objects that are already held locally and fetches the missing objects

from the other Workers.

7. The objects neighboring with non-local objects 5 are marked "tangible" and

their external neighbors are those neighboring non-local objects.

8. The computation in normal time-steps is then based on the local neighbor sort-

ing with the special handling of the tangible objects.

In short, this parallelization mechanism considered as a reduced CGrid method[37]

in dimension, can be thought of as a global neighbor sorting algorithm and load-

balanced partitioning with irregular ghost areas. The global neighbor sorting and

partitioning are done by individual Workers in parallel with low communication cost.

In addition, the global sorting results can be reused in local neighbor sorting. In fact,
4 a time-step that requires re-partitioning and global neighbor sorting, usually less frequent than

the normal time-step that computes the forces and momentum
5Non-local objects are those objects outside of the current partition.

95

Axis

12

de 2

o - --
Local Tangible Neighbor External Neighbor

Figure 5-7: The D global partitioning using a reference axis.

96

Figure 5-8: Spheres in a cynlinder (512 spheres).

for local sorting we do not use the complicated 3D CGrid algorithm. Instead, we

simply look for the overlapping of the bounding boxes for adjacent objects identified

by the reference axis. The disadvantage of this method is we must find the reference

axis for each super-step. Calculating an optimal axis requires the consideration of

two things: how to do that in parallel, and how to guarantee consensus about the

reference axis for all Workers. For the current stage, we manually set the reference

axis. Fortunately many problems allow us to do this intuitively, for example, if the

problem space is inside a cylinder or a torus. Further study should seek a better

solution for finding the reference axis automatically.

5.3.2 Results and Comparisons

We have use the parallelized DEM software to simulate solid spheres in a rotating

cylinder 5-8. Different partitioning methods are compared in Table 5.2: fixed par-

titioning along Z 6, fixed reference axis along X, fixed reference axis along Z and

6In the implementation, we can set a different policy for allocating the objects into Worker nodes.
Instead of using equal-sized partitioning, we can partition the objects by their absolute position on
the reference axis. This still guarantees consensus and should be roughly equivalent to the traditional

97

Table 5.2: DEM Parallel Partitioning performance comparison (2048 spheres, 8
nodes).

Fixed (Z) Fixed Ref (X) Fixed Ref (Z) Rot Ref
Time Cost (s) 30200 32080 21660 19150

rotating reference axis along the cylinder's central axis. Clearly, partitioning along X

axis is a bad choice because in this case the number of external neighbors are large.

It is so inefficient that even the fixed partitioning solution is superior. When we have

a better reference axis, the performance is greatly increased. From this table we can

conclude that our partitioning method indeed improves performance, provided that

a good reference axis is provided.

All in all, the Realm system provides a platform so that we can try compli-

cated approaches in solving engineering problems. Without the Object Oriented

communication-intensive parallel computing interface, these problems could not be

solved in such a short period of time.

method in performance.

98

Chapter 6

The Storage Applications

In Chapter 4, we presented a distributed movie-renderer that relied on a stand-alone

Universal (O)bject Storage node. In this chapter, we briefly describe how to develop

a Universal Object Storage system. Two sample applications are demonstrated here:

one simply uses the file system as the backend storage mechanism, and another one

takes advantage of the storage space offered by Gmail 1. We then show a simple

program that saves and retrieves files using the Universal Object Storage interface.

6.1 Typical Network Setup

We use the storage node as a universal data backup facility. So far it has not been

able to support true distributed storage, where multiple nodes can be used to backup

a single object 2. The typical usage at the current stage is to run the Universal

Object Storage Seed locally. Whether the authentication and encryption Remoting

sinks are needed depends on the network the node is connected to. If it is on the

Internet, encryption and authentication are required to protect the Worker from being

exploited by malicious connections.

1Grnail is a free Web Email system developed by Google. Its storage space is more than 1
gigabytes.

2 The GridFTP, coming with Globus Toolkit, is able to split a file into pieces and store them over
a number of grid points

99

6.2 Saving Data on The Local File System

The first example uses the local file system as the backend storage media. The idea

is fairly simple. Upon receiving the object, the storage seed serializes it into an XML

file with a name identical to the object reference. When the Read() function is called

by a remote process, the seed program checks the reference received, de-serializes the

object, and returns it to the caller.

The serialization should not be a problem because any object transferred through

the Remoting channel must be serializable. However, there is a serious issue if we send

the object directly to the Universal Object Storage: if the receiver, the storage seed,

cannot resolve the data type of the object, the data object will never be accepted.

This is very common in Remoting programming. For example, if the programmer

defines a new class named "Particle" in a parallel computing application and wants

to save Particle objects in a Universal Object Storage node, she cannot just pass

them to the storage node because the implementation of the Universal Object Storage

seed does not necessarily include the same definition of the Particle class. To solve

this problem, the Realm Framework provides a wrapper class CommonObject. The

CommonObject class contains a function named CommonObject.Is() 3 which serializes

the object passed to the function into an XML blob '. The recovery function is called

CommonObject. Get() which de-serializes the XML blob into the original object. The

object passed to the storage node in this case has the type of CommonObject which

can be resolved by the storage node.

6.3 Save Data into Gmail Account

This example shows how versatile the Realm Framework is. We connect the Realm

Framework to a Gmail account by the "GmailStorage" seed program, and use the big

email storage space as the underlying storage media.

To achieve this, we first identify what are the possible ways to read and write data

3 This function should be called by the client of the Universal Object Storage.
4 The XML blob can be further compressed to save memory and communication cost.

100

Figure 6-1: Gmail account used for Universal Object Storage.

to an email account. The Simple Mail Transfer Protocol (SMTP [2]) can be used to

send an email to an email account. The data can be serialized and packed as an

attachment with the email. We simply put the object reference string as the subject

of the email message and leave the text content of the email blank. To retrieve the

data object, we use the GmailAPI 5 to read information from the Gmail account,

including reading an individual email message. The data object previously saved is

unwrapped from the attachment of the email message.

In particular, when the WriteO function is called by a remote data sender, the

GmailStorage serializes the object, encodes it into a Base64 character block as an

attachment and adds headers to comply with the standard of Internet email.It

then connects to Gmail SMTP server 6 and delivers the email message to the Gmail

account. Figure 6-1 shows the Gmail account with samples of those messages. Later

when the ReadO function is called, the GmailStorage calls a corresponding function

of GmailAPI to search and fetch the email message with the subject identical to the

requested object reference ID. It then decodes the attachment, de-serializes the object

and returns the object to the caller.

Due to the limitation of the size of the email attachment allowed by Gmail, the

GetSingleObjectLimitO is overridden by the GmailStorage and returns 1048576 7.

5GmailAPI is an opensource package used to access a Gmail account through Gmail's XML
interface. The project is no longer maintained.

6This is done by query a DNS server for the MX record of Gmail.com [27].
71 megabyte.

101

)(

Figure 6-2: The virtual file browser.

6.4 A Virtual File Browser for the Universal Ob-

ject Storage

Although the implementation and backend storage media of this example is very

different from the previous one, they have the same interface and can be used for the

same task. Figure 6-2 shows the appearance of a virtual file browser very similar to

the Windows file browser 8. It can connect to any Universal Object Storage using a

host name and allows drag-and-drop style operations.

In this chapter, we demonstrated how we could use the Universal Object Storage

interface to build a proxy between the data users and the underlying storage media. In

particular, although I do not see a potential future of the Gm~il storage application,

it is a good demonstration for the versatility of the Realm system.

8 Although it looks very similar to the file explorer, its functions are restricted. For example, file
folders are not supported.

102

Chapter 7

The Messenger Application

The Messenger programming interface offers a channel-based collaboration framework

for conferencing-like systems. As was explained in Chapter 3, the Messenger interface

closely imitates the scenario of an ordinary meeting. Building up an Instant Messenger

or a conferencing software 1 based on it is very straightforward. In this chapter, we

present an application used with Radio Frequency Identification (RFID) in a supply

chain.

7.1 Problem Introduction

RFID is an automatic identification method, relying on storing and remotely retriev-

ing data using devices called RFID tags. An RFID tag is a small object that can

be attached to a product and has a micro circuit as well as an antenna to enable

it to receive and respond to electromagnetic queries from an RFID transceiver. An

organization called GS1 2 operates the joint venture EPCglobal , which is working

on international standards for the use of RFID in the identification of any item in

the supply chain for any company in the world. Today, as universal RFID tagging of

individual products becomes commercially viable at very large volumes, the lowest

1Since the Realm Framework has not been able to support streamed data, video/audio confer-
encing is not applicable.

2 http://www.gsl .org
3 http://www.epcglobalic.org

103

cost tags available on the market are approximately 7.2 cents each .

The MIT Auto-ID Lab is actively involved in the research topics related to RFID

applications. One interesting topic is how to coordinate one or more supply chains,

allowing the users to both publish and subscribe to events and to launch queries

against the aggregated data. The requirements for a supply chain management system

are listed below.

1. Individual supply chain management must be relatively self-maintained and

must offer a safe method to access the chain from outside.

2. Each supply chain has multiple event channels published so that the participants

in the chain can subscribe to one or more of them and receive the events they

are interested in.

3. A security model should be provided to prevent the system from becoming an

ad-hoc network.

4. The system should support a variety of data types passed as events.

5. Supply chains should be able to be located on the Internet by simple means.

We are able to develop such a supply chain management system with the Mes-

senger interface provided by the Realm Framework. For the purpose of example, we

do not develop sophisticated functionality such as a data warehouse in this proof-of-

concept application.

7.2 A Simple Supply Chain Communication Sys-

tem

In this sample application, there are multiple roles: supply chain manager, manu-

facturer, shipping service company, retailer and lost-and-found station (Figure 7-1).

4 This information is from an online news at http://www.smartcodecorp.com/newsroom/05-10-
05.asp.

104

Manufacturer Lost&Found

Product Info

REID Reader hannel 1 (shipping)

Sc(RFID, Zip)

/ ", Channel0 '

Shipping Company [/ .- '' (logs, user info) - I l .

LREDReader Supply chain | |R Readr
manager

Figure 7-1: The parties in a supply chain.

The supply chain manager initializes the communication system and maintains the

communication channels. The manager can be a supply chain management service

provider or simply a company involved in the chain. The manufacturer is where the

product information originates. The shipping service company carries the product

to different locations, in our example, identified by a zip code. The retailer is the

receiver of the product while the lost-and-found station offers a service to identify

missing products.

The supply chain manager starts the Realm job and registers the job on the

Realm Server so that the job can be located and accessible from anywhere. All other

participants 5 need to log into the Realm and join the job 6. They are monitored by

the supply chain manager. All public messages, such as log-in and log-out notification,

are passed through channel 0 headed by the supply chain manager. Other private

channels can be acquired by other participants who then have to define a group of

eligible event receivers. A participant can also join a channel if it is invited. In

this implementation, invitations are always honored. Once a private channel has

been established, all participants 7 are able to broadcast or receive private events

5Here the participants refer to the other Worker processes.
6 A job here is used in the context of distributed programming. It has the same meaning as a

supply chain.
7 0r in another word, the subscribers.

105

particular to the channel. For example, the shipping company can head a channel

named "Shipping" and invite the manufacturer and retailer as participants. Only

events related to shipping will go through the "Shipping" channel to notify the other

parties. This guarantees the privacy of the message and the efficiency of the message

processing.

Due to the nature of the Realm system's programming model, the event can be any

serializable object. In this example, there are " GeneralMessage", "Order", "Receipt",

"ProductInfo" and "RFIDReading" classes. In particular, the RFIDReading object

is a blob containing XML information complying with the EPCglobal standards.

As a typical case, the retailer first issues an order by sending an "Order" object

through the "Ordering" channel. The manufacturer later broadcasts through the

"Shipping" channel with a ProductInfo object wrapping up the product information.

The product then goes through the check points of the shipping company. At each

check point, the RFIDReading object goes through the "Shipping" channel again so

that the manufacturer and the retailer can monitor the shipping procedure continu-

ally. A Receipt object is sent by the retailer to notify the manufacturer that delivery

was successful. The lost-and-found station sends an RFIDReading object through the

public channel upon identification of a missing package. Figure 7-2 is a screen-shot

of the actual supply chain demo.

106

II-I:-'~I-~
I

r--
~

-.- 13415

-..~;r.:::rP"l!

0l0rM'-~ !:

::l!l:l=:::=.;-:..: II
o)(lIOCit:lPC>l2:).t(Jepr;.ept.)(lti..to.6::lid.dl ~ DititlfMiiiiijilt _--.E:J 91712lm'nU47PM.F .. F....,,(.... ""_ ... __ ~ __

....IDJ!!::]

J
,...~ ,'.

\IUo)1 ~ (ardwirlo~pJ:"'e>("'lh:Udh:b:l.~_T.~~-

-

Figure 7-2: Supply chain emulator interfaces.

107

108

Chapter 8

Supporting Components

8.1 The Dynamic DNS System

Locating network resources usually follows one of two main patterns: label-based

naming (LBN) or description-based naming (DBN). LBN systems affix a label to an

object and use it to locate and access the object. DBN systems, on the other hand,

use a set of attribute-value tuples to describe an object. Even though it provides

flexibility in answering resource queries, it comes at the cost of additional overhead.

Most of the overhead is associated with maintaining databases of the attribute-value

tuples and resolving queries using values within these databases. The overhead in-

creases dramatically with the increasing size of the network. [11]. The DNS tree is

a typical and popular LBN system, while the grid computing community tends to

use DBN to locate resources. In the Realm Framework, service location relies on

the DNS system, not only because the hostname is considered sufficient to describe

a resource in the Realm Framework context, but also because the DNS system has

so far been so popular and familiar that even a non-programmer can understand the

idea-each hostname universally identifies a resource object. Using online resource

objects provided by Realm systems is as simple as surfing the Internet. For example,

"svcl.iesl.mit.edu" is a resource object location mentioned before (Figure 8-1).

A resource is often floating because service workers are volunteer-based, and the

resource maintainers have the freedom to choose which Realm they want to join. For

109

this reason, the IP address matching the hostname of the resource may change fre-

quently. This raises a difficulty for registering the service on UDDI because typically

a fixed location is desired.

This problem can be solved by using the Dynamic Domain Name system (DDNS).

By setting the Time To Live (TTL) property of the hostname record to zero, the host-

name record will not be cached on mid-way DNS's and thus becomes a dynamic host

[27]. Although real time updating features are available for some popular DNS soft-

ware, such as BIND (ref: bind), a Web service enabled, lightweight DDNS software

was developed from the ground up to provide seamless connectivity with other com-

ponents of the Realm framework. Resource registration (adding updating a hostname

record) and server management are done through a set of Web services. As a sample

scenario, suppose a resource with the name "foosvc.iesl.mit.edu" is registered under

the "iesl.mit.edu" mother resource tree through the DDNS Web services. Since the

IP address of the Realm Server holding the resource object "foosvc.iesl.mit.edu" is

"18.58.0.199", the newly updated record in the DDNS for "foosvc.iesl.mit.edu" now

points to "18.58.0.199". This record is then stored in a database server. Next time

when any network client wants to access the resource object and call the service

"foosvc.iesl.mit.edu", this hostname string will be resolved to the IP address of the

Realm Server-" 18.58.0.199". If the client software is Realm-aware, it will usually call

the "CallService" method at the "http://18.58.0.199/Service" Web address.

Although not mentioned explicitly, this service identification and location scheme

has been used in some of the applications described in the previous chapters. For

example, the Movie Maker program relies on the hostname of the storage service

so that it can save the generated frame images on the Universal Object Storage

node; the Lattice-Boltzmann simulator exposes intermediate data as Globals and

allows a standalone graphic interface to locate them through a hostname and disply

them graphically; the supply chain simulator identifies each supply chain as a unique

hostname so that participants of the supply chain can join the chain from anywhere.

110

,. - - - - - Realm - - - - - -,
I

Framework I
I

DDNS: 18.58.0.215 I
I

I

DNS: mit.edu
record: iesl domain

18.58.0.215

Internet Clients,
Resolve service

foosvc. iesl.mit.edu

Figure 8-1: The Realm Dynamic DNS System.

8.2 The Realm Debugger

Without a debugger, developing software is a painful process. Debugging a parallel

computing application is even harder because we have to take care all the computing

processes at the same time. The Microsoft .Net Framework offers a powerful debugger

called" cordbg". The cordbg is designed for an ordinary single machine programs,

however. It provides some basic debugging capability and allows us to find out how the

Worker process is running on a local computer. In this case the cordbg is debugging

the WorkerI.exe, and it requires some tricks to distinguish the Worker processes hosted

by the WorkerI.exe program. This is a time-consuming job and requires technical

proficiency. A good distributed system should provide a debugger that:

1. offers a rich set of capabilities comparable to those offered by a non-distributed

debugger;

2. hides the distributed framework when necessary so that the application pro-

grammer can just focus on the application itself;

3. identifies individual processes and provides the information pertaining to the

underlying distributed system, such as process ID, NAD and Seed type for the

Realm system;

III

4. offers a graphical debugger interface to increase productivity;

5. offers the capability of remote debugging 1.

The Realm system comes with a debugger that meets most of the requirements

listed above. It is based on the Managed Debugger Interface published as a code

sample 2 by Microsoft with its .Net version 2.0. This programming interface offers

most of the functions provided by the cordbg, such as making break points, responding

to breaks and getting local variables. It allows us to write a debugger using C#. The

Realm debugger merges the capability of the Managed Debugger Interface and the

specifications of the Realm system with a graphical interface. When we launch the

debugger interface, it will first search the WorkerI.exe process on the local machine.

If the WorkerI.exe is up and running, the debugger asks the user whether it should

attach to the WorkerI.exe immediately. Attaching to it means starting a debugging

and all the Worker processes managed by the WorkerI.exe process are paused. The

Realm debugger then analyzes the break points of all the threads, and identifies the

ones belonging to the Worker processes but not the Realm system process. The

debugger then proceeds to find out the process ID of these Worker processes and

the distributed jobs they belong to. Finally, the debugger loads the source file for

each job and allows the user to debug them. The job control can be fine-tuned to

each individual Worker process, for example, pausing the processing of one Worker

but allowing the other Workers to proceed as usual. The debugger GUI looks like the

Visual Studio interface and should be familiar to most C# programmers (Figure 8-2).

8.3 Limitations

The Realm debugger provides a set of functions that helps the programmer in most

debugging scenarios. However, there are still many features that are not yet included.

The Realm debugger can not do remote debugging currently, which means only the

1Not yet implemented.
2You can get this on MSDN by searching "CLR Managed Debugger (mdbg) Sample".

112

28:
29:
30: public override void OnNewData(string d:~
31: (
32: datalist.Add(dataref, data); "
33: Bystem.console.writeLine("OnNewDatai;
34 :
35:
36: P(Ublic override byte[] onRetrieveData(st~--
37:
38: System.Console.WriteLine("OnREtriev
39: return (byte [J) datalist [dataref];
40:)
41: public override void OnDeleteData(string
42: (.
43: System.Console.WriteLine("OnDeleteD~
44: datalist.Remove(dataref); ~
45:) .
46: public override void OnRenameData (string~-:
47: (;~
48: system.Console.WriteLine("OnRenameD~~
49: object obj=datalist [oldname] ; j-:
SO: datalist.Remove 10 -=~~~~-~ .• _c..>'?:"'.~~7~

Figure 8-2: The Realm Debugger interface.

local Worker processes are visible to the debugger. For this reason, the Realm de-

bugger is not a true distributed debugger. Besides, for each job, the Realm system

usually runs the same DLL file. This means the Worker processes under the same

job usually use identical source code files. The break points are set according to the

location inside these files. The current debugger can not set different break points

for different Workers in this case. For example, if Worker process 0 has a break point

at line 100 of source file A.cs, this also means all the other Workers being debugged

will have the same break point at line 100 of file A.cs. Another limitation is we have

to point out the location of the debugger symbol files 3for the Seed DLL, which can

be inconvenient.

3The "program debug database" file, or the pdb file, is generated by the compiler.

113

114

Chapter 9

Conclusion

9.1 Summary

This thesis proposes the Realm Framework as a new concept for the sharing of Internet

resources. The implementation is based on the Microsoft .Net Framework and the

C# programming language.

We began in Chapter 2 with a brief examination of the previous resource sharing

frameworks, including typical parallel computing systems focusing on sharing com-

puting power and the more recent, general-purpose resource sharing ideas, such as

Grid Computing. In Chapter 2, we identified the weaknesses of the previous projects

and the potential use cases employing current technology. The conclusion of the

review is that an alternative to these systems is truly necessary.

Chapter 3 started with an explanation for the choice of the .Net Framework and

C# as the underlying platform for the Realm system. In this chapter, we showed that

our design and implementation carefully considered the accessibility, programmabil-

ity, reliability and efficiency. We have achieved the goal of the study.

Chapter 4, 5, 6 and 7 focused on applications using the Ream Framework. The

Realm system was proved to work well under the same situation as SETI@Home

and MPI. Additionally, the study of the performance showed that different network

configurations, especially when we use encryption with .Net Remoting, influence the

runtime performance in a predictable way. With additional support for storage and

115

messenger-style applications, we conclude that the Realm Framework is versatile and

meets the requirement as a general-purpose resource sharing framework.

Finally in Chapter 8, we discussed two miscellaneous issues, namely the method by

which we identify and locate the resources, and the Realm debugger as a handy tool

for application developers. Although they are not major components of the Realm

Framework itself, they make development under and usage of the Realm Framework

much easier. We further conclude that the Realm Framework is a feature-rich platform

sufficiently to be an alternative to the other systems.

In summary, this thesis contains rich information which paves the road for future

research.

9.2 Contributions

The major contributions of this thesis include:

1. The Realm concept and its implementation. We realized the limitation

of the previous systems and have presented the design and various aspects

of the implementation of the Realm Framework. It is an initial work that is

significantly different from other systems.

2. The programming interfaces for various real-world problems. We have

developed a layered programming-interface hierarchy so that application pro-

grammers can choose the interfaces most suitable for the particular task.

3. A rich set of applications that have already been developed based

on the Realm Framework. To serve as a start-point and roadmap to de-

velop quality applications using the Realm Framework, many demonstration

programs, some of which are serious engineering applications, were presented in

this thesis.

4. Approaches to the problem of security and robustness under the In-

ternet environment. Encryption, authentication and runtime security were

116

carefully studied. Fault-tolerance was also a topic of the research. Improve-

ments in the initial design and implementation have been done to enable a safe

Realm over the Internet.

5. Research about the performance of the Realm Framework. We pre-

sented the results of performance comparisons for various application scenarios.

The research not only proves the usability of the Realm system, but also sug-

gests the optimal configuration for different purposes.

6. In-depth research about parallelization for DEM. As an additional con-

tribution, this thesis proposed a domain partitioning method for DEM. Our

experiments showed that it was efficient and easy to implement with the Realm

Framework.

In summary, this thesis is an fundamental step towards a new distributed resource

sharing methodology. We hope that it can help further research in this area, and the

developed system can serve as the startpoint of a more powerful software package.

9.3 Future Work

Although the Realm Framework even at its current stage allows us to develop dis-

tributed programs and use Internet resources in many cases, it is far from a complete

software system. We have pointed out some of the current system's limitations in

the thesis. In light of these limitations, I suggest the following topics to guide future

research:

1. WSRF Compatibility. WSRF stands for Web Services Notification and Web

Services Resources Framework [15]. WSRF is the most recent open standard

designed to merge grid and the Web technologies in terms of today's Web service

standards. Complying with WSRF would enable the Realm Framework to

communicate with other distributed systems.1 We have not explored this issue

'Currently the WSRF.Net package developed in University of Virginia Grid Computing Group
allows Windows programmers to adapt their Web services to be WSRF-compatible. See their Web
site: http://www.cs.virginia.edu/ gsw2c/wsrf.net.html.

117

yet.

2. Mobile device support. In Chapter 2 we mentioned that the mobile device

support was once in the thesis plan but finally left undone due to the lack of

development software support for these devices. As mobile devices are getting

more and more popular, this research may be attractive in the future.

3. More abstract programming models for more fine-grained application

scenarios. For example, the current communication-intensive interface is the

general platform to develop parallel computing applications.The programmer,

however, may prefer a more specific model, say, a model that wraps up the

widely used ghost area and offers a set of abstract boundary classes that can

take care of various boundary conditions without writing code from scratch.

Future research can build a higher degree of abstractions based on the current

models to directly support a variety of applications.

4. Compression sink. We currently have the authentication and encryption

Remoting sinks. As we have pointed out in Chapter 5, the communication cost

of our current software is a non-trivial issue. Compressing the messages may

be a solution to reduce the communication cost. The trade off between the

transmission gain from data compression and the over-head introduced must be

studied.

5. Failure handling and fault-tolerance for applications other than sim-

ple master-slave style ones. We have discussed a possible scheduler for the

master-slave model in Chapter 3 to handle failure and faults. Relative studies

for the other programming interfaces have not been performed. Further research

might start from the easiest case-the Universal Object Storage interface, and

move toward the most difficult-the communication-intensive parallel computing

interface.

6. Coupling the Lattice-Boltzmann method with DEM. We have studied

the Lattice-Boltzmann method and DEM in Chapter 5. Putting them together

118

to simulate fluid flow with solid objects is another challenging topic.

7. Method to find the optimal reference axis for distributed DEM. The

new partitioning model we used in the DEM simulator is not fully automatic,

because the user still need to find an optimal reference axis. If the reference

axis can be found automatically, the efficiency of using the simulator will be

greatly improved.

8. Distributed storage. The current Universal Object Storage model does not

support true distributed storage as GridFTP does. This is a challenging task

because we should not only consider the implementation, but also the program-

ming model offered to application programmers.

9. Remote debugging. The current Realm debugger is not a truly "distributed"

debugger because it does not support remote debugging. Remote debugging is

a necessary feature for a distributed system.

9.4 Final Words

It is my hope that this thesis is truly helpful for colleagues within the same research

area who are interested in working on a distributed system that gives hope to the

vast majority of the computer users. The Realm idea makes some initial steps toward

this goal. We would like to see a fruitful future for the Realm concept.

119

120

Bibliography

[1] OGSA (OpenGridServices Architecture, 2002). online at

http://www.globus.org/ogsa/.

[2] Simple Mail Transfer Protocol. Request for Comments: 821.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK

Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA,

3 edition, 1999.

[4] M. Baker, B. Carpenter, S. Ko, and X. Li. mpijava: A java interface to mpi. In

First UK Workshop on Java for High Performance Network Computing, Eoropar

98. 1998.

[5] G. Buda, D. Choi, R.F. Graveman, and C. Kubic. Security standards for the

global information grid. Communications for Network-Centric Operations: Cre-

ating the Information Force, 1:617-621, 2001.

[6] H. Chen, S. Chen, and W.H. Matthaeus. Recovery of the navier-stokes equation

using a lattice-gas boltzmann method. Physics Review, A(45):5539-5542, 1992.

[7] S. Chen and G.D. Doolen. Lattice boltzmann method for fluid flows. Annual

Review of Fluid Mechanics, 30:329-364, 1998.

[8] P.A. Cundal and O.D.L. Strack. A distinct element model for granular assem-

blies. Geotechnique, 29(1):47-65, 1979.

121

[9] I.G. Currie. Fundamental Mechanics of Fluids. McGraw-Hill, 1974.

[10] P. Dasgupta, Z. Kedem, and M. Rabin. Parallel processing on networks of work-

stations: A fault-tolerant high performance approach. In Proceedings of 15th

IEEE International Conference on Distributed Computing Systems.

[11] P. Dinda and B. Plale. A unified relational approach to grid information services,

Feb 2001. Grid Forum Informational Draft GWD-GIS-012-1.

[12] Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of the

minimum bisection. SIAM J. Comput., 31(4):1090-1118, 2002.

[13] The MPI Forum. Mpi: A message passing interface. In Proceedings of Super-

computing '93, page 883, Portland, Oregon, 1993.

[14] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, Jan 1979.

[15] Globus. WSRF (Web Services Notification and Web Ser-

vices Resources Framework, 2004). online at http://www-

106.ibm.com/developerworks/webservices/library/ws-resource/.

[16] S.W. Golomb. Graph Theory and Computing, chapter How to Number a Graph,

pages 23-37. Academic Press, 1972.

[17] B. Hayes. Collective wisdom. American Scientist, 86(2):118-122, Mar-April

1998.

[18] S. Hou, Q. Zou, S. Chen, G. Doolen, and A.C. Cogley. Simulation of cavity flow

by the lattice boltzmann method. Journal of Computational Physics, 118:329-

347, 1995.

[19] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infras-

tructure Certificate and CRL Profile. Network Working Group, 1999. Request

for Comments: 2439.

122

[20] J.K. Huggins. Specification and Validation Methods, chapter Kermit: Specifica-

tion and Verification. Oxford University Press, 1995.

[21] S. Johnson. Resolution of Grain Scale interactions using the Discrete element

method. Phd thesis, Massachusetts Institute of Technology, 2005.

[22] N.T. Karohis, B. Toonen, and I. Foster. Mpich-g2: A grid-enabled implemen-

tation of the message passing interface, Nov 2002. published online by Globus

(http://www.globus.org.

[23] X. Lin and J.R. Williams. A grid computing architecture for applications in

discrete computational mechanics. In 7th US Congress on Computational Me-

chanics, Albuquerque, NM, Jul 2003.

[24] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1 edition, 1997.

[25] Microsoft Corporation. SMB File Sharing Protocol Version 6. Op, Jan 1996. online

at ftp://ftp.microsoft.com/developr/drg/CIFS/smbpub.zip.

[26] Microsoft Corporation. Windows Compute Cluster Server 2003 Beta 2 Reviewers

Guide, Nov 2005.

[27] P. Mockapetris. DOMAIN NAMES - IMPLEMENTATION AND SPECIFICA-

TION. Network Working Group. Request for Comments: 1035.

[28] Y. Qian, S. Succi, , and S. Orsazg. Recent advances in lattice boltzmann com-

puting. In D. Stauffer, editor, Annual Reviews of Computational Physics III,

pages 195-242. World Scientific, New Jersey, 1995.

[29] Y.H. Qian, D. D'Humieres, and P. Lallemand. Lattice bgk models for navier-

stokes equations. Europhysics Letter, 11:479-484, 1992.

[30] L.F.G. Sarmenta. Bayanihan: Web-based volunteer computing using java. In

Proceedings of the 2nd International conference on World-Wide Computing and

its Applications, Tsukuba, Japan, Mar 1998.

123

[31] L.F.G. Sarmenta. Volunteer Computing. Phd thesis, Massachusetts Institute of

Technology, Jun 2001.

[32] N. Satofuka and T. Nishioka. Parallelizaiont of lattice boltzmann method for

incompressible flow computations. Computational Mechanics, pages 164-171,

1999.

[33] S. Shepler. NFS Version 4 Design Considerations. Network Working Group.

Request for Comments: 2624.

[34] A. J. van der Steen and J. J. Dongarra. Overview of recent supercomputers.

Technical report, TOP500.Org, 2003. TOP500 report.

[35] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible security

architecture for java. In Proceedings of the 16th Symposium on Operating System

Principles, pages 116-128, St. Malo, France.

[36] J.R. Williams and X. Lin. A grid computing architecture for applications in dis-

tributed computation. In 2nd International PFC Symposium, Numerical Model-

ing in Micromechanics via Particle Methods, Kyoto, Japan, Oct 2004.

[37] J.R. Williams, E. Perkins, and B. Cook. A contact algorithm for partitioning

n arbitrary sized objects. Engineering Computations: Internatioal Journal for

Computer-Aided Engineering, 21(2-3):235-248, 2004.

[38] J.R. Williams X. Lin. A parallel computing framework for computer cluster.

In Proceedings of the 16th IASTED International Conference on Parallel And

Distributed Computing And Systems, Cambridge, MA, Nov 2004.

[39] L.-J. Zhang and M. Jeckle. Convergence of web services and grid computing.

International Journal of Web services Research, pages "i-iv", "Jul-Sep" 2004.

124

