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Abstract 

We report on a search for an annual variation of a daily sidereal modulation of 
the frequency difference between co-located 12'Xe and 3He Zeeman masers that 
sets a stringent limit on boost-dependent Lorentz and CPT violation involving the 
neutron, consistent with no effect at  the level of 150 nHz. In the framework of the 
general St andard-Model Extension, our result provides the first clean test for the 
fermion sector of the symmetry of spacetime under boost transformations at a level 
of GeV [I]. We also report progress on the optimization and operation of the 
Harvard-Smithsonian 12'XeJ3He dual noble gas maser. The 12'xeJ3~e maser is the 
first device to sustain simultaneous active maser oscillations on distinct transitions 
in two intermingled atomic species, and it allows sensitive differential measurement 
of the 12'Xe and 3He nuclear spin-112 Zeeman transition frequencies [2, 3, 41. The 
optimized 12'XeJ3He maser will be used for highly sensitive tests of Lorentz and 
CPT symmetry. 
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Chapter 1 

Introduction 

We do not usually think that the energy levels of an atom depend on its orientation 

with respect to the "fixed stars," or on the velocity of the laboratory. Our intuition 

is based on the belief that nature is invariant under Lorentz transformations (i.e., 

rotations and velocity boosts). This belief pervades most modern descriptions of na- 

ture, from the standard model of particle physics to general relativity. Experimental 

investigations of the validity of Lorentz symmetry therefore provide valuable tests 

of modern theoretical physics. This thesis presents such a test as well as progress 

towards improved experimental sensitivity. 

Atomic physics experiments are often in a unique position to provide world class 

tests of fundamental theories. In particular, the 12gXe/3He maser has an absolute 

energy sensitivity allowing us to detect daily modulations of its Zeeman levels as 

small as eV GeV in the units typically used in particle physics). This 

characteristic makes it ideally suited to test Lorentz invariance. 



1.1 The 1 2 9 ~ e / 3 ~ e  Maser 

The 129Xe/3He maser was first proposed by Walsworth in 1991 and has been devel- 

oped at  the Harvard-Smithsonian Center for Astrophysics, initially in collaboration 

with researchers at  the University of Michigan [2, 3, 651. A schematic diagram of 

this device is given in Fig. 1-1 and typical system parameters are listed in Tab. 1.1. 

In the 129Xe/3He maser, co-located ensembles of 12gXe and 3He atoms at pres- 

sures of few hundred Torr are held in a double-chamber glass cell placed in a homoge- 

neous magnetic field of a few gauss. Both species have spin-112 nuclei and the same 

sign nuclear magnetic dipole moment, but no higher-order electric or magnetic nu- 

clear multipole moments. In one chamber of the glass cell (pump bulb) the noble gas 

atoms are nuclear-spin-polarized by spin-exchange collisions with optically-pumped 

Rb vapor [5]. The noble gas atoms can diffuse into the second chamber (maser bulb) 

located at  the center of a single pick-up coil connected to  a circuit resonant both at  

the 3He and 1 2 g ~ e  Zeeman frequencies (both on the order of a few kHz). Initially, 

spontaneous and thermal transitions in the maser bulb excite the resonant circuit 

which in turn stimulates emission from other incoming atoms. After depositing their 

energy in the resonant circuit the noble gas atoms diffuse back to the pump bulb 

where they are re-polarized by spin-exchange. Thus, active maser oscillation of both 

species can continue indefinitely. One species may then serve as a co-magnetometer 

for the other, by locking its frequency to a stable reference through adjustment of 

the applied field. 

Operation of the two species maser as a stable oscillator requires a two chamber 

design to  separate the spin-exchange pump and maser operations. Different Rb 

vapor densities are obtained in the two regions by maintaining a strong temperature 

differential. The pump bulb is kept a t  a temperature of Tp = 114O C, while the maser 
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Figure 1-1: Schematic diagram of the l 2 ' x e I 3 ~ e  Zeeman maser. 



bulb is kept at  TM = 50" C, inducing a suppression of two orders of magnitude in 

the Rb density between the first and the second bulb (see Tab. 1.1). The Rb density 

differentiation is crucial because the 12'Xe-Rb spin-exchange rate is two orders of 

magnitude greater than the 3He-Rb spin-exchange rate. Thus, in a single bulb a 

Rb density adequate to  maintain a 3He population inversion able to sustain 3He 

maser oscillation would also induce excessive de-coherence of the 12'Xe ensemble 

and degrade 12'Xe maser oscillation. Moreover, the frequency stability in a single- 

chamber l2'XeI3He maser would be severely limited by noble gas Zeeman frequency 

shifts induced by collisional contact hyperfine interaction with optically pumped 

Rb. In the two chamber design the high Rb density of the pump bulb favors spin- 

exchange optical pumping, while the low Rb density in the maser bulb prevents 

unwanted Rb-induced spin-exchange relaxation and frequency shifts from adversely 

affecting either maser. 

Electron spin polarization is induced in Rb via optical pumping [6]. We use a 

laser tuned at  the Rb Dl transition (A - 795 nm), whose light is circularly polarized 

and focused onto the pump bulb. Approximately 80 Torr of N2 gas in the cell 

promote collisional de-excitation of the optically pumped Rb at oms, thus preventing 

radiation trapping, which would limit the efficiency of the optical pumping process 

[6]. Spin-exchange collisions between the 12'Xe and 3He atoms and optically-pumped 

Rb vapor [5, 71 polarize the noble gas nuclei. 

A typical maser cell consists of a roughly cylindrical pump bulb joined by a 

straight transfer tube to a roughly spherical maser bulb. The inner surface of the 

cell is treated with a silane coating to minimize spin relaxation of the 12'Xe atoms 

at  the walls (81. Due to the generally weak interactions of noble gas atoms during 

atomic collisions, the 3He and 12'Xe ensembles can have long Zeeman coherence (T2) 

times, provided that they are kept in a homogeneous magnetic field. For this purpose 



Table 1.1: Typical parameters characterizing the l2'XeI3He maser 

Description 
Gyromagnetic ratio 
Operating frequency 
Polarization lifetime 

Coherence time 
Maser signal amplitude 

Maser power 
Fill pressure 

N2 fill pressure 
Pump bulb temperature 
Maser bulb temperature 
Pump bulb Rb density 
Maser bulb Rb density 
Static magnetic field 
Pump bulb volume 
Maser bulb volume 

Transfer tube cross-section 
Transfer tube length 

the 1 2 g ~ e / 3 H e  maser is housed inside three concentric cylindrical magnetic shields 

screening the experiment from inhomogeneous DC magnetic fields and ambient RF  

noise. A stable magnetic field is used to split the noble gas Zeeman sublevels. 

This field is created with a single-layer solenoid located inside the magnetic shields 

together with field-gradient correction coils. The resultant field homogeneity ( V B  - 
20 pG/cm for Bo = 1.5 G) allows spin coherence relaxation times (T2) of hundreds 

of seconds in the 12'Xe and 3He ensembles, which are a prerequisite for stable maser 

operation. 

The 12'Xe and 3He maser signals from the pick-up coil (typically with amplitudes 

of few pV) are amplified and sent to  a pair of digital lock-in detectors. Active feed- 

back to  the solenoid's magnetic field locks the phase of one of the two masers (typi- 

cally 12'Xe) to  a reference signal (v;ed in Fig. 1-I), thereby isolating the experiment 

from common-mode systematic effects, such as stray magnetic field fluctuations. 

Parameter 

Yng 

Vng 

T; 
T; 

wn, 

prig, F ~ Z  
- - 

P N ~  ,F%LL 

TP 
TM 
[Rbl 

[Rbl M 

Bo 
VP 
VM 

Att = 7rpi 
L 

%e 
27r 3,243.72 

19,607 
6,000 

88 
21 

30 x lo-' 
600 
- - 

29 Xe 
27r 1,177.79 

7,119 
370 
229 
25 

62 x lo-' 
30 

Units 
Hz/G 

Hz 
s 
s 

PV 
erg/s 
Torr 

80 
114 
50 

1.4 x l0l3 
1.5 x 10'' 

6.04 
6 
4 

n 0.22 = 0.13 
3 

Torr 
" C 
" C 

ema3 
cma3 

G 
cm3 
cm3 
cm2 
cm 



Excellent absolute frequency stability is achieved in the free-running maser. For in- 

stance, Zeeman frequency mea,surements with sensitivity of approximately 300 nHz 

are possible with averaging intervals of about 2,000 s. 

All reference frequencies used in the experiment are derived from the same hy- 

drogen maser clock. This eliminates phase and frequency shifts among the reference 

oscillators. Even more importantly, the magnetic field independent hydrogen maser 

frequency is unaffected by the Lorentz and CPT violating interactions that we wish 

to  detect with our masers. Thus, the hydrogen maser is the stable reference clock 

in our clock-comparison experiment, as we see in the next section. 

1.2 Testing Lorentz and CPT Invariance 

The l2'XeI3He maser is used to  monitor the relative phases and Larmor frequencies 

of the co-located 3He and 12'Xe masers as the laboratory reference frame is rotated 

and velocity-boosted with respect to  the distant stars thanks to  the movement of the 

Earth. The l2'XeI3He maser is usually operated with the 12gXe maser phaselocked 

and the 3He maser free-running. The Lorentz-invariance signature that we look for 

is a sidereal modulation of the 3He frequency. 

Our atomic clock comparisons are motivated by the Standard-Model Extension 

(SME) developed by Kosteleckf and others 19, 10, 11, 121. The SME parameterizes 

arbitrary coordinate-independent Lorentz violation. Since violation of CPT symme- 

try (the product of Charge conjugation, Parity inversion, and Time reversal) must 

come with Lorentz violation [13, 141, the SME also parameterizes general CPT vi- 

olation. Observable Lorentz and CPT violation could be a remnant of Planck-scale 

physics. One attractive origin is spontaneous Lorentz breaking in a fundamental 

theory [15, 16, 17, 18, 191, but other sources are possible [20]. 



The SME provides a widely-accepted formalism for the interpretation and com- 

parison of experimental searches for violations of Lorentz and CPT symmetry. The 

SME ajnd its predictions for the 12gXe/3He maser are described in detail in Chapter 3. 

Here we anticipate some results. 

The leading-order energy shift due to Lorentz violations for a fermion, f, in state 

I J ,  m J )  is a sum of two terms' [21], 

In this expression, fk J and 6 J are given by 

The dipole and quadrupole energy shifts ~ d f  and E,f are independent of mj and 

depend on Lorentz-violating terms introduced by the SME. Note that for spin-112 

fermions in states of vanishing angular momentum (1 = O) ,  the quadrupole energy 

shift always vanishes. This is the case in the clock transitions that we compare, 

those of a hydrogen maser and of a spin-112 Zeeman maser. 

In the case of the hydrogen maser, there are two Lorentz-violating perturbations, 

h P  and he, acting on the proton and on the electron respectively. Since both the 

proton and the electron in the clock hyperfine levels 1 1 , O )  and 10,O) (depicted in 

Fig. 1-2 (a)) are in a superposition of their spin-up and spin-down states, the expec- 

tation value of hP and he vanishes for both levels and the hydrogen maser frequency 

is unaffected by the Lorentz-violating  contribution^.^ 

 e ere, is the total angular momentum of the ferrnion f ,  not the angular momentum of the 
system to which it may belong. 

2As Fig. 1-2 (a) suggests, the 11, f 1) levels of the hydrogen maser are affected by the Lorentz- 
violating interactions described by the SME. A Lorentz symmetry test searching for sidereal vari- 



(a) Hydrogen Maser (b) Zeeman Maser 

IF 7 mF) I h' Perturbation I F  mF) I h' Perturbation 
I I 

Affected 

1 112,-112) 0 

(h") = E; 

(h") = - E; 

Figure 1-2: Clock transitions for the hydrogen maser and for a spin-112 Zeeman 
maser in the presence of a magnetic field and a Lorentz-violating perturbation hf 
given by Eq. (1.1). 

The same is not true for the 12gXe and 3He Zeeman maser frequencies. In both 

isotopes the unpaired neutron is assumed to carry the entire angular momentum of 

the nucleus and be in a bound slj2 wave. The Lorentz-violating perturbation for the 

neutron, hn, produces equal and opposite energy shifts for the two Zeeman levels, 

as shown in Fig. 1-2 (b), thus affecting the Larmor precession frequency. 

For a neutron at  rest the SME predicts the following effective hamiltonian, 

where f is the spin operator of the neutron and indicates a combination of SME 

coefficients that vanishes if Lorentz-symmetry is exact. The SME assumes that 

is the spatial part of a four-vector b,, assumed to be static in the Sun's rest frame 

where its components are: bc = {bT, bx, by, bz). In the laboratory, bi = hiz bl:. A,' 

is the Lorentz transformation from the Sun's system of space-time coordinates to  

the laboratory system and depends on the sidereal time, T, on the Earth's rotation 

ations in this transition was carried out in our group [22]. Note also that in the present treatment 
we have disregarded spin independent, Lorentz-violating frequency shifts that would shift all hy- 
perfine levels equally producing no observable results in the maser frequency. A more accurate 
treatment of this topic is presented in Ref. [23]. 



and revolution frequencies, we and Oe, and on the velocity P, E 9.9 x of the 

Earth on its orbit. 

The perturbation hn acquires a time dependence through A,'. The 12gXe and 

3He Zeeman levels are shifted equally,3 but since the gyromagnetic ratios, y,,, for 

the two species are different (see Tab. 1.1) and the 12gXe maser is used as a co- 

magnetometer, the free-running 3He maser has a time dependence that can be writ- 

ten as follows: 

?'He buHe = V H ~  - -Vxe = b U x  sin w ~ T  + buy COS wBT, 
Y x ~  

where 

6~ = k (A, + pa (A,, sin OeT + A,, cos OJ')), 

buy = k (A, + ,De(Acs sin OeT + Acc cos 0,T)). 

k = -8.46 x nHz/GeV is given by the SME [24, 251 and the coefficients A,, A,, 

A,,, A,,, . . . are Sun-frame Lorentz-violating  coefficient^.^ 

In Chapter 3 we show that our experiments put a bound on A,,, As,, Acs7 A,, < 

GeV, while our previous experiments (24, 251, bounded A,, A, < GeV. 

Significant improvements on both bounds should be possible using the optimized 

129Xe/3He maser described in this thesis. 

- - -- 

3 ~ h e  valence neutron is treated in the same way for both species [21], therefore the energy shift 
is the same. 

*These coefficients are a function of bc, as well as other SME coefficients arising from the motion 
of the valence neutron in its bound nuclear sip state. 



1.3 Thesis Organization 

This thesis is organized in six chapters. After an introductory chapter we report, in 

roughly chronological order, recent work on the 1 2 g ~ e / 3 ~ e  maser. 

In Chapter 2 we introduce spin-exchange optical pumping, the mechanisms re- 

sponsible for polarization relaxation, and we solve the maser equations for a single 

bulb Zeeman maser. In this chapter, dedicated to theoretical principles, we chose to 

neglect the complications arising from the diffusive transport of polarization between 

pump bulb and maser bulb and to emphasize instead the analogies with standard 

maser theory. At the end of the chapter we review the techniques used to character- 

ize instabilities and to assess the performance of our masers as precision oscillators. 

We then discuss the sources of noise that fundamentally limit the frequency stability 

of the 1 2 g ~ e / 3 H e  maser and with it its Lorentz-invariance-violation sensitivity. 

Chapter 3 deals with our experimental result obtained with the previous 12gXe/ 

3He maser: the first test of boost invariance in the fermion sector (reported in 

Appendix A). The beginning of the chapter is meant as a preface to our result 

and an introduction to  the SME. Our aim is to illustrate how Lorentz-violating 

interactions affecting fermions may produce observable effects in complex systems, 

such as the l2'Xel3He maser. We then compare and contrast our boost test to  

a classical test of Lorentz violation in electrodynamics: the Kennedy-Thorndike 

experiment. In the later part of the chapter, we show that our Zeeman masers are 

effectively NMR gyroscopes and as such are affected by frequency shifts induced 

by the Earth's rotation. These shifts however are constant in time for a maser a t  

rest in the laboratory and thus a sidereal frequency modulation observed in our 

masers would be unequivocal sign of physics beyond the standard model. Finally, 

we summarize advantages and disadvantages of operating our 129Xe/3He maser on 



a rotating platform. 

Chapter 4 is dedicated to the design studies carried out mostly before the con- 

struction of the new 129Xe/3He maser. The chapter begins with an assessment of 

the frequency stability and Lorentz-invariance-violation sensitivity of the previous 

maser. We discuss its known limitations, particularly the layout of the oven and the 

temperature control system, and we present possible design improvements. We then 

introduce an extensive model of optical pumping (considering narrow and broad- 

band light sources), polarization transport, and maser dynamics in the double-bulb 

cell. This model illustrates some of the 12gXe/3He maser's complexity and was used 

in the process of cell geometry and gas fill pressure optimization. Next, we attempt 

to  underst and the role that different diffusion coefficients and interaction times for 

the two noble gas species may play in causing imperfect co-magnetometry. At the 

end of this chapter we show that by choosing a spherical geometry for the maser 

bulb we can neglect self-interaction in our masers. 

In Chapter 5 we describe the design and construction of the new 12gXe/3He 

maser. We review the new oven design with an improved blown air temperature 

control of the maser cell and we summarize the procedure for making l2'Xel3He 

maser cells. We then discuss the characteristics and stabilization schemes for the two 

lasers which are currently under test: a half Watt narrow-band laser and the 30 W,  

broad-band laser diode array (LDA) formerly used. Next, we review the magnetic 

field environment: magnetic shielding, main field characteristics, field stabilization, 

and various attempts to confine the maser action to  the maser bulb region. We 

conclude the chapter by describing in detail the signal detect ion system. 

The final chapter is dedicated to  the current system performance. We provide 

the operational details of the temperature control system, of the laser stabilization 

schemes, and we assess their performance. We describe the methods for measuring 
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the primary parameters of the l2'XeI3He maser and we compare our observations 

with the predictions of our modified Bloch theory. We then study the effects of 

peripheral pick-up coil fields on the maser frequency. The importance of periph- 

eral fields was discovered during our first experimental study of co-magnetometry 

imperfection, which is described next. Finally, we present an assessment of maser 

frequency stability and current sensitivity to Lorent z invariance violation. 



Chapter 2 

Theoretical Principles 

A maser uses the stimulated emission of radiation by excited atoms or molecules to 

generate or amplify coherent monochromatic electromagnetic radiation in the "long 

wavelength" (audio to microwave) range. The radiation emitted from the noble gas 

atoms in our masers is in the audio-frequency range and our spin 112 masers have 

all of the characteristics described by standard maser theory, as we briefly show in 

this chapter. We begin by introducing spin-exchange optical pumping, which is used 

to achieve population inversion (i.e., a population imbalance in which more atoms 

are in the highest energy state). We then present the relaxation mechanisms that 

tend to re-establish thermal equilibrium between populations and coherences of the 

two Zeeman levels. Next, we show how the maser equations of motion take a simple 

form if, in analogy with the well known Bloch vector, we employ an average spin 

polarization vector t o  characterize the whole masing ensemble. 

For simplicity, we defer until Ch. 4 the treatment of the complications arising 

from the details of the geometry of our maser. Here, we will simply assume without 

loss of generality that a given, steady-state flux of polarized atoms enters the maser 

bulb. As in standard maser theory, the flux of polarized atoms must exceed a 
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threshold value to sustain continuous maser oscillation. We also show that our 

tank circuit behaves like a resonant cavity: It provides the feedback necessary to 

stimulate emission; a mistuning of the circuit's resonant frequency from the atomic 

Zeeman frequency induces cavity pulling of the maser frequency; and in steady 

state the resistive circuit dissipates the energy that the atoms gain during the initial 

state-preparation. 

In the last section of the chapter we review the techniques used throughout this 

thesis to characterize various types of instabilities and in particular to  assess the 

performance of our masers as precision oscillators. We then show how phase and 

frequency data are extracted from the maser signals and we discuss the sources of 

noise that fundamentally limit the stability of the observed Zeeman frequencies. 

2.1 Spin-Exchange Optical Pumping 

An active maser dissipates energy in order to self-sustain its oscillation. In our 

device this energy is transfered to the noble gas atoms when they are spin polarized 

in their most energetic Zeeman level. 

The 12'Xe and 3He nuclei are polarized by spin-exchange interactions with op- 

tically pumped Rb vapor [26, 6, 271. This process occurs in two stages. First, Rb 

is polarized by optical pumping with circularly polarized light tuned to the Rb Dl 

transition. Second, polarization from the Rb valence electrons is transferred to the 

12'Xe and 3He nuclei during collisions between the Rb and noble gas atoms. The 

spin-exchange process is similar for both noble gas species, but the angular momen- 

tum transfer rate from the Rb to the 12'Xe atoms is approximately 2,500 times the 

transfer rate from the Rb to the 3He atoms. 

The two naturally occurring isotopes of Rb, 8 5 ~ b  (S = 1/2, I = 512) and 8 7 ~ b  



(S = 112, I = 3/2), have ground state hyperfine splittings of 3,036 MHz and 6,835 

MHz, respectively. A typical maser cell contains a gas mixture of 600-1,500 Torr 

"e, 30-200 Torr 12'Xe, and 50-100 Torr N2. The presence of these gases broadens 

the Rb Dl line to a width of approximately 10-30 GHz, which is larger than the 

hyperfine splitting of either isotopic ground state.' Figure 2-1 shows a simplified 

level diagram for both isotopes of Rb, with the (unresolved) hyperfine levels not 

depicted. The m, = +1/2 and m, = -112 Zeeman sublevels are split by the 

experiment's solenoidal magnetic field: Av, = 467 ~ H z / G . ~  While the Zeeman 

splitting is also not resolved for typical magnetic fields of approximately 1 G, spin 

depolarization of the Rb ground electronic state is very slow; hence the two rn, 

sublevels are resolved in angular momentum space. Circularly polarized o+ light 

selectively drives the Dl transition 2sl12 + 2pl12r with Am = +l. Spontaneous 

radiative decay from the excited state occurs with a probability of 213 to return to 

the m, = -112 ground state and a probability of 113 to return to the m, = +1/2 

ground state, which is the desired, spin-polarized state. When a Rb atom undergoes 

such radiative decay, it emits a photon that in general will have neither the same 

polarization nor propagation direction as the optical pumping light. Re-absorption 

of these emitted photons by ground state m, = 112 Rb atoms limits the efficiency 

of the optical pumping process [6]. The addition of approximately 80 Torr of N2 

buffer gas to each maser cell provides a mechanism for radiationless de-excitation 

of the Rb valence electron. The Rb-N2 cross-section for collisional Rb de-excitation 

is several orders of magnitude larger than the Rb-3He and Rb-12'Xe cross-sections, 

with a decay time of approximately 2 ns. The spontaneous radiative decay time 

 he pressure broadening coefficients for the Rb Dl transition are approximately 14 GHz/atm 
for N2 and 18 GHz/atm for 12'Xe and 3 ~ e  [8]. 

2 ~ h e  quoted Av, is that of 85Rb, the most abundant isotope (72.15%). For 8 7 ~ b ,  Auz = 
700 kHz/G [28]. 
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Figure 2-1: Simplified representation of spin-exchange optical pumping. Rb is polar- 
ized by circularly polarized oi light. In a pressure-broadened cell the hyperfine levels 
cannot be energetically resolved and are not shown. The m, = 112 and m, = -112 
Zeeman sublevels are split by the experiment's solenoidal magnetic field in both the 
52s1/2 and 52p1/2 electronic states, and are resolved in angular momentum space. 

is approximately 30 ns; thus more than 90% of Rb atoms decay non-radiatively 

[29]. Collisional mixing between the Rb and 12'Xe, 3He, and N2 atoms also rapidly 

populates the two 2p1i2 states equally. Hence non-radiative decay to either ground 

state m, level occurs with equal probability. In this simple picture, and in the 

absence of spin-destruction mechanisms that connect the two m, ground states, an 

average of two o+ photons is required to polarize one Rb valence electron (a more 

complete description, including the effect of the Rb hyperfine interaction, is found 

in [26]). 

The rate equation governing the Rb polarization, PRb , represents the competition 

between the optical pumping rate, yqt, and the rate of spin-relaxation of the Rb 

atom between the ground state sublevels, rRb. The time dependence of the Rb 



polarization is 

The solution of this equation for PRb(0) = 0 is: 

For typical maser operating conditions, PRb reaches its equilibrium value of 30 - 90% 

in a few milliseconds depending on the operating temperature and the intensity of 

the pumping light. In steady state we have: 

Y o p t  
P R b  = 

Y o p t  + r R b  ' 
(2.3) 

As we will see in Sect. 4.3.1, yopt depends on the local flux of on-resonant optical 

pumping photons, which decreases along the cell as light is absorbed. 

Spin-rotation interactions between Rb and other atoms in the optical pumping 

region are the dominant contribution to rRb (291, 

where the kRb,a = ( V , O ~ ~ , ~ )  are velocity averaged cross sections resulting from colli- 

sions of Rb atoms with atoms of type a and [a] indicates their number density. Table 

2.1 gives values for the relevant kRb,a For typical l2'XeI3He maser conditions, rRb 
is dominated by spin-rotation interactions of the Rb and 12'Xe atoms [30]. 

The polarization of a Rb valence electron is transferred to a noble gas nucleus 
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species a kR6,a (cm3/s) [a] (cmy3) 
3He 2.3 x 10-l8 l0l9 

Table 2.1: Values for the spin-rotation rate constants kRb-a and typical gas and 
vapor number densities, [a], in the 12gXe/3He maser. 

by a spin-exchange interaction of the form: 

where f represents the nuclear spin of the noble gas and 3i represents the spin of the 

Rb valence electron and of all the noble gas electrons [31, 321. The last term in the 

Hamiltonian represents the Fermi contact interaction between the electrons and the 

noble gas nucleus and it is this interact ion that dominates the spin-exchange process 

[31]. Furthermore, the total gas pressure in a typical maser cell is low enough to 

permit the formation of transient Rb-12gXe Van der Waals molecules that increase 

the Rb-12'Xe hyperfine interaction time and therefore enhance the Rb-12gXe spin- 

exchange rate [7]. 

As with the Rb polarization, the rate equation describing the polarization of 

3He and 12'Xe is characterized by a spin-exchange source term yse = kse[Rb] and a 

relaxation term I?,,. In steady state: 

prig = 
P ~ b ~ s e  

Yse + rng 
- - 7' opt Yse 

y ~ t  + r ~ b  Yse + rng ' 

Relaxation mechanisms for polarized noble gases will be discussed in the next sec- 



tion. We note here that I',, in our double-bulb cells also includes the rate at which 

atoms diffuse into and out of the pump bulb, which in turn depends on the steady 

state polarizations in the two bulbs. The steady state value of Eq. (2.6) will be 

obtained in Sect. 4.3, where we introduce a model for the diffusive polarization 

transfer . 

Under typical operating conditions in the pump bulb, kse,He = 7 x and 

k , , , ~ ~  = (1.75 f 0.12) x 10-l6 cm3 s-' for binary collisions. The contribution of 

Rb-12'Xe Van der Waals molecules to 12'Xe spin-exchange can be on the same order 

of magnitude or even greater than that of binary collisions. Its magnitude depends 

sensitively on the density and species of the buffer gases present in the cell; in our 

case we also have both N2 and 3He. Buffer gases are needed for molecule formation, 

since this begins with a three body collision in which the momentum carried away 

by the buffer gas allows for the binding of the molecule. However, when buffer gas 

pressures become too high, they limit the lifetime of the Rb-12gXe molecules, thus 

suppressing this spin-exchange mechanism. Unfortunately, reliable measurements 

of the Van der Walls contributions to spin-exchange are not available for the gas 

mixtures and relatively low pressures that we employ and this limits our ability to 

make accurate quantitative predictions. 

Typical times to reach equilibrium polarization are: 12'Xe = 10 minutes, 3He = 
2 hours. Typical equilibrium noble gas polarizations in the pump bulb are: Pxe = 
0.4 and PHe = 0.02. In Sect. 4.3.1 we will present a numerical simulation of the 

optical pumping process and we will discuss pros and cons of using broad- or narrow- 

band lasers. 



2.2 Spin Relaxation 

In this section we briefly review the known spin-relaxation and decoherence pro- 

cesses affecting 12gXe and 3He. The long spin-relaxation times that we find are 

perhaps the most remarkable properties of these two isotopes and derive from their 

having nuclear spin 112 and no net electronic spin. These atoms interact with their 

environment only through the relatively weak magnetic dipole, since all higher order 

electric and magnetic momenta vanish for systems of particles with total spin 5 112. 

Here, we consider the effects of wall collisions, self-interaction and magnetic field 

inhomogeneities, but not mechanisms such as maser action (radiation damping) and 

diffusion into and out of the two bulbs, which will be addressed in Sect. 2.3.1 and 

Sect. 4.3 respectively. 

2.2.1 Longitudinal Relaxation (TI) 

Magnetic impurities on the glass surface disorient the spins of polarized noble gases 

during wall collisions. This depolarization mechanism is the dominant source of 

relaxation in the relatively small, high surface-to-volume ratio cells used in our 

masers. The relaxation rate depends on the specifics of cell geometry, wall coatings, 

gas fill pressures, gas temperature, etc. For 3He, we have observed (see Sect. 6.4) 

relaxation times TI = 2 - 7 h, which we attribute to  wall relaxation and are in 

keeping with the literature [6]. For 12'Xe, the wall relaxation times are typically 

much shorter. We carefully clean our cells and then cover the inner surface with 

silane coatings (see Sect. 5.2.1) that are known to  lengthen the 12'Xe relaxation 

times to  about Tl,w,ll z 20 minutes. This time constant is difficult t o  observe 

experimentally in our double-bulb cells, because the spin-exchange interaction with 

Rb seen in the last section and polarization transport affect the 12'Xe polarization 
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on comparable time-scales (see Sect. 6.4). 

Compared to wall relaxation, the self-relaxation of 3 ~ e  due to the magnetic 

dipole-dipole interaction (given by Tl,He-He = 744 h/[He] [29], where the 3He den- 

sity [He] is measured in amagat" is negligible. The self-relaxation of 12gXe due 

to ma,gnetic dipole-dipole interactions is negligible compared to the spin rotation 

relaxation in 1 2 g ~ e / 1 2 g ~ e  Van der Waals molecules, which is given by Tl,xe-xe = 
(1 + 0.25[He]/ [Xe]) 3.5 h [33], where we have assumed that 3He is the most dense 

buffer gas in the cell and it contributes to the breaking of the 1 2 g ~ e - 1 2 g ~ e  molecules. 

Noble gas atoms can be depolarized also by diffusion through magnetic field 

inhomogeneities a t  the rate 

where BL is the component of the static magnetic field transverse to  the main ap- 

plied field Bo z 1.5 G 161. The noble gas diffusion coefficients Dn, are largest in 

the hot pump chamber, with rough values Dxe - 0.4 cm2/s and DH, = 1.5 cm2/s 

(see Sect. 4.3.3). In our apparatus we limit ~ B O ( F )  to  approximately 20 pG/cm for 

Bo z 1.5 G (see for instance Sect. 6.5 and [34]). Assuming that 9 B~ is ten times 

larger than ? ~ o ( r ' )  (an extremely conservative estimate), the resulting magnetic- 

gradient-induced relaxation rates are thus entirely negligible (Tl,~agn > 1 y). Since 

the mechanisms that lead to spin relaxation are independent, the total rate of lon- 

gitudinal spin relaxation is the sum of all rates for each process: 

31 arnagat = 2.69 x 1019 is the density at STP. 



2.2.2 Transverse Relaxat ion (T2) 

In addition to  the mechanisms discussed in the previous section the dominant mech- 

anism for transverse spin relaxation in the maser bulb arises from axial magnetic 

field inhomogeneities of the form fBo(r'). Noble gas nuclei at  different locations 

experience slightly different magnetic fields and precess at  slightly different rates, 

thus inducing decoherence. Motional averaging (i.e., diffusion) reduces the effective 

field inhomogeneity. In a spherical maser bulb the dephasing rate takes the form 

where Dng is the total noble diffusion coefficient, yng is the noble gas gyromagnetic 

ratio and R (- 1 cm) is the radius of the spherical maser bulb. The components of 

B~ (3 include contributions from the solenoid field, from residual magnetization 

of the p-metal shields, and from fields produced by the polarized noble gas atoms. 

Using the diffusion coefficients and the magnetic field inhomogeneity given in the 

last section (Dxe = 0.4 cm2/s, DHe - 1.5 cm2/s, and ?Bo(F') = 20 pG/cm), we 

obtain T2 = 400 and 200 s for 129Xe and 3He respectively, in good agreement with 

measured values (see Sect. 6.5). 

In conclusion, the total decoherence rate is then given by 

and the magnetic field gradients usually dominate the decoherence process. As we 

will see in Sect. 5.4.2, careful trimming of three shim coils allows us to  maximize 

transverse decoherence times. 



2.3 Bloch Equations and Masing 

The Hamiltonian for a magnetic moment c in the presence of a static magnetic field 

Bo along i and a quasi-resonant drive of frequency wnr, phase a ,  and amplitude B1 

along 2 is: 

+ + 

H = -c. B = ?,,I . (B1 C O S ( W ~ ~  + a ) ,  0 ,  Bo)  , (2.11) 

+ 

where I is represents the nuclear spin and y,, > 0 is the absolute value of the 

noble gas gyromagnetic ratio, which is negative for both 12gXe and 3He. In matrix 

notation the Hamiltonian is: 

where wo = y n g B  and the Rabi frequency WR = yn,B1/2. It is convenient to make 

the rotating wave approximation, i.e., to  neglect the counter-rotating term, so that: 

The equations of motion governed by this Hamiltonian can be solved more easily 

in the frame rotating at  the frequency of the quasi-resonant drive. In the frame 

rotating at  W M  the Hamiltonian takes the following form: 
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Figure 2-2: The polarization vector F in the frame rotating at the maser frequency. 
The 2' axis is chosen along the direction of the perpendicular polarization. The 
B1 field is the feedback field produced by the pick-up coil. The phase of this field 
is shifted by an angle cu depending on the detuning of the coil from the Zeeman 

where we have defined the frequency shift b = w~ - wo and are the Pauli matrices. 

In terms of the spin density matrix p' for the ensemble of noble gas atoms in the 

rotating frame,4 Eq. (2.11) can be rewritten in the following form: 

The spin density matrix can be rewritten using the Pauli matrices 5, the identity 
+ 

matrix 12x2, and a polarization vector P: 

 h he prime indicates coordinates in the rotating frame. 

36 



The polarization vector is defined using the populations (p;,, p',,) and coherences 

(pLa, p ib)  of the spin density matrix: 

One can then show that the equation of mot ion in Eq. (2.16) takes the following 

vector form: 

with fi as defined in Eq. (2.15). 

In an active maser the polarization perpendicular to  the Bo field, Pl, is coupled 

through a resonant cavity or circuit back on the atomic ensemble thus creating a 

tipping field that self-sustains the oscillation. The equations of motion for a simple 

maser5 can be derived using Eq. (2.19) and assuming a source of polarization such 

that,  in absence of masing, the longitudinal polarization would reach the value Pz,o 

in the presence of longitudinal spin relaxation characterized by the time TI. For the 

maser, the polarization vector @ of Eq. (2.19) refers to  an average over the ensemble 

of [ng]VBulb atoms, where [ng] is the number density of the noble gas atoms and VBulb 

is the volume of the bulb in which they are contained. In our system the source is a 

flux of polarized atoms 4 (in units of number of atoms per second) that diffuse into 

the maser bulb. In terms of the flux the source term is: 

5The general case of the double-bulb maser will be discussed in Sect. 4.3.4. 
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In compact form the maser equation of motion including relaxation is [36]: 

4 

Since the oscillator is self-driven WR depends on the polarization 13 and this makes 

Eq. (2.21) nonlinear. In order to solve this equation in steady state we must review 

the feedback mechanism that generates the quasi-resonant driving field B1 and find 
-+ 

an expression for wR(P). 

2.3.1 Feedback Circuit and Radiation Damping Time 

The quasi resonant field B1 of the maser is produced by a coil surrounding the 

atoms. This coil is connected to a resonant tank-circuit (see Fig. 2-3) and is excited 

by the magnetic flux picked up from the precessing atoms, whence the name "pick- 

up coil." The spatially dependent magnetic field per unit current produced by the 

pick-up coil, f(F), satisfies the following equation: 

The magnetization associated to the ensemble of atoms is: 

The polarization is defined in Eq. (2.18) and now refers to an ensemble of atoms. 

The voltage induced in the coil can be written in the following form (371: 

Vpu ( t )  = -c dt  1 d3?' {<(?') ~ ( ? ' , t ) } .  



I 

j Pick-Up Coil 

PU 

Figure 2-3: Simple RLC circuit that could be used as the feed-back circuit of a 
single species noble gas maser (the double-resonant circuit that we actually use is 
described in Sect. 5.5). The atoms' oscillation induces a current in the pick-up coil 
with inductance L, and resistance R. The maser signal is the sinusoidal voltage, 
Vas , detected across the tuning capacitor, C ,  after low-noise amplification with gain 
G. 

Assuming the pick-up coil is part of a simple RLC series circuit (the more general 

case for the two species maser is treated in Sect. 5.5) then the resonant frequency 

w, = l/,/W and the quality factor Q = wcLPu/R, which responds to  the atoms' 

excitation by generating a driving field of average spatial intensity B1 (t)  = &,I,, (t) ,  

where: 
1 c0 = - d 3 i <  (i). 

V B ~ Z ~  

The pick-up current I ( t )  is amplified by p, and de-phased by an angle a,  due to 

the tuned circuit :6 

'1n the following equations, when only the right-hand side of the equation is complex, we 
implicitly assume extraction of the real part. We also assume that  V,, cx e i w ~ t .  



where have introduced the following definitions: 

s i n a  = 
wc PC@) -- 

w Q 7  

Factoring out the fast oscillation from the definition of the perpendicular polariza- 

tion PL gives the pick-up coil voltage, 

We then find that the Rabi frequency (see Eq. (2.12)) is 

where we have defined the radiation damping time as 

The longitudinal polarization Pz,0 is the noble gas polarization in the maser chamber, 

that would be attained in the absence of masing. Including this quantity in the 

definition above has the advantage of making TRD a readily measurable parameter, 

as we shall see at  the end of the next section. We also define an effective radiation 

damping time: 
1 - pc(w) sin cu -- - (2.33) 

.kD(w) Q TRD 



which depends on cavity tuning such that on resonance (w = w,) it coincides with 

the radiation damping time, i.e., rk, (w,) = TRD. 

2.3.2 Steady State Maser Solutions and Cavity Pulling 

We are now ready to find the steady state maser solutions. For convenience we 

choose the 2' axis of the rotating reference frame along the perpendicular polariza- 

tion so that P, = Pl (see Fig. 2-2), setting P, = 0. In component terms Eq. (2.21) 

becomes: 

P L  = PL = w R s i n a  P, - -, 
T2 

P, = -6PL - WRCOSGY P,, 

In steady state the left-hand side of these equations vanishes. The equilibrium values 

for the maser polarization are: 

From Eq. (2.35) and P, = 0 we derive the maser frequency shift, be,, from the atomic 

frequency in steady state: 



We assume that the resonator is tuned close to  the atomic frequency and that its 

quality factor Q << woT2, so that in the right-hand side of the the equation we 

replace wbf with wo. We have also introduced the line quality factor Qlin, = w0T2/2. 

This shift in maser frequency is called the "cavity-pulling shift" because it is caused 

by the detuning of the cavity, which pulls the oscillator frequency slightly away 

from the atomic frequency towards the resonant frequency of the cavity, and it is 

characteristic of any active oscillator. 

Observation of Radiation Damping Time 

The effective radiation damping time can be directly measured by pumping the 

atoms in the low energy state (see Fig. 1-2) and measuring the free induction decay 

rates, 1/T2,  0, and 1/T2,  of l ,  of the perpendicular polarization when the resonator is 

turned on resonance (wR as given in Eq. (2.31)) and high off resonance (wR = 0). 

Using Eq. (2.34) and noticing that for small tips P, = -P,,o, we find that the 

effective radiation damping time is simply given by the difference: 

In Sect. 6.6.1, we will show observations of this parameter for both gas species, in 

the double- bulb maser. 

2.3.3 Threshold Condition and Maser Power 

The condition for having an indefinite maser oscillation is simply that the coherences 

in the spin density matrix do not vanish in steady state. In terms of the polarization 

vector this condition is simply PL,q > 0, which together with Eq. (2.38) yields the 

threshold condition for our maser rhD < T2. This condition is equivalent to  the 



more customary statement that the flux of incoming polarized particles 4 is greater 

than the threshold flux q5th ,  which using Eq. (2.20)  and Eq. (2.33)  is 

where in the last equation we have assumed that the cavity is tuned to the atomic 

resonance (w, -+ wo).  

Conservation of the total number of particles in the maser cell requires that for 

each polarized particle that enters the maser bulb an unpolarized particle leaves the 

bulb. Each polarized particle that does not end up contributing to  PZ,,,, deposits 

an energy b M / 2 .  The total power deposited by the incoming atoms is therefore: 

One can verify, making use of Eq. (2.30)  and Eq. (2 .26) ,  that this is also the steady 

state maser power dissipated in the resonant circuit: 

Detected Maser Signal and Noise Considerations 

We measure the amplitude of the oscillating maser as the voltage VaB across the 

capacitor C of the resonant RLC circuit detected after a low noise preamplification 

43 



stage of gain G (see Fig. 2-3) 

Assuming that the resonator is perfectly tuned to the atomic resonance (a  = ~ / 2 )  

and noticing that TRD a 1/Q, we can express the maser signal as 

1 TRD S = V A B ~ d & ( l - - - )  sin a T2 ? 

where we have used the definition of maser power given in Eq. (2.44). While the 

signal, S, grows with shorter radiation damping time, TRD, the value of TRD that 

optimizes the SNR depends on the properties of the noise. Johnson noise in the 

coil is detected and amplified exactly as the maser signal. The power available at  

temperature T in a bandwidth B is W j  = 4ksTB, where kB is the Boltzmann 

constant. The SNR is therefore 

2 - - Q 1 - -- 1 &) 
NJ GQJRWJJ sin a T2 ? 

improving as TRD is reduced. Pickup of ambient magnetic noise, bBAmb7 however 

will be amplified by the resonator as well: 

The best SNR is then obtained for TRD = T2 sin a 12 ,  which also maximizes PL,eq7 

optimizing the ratio of atomic magnetic induction to  ambient noise. 

In our apparatus Johnson noise dominates and minimizing TRD improves the 

S N R .  However, the detection noise discussed here only contributes to  white phase 
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noise (by = bVAB/VaB). As we shall see at  the end of this chapter (Sect. 2.4), this 

noise is averaged out over the long observation times employed in our experiments 

and does not limit the stability of our masers, when applied to tests of Lorentz and 

CPT symmetry on time-scales of approximately one day. 

2.3.4 Near-Equilibrium Transient Behaviour 

While we are mostly interested in the steady state solutions given in Sect. 2.3.2, 

the reaction of the masers to  small perturbations and their return to  steady state is 

also import ant. Therefore we linearize Eqs. (2.37-2.39) near equilibrium using the 

following definitions: 

Substituting these equations into Eqs. (2.34-2.36), we obtain the following identity, 

cot u 6 P, (t) 
bne (t) = - ---- - 

7Lo P2,o 

and two first order differential equations that can be written in matrix form: 

The solutions to the equations above are in most practical situations underdamped 

oscillations. The eigenvalues of the 2 x 2 matrix above give the damping rate, ?damp, 
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and the oscillation frequency, w0,, : 

The oscillations begin not far from threshold, when rhD < T 2 ( 1  +T2/8T1)-' and their 

frequency becomes larger as we increase the flux of incoming polarized atoms. The 

period of these oscillations is well above threshold is T ~ E  and is observed in 

the amplitudes of our maser signals, which are proportional to  PL (see Sect. 6.6.2). 

Additionally there is a correlation between the phase p~ and amplitude of the 

maser signals, which appears when the coil is detuned from the atomic resonance 

( a  # n / 2 ) .  Integrating Eq. (2.52) and using also Eq. (2 .53) ,  we find: 

1 
cot a [, ( I ,)I -5 6 P L ( t )  6 p M ( t )  = / 6,,(t)dt = -7 --- (2.56) 
T~~ Ti 6x1 PZ,o 

This correlation directly converts the underdamped oscillations in maser amplitudes 

seen above into frequency noise. This undesired effect can be avoided by properly 

tuning the resonant circuit to  the Zeeman frequency (w,  = wo -+ cu = ~ 1 2 ) .  

2.4 Characterization of Stability 

The limit to the statistical precision of our Lorentz and CPT tests is the finite 

frequency stability of our masers. Our experimental diagnostics assess the stability 

of various quantities: maser frequencies and amplitudes, and also temperatures, 

photodiode voltages, etc. In this section we briefly introduce the Allan Deviation, 
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one of the many possible measures of ~ t a b i l i t y . ~  The need for such estimators arises 

whenever the quantity to be characterized is a time series for which the traditional 

variance and higher moments do not converge in general. The Allan deviation is the 

standard deviation of the time series when the latter converges and is well defined 

when the standard deviation is not. The simple definition of the Allan deviation of 

the quantity y  ( t )  is: 

where {y, = y ( n r ) )  is a series of measurements made a t  fixed measurement interval 

T .  The Allan deviation of a time series is essentially the standard deviation of the 

signal after it has been appropriately filtered. To see this we notice that the standard 

deviation oit for a signal y  ( t )  with zero mean is simply related to  the integral of the 

signal's power spectral density, S, ( f ) , 

In the integral above we have considered a high frequency cutoff fh always present in 

the equipment measuring y(t).8 The power spectral density, or "power spectrum," 

is computed from the Fourier transform of the auto-correlation function, Ry ( T )  , 

7A comprehensive overview of the topics presented here can be found in [28], Appendix 2F. 
'At the very least f h  is limited by the rate of data acquisition fo = 1/2ar0 and we always 

choose r >> TO. 



We will show the power spectrum of a signal when we wish to  study the frequency 

dependence of its noise. The integral of S,(f) over a certain frequency range gives 

the fraction of the signal's variance for which that range range of frequencies is 

ultimately responsible (see Eq. (2.58)). This often provides useful information when 

studying harmonic perturbations of a signal. Returning now to the Allan deviation, 

it is possible to show that 

where HA(') is the Allan transfer function 

When f -+ 0, 1 HA( f)12 m f 2 ,  guaranteeing the convergence of the integral when the 

power spectrum of the signal y can be written as 

In particular, the Allan variation in Eq. (2.61) converges for signals containing 11 f 
noise (also called pink noise, or flicker noise) and for signals performing a random 

walk (11 f 2). When y is an oscillator's frequency, a = 0 ,1 ,2  respectively correspond 

to white frequency, flicker phase, and white phase noise. In the next section we give 

more specific information on the characterization of the noise in our masers. 



2.4.1 Extraction of Phase and Frequency Data 

The in-phase and out-of-phase portions of each maser signal (relative to an ultra- 

stable reference oscillator) are recorded at  regular intervals, typically once every 

two seconds, providing discrete data streams drawn from the (idealized) continuous 

in-phase and out-of-phase signals: 

where the maser amplitude is given by R(t) = J x ( ~ ) ~  + ~ ( t ) ~ ,  and vb(t) = v,,(t) - 

u d  represents the beat frequency between the detected maser signal and the signal 

from the reference oscillator. (The signal detection system is described in Sect. 5.5.) 

For example, the beat frequency of the free-running 3He maser is typically set to 25 

mHz. The phase evolution of each maser is determined from measurements of x(t) 

and y (t) as follows: 

= 2rvbt f bp(t). p( t )  = arctan - 

If phase measurements are performed every ro seconds, the average maser frequency 

over the interval r is given by the least squares formula: 

where N = r/ro is the total number of measurements in that interval. This expres- 

sion is useful to  derive the effect on the maser frequency of random perturbations of 

the maser phase and frequency (the so called "white phase" and "white frequency 
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noise"). The perturbations 69, and bun, with n = 0. . . N, are normally distributed 

variables chosen with variances O&,(T~) and oiv (TO), respectively. The modified phase 

yields the standard deviation o,(T) = J[a;'(T)12 + [Cf (r)12 where we have intro- 

duced the following white phase (wp) and the white frequency (wf) contributions, 

and we have assumed that T >> TO. The observation time at  which phase and 

frequency noise become of the same magnitude is given by 

For these convergent types of noise the Allan deviation coincides with the standard 

deviation. Therefore Eqs. (2.68) show the dependence of the Allan deviation on 

the duration of the measurement interval for phase and frequency noise. The Allan 

deviation of a signal containing various types of noise is plotted in Fig. 2-4. The 

slope of the Allan deviation as a function of measurement interval allows us to 

identify the type of noise present in the oscillator frequency as we see in Tab. 2.2. 

2.4.2 Maser Frequency and Phase Noise 

Even under ideal operating conditions, the maser frequency resolution is fundamen- 

tally limited by two independent manifest at  ions of thermal noise: white frequency 

50 



Figure 2-4: Log-Log plot of a generic Allan deviation. Different types of frequency 
noise dominate the frequency instability for different measurements intervals. 
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noise and added white phase noise. White frequency noise is caused by thermal ra- 

diation inducing a random walk in time of the phase of the coherent electromagnetic 

field produced by a noble gas maser, yielding the following limit on frequency [28]: 

, , , . , , , .  , . , . . . . .  

where TM is the temperature of the masing region and Wng is the radiated maser 

power . 
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p Designation 
-1.5 White noise of phase 
-0.5 White noise of frequency 

0 Flicker noise of frequency 
0.5 Random walk of frequency 

Table 2.2: Common designations for the noise processes associated with values of p 
in the expression a, ( r )  oc r P  [28]. 

Added white phase noise arises from the external amplification of the maser 

signals. The signal amplifiers multiply thermal noise present in the resonant signal 

detection circuits and also add noise due to their own finite temperature. The 

frequency stability limit is [28]: 

where B x (TT)-' is the measurement bandwidth and Tcoil and Tamp are the pick-up 

coil and amplifier noise temperatures, respectively. 

As we will see in Ch. 4, typical maser powers are WH, = 0.5 - 30 x lo-' erg/s, 

Wxe = 5 - 40 x lo-' erg/s and the transverse coherence times T2, are on the order 

of few hundred seconds. For Tcoil = Tamp = 30' C, TM = 50' C and T2 = 100 S ,  

approximate values for the expressions above are: 

where for convenience we have introduced Wo = 1 x lo-' erg/s, which is a typ- 

ical maser power. For long measurement intervals, the thermal frequency noise 

dominates. In particular, orf (1,000 s) -- 470 n ~ z , / m  and o,"f ( 1  day) -- 



51 n ~ z  Jm, so that "e maser powers lower than Wo, or interaction times 

shorter than 100 s may seriously limit the medium and long term stability of 

our masers. In order to  improve the Lorentz Invariance and CPT violation sen- 

sitivity by a factor of 10 with respect to our previous results, we require that 

o,"f(l day) < 20 nHz. This and other considerations will be explored further in 

the design studies for the new maser presented in Ch. 4. 





Chapter 3 

Testing Lorentz and CPT 

Symmetry Using a Two-Species 

Noble Gas Maser 

3.1 Overview 

All attempts to measure violations of fundamental laws of physics are ultimately 

precise measurements of zero when those laws withstand the test. Historically, in 

order to express the level of precision attained, in each experiment a set of coeffi- 

cients were introduced whose existence would violate the law of physics in question 

and whose magnitude would be bound to a certain level by a null measurement. 

The general idea of this approach remains very useful, but makes it difficult to com- 

pare results obtained with different experiments and perform a systematic study of 

Lorentz and CPT violation across different fields of physics. 

In this chapter we introduce the Standard Model Extension (SME) that allows 

us to interpret our tests of Lorentz and CPT symmetry. The SME is a very general 
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framework that introduces Lorentz and CPT violating terms to the Lagrangian de- 

scribing elementary particles physics. Since the formalism of quantum field theory is 

not so common in atomic physics, we explicitly derive the perturbation induced, at  

low energies, by a symmetry breaking term that is particularly relevant for our ex- 

periment. We then present the full non-relativistic predictions of the SME, explicitly 

showing how Lorentz and CPT violating signals would arise in the 12'Xe/%e maser 

and how we would detect them. We also compare our boost symmetry test, the first 

test of boost invariance' in the fermion sector (reported in App. A), with a classical 

test of Lorentz violation in electrodynamics: the Kennedy-Thorndike Experiment. 

Finally, we show that our Zeeman masers are effectively NMR gyroscopes and 

as such are affected by frequency shifts induced by the Earth's rotation, which are 

constant in time when the masers are at  rest in the laboratory. This completes 

the demonstration that any observed sidereal frequency modulations in our masers 

would be unequivocal sign of physics beyond the Standard Model. Having devel- 

oped the necessary formalism, we then summarize advantages and disadvantages of 

operating our 129Xe/3He maser on a rotating platform. 

3.2 The Standard Model Extension 

Alan Kosteleck? and coworkers [9, 10, 11, 121 have developed an extension to  the 

Standard Model which provides a consistent and general framework for studying 

Lorentz violations, based at  the level of the known elementary particles. The La- 

grangian of the theory is formed using fields for the known elementary particles, 

and the possible Lorentz violations for each type of particle and interaction are con- 

' "A restricted Lorentz transformation that describes the relation between two systems with 
parallel axes moving uniformly relatively to each other, i.e., without any spatial rotation, is called 
a pure Lorentz transformation or, in jargon, a boost7' [38]. 



trolled by coefficients whose values are to  be determined by experiment. Since atoms 

and ions are composed of these elementary particles, the behavior of different atoms 

and ions under rotations and boosts is determined by the coefficients for Lorentz 

violations in the theory. This Standard-Model Extension must emerge from any un- 

derlying theory that generates the St andard-Model and contains Lorentz violation 

191. It is a renormalizable field theory, and it has a variety of desirable features in- 

cluding energy moment um conservation, observer Lorent z covariance ,2 conventional 

quantization and hermiticity [I 11. 

The purpose of this section is to  illustrate how the SME connects experimental 

observations in complex systems, such as the 12gXe/3He maser, to fundamental 

Lorentz-violating interactions affecting fermions (neutrons in our case). Our masers 

oscillate on nuclear Zeeman transitions of 1 2 g ~ e  and 3He. Both are isotopes with 

nuclear spin I = $ and nuclei characterized to  leading order by an unpaired neutron. 

The ShlE is simply the effective field theory that regulates the interaction of this 

neutron with several background tensor fields which could arise, for instance, from 

spontaneous Lorentz breaking in an underlying theory. The most general Lagrangian 

describing a single spin-+ Dirac fermion 11, of mass m in the presence of Lorentz 

violation is3 (39, 161 

2 ~ h e  Lorentz-violating effects introduced by the SME on a physical system are described by the 
same set of equations for two observers in distinct inertial frames (observer Lorentz invariance). 
To actually observe Lorentz violation one must rotate or boost the system itself (particle Lorentz 
violation), in our case the l 2 ' x e I 3 ~ e  maser, and detect changes in the system from within a fixed 
inertial frame (typically the Sun's rest frame). 

* 
3 ~ n  this chapter we will use f i  = c = 1 and standard definitions for operators like A 8 ,  B G 

AaPB - (dpA)B [9]. 



where 

This represents an extension of the usual Lagrangian for a massive Dirac fermion 

field. The Dirac matrices {1,y5, yp, y5 yp , o,"} appearing in Eqs. (3.2) and (3.3) have 

conventional properties. 

The Lorentz violation in Eq. (3.1) is governed by the coefficients a,, b,, c,,, 

d,, , e,, f,, gx,,, and H,,. The hermiticity of L means that all the coefficients are 

real. The coefficients appearing in M have dimensions of mass, while those in I' are 

dimensionless. Both c,, and d,, are traceless, while Hpu is antisymmetric and gx,, 

is antisymmetric in its first two indices. 

The field operators in the terms with coefficients a,, b,, e,, f,, and gx,, are odd 

under CPT,  while the others are even. Since both the particle field and the back- 

ground coefficients transform covariantly under rotations or boosts of an observer's 

inertial frame, the Lagrangian (3.1) remains invariant under observer Lorentz trans- 

formations. However, the background coefficients are unaffected by rotations or 

boosts of the particle or localized field in the same observer inertial frame, so the 

Lagrangian transforms nontrivially under particle Lorentz transformations [9, 101. 

Lorentz-breaking effects are likely to  be detectable only in experiments of excep- 

tional sensitivity. Credible estimates for the order of magnitude of the coefficients 

are difficult to  make in the absence of a realistic underlying theory. Various sources 

of suppression might arise. For example, if the origin of the Lorentz violation lies at  

the Planck scale M p  (-- 10'' GeV), one natural suppression factor would be some 

power of the ratio r - ml/&, where ml is a low-energy scale such as a particle mass. 



Another natural factor could emerge from the coupling strengths in the underlying 

theory and could produce suppressions similar to  those for the particle masses in the 

usual standard model, arising from the Yukawa couplings to the Higgs scalar field 

[9]. Ot,her substantial suppression factors might also appear. A further potential 

complication is that some coefficients might be much more heavily suppressed than 

others. No specific assumptions are made about the absolute or relative magnitudes 

of the coefficients for Lorentz violation other than to  suppose they are perturbative. 

3.2.1 SME Low Energy Limit in a Simple Case 

In order to illustrate how the Lagrangian (3.1) leads to  a new interaction that vi- 

olates Lorentz invariance by introducing a privileged direction in space-time, we 

study its predictions for a slow, free neutron, which we will assume to be stable (ul- 

timately, we will be dealing with stable neutrons embedded in noble gas nuclei). For 

simplicity, we will assume that all SME coefficients vanish, with the only exception 

being the four vector P = (bo ,  g) in some frame (typically the Sun's rest frame). 

For definiteness in what follows, we work within the Dirac-Pauli representation 

of the Dirac matrices, for which 

where oj are the usual Pauli matrices and y5 = iy0y1y2y3. The free Lagrangian 

(3.1) is then 

L = ii$yp 5, $J - m$$J - bp$y5yp$J, ( 3 . 5 )  

- 
where 1;) = $tyo. The last term, proportional to  b is the small, Lorentz violating 

perturbation. The first two terms are nothing but the Dirac equation. Its four 
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eigenvalues E?), E?), with a = 1 , 2  and eigenvectors4 are [40] : 

where u is the positive energy solution for the neutron, v is the nega,tive energy 

solution for the anti-neutron, while x and p are the position and momentum four- 

vectors, respectively. The spinors take the simple form 

and It(')), are the well known Dirac spinors in 2 dimensions. In what follows 

we will concentrate exclusively on the equations that deal with the neutron. We 

need the neutron's eigenvectors in order to  apply the standard perturbation theory, 

and since we are interested in the non-relativistic limit it is convenient t o  keep only 

terms up to  second order5 in plm and find the appropriate normalization N, 

The last term in Eq. (3 .5 )  is the 4 x 4 perturbation matrix from which we can 

4 ~ o  be consistent with the most common low-energy formalism we use from now on the bra-ket 
notation. Hence, $J becomes /$J) and its dual $t is ($1. 

5The momentum p we are dealing with is the generalized momentum of this theory and does 
not coincide with the classical momentum. In fact, the neutron's velocity in the relativistic case 
depends on b, 191: (3 = ( 9 9 ) .  This means that in this theory, when bo # 0, a particle at  rest 
has nonzero (generalized) momentum! 



obtain the 2 x 2 perturbation matrix h' valid up to second order in p/m: 

After some manipulation h' can be rewritten in the following form 

and a' is proportional to the spin operator 9 = g .  Thus we see that the energy of the 

neutron depends on the orientation of its spin with respect to  the background field 

6, which acts analogously to a magnetic field. Additionally for a moving neutron, 

there is a spin boost dependent energy proportional to  the time-like component of 

bo, as well as higher-order terms. 

Sidereal Modulations 

Next we will assume that the neutron is a t  rest in the laboratory6 and is immersed in 

a magnetic field 6. The leading-order non-relativistic Hamiltonian takes the simple 

form 
-+ 

h = - F n i i , Z + h ' =  - i i , . z - z . b  (3.12) 

where ht is the interaction Hamiltonian of Eq. (3.11) and and j in is the magnetic 

moment of the neutron. Assuming that the magnetic field is directed along y and 

 he valence neutron of a 12'xe or 3 ~ e  atom at rest is in a bound state. This means that  
on average only the even powers of plm do not vanish. We will deal with this issue in the next 
sect ion. 



that h' is a small perturbation, the precession frequency is 

+ 4 

where y, is the gyromagnetic ratio of the neutron and S = is the spin operator. 

The frequency shift 6w, = 2b2 acquires a time dependence because of the rotation 

of the Earth and its revolution around the Sun. The SME assumes that the Lorentz 

violating background fields are roughly homogeneous over astronomic distances and 

static, or quasi-static, in the Sun's rest frame on the time-scale of a solar year. 

We refer to  the parameters of the standard model extension that have been bound 

experimentally, in the Sun's rest frame, and capitalize the indexes C = T, X, Y, 2, 

while the laboratory indexes are usually lowercase letters, or numbers a = 0 , 1 , 2 , 3  = 

t , x, y , 2. Following the SME conventions, we choose a set of laboratory coordinates 

such that the S axis points south, the y axis east, and the 2 axis vertically upwards 

in the laboratory. The Sun-centered frame uses celestial equatorial coordinates. 

The angle between the XY celestial equatorial plane and the Earth's orbital plane 

is '7 = 23.4" (see Fig. 3-1). The Earth's sidereal angular rotation frequency is 

w, -- 2 ~ / ( 2 3  h 56 min), and x is the colatitude of the laboratory. The time T, is 

measured in the Sun-centered frame from the beginning of the sidereal day, which 

begins when the 6 and Y axes align. With the reasonable approximation that the 

orbit of the Earth is ~ i r c u l a r , ~  the rotation, R, ', from the Sun-centered celestial 

7 ~ h e  eccentricity of the Earth's orbit is only 0.0167 1411. 
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Figure 3-1: Earth's orbit around the Sun and Sun-centered frame using celestial 
equatorial coordinates. The angle between the XY celestial equatorial plane and 
the Earth's orbital plane is 17 = 23.4". By convention, the origin of time coincides 
with the instant in which Earth crossed the equatorial plane during the vernal 
equinox of year 2000. 

equatorial frame to the standard laboratory frame is given by: 

1 0 0 

0 cos x cos w,T, cosx sin w,T, - sin x 
R , ~  = (3.14) 

0 - sinw,T, cos w,T, 0 

0 s inx  cos w,T, sin x sinw,T, cosx 

The velocity 3-vector of the laboratory in the Sun-centered frame is composed 

of terms proportional to the orbital velocity ,8@ and the rotation PL: 

Here, Q@ is the angular frequency of the Earth's orbital motion. The time T is 

measured by a clock at rest at the origin from the instant in which Earth crossed 
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the equatorial plane during the vernal equinox of year 2000. T and T@ are equivalent, 

modulo the sidereal day period. 

In what follows we ignore the laboratory's velocity due to the rotation of the 

Earth,8 whose magnitude, ,OL = T ~ W ~  sin X / C  2. 1.1 x (where r,  is the radius 

of the Earth), is two orders of magnitude smaller than the orbital velocity ve /c  = 

pe - 9.9 x To first order in $ the 4 x 4 boost matrix is:' 

Since we assume observer Lorentz covariance a direct Lorentz transformation, b, = 

(RB),' b', yields the relevant coefficients in the laboratory frame. The neutron's 

precession frequency is 

w, = yBo+2b2 = yBo-  (2bx+2bTP,sinfleT)sinw,T,+ 

(2by - 2 cos qbTPe cos fleT) cos w@T,. (3.17) 

Because of the Lorentz and CPT violating background field b,, the Earth's ro- 

tation induces daily sidereal modulations of the neutron precession frequency (of 

frequency we), while the boost transformation induces a sinusoidal variation of the 

daily modulation amplitude over the course of the sidereal year (of frequency fie) 

as the direction of the velocity of the Earth varies with respect to the Sun. Thus 

the effects of rotation and boost symmetry violation can be clearly distinguished. 

These equations indicate that the sensitivity of our experiment to  violations of 

'In Sect. 3.3.1 we will see that this approximation leads us to  neglect boost effects responsible 
for a constant frequency shift and frequency modulations a t  twice the sidereal frequency, both of 
order DL. 

 he most general expression for the boost matrix will be introduced in Sect. 3.2.3. 



Measurable parameters SME Coefficients 

Table 3.1: Observable coefficients of the sidereal modulations in the Zeeman fre- 
quency of a free neutron at  rest on Earth as defined in Eq. (3.18). For the simple 
Lorentz-invariance violating theory introduced in Eq. ( 3 . 5 ) ,  the observable coeffi- 
cients are simply expressed in terms of few SME coefficients. 

boost-symmetry is reduced by a factor of P, 2: loF4 with respect to the sensi- 

tivity to rotation-symmetry violation. However, we will show in Sect. 3.2.3 that 

for some models of Lorentz violation that are isotropic in the frame of the cosmic 

microwave background, our experiment has greater sensitivity to boost-symmetry 

violation than to rot ation-symmetry violation. 

A Standard Notation 

When all the background coefficients are considered, the expression for the neutron 

precession frequency (or equivalently the maser frequency), to first order in P,, 

contains additional terms. It is convenient to define a general, time dependent 

frequency shift as follows: 

6w = 6wx sin w,T, + 6wy cos w,Te, 

where 

6wx = A, + P, (A,, sin + A,, cos %T) 

6uy = Xc + P,(Acs sin fl,T + ACc cos fleT). 
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The parameters A,, A,, A,,, A,,, . . . are reported in Tab. 3.1. We will use similar 

tables to show the details of other models. 

3.2.2 The Full Non-Relativistic Theory for the 129Xe/3He 

Maser 

In the previous section we studied a simplified version of the SME for a neutron at 

rest in a magnetic field. The relativistic Hamiltonian of the full system can be found 

from the Lagrangian ,C and the non-relativistic momentum-space Hamiltonian h can 

then be derived using Foldy- Wouthuysen techniques (421. We keep only terms up to 

second order in p / m  [43] : 

In the Schmidt nuclear model the valence neutron of 3He and 12'Xe is in a bound 

s ~ / ~  wave,'' for which (p3 = 0. More generally, for a bound nucleon, the expectation 

value of any odd power of the momentum @vanishes and because of the spherical 

symmetry of the sl/2 state, we have (p,2)  = ( p 2 ) / 3 .  Therefore, the expectation value 

- 

1°1n this model a single nucleon is assumed to  carry the entire angular momentum of the nucleus 
[44, 211. 



h, = (sl12 1 hislI2) of the Hamiltonian above is 

where we have used the following definitions 

When the two noble gases are immersed in the same magnetic field I? = B,;, h, 

is simply a perturbation that shifts the Zeeman levels of both gases equally. Using 

the Hamiltonian H = -Kng i,, I?+ hh, the effective Larmor precession frequency of the 

gases is simply: 

Notice however that the precession frequency of each noble gas is proportional to  

x g B o .  Tiny sidereal modulations of the Larmor frequency of a single noble gas 

species would be difficult to  distinguish from the instabilities caused by fluctuations 

on Bo. Therefore, we employ two co-located species with different yng and use 

one of the two frequencies, usually 12'Xe, as a co-magnetometer to stabilize the 

magnetic field. We then look for sidereal modulations in the (angular) frequency of 
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the free-running species, usually 3He: 

In this expression we have used 2 = 2.75 and the numerical values obtained in [21] 

using the Schmidt model." The actual frequency shift in nHz is most useful once 

recast in the form: 

The definition of the constant, 

takes into account that the SME coefficients are usually given in GeV to provide 

direct comparison of the background fields7 interaction energy with the nucleons' 

rest masses ( N  1 GeV). 

Equation (3.27) can be used to obtain the time-dependent expression containing 

the SME parameters relative to the Sun's rest frame, with the same procedure 

used for the neutron in the last section. The outcome of this calculation and the 

experimental results of our search for sidereal modulations of the maser frequencies 

are reported in App. A. 

''Notice that in Ref. 1211 there is a sign error, that was subsequently corrected in Ref. [24]. 
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3.2.3 A Lorentz Violating Model Isotropic in the CMB Frame 

Here we will briefly present a model showing how a boost-symmetry test could 

be more sensitive than a rotation-symmetry test, despite the suppression of boost 

effects with respect to rotation effects by a factor P ,  i.e., the boost velocity (see 

Sect. 3.2.1). This model is briefly introduced in note [24] of our published result 

(see Appp. A) and mimics a set of assumptions often made in the literature dealing 

with Lorentz Violation [45]. We suppose that the preferred frame for the SME is 

that of the cosmic microwave background (CMB), not the Sun's rest frame. We also 

assume that the vacuum is spatially isotropic in that frame. 

In order to  simplify the theory as much as possible we suppose that all SME 

coefficients vanish, except the following: 

For bcbrB to  be spatially isotropic, the only non-vanishing component must be bo. 

The structure of dCMB is also completely determined if it has to  be spatially isotropic 

and traceless.12 Furthermore we choose bo = 4 d m,  where d is just a constant and 

m is the neutron mass.13 

The effect of this theory on the Zeeman frequency of one of our noble gas species 

12d,, must be traceless (in the Minkowski sense) for the neutron wave function to have the 
standard meaning. 

1 3 ~ h i s  ad hoc choice produces a (not-so-accidental) cancellation of the signal arising from 
rotation-symmetry violation. 



Parameters SME Coefficients 
- - 

A, ~ ( P ~ P C M B )  
As ~ ( P ~ P c M B )  
ACc 2 m d ~ ; ~ ~ [ c o s ( q )  (1 + ~ o s ( a ) ~  c o ~ ( 6 ) ~  + 5 ~ o s ( 6 ) ~  ~ i n ( a ) ~  + ~ i n ( 6 ) ~ )  

+4 cos(6) sin ( a )  sin@) sin (q)] 

ACS -4md@MB~os(6)2 sin(2 a )  
ASS 2mdPLMB (1 + 5 ~ o s ( a ) ~  ~ o s ( 6 ) ~  + ~ o s ( 6 ) ~  + ~ i n ( 6 ) ~ )  
As, -8mdpgMB cos(a) cos(6) (cos(6) cos(q) sin(a) + sin(6) sin(q)) 

Table 3.2: Observable parameters of the sidereal modulations in the Zeeman fre- 
quency of a free neutron at  rest on Earth as defined in Eq. (3.18). In the Lorentz 
violating model given in Eq. (3.29) the rotation-symmetry violating parameters A, 
and As are of order PipCMB while the boost-symmetry violating param- 
eters A,,, A,,, As,, A,, are of order P;MB 5 This is sufficient to  more than 
offset the factor of pi 5 that usually makes boost-symmetry tests less sensitive 
than rotation-symmetry tests. 

where we have neglected the small momentum dependent terms. 

To obtain the time dependence of the above equation we must find the boost B' 

from the CMB-frame to the Sun-centered frame. The velocity of the CMB frame is 

DcMB = PCMB (COS 6 cos a, cos 6 sin a,  sin 6 ) ,  (3.32) 

where cu and 6 are respectively the right ascension and the declination of the CMB's 

velocity. Since we are interested in the terms up to the second order in PCMB E loA3 

(as usual, we keep only the first order in Pe 2. we need to use the general 

boost matrix (461: 

B'(&MB) = e 
- ~ c M B . E  tanhK1 PCMB , (3.33) 



which makes use of the boost generators: 

We are now able to  write the Lorentz transformation A, ': = (RBB'), ': that takes 

a vector in the CMB-frame and gives its components in the laboratory frame using 

the rotation R, the boost B defined in the Sect. 3.2.1, and the additional boost B' 

just derived. 

The results of our calculation show that the rotation-symmetry violating pa- 

rameters A, and A, defined in Eq. (3.18) are of order PipCMB r'. 10-ll, while the 

boost-symmetry violating parameters A,,, A,-, A,,, A,, are of order ,8%MB = 
(see Tab. 3.2). Even if the latter are suppressed by a factor ,Ok = their contri- 

bution, stemming from boost-symmet ry violation, will still dominate the frequency 

shifts. 

3.3 Comparison of Lorentz Invariance Violat ion 

Bounds from the 1 2 9 ~ e / 3 ~ e  Maser and From 

Other Experiments. 

Our test of boost symmetry is presented in App. A [I]. In Tab. 3.3 we show the 

current bounds on the SME coefficients for the fermion sector. The bounds obtained 

with the 12gXe/3He maser [I, 24, 251 (for both rotation and boost symmetry) are in 

bold type. The other bounds were obtained with very diverse experiments that in- 
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Parameter P+ n e- Ref. 

Table 3.3: Orders of magnitude of present limits (in GeV) on Lorentz violating 
parameters in the minimal SME matter sector and corresponding references. Indeces 
J ,  K run over X, Y, Z with J # K. Limits from the 12gXe/3He maser are in bold 
type. This summary table was compiled by Peter Wolf et al. [54]. 

clude: a clock-comparison test employing a cryogenic sapphire microwave resonator 

and a hydrogen maser 1471, doppler-shift measurements on fast ' ~ i +  ions (48, 491, 

a clock-comparison test between magnetic field dependent and magnetic field inde- 

pendent hyperfine transitions in a Hydrogen maser [22],  monitoring of a rotatable 

torsion balance carrying a transversely spin-polarized ferrimagnetic DysFezs mass 

[50, 511, and a clock-comparison test between the resonance frequencies of two or- 

thogonal cryogenic optical resonators 152). 



3.3.1 Comparison with a Classical Test of Boost Symmetry 

in the Photon Sector 

In this section we compare our test of boost invariance (presented in Appendix A) 

in the fermion sector with a classical boost invariance test in the photon sector: 

the Kennedy-Thorndike experiment (KT) [55]. This test, like the Michelson-Morley 

experiment (MM), has been fundamental in the history of physics and the two 

together condition the way most physicists understand Lorentz invariance [56]. In 

part, the reason why these tests are so well known is that they are communicated 

in a model independent way, focusing on the invariance of the velocity of light. 

The corresponding quantity that remains invariant in our experiment, if Lorentz 

symmetry is exact in the fermion sector, is the energy difference between the two 

Zeeman levels between which our masers oscillate. 

Before we proceed, it is useful to  complement the bvH, given in Eq. (1.4) with 

a few terms that we had previously neglected. This enables us to  compare our 

experiment with modern KT experiments. 

When we performed a boost transformation in the derivation of Eq. (1.4), we 

noted that the Earth's orbital velocity ,& -- was dominant compared to the 

laboratory velocity PL -- (at the latitude of Cambridge, MA). If we include 

this velocity boost, Eq. (1.4) acquires three more terms. The complete expression 

for the predicted frequency shifts of the free-running 3He maser is: 

6 ~ 4 ~  = k[(Xs + ,&(A,, sin Q@T + Asc cos Q@T)) sin w@T@ 

+(Ac + /?@(A,, sin Q@T + A,, cos Q&)) cos weT@ 

+DL (A0 + Ac2 cos 2w@T@ + AS2 sin 2weT@)]. 
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Combinations of SME coefficients Fit parameters 

Table 3.4: This table completes the results showed in Tab. I1 of App. A for the 
1 2 g ~ e / 3 ~ e  maser. We report here the coefficients suppressed by a factor PL x loF6, 
which had been neglected in the previous treatment. Notice that whereas AC2 and 
As2 could be measured by looking for modulations of the bvHe at twice the daily 
sidereal modulations, the term A. is a constant frequency shift that we are not able 
to  measure. 

The new terms, proportional to  PL, are Ao, Ac2, and As2 and are combinations 

of the SME coefficients (see Tab. 3.4) that have not been measured. Ac2 and As2 

correspond to modulations at  twice the frequency of the Earth's rotation and in 

principle they could be measured with our experiment. Instead, we cannot measure 

A. since we are not able to resolve constant frequency offsets. 

Kennedy-Thorndike Experiment 

While the MM experiment proves that the velocity of light is isotropic in any boosted 

frame, the K T  experiment demonstrates that the velocity of light is the same in all 

inertial frames irrespective of their velocity. The classic KT experiment searched for 

an annual modulation of the diffraction pattern of an unequal-arm interferometer. 

The maximum velocity change achievable in fixed laboratories on the Earth was 

given by twice the velocity of revolution of the Earth (2 x 30 km/s). However, 

it took 6 months to  realize this major boost and stability of the apparatus was 

acceptable for only a few consecutive months, or sometimes a few weeks. 

Current K T  experiments 157, 58, 521 look for 24 h sidereal variations in the 

frequency of a stabilized laser compared with a laser locked to  a stable cavity. The 

maximum velocity change happens over 12 h because of the Earth's rotation (2 x 



300 m/s depending on latitude). The factor of 100 smaller velocity is outweighed 

by the greater stability of clocks over the shorter measurement interval (24 hours, 

instead of months) . 

12gXe/3He Maser 

Our experiment involves the comparison of a frequency defined by an H maser (no 

leading-order sensitivity to Lorentz violation as we saw in Ch. 1) and the precession 

frequency of noble gas spins in a stable magnetic field. Measuring the daily sidereal 

frequency modulations corresponding to A, and A, in Eq. (3.35) is equivalent to 

performing a MM experiment. Instead of observing a periodic shift in the interfer- 

ence fringes as the equal-arm interferometer is rotated, we would observe a periodic 

modulation of our masers' frequencies. 

The SME predicts a boost effect due to the Earth's rotation, which determines 

the 12 h period modulations associated with the parameters Ac2 and As2. This effect 

is similar to the daily sidereal modulations sought for in modern KT experiments. 

The sensitivity to  Acz and AS2, however, is a factor of 100 smaller than the sensitivity 

to A,, A,,, A,,, and As,, which are simply different combinations of the same SME 

coefficients entering Ac2 and As2. For this reason our best bounds on boost invariance 

come from the terms proportional to ,Oe reported in App.A. Compared to old and 

modern-style KT experiments, we get the best of both worlds: we profit of the 

larger boost provided by the Earth's orbital velocity, while our oscillators need only 

be very stable over a day. 



3.4 Inertial Effects and Noble Gas Masers 

Our noble gaJs masers are also NMR gyroscopes. We therefore investigate inertial 

effects on our masers and their impact on our Lorentz symmetry tests. Our goal 

is twofold. First, we want to find out whether simple inertia may produce daily or 

annual precession frequency modulations similar to  those induced by Lorentz sym- 

metry violation. This concern is a t  least in principle justified, since the laboratory 

frame is not inertial. Second, we want to study the frequency modulations that 

would arise if we rotated our experiment with the help of a rotating platform.14 

In particular we want to find out whether we should expect inertial signals with a 

signature similar to that of Lorentz violation and, if this were the case, how hard it 

would be to distinguish between the two signals. 

Masers at  rest in the laboratory are affected by a constant frequency shift due to 

the Earth's rotation (this is the same shift that makes a Focault pendulum precess 

at  constant angular frequency), but there are no time dependent modulations. The 

revolution of the Earth around the Sun is not responsible for a daily frequency mod- 

ulations, either. In Sect. 3.4.2 we present an erroneous line of reasoning that brought 

us to believe such a modulation was possible. We found quite instructive what we 

learned from our mistake: Analyzing the precession of orbiting gyroscopes in the 

context of Special Relativity (SR) alone, leads to  a contradiction with Einstein's 

Equivalence Principle. We end Sect. 3.4.2 showing that the Equivalence Principle 

predicts another tiny (- lo-'* Hz) constant frequency shift ascribable to the forces 

that keep our noble gas atoms safely inside the maser cell in the laboratory. This 

141n principle, this could be advantageous for two reasons: (i) by reducing the rotation time 
we could make more measurements in the same time span, which would augment statistics and 
improve precision; (ii) shorter rotation times would also match the stability of our masers which, 
before the latest reengineering, tended to  be most stable for measurement times of approximately 
2 h (see Sect. 4.1). 



completes the demonstration that,  when our masers are fixed in the laboratory, any 

observation of a daily or annual sidereal modulation would be unequivocal demon- 

stration of Lorentz symmetry violation. In Sect. 3.4.3 we describe the technical 

challenges to the possibility of ever operating our masers on a rotating platform for 

the purpose of testing Lorentz invariance. 

3.4.1 NMR Gyroscopes 

Traditional spinning-wheel, torque-free gyroscopes provide a maintainable reference 

direction in space. Conservation of angular momentum ensures that the direction 

around which the wheel rotates remains constant, if its moment of inertia does. An 

atom endowed with intrinsic nuclear angular momentum, i.e., nuclear spin, in the 

absence of magnetic fields behaves exactly as a spinning-wheel, hence the possibil- 

ity of constructing NMR gyroscopes [59]. However, since quantum mecha,nics does 

not allow for a simultaneous measurement of the three components of angular mo- 

mentum, NMR gyroscopes are uni-directional. A quantization axis must be chosen 

before each measurement and all slow rotation perpendicular to the quantization 

axis (on time-scales much longer than the spin precession period) will remain un- 

detected. (Of course, a three dimensional gyroscope can be obtained by combining 

the information of three NMR gyroscopes.) 

Generally, any scheme used to detect the spin state will involve the use of a 

magnetic field. Since the spin of a nucleon is always associated with a magnetic 

moment', when the atom is immersed in a magnetic field, its spin is reoriented in the 

direction of the field and does not provide an independent reference direction in space 

anymore. Nevertheless, the new system is still symmetric around the direction of 

quantization, and the nuclear angular momentum is still conserved in that direction. 



Any rotation of the system including the atom (in our case the whole apparatus) 

around the quantization axis will be detected by a co-moving observer as a shift in 

the atom's Larmor precession frequency. Subsequent shifts will accumulate in the 

atom's phase, i.e., its angle of precession. For this reason the NMR gyroscope was 

appropriately defined as "a rate integrating single-axis rotating sensor." [59] 

Inertial Frequency Shifts of Rotating Gyroscopes 

A noble gas atom with nuclear spin ?immersed in a magnetic field fi = 2 Bo precesses 

with frequency yngBo if the magnetic field is generated in an inertial system. If the 

field is generated in a moving laboratory its precessional frequency is found using 

coordinate transformation between the laboratory frame and the local inertial frame. 

If this transformation involves a rotation characterized by 13, the spin's equation of 

motion in the laboratory frame is: 

The frequency shift in the laboratory is given by the projection of i2 along the 

direction i of I? and depends on the angle a between the two: 

It is important to  note that the frequency w' defined above is, in general, different 

from the instantaneous frequency of rotation of the atom with respect to the local 

inertial frame. For instance, if the atom has a circular motion of frequency w ,  this 
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does not mean that the coordinate transformation to the atom's rest frame contains 

a rotaftion at  frequency w .  This situation will be studied in detail in Sect. 3.4.2. 

The "Foucault Shift" 

The instantaneous Earth rotation frequency (we = 2n/24 h = 271- 11.6 pHz) in 

the laboratory is represented by a vector parallel to the Earth's axis. Using the 

coordinate system introduced in Sect. 3.2.1 and assuming that the magnetic field 

points along i, the maser precession frequency shift is: 

h 4 

bw,, = -6 we = -i . (- sin X,  0, cosx) w%. (3.39) 

We called this effect the "Foucault shift" because if we were to  direct our magnetic 

field vertically in the laboratory (i.e., along the i-axis) our masers would experience 

a frequency shift 6w = - cos x we that equals the precession frequency of a Foucault 

pendulum oscillating at  the same co-lat itude X. 

Usually we operate our masers with the magnetic field pointing along the y-axis 

(the East-West direction) and the frequency shift of Eq. (3.39) vanishes. However, 

if we were to  rotate the maser horizontally in the lab frame at  some frequency w, we 

would expect inertial precession modulations a t  that frequency. We will deal with 

this issue in Sect. 3.4.3. 

3.4.2 Inertial Effects Due to the Earth's Orbital Revolution 

and the Principle of Equivalence 

We have seen in the last section that the rotation of the Earth leads to a shift in 

the precession frequency shift of our masers. The shift is constant in time (insofar 

as our masers are at  rest in the laboratory) and this is consistent with the fact 
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that the Earth's angular velocity in the laboratory is a vector of fixed direction 

2, = we(- sin X, 0 ,  cos x). 

The situation is different when we consider the revolution of the Earth around 

the Sun. In the Sun-centered frame the angular velocity of the Earth is a fixed vector 

(fi& = Q, (0, - sin 7 ,  cos 7 )  perpendicular to  the orbit of the Earth (see Fig. 3-1) 

and Ge 4 27r 31.7 nHz. However, using the Lorentz transformation introduced in 

Sect. 3.2.1 we see daily sidereal modulations of the angular velocity in the laboratory 

frame: 
/ 

- cos q sin x - sin q cos x sin wBTB 

- sin q cos weTe 

cos 7 cos x - sin 7 sin x sin weTe 
\ 

Do these modulations produce frequency time dependent frequency shifts? Mis- 

applying our atomic physics we thought so, a t  first. 

This problem looks very similar to that of the Spin-Orbit interaction in which the 

electron orbits semi-classically around a nucleus, just like the Earth orbits the Sun. 

As in the Spin-Orbit case, if we treat the revolution of the Earth using Special Rel- 

ativity (SR) we notice that the Lorentz transformation relating the Earth-centered 

frame to the Sun-centered frame comprises a series of boosts. In the context of 

the atomic spin-orbit interaction, Thomas pointed out that the combination of suc- 

cessive Lorentz boosts in slightly different directions cannot be written as a simple 

boost. A small rotation is necessary to  connect the electron's and nucleus' frame 

over time. The rotation frequency is given by (601 : 

where 6 is the electron's acceleration and y-' = d m .  The same algebra applies 
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in the case of Earth's motion and it is straightforward to  see that the Thomas preces- 

sion for the Earth reduces to GT = - $gfi,, in the limit of y = 1. Using Eq. (3.39) 

for a magnetic field pointing along the y-axis as usual, we find the following time 

dependent shift in the noble gas masers: 

This tiny (bwng = 10-l6 Hz) daily sidereal modulation would not be observable 

in our masers because it is eight orders of magnitude smaller than our current 

sensitivity. What is disturbing though, is that with a local measurement we could, 

given sensitive enough masers, detect the movement of the Earth around the Sun, 

even if the Earth is in free fall. This would violate the Principle of Equivalence 

of Gravitation and Inertia, which states that in the neighborhood of a free falling 

body, inertia and gravity exactly compensate each other and "the laws of nature 

take the same form as in unaccelerated Cartesian coordinate systems in absence 

of gravitation" [61]. We conclude that the inertial effects on our masers must be 

studied in the broader context of a theory that subsumes the Equivalence Principle: 

we choose General Relativity (GR) . 

Gyroscope Precession in the Context of General Relativity 

The best way to  include the Principle of Equivalence, is t o  use the equations of 

motion for a moving gyroscope in GR. This approach has the drawback that GR is 

not a mere consequence of the Principle of Equivalence and it will be necessary to  

distinguish between observable inertial effects due to a combination of the Principle 

of Equivalence and Special Relativity and general relativistic effects, which will 

remain unobservable locally. 



Schiff [62,63] has studied the precession of a gyroscope subject to  a non-gravitational 

force @, immersed in the gravitational field of a homogeneous, spherical Earth of 

moment of inertia I, mass M and angular velocity 13,. 

If the gyroscope's position, with respect to the center of the Earth, is indicated 

by r', its velocity by f i  and its mass by m, the total precession of the gyroscope with 

respect to the fixed stars, to first order (i.e., y - 1) is [62, 631: 

The second and third terms are, respectively, the Geodetic precession and the Lense- 

Thirring precession. They are both consequences of GR and represent the rotation 

of the local inertial frame, with respect to the fixed stars. There is no way to 

detect these rotations by making local experiments, without actually "looking at" 

the fixed stars. Only the first term deals with a precession that could be detected, 

in principle, by a sufficiently sensitive NMR gyroscope as it gives the real precession 

of the gyroscope with respect to  its rest frame. 

A force @ is applied (on average) to  our noble gas atom (i.e., the gyroscope in 

question) to  keep it confined in the maser cell. The equation of motion for the atom 

in the local inertial frame (for instance, an Earth-centered frame) is 

The first term of Eq. (3.43), which represents the observable precession frequency, 

can then be written as 



In the first term we recognize Eq. 3.41, e.g., the Thomas precession associated 

with the rotation (not the revolution!) of the Earth. This is the contribution of 

Special Relativity. We also see that Eq. (3.45) is consistent with the Principle of 

Equivalence. In fact, suppose that our maser were orbiting around the Earth. In 

that case the two accelerations in parenthesis would be equal and opposite, leading 

to  no precession at  all. This is consistent with the fact that a free falling gyroscope, 

being by definition at  rest in an inertial frame, does not precess. 

For an atom captured on the surface of the Earth the two accelerations do 

not cancel. The first term is negligible compared to the second (P = PLwe << 

G M  = g) and our conclusion is that the noble gas atom experiences a constant 3- 
precession frequency shift w,, -- g,0L/2 -- 1.7 10-l4 Hz, as a consequence of the 

non-gravitational force appied on it. This tiny shift adds up to  the shift we found 

in Eq. (3.39) and once again does not create any frequency modulations that may 

be mistaken for a Lorentz-symmetry violating signal. 

3.4.3 Noble Gas Masers on a Rotating Platform 

As we have noted, the prospect of higher statistics and increased frequency stability 

could make us wish to operate our masers on a platform rotating with a 1 to 2 h 

period; a number of precision experiments successfully use these devices [64, 50, 511. 

In this section we analyze the constraints that arise on the detection of Lorentz 

violating signals from the inertial shift of Eq. (3.39). The idea would be to rotate 

the platform on which the 1 2 g ~ e / 3 H e  maser rests in the horizontal ( 2  - y) laboratory 

plane with a angular frequency w,. The rotation that we impart to  the maser has 

two effects: (i) it changes the signature of the hypothetical Lorentz violating signal; 



(ii) it introduces an inertial frequency modulation of a few pHz in the maser signals15 

at  the frequency w,. 

Lorentz Violating Signals for a Rotating l2'XeI3He Maser 

For simplicity we will use a simplified version of Eq. (3.27), neglecting the go, and 4 
terms. The frequency shift for the free-running 3He maser is then 6uH, = k 62 in the 

platform's rotating frame. In order to write b2 in terms of the Sun's SME coefficients 

we must use the Lorentz transformation b, = (R'RB), ' bE which includes the 

additional rot ation 

0 0 0 

0 coswpTa sin wpTe [ - n T e  cos;Te 1.  
from the laboratory frame to the frame of the rotating platform. The time dependent 

frequency shift induced by Lorentz violation on the free running 3He maser is then: 

= cos wpTe (by cos waTe - bX sin weTe ) 
- sin wpTe [- bz sin x + bx COS weTe + by sin weTe cos x . (3.47) ( > I 

Inertial Frequency Shifts for a Rotating 12gXe/3He Maser 

We have seen in Sect. 3.2.1 that the Earth's angular frequency is described by the 

vector Ga = (- sin X, 0, cos X) we in the laboratory frame. Using Eq. (3.38) we find 

15This is always true unless we rotate the platform around an axis parallel to the Earth's axis, 
which would be rather impractical a t  our latitudes. 



the inertial shift due to the rotation of the platform on either maser: 

Taking into account the effect of co-magnetometry we obtain: 

= (1 - 2) 3 2~ sin sin we?, 

= - vi, sin w~T,, 

where the amplitude of the inertial frequency shift (in Cambridge, MA), vin = 

sin x - 1) we/2n = 15 pHz, is very large compared to present limits on 

Lorentz violation, which are on the order of 0.1 pHz. 

Combined Effects 

The complete frequency shift for the combined effects of inertia and Lorentz violation 

is: 

6vHe = cos wPTe (by cos w~T,  - bx sin w ~ T ~  

- sin w,Te [vin - bz sin x + bx cos w,T, + by sin w,~,) cos . 

Hence, Lorentz violation unmistakably manifests itself through the component of 

6vHe which is in quadrature with the inertial effect (i.e., proportional to  cosw,T,). 

Assuming that the table is rotated many times a day (i.e., w, >> w,), for every 
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rotation period we may use the following fit function, 

6vHe = Xc(Ta) cos wpTa + A, (T@) sin wPT@, (3.50) 

and typically measure Xs(Te) x -vin and Xc(Te) - 0. However, establishing an 

experimental bound on X,(Ta) (i.e., establishing how close X,(T@) is to  zero), re- 

quires an extraordinary directional accuracy. In principle the angle of the table 

rotation wpT@ is assumed to be exactly a multiple of 27r when the Bo field points 

in the east-west direction. In practice the uncertainties in the determination of 

the east-west direction in our laboratory and on the exact direction of Bo at the 

cell's site must result in a finite directional inaccuracy 60. Even without a Lorentz 

violating interaction, we would measure Xc(Te) = vi, sin 60 x vin60. Since the cur- 

rent bound on bJ - 50 nHz, a t  the very least we would need to make sure that 

60 << 50 nHz/vin - 0.2". Establishing such absolute accuracy, for instance making 

sure that 60 5 O . O l O ,  represents a substantial experimental challenge. This obser- 

vation and other practical considerations, l6 seriously diminish the attractiveness of 

operating the l2'XeI3He maser on a rotating platform. 

16Besides the difficulty and cost of installing the maser on a rotating platform, we expect that 
a substantial effort would be needed to screen out the periodic disturbances due to the ambient 
magnetic field which are static in the lab frame and therefore varying a t  w, in the table frame. 



Chapter 4 

Design Studies for an Optimized 

1 2 9 ~ e / 3 ~ e  Maser 

Almost a decade of intense work on the 12gXe/3He maser culminated in 2000 with 

what remains the most precise LI test for a fermion [24, 251. This first result encour- 

aged the construction of a new l2'Xel3He maser that would facilitate a systematic 

study of this device's properties aimed at improving frequency stability and LI test- 

ing sensitivity. 

Some known limitations of the previous system provided a good point of depar- 

ture for designing the new maser. The frequency stability of the previous device 

improved when the flow of air warming up the maser cell was decreased, suggest- 

ing that the temperature control system was not ideal. The materials used for the 

construction of the maser oven did not permit operation at  pump bulb tempera- 

tures above 125-130" C, and yet higher temperatures increased the signal of 3He, 

the species with worse SNR. Co-magnetometry was imperfect, but the causes of 

this imperfection and its effect on the masers were unclear. Stabilization of the 

broad-band optical pumping light from the Laser Diode Array (LDA) had been key 



to maser frequency stabilization, however it was unclear whether this stabilization 

helped simply through maser amplitude stabilization or through other mechanisms. 

Would an improved light source, such as narrow-band laser, further improve the 

maser frequency stability? Lastly, decreasing gas pressures in the maser cells had 

led to better overall stability, but it was not known how much more the gas pressures 

could be dropped before encountering adverse effects (e.g., reduced SNR, chasing 

of Rb out of the pump bulb due to increased motility). An optimization of cell 

geometry, gas fill pressures, and operating temperatures taking into account optical 

pumping as well as polarization transport and losses between the two cells was re- 

quired. Experimentally this optimization required extensive testing of many maser 

cells. Therefore, in the new system, replacing cells had to be easier than in the 

previous system. With these considerations in mind we carried out the studies pre- 

sented in this chapter. We then designed and constructed the new maser, as we will 

see in the next chapter. 

Our analysis begins with an assessment of the previous maser's stability and an 

important distinction between frequency stability and LI sensitivity. We then focus 

on the previous maser's blown-air temperature control system and present some 

improvements. The third topic, an extensive model of optical pumping (considering 

narrow and broad-band light sources), polarization transport, and maser dynamics 

in the double-bulb cell, makes up most of the chapter. Without a claim of complete- 

ness, this model illustrates some of the 12'XeJ3He maser's complexity and is aimed 

at providing some guidance in the process of cell geometry and gas fill pressure op- 

t imization. Next, we show that different diffusion coefficients and interaction times 

for the two noble gas species may lead to imperfect co-magnetometry. Finally, we 

show that for a near-spherical maser cell maser self-interaction is negligible, allowing 

us to neglect this effect in the maser equations. 



4.1 Previous Maser Frequency Stability and 

Prospects for Improvement 

An in-depth analysis of the 87 days of data used for our Lorentz invariance and 

CPT tests ("LI tests" for short) was carried out to assess the performance of the 

previous maser. Here we briefly summarize our findings. 

Figure 4-1 shows the average Allan deviation (full dots) for all the data available.' 

The best stability was achieved, on average, for measurement times of 1 to 2 hours. 

For longer times, frequency drifts and other types of non-white frequency noise 

domina,ted. If maser stability were a good indicator of LI sensitivity, an attractive 

way to increase sensitivity would be, for instance, to install the maser on a platform 

rotating with a 1 to 2 hour period. This scheme would match the period of the 

Lorentz violating signals with the period of best maser frequency sensitivity as well 

as proclucing higher statistics. As we have seen in Sect. 3.4.3 there are serious 

technical challenges to this plan. Even disregarding those, we show here using 

existing data that this scheme does not lead to an improved LI sensitivity essentially 

because the Allan deviation of the free-running maser "as is," is not a good indicator 

of LI sensitivity. 

To obtain a good indicator we need to look closely at the procedure by which 

the LI violating amplitudes of daily modulations, dux and buy, are extracted from 

the raw frequency data of free-running 3He. The daily fit function we use is [34]: 

This fit allows for a constant frequency offset, co, a linear frequency drift, cl T,, cor- 

lWe should stress that  the average stability obviously does not reflect the top performance of 
the previous maser, which was a t  times much better than the average shown in the figure [65]. 



l2 'xe I3~e  Maser Stability 

Measurement Interval (7) 

Figure 4-1: Average Allan deviation of the 3He maser frequency when the 12'Xe is 
used as a co-magnetometer. The Allan deviation improves for large measurement 
intervals, when a daily linear frequency shift is fit out (FO) of the 3He frequency. 
Further improvement is obtained when correlations with the maser amplitudes are 
subtracted out. 



relations with the maser amplitudes, RHe and Rxe, as well as the Lorentz-violating 

coefficients 6vx and buy [24]. As usual, T, is the time elapsed since the beginning 

of the sidereal day. Fitting the drifts and amplitude correlations clearly improves 

the sensitivity to the sidereal modulations. The Allan devia,tion of the residuals of 

a fit to  the background function, 

is also shown in Fig. 4-1 as well as the deviation when only an offset and a drift were 

fitted out. The dramatic improvement in stability at  long timescales allows improved 

LI sensitivity to  at  least 32,000 s. The precision of our frequency measurements is 

limited only by white frequency noise and improves as the inverse square root of the 

measurement interval T , therefore even the st  at  istical advantage of obtaining more 

data sets does not improve the overall sensitivity. If a data set of length T is divided 

into T / i  samples, the statistical improvement is then proportional t o  J7/T, which 

makes t8 he overall LI sensitivity independent of r. 

To verify that the LI sensitivity is independent of T ,  we carried out the LI analysis 

on all the existing data choosing the eight fictitious rotation periods reported in 

Tab. 4.1, together with the total number of samples obtained. As we show in Fig. 4- 

2 the LI sensitivity per rotation is indeed correlated with the Allan deviation of the 

residual of the fit in Eq. (4.2), which is therefore a good indicator of LI sensitivity. 

However, the LI sensitivity obtained by averaging all samples for the 87 days of data 

is roughly independent of the duration of the measurement interval. 

Assuming that linear frequency drifts and amplitude correlations will account 

for most of the long term frequency variations in our new maser, we conclude that 

to improve LI sensitivity we should concentrate on reducing the frequency noise (see 
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Lorentz Invariance Violation Sensitivity and Maser Stability 

Measurement Interval (7) 

Figure 4-2: Once linear frequency drift and maser amplitude correlations have been 
fit out (FO) of the free-running 3He frequency, the Allan deviation of its residual is a 
good indicator of LI sensitivity. Presently the factor of approximately 5 between the 
Allan deviation and the LI sensitivity is not well understood. The plot also shows 
that averaging over all the samples obtained for the entire data set of 87 days, leads 
to a flat LI sensitivity. This means that the increased statistics deriving from the 
shorter measurement intervals is exactly offset by the higher frequency noise that 
characterizes shorter frequency measurements. 



Rotation Period (s) Number of Samples 
1000 7980 

Table 4.1: In order to calculate the LI sensitivity for a given rotation period we 
divided the 87 days of available data into samples of exactly one rotation period 
and performed the LI analysis on each sample. 

Fig. 2-4). The rest of this chapter explores possible modifications to the system's 

temperature control, Rb optical pumping techniques, co-magnetomet ry and cell 

geometry, which are all thought to lead, either directly or indirectly, to a reduction 

of maser frequency noise. As we discussed in Sect. 2.4.2, ideally, only thermal 

frequency noise should limit our LI sensitivity and careful modeling should advise us 

in choosing a region of parameter space where the level of thermal noise is acceptable. 

4.2 Temperature Control 

Excellent frequency stability can only be achieved in our masers with a careful 

temperature control of the optical pumping and maser regions. Noble gas spatial 

distributions and wall relaxation rates are affected by changes in temperature, but 

the grea,test variation occurs in the density of Rb vapor, [Rb], which depends expo- 

nentially on the temperature, T (expressed in degrees Kelvin) [66]:2 

1026.178-4040/T 

[Rb] = 
T 

'Quoted accuracy is 5%, Killlian [67] does not quote accuracy. 
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In the pump bulb, where the temperature is kept between 90 and 150" C, an increase 

in the temperature by 10" C changes the Rb density by a factor 2 to 1.7. As we 

have seen in Sect. 2.1, the rate of spin-exchange between Rb atoms and noble gases, 

depends linearly on [Rb] . Temperature instabilities therefore perturb the flux of 

polarized atoms into the maser bulb and create amplitude instabilities that are 

known to perturb the maser frequencies (see Eqs. (4.1) and (2.56)). 

4.2.1 Previous Maser Dependence of Temperature on Air 

Massflow 

In the previous experiment Rb magnetization control [68,34] was essential for achiev- 

ing excellent maser frequency stability. We now think that magnetization control 

also compensated for pump bulb temperature fluctuations which were actually much 

greater than the measured 10 mK standard deviation. In testing our single bulb 

21 NeI3He maser [69], which was heated with a direct flow of hot air hitting the bulb 

as in the original I2'Xel3He maser, similar effects were observed. As shown in Fig. 4- 

3 (a) the thermometer used to control the air temperature was kept a t  a distance 

from the cell. The inevitable temperature gradient between cell and thermometer 

was very sensitive to the airflow as shown in Fig. 4-4. We estimate that in the 

"NeI3He maser a 1% change in the air massflow led to  a change of approximately 

130 mK in the temperature of the gas inside the cell, even though the control ther- 

mometer downstream in the airflow was stable to a few mK. Since we only control 

the air massflow to a few percent, the new maser uses an indirect heating method 

(depicted in Fig. 4-3 (b)) that is less sensitive to  air massflow fluctuations. The new 

design also reduces vibrations created on the cell by turbulent airflow. 
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(a) Direct Heating (b) Indirect Heating 

Figure 4-3: The previous maser used direct heating of the cell. In the case of the 
maser bulb, the thermometer is kept a t  a distance from the cell in order for electro- 
magnetic fields generated by the thermometer not to  interfere with the masers. The 
temperature gradient between the gas and the thermometer is a strong function of 
the airflow, as shown in Fig. 4-4. Indirect heating in the maser solves this problem 
(see Sect. 5.1). Airflow fluctuations are integrated out by the block's thermal capac- 
ity, while its high thermal conductivity smooths the temperature gradients across 
the block itself. This scheme also reduces the vibrations of the cell by removing it 
from the turbulent airflow. 

4.2.2 Indirect Heating 

Removing the cell from the airflow is not sufficient to  reduce the sensitivity of the 

cell temperature to airflow instability. A long thermal time constant must be added 

to  the system to  further reduce fluctuations. For instance, this can be done by 

surrounding the cell with a block of material with a high specific heat, C ,  and high 

density, p. The thermal capacity of a body, such as the block in Fig. 4-5, is given by 

CTh = p CAL, where A is the cross-sectional area and L is the length of the block. 

The material must also possess a high thermal conductivity, k ,  to  transport heat to 

the cell located within the block. In analogy with an electric circuit, the flow of heat 

can be treated like flow of electric charge [70]. The "thermal resistance" of a good 
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Figure 4-4: In a single-bulb 21Ne/3He maser we used a frequency shift induced by 
polarized Rb on the free-running 3He maser to estimate the Rb density and thus 
its temperature. The geometry was that of "Direct Heating" shown in Fig. 4-3 (a). 
We were able to  determine the gas temperature inside the cell, TG,,, while the air 
temperature, TAir = 130" C, was kept constant by a lock loop. The temperature 
gradient, TG,, - TAir was strongly dependent on the airflow (measured in standard 
liters per minute, SLM). 

thermal conductor, R = L/ kA, is usually negligible compared to  the resistance 

of the air, RTh,Air = 1/A hair, used to  heat it (or cool it). The air heat transfer 

coefficient hair varies between 15 and 150 W/m2K, for still air or forced convection 

respectively [70]. 

To test improved indirect heating techniques, we used a cubic aluminum block 

with side length 2 cm. We warmed it up several degrees above room temperature, 

and let it come to equilibrium with the ambient temperature while monitoring am- 

bient and internal temperatures (see Fig. 4-6). Air conditioning in our laboratory 

produces oscillations of the room temperature with a period rair 4 745 s and am- 

plitude of 1 K peak to peak. For this test system, the thermal time constant of the 



Figure 4-5: A massive block with cross-sectional area A is exposed to ambient 
temperature TAmbient on one side. Since there is a perfect analogy between heat 
transmission and electrical charge transmission , the internal temperature Tlnternal 
of the block can be assimilated to the voltage across a low pass filter, while the 
ambient air temperature corresponds to  the driving voltage. 

R T ~  R T h  - - 
2 2 

low pass filter in Fig. 4-5 is 

T~nternal 

and it is in agreement with the observed exponential decay time of approximately 

3,030 s. The ambient temperature fluctuations allow us to test our low pass filter 

model, for which we would predict the ratio of the amplitudes of the internal and 

ambient temperature fluctuations: 

RTh, Air 

CTh 

I - 



Figure 4-6: Ambient temperature and internal temperature of a small A1 block in 
our laboratory. The block, possessing a time constant T x 3,030 s, slowly comes 
into equilibrium with the ambient temperature and follows the slow temperature 
fluctuations of the air conditioning cycle. The thermal capacity of the block reduces 
the amplitude of the ambient temperature fluctuations by a factor of 27.5. 

which is consistent with the observed oscillation amplitude suppression of 1127.5 - 
0.036. For forced convection, as we noted, the heat transfer coefficient, hAir, in- 

creases and r is somewhat smaller than what we observed for the case of forced 

heating (or cooling) of the block shown in Fig. 4-3 (b). Nevertheless, indirect heat- 

ing of the cell mediated by a block with high thermal capacity and high thermal 

conductivity integrates out air massflow fluctuations lasting even several tens of sec- 

onds. In Sect. 5.1.1 we describe the implementation of indirect heating in the new 

maser oven and in Sect. 6.1 we give a first assessment of the temperature stability 

obtained in the new maser. 



4.3 Model of Maser Behavior in a Double-Bulb 

Cell 

In order to optimize the 12gXe/3He maser for best frequency sta'bility we must pursue 

two ma.in goals, while dealing with two major constraints. The goals are: high maser 

powers, needed to increase SNR, and good motional averaging, needed to improve 

common mode rejection of the magnetic field noise. The first constraint is the great 

difference in physical properties between 12gXe and 3He. 12gXe interacts strongly 

with Rb and therefore it is easy to  polarize, but it also relaxes rapidly due to  wall- 

collisiorls and it diffuses much more slowly than 3He. In our double-bulb maser, 

faster diffusion (obtained at  lower gas densities) favors polarization transfer and 

motioniil averaging, but it also limits the interaction time of the atoms with the 

resonant circuit, which ultimately diminishes maser power. The second constraint 

is the on-resonant laser power, which is always limited. The trade-off in the choice of 

the laser source is that of high power, broad-band lasers, which are usually robust, 

but unstable. On the other end, narrow-band lasers can be stable, but also more 

delicate and they deliver less laser power. 

In this section we develop a model that allows us to  study some of the competing 

effects mentioned above and leads us to  a quantitative prediction of the steady state 

maser amplitudes in the double-bulb l2 'XeI3~e  maser. This model takes a given 

cell geometry, gas pressures and the intensity and spectral profile of the optical 

pumping laser light and produces: (i) the profile of the Rb polarization along the 

cell as detailed in Sect. 4.3.1; (ii) the noble gas polarization transfer rates and wall 

relaxation rates using the diffusion equations solved in Sect. 4.3.2; (iii) the noble 

gas diffusion coefficients taking into account gas inter-diffusion and self-diffusion as 

detailed in Sect. 4.3.3; and (iv) the noble gas steady state polarizations in presence 



and absence of maser action, for which we derive, in Sect. 4.3.4, fairly transparent 

analytic expressions. 

This section is aimed at  the most easily accessible region of parameter space. 

Cell geometry, pick-up coil geometry, coil Qs and maser frequencies are difficult to  

change once the various components are built. Bulb temperatures, gas fill pressures 

and light sources may be varied more easily. Most of the figures in this section 

reflect this approach and are meant to  guide the optimization of cell fill pressures 

for a given laser source and illustrate the interplay of competing effects. 

4.3.1 Optical Pumping Optimization 

Optimization of the l2'XeI3He requires maser requires careful modeling of the Rb 

optical pumping process for two essential reasons. First, laser power is expensive 

and usually limited; second, the 12'Xe interaction with polarized Rb is two orders 

of magnitude stronger than its interaction with 3He. Therefore, optical pumping 

conditions that are optimal for one species are often unacceptable for the other. For 

instance, high 3He polarization is usually achieved at  high temperatures (= 180" C), 

to  exploit the high Rb density and thus high spin-exchange rate (see Sect. 2.1), and 

at  high pressures (several atmospheres), to broaden the Rb absorption spectrum and 

make use of relatively cheap, high-power, broad-band lasers. On the other hand, 

12'Xe is usually best polarized at  lower temperatures and lower pressures for three 

reasons: (i) Rb-12gXe spin rotation interactions, which limit the Rb polarization, 

increase linearly with the 12'Xe pressure; (ii) the wall coatings employed to reduce 

the depolarizing effect of wall-collisions can only be used at temperatures below 

approximately 140" C, lest they be damaged by chemical interaction with Rb; (iii) 

high buffer gas (N2, He) pressures induce 3 body collisions which reduce the lifetime 



of van der Waals Rb-12gXe molecules thus reducing spin-exchange efficiency. Also, 

a t  high 12'Xe pressures 12gXe-12gXe interactions lead to a significant depolarization. 

Therefore a compromise must be found to optimize maser performance jointly. 

Optical Pumping Simulation 

Our optical pumping simulation for a cylindrical pump bulb is used to obtain esti- 

mates of the average Rb polarization that can be achieved with narrow- and broad- 

band lasers. We limit our model to describe the limitations to optical pumping 

imposed by the finite number of resonant photons in the laser beams, as well as 

the effects of 12'Xe pressure dependent Rb relaxation, pump bulb geometry and gas 

temperature. 

We model the absorption of an incoming, spatially homogeneous, circular beam 

of laser light whose Lorentian spectrum is centered at  the Rb Dl transition frequency 

vo (A - 794.7 nm in air) and has a full width a t  half maximum (FWHM) dependent 

on the laser source. The cell of length 1, is divided in many ( z  300) thin cylindrical 

sections of length bl in order to  model the absorption of the the light as it penetrates 

into the cell. For the ith section we calculate the optical pumping rate, yWt,i, 

where Qi_l(v) is the photon flux density that reaches the ith section and the fre- 

quency dependent absorption cross section is given by: 

The resonant cross section, oo = 2/rp,r,c f ,  depends on the classical electron radius, 
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re = 2.82 10-l3 cm, the oscillator strength, f = 0.35, and the speed of light, c [71]. 

The pressure broadened width, rp,, of the excited state varies with the pressure, 

P, (in atmospheres) of the various gases present in the cell, as follows: 

r,, = [18 (PHe + fie) + 1 4 ~ ~ ~ 1  GHz. (4.8) 

The Rb polarization for the ith section is calculated using the analogue of Eq. (2.3): 

where the Rb spin destruction rate, 

takes into account the spin rotation rates of Eq. (2.4) and the depolarization of the 

Rb atoms that diffuse to the front and the back windows of the pump bulb.3 This 

effect is quite important a t  low pressures, when the Rb diffusion coefficient becomes 

larger: 

Absorption due to unpolarized Rb near the front window significantly reduces the 

intensity of the incoming light-beam even at  high pressures. Detuning the laser can 

reduce losses due to  depolarized Rb at  the front window provided that the medium 

is sufficiently optically thick to absorb all the detuned light 171, 81. 

An example calculated profile of incoming and outgoing laser light for a 10 W 

3For simplicity we have considered only the lowest order diffusion modes to  estimate the relax- 
ation of Rb a t  the two ends of the pump bulb. This approximation is reasonable compared with 
the exact solution of the problem, which we solved numerically in one dimension including the 
effect of diffusion and using completely relaxing walls as boundary conditions. 



Figure 4-7: Frequency spectrum of a 10 W beam (FWHM x 2 nm) of of light enter- 
ing and exiting a cell containing Px, = 130 Torr , pH, = 2, 500 Torr, PN, = 80 Torr , 
a t  a temperature of Tp = 140' C. The bulb radius and length are respectively, 
ro = 0.83 cm and 1 = 2.8 cm. Even for these high fill pressures, which pressure 
broaden significantly the Rb absorption line and make good use of the laser's broad- 
band light, only a fraction of the light is absorbed and the average Rb polarization 
is relatively low, (PRb) x 0.5. 

broad-band (FWHM = 2 nm) laser is shown in Fig. 4-7. We chose high lZgXe and 

3He pressures to  show the depletion of resonant photons towards the end of the cell. 

The average Rb polarization, calculated using Eq. (4.9) for each section, amounts 

approximately to 50% in the case shown in Fig. 4-7. 

Broad-Band vs Narrow-Band Lasers 

A 30 W Coherent Laser Diode Array (LDA) whose intensity, a t  the entrance to the 

pump bulb after polarization through a beam splitter cube and various losses, has a 

broad, 10 W spectrum resembling that of Fig. 4-7 is often used to pump the maser. 

At a typical pump bulb temperature Tp = 114' C, the simulation described in the 



last section predicts the Rb polarization and light absorption shown in Figs. 4-8 

and 4-9 as functions of noble gas fill ~ r e s s u r e . ~  

In Fig. 4-9 we see that most of the light incident on the cell is not absorbed. 

The light however significantly contributes to  warm up the cell and, despite the fact 

that the laser total power is monitored and locked to a fixed value, there is still a 

concern that the heat delivered could compromise the temperature stability. Diode 

arrays also suffer independent frequency drift of each individual diode element, which 

changes the amount of resonant light and destabilizes Rb optical pumping. Both 

concerns can be eliminated by employing a narrow-band (FWHM 4 10 MHz << rp,) 
laser. For 12'Xe fill pressures below 50 Torr (see Fig. 4-9) 350 mW of laser power is 

sufficient to  saturate the optical pumping transition. We present in Fig. 4- 10 through 

Fig. 4-13 calculations of the Rb polarization and absorbed laser power for a narrow- 

band laser in the case of two pump bulb temperatures Tp = 114" C and 140" C and 

various noble gas pressures. In Sect. 4.3.4 we will show the noble gas polarizations 

and the maser signals that can be achieved with these Rb polarizations, but before we 

can treat that problem we must discuss our model of polarization transfer between 

the two bulbs and obtain realistic estimates for the diffusion coefficients of 12'Xe 

and 3 ~ e .  

4 ~ n  this section we use typical dimensions for the pump bulb: internal radius ro = 0.83 cm, 
internal length 1 = 2.8 cm. 



Broad-Band Laser Calculations 

Figure 4-8: Contour plot showing the calculated mean Rb polarization, (PR6), for a 
range of noble gas fill pressures and fixed PN2 = 80 Torr. Optical pumping obtained 
with a broad-band laser (10 W, FWHM = 2 nm) at Tp = 114' C. 

Figure 4-9: Contour plot showing the calculated absorbed laser power for a range of 
noble gas fill pressures and fixed PN2 = 80 Torr. Optical pumping obtained with a 
broad-band laser (10 W, FWHM - 2 nm) at Tp = 114' C. 



Narrow-Band Laser Calculations 

Figure 4-10: Contour plot showing the calculated mean Rb polarization, (PRb), for a 
range of noble gas fill pressures and fixed PN2 = 80 Torr. Optical pumping obtained 
with a narrowband laser (350 mW, FWHM = 10 MHz) at Tp = 114' C. 

Figure 4-11: Contour plot showing the calculated absorbed laser power for a range 
of noble gas fill pressures and fixed Pnr, = 80 Torr. Optical pumping obtained with 
a narrowband laser (350 mW, FWHM = 10 MHz) at Tp = 114' C. 



Narrow-Band Laser Calculations 
(High Pump Bulb Temperature) 

Figure 4-12: Contour plot showing the calculated mean Rb polarization, (PRb), for a 
range of noble gas fill pressures and fixed PN, = 80 Torr. Optical pumping obtained 
with a narrowband laser (350 mW, FWHM = 10 MHz) at  Tp = 140' C. 
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Figure 4-13: Contour plot showing the calculated absorbed laser power for a range 
of noble gas fill pressures and fixed PN, = 80 Torr. Optical pumping obtained with 
a narrowband laser (350 mW, FWHM -- 10 MHz) at  Tp = 140' C. 

- 
Pump Bulb Rb Polarization P,, 

- 



4.3.2 Polarization Transfer 

Figure 4-14 depicts a typical double-bulb cell and shows the conventions for axis 

directions and polarization nomenclature used in this section and in the rest of 

the thesis. The transfer of polarization between pump bulb and maser bulb occurs 

through diffusion of polarized atoms up a transfer tube of radius po (= 1-2 mm) and 

length L (= 3 cm), which connects the two bulbs. The general diffusion equation 

for the polarization n(F, t )  is: 

where D is the diffusion coefficient and TI is the bulk relaxation time. Our goal is to  

relate the longitudinal polarization of the ensembles contained in the two bulbs. This 

result will be used in Sect. 4.3.4 to  solve the equations of motion of spin-exchange 

polarization in the pump bulb and maser oscillation in the maser bulb, which are 

obviously interdependent. First, we will study the case of 3He. We will assume that 

no 3He polarization is lost during the diffusion up the transfer tube, thus ignoring 

the bulk relaxation (i.e., the second term on the right-hand side of Eq. (4.12)) as 

well as any losses on the transfer tube walls. This appears to  be justified given that 

the diffusion coefficient, DHe , is usually greater than 1 cm2/s, and consequently the 

transit time in the tube is much shorter than the relaxation time (usually a few 

thousands of seconds). Therefore, 3He does not suffer from significant relaxation 

during its time in the transfer tube. 

Wall relaxation is significant for 12gXe and since in the transfer tube the surface 

to volume ratio becomes very important it is necessary to study the polarization 

loss in that region. We will solve Eq. (4.12) in steady state. We will neglect bulk 

relaxation for simplicity (l/Tl = 0) and assume a wall relaxation coefficient n. At 
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Figure 4-14: Diagram showing a typical 129Xe/3~e maser double-bulb cell. Vp and 
Vnn are the volumes of the pump and maser bulb, respectively. We choose the i 
axis along the direction of the main magnetic field, Bo, and the y axis along the 
direction of the transfer tube. The longitudinal polarizations (i.e., the polarizations 
along 2 )  of the gases in the pump bulb, Pp, and in the maser bulb, P, , are assumed 
to be spatially homogeneous over the bulbs. The longitudinal polarization varies 
instead along the transfer tube taking the value II(y). Similarly, the perpendicular 
polarization (i.e., the coherence of the maser), which builds up homogeneously in 
the maser bulb, diffuses into the transfer tube, where it takes the value Ill(y). 
Coherence never accumulates in the pump bulb thanks to the de-phasing induced 
by a small longitudinal magnetic field (bB, = 150pG) applied locally on the pump 
bulb with the help of a small coil. 

Pump Bulb Maser Bulb 



the end of this section we will show how to  obtain experimentally an estimate for n. 

Loss-Free Transfer Tube (3He Case) 

We choose the y axis to coincide with the transfer tube axis (see Fig. 4-14) and we 

set the origin on the side of the pump bulb so that the coordinate y = L coincides 

with the aperture of the maser bulb. We assume homogeneous pump bulb and maser 

bulb longitudinal polarizations, Pp and P,, and a spatially dependent transfer tube 

polarization II(y), with obvious boundary conditions: II(0) = Pp and n ( L )  = P,. 

The change of polarization in the pump bulb can be written: 

where we have used Eq. (4.12) and the area of the transfer tube is simply At, = r p ; .  

If we assume that the temperature induced variation of the diffusion coefficient along 

the transfer tube is compensated by a corresponding temperature induced change 

in gas density, we find that the requirement of negligible losses in the transfer tube 

leads to  a steady-state solution of Eq. (4.12) with the following linear polarization 

profile: 

Note that plugging this expression into Eq. (4.13) we find that the net loss rate of 

polarization from the pump bulb is: 



We crtn interpret G p  as the rate at which polarized atoms escape from the pump 

bulb. An analogous escape rate, G M ,  can be defined for the maser bulb. 

Relaxing Transfer Tube (12'Xe Case) 

To take into account wall relaxation, the diffusion equation must be solved with the 

appropriate boundary conditions: 

~ ~ I l ( p ,  y) = 0 with 

Because of the cylindrical symmetry we can solve the problem in two dimensions. 

We choose P(p,  y) = R(p)Y (y) and substituting the trial solution Y (y) = ek6y into 

the Laplace equation above, we obtain a radial differential equation, 

whose general solution is the sum of two Bessel functions: 

Only Jo(bp) does not diverge for p -+ 0, thus the general solution has the form: 



Using this equation, the boundary condition on the surface of the transfer tube 

becomes: 

which determines the value of dm for all m. We are not aware of an analytic solution 

to  this equation, but we can find an approximate solution for m = 0 and then show 

that for 12'Xe this term is dominant. For simplicity we define x = pobO and a large 

quantity w = D / p o n  -- 2,000, for typical values D = 0.165 cm2/s, po = 0.2 cm and 

n = 4 x cm/s. Assuming that x << 1 we develop the Bessel functions in Eq. 

(4.20) keeping terms to the second order in x and we obtain the simple equation 

wx2/2 = 1 - x2/4, which is self-consistent with our assumption x z Jz/ul<< I .  To 

lowest order, the solution for the diffusion equation is therefore 

where 60 = d m '  z 0.16 cm-' in a typical situation. Notice that the radial 

parabola is very shallow. If, for a moment, we slightly modify the radial profile of 

the two boundary conditions in the following way: 

we find that A, = Bm = 0 for all m # 0. This shows that even if we keep the 

original boundary conditions, all terms with m # 0 will have very small coefficients 

A,, B,. In fact, the extra terms of the sum in Eq. (4.19) are needed only to 

transform the shallow parabolas given by the m = 0 term at the y = 0 and y = L 



boundaries into straight lines. Clearly we can neglect these terms5 and write simply: 

rI(L)  = P, 
I I (y)=Pp(cosh6y+qs inh6y)  with 

where the boundary condition at y = L determines 7 and for convenience we have 

dropped the subscript of p. 

Following the procedure at  the end of the last section we can find the rates of 

escape from the two bulbs using the following expressions, 

in conjunction with Eq. (4.13). Notice however that the correction to  the escape 

rates when 6 is small, is only quadratic in 6L: 

Determination of K, from Relaxation in a Single Bulb 

If wall collisions are the dominant mechanism for polarization relaxation in a spher- 

ical bulb, it is possible t o  relate the wall relaxation coefficient n to  an effective bulk 

relaxation rate l /Tl ,  wall In practice we substitute the first term on the right-hand 

5We actually solved the problem completely noting that ,  since ts is very small, t o  a good 
approximation 6,po are the zeros of J1. Equation 4.19 can be differentiated and evaluated a t  the 
boundaries. The coefficients A, and B, can be found using the orthogonality conditions for the 
Bessel functions. The result, as we mentioned in the text, is that the longitudinal profile of the 
solution is basically unaffected because the terms with big 6, have small A, and B, coefficients 
and die out rapidly along y. Of course, this solution assumes a straight radial profile of the 
polarization even a t  the entrance of the maser bulb. If this approximation is not valid, due to  high 
wall relaxation and negligible polarization reaching the maser bulb, neither is our solution. In that 
case however we would not have a 1 2 9 ~ e  maser. 



side of Eq. (4.12) with a term that looks like the second, i.e., 

11, Wall 

Since we measure Tl,wall for the whole ensemble, we must integrate Eq. (4.26) over 

the bulb volume, 

(Pdt ) )  - -- 
1 
- D V ~  P, (F, t)d3F 

TI,  wall b u l b  V B ~ ,  

- - ' 1  D V P , ( F , ~ ) - ~ ~ ~ ~ T  
V ~ u l b  Souls 

In the so-called "clean-wall limit", in which many wall collision are necessary to 

depolarize the atom, (P,(t)) Pz(ro, t) ,  and for a spherical bulb of radius ro we 

obtain 

Note that the coefficient n can be related to a, the spin flip probability per wall 

collision. In a spherical bulb, simple kinetic theory considerations lead to the iden- 

tity rc = avth/4, where vth is the atom's thermal velocity. This could be interesting 

because it yields the temperature dependence of n if one assumes that cu is temper- 

ature independent. Unfortunately, this simple theory does not work well because 

binding mechanisms prolong the atom's residency times on the surface at  lower 

temperatures [72]. Nevertheless, at a specific temperature Eq. (4.30) gives a good 

order-of-magnitude estimate of the wall relaxation coefficient and was used in the 

past to estimate the ' 2 g ~ e  wall relaxation in the pump bulb n = 1.4 x cm/s 

for Tp = 120' C and in the maser bulb K = 2.8 x lov4 cm/s for Tp = 45' C [37]. 



In Sect. 6.4 we will show that in our cells the relaxation coefficients are about three 

times bigger. 

4.3.3 Inter-Diffusion and Self-Diffusion 

Before solving the maser equations of motion for our noble gas masers we estimate 

the diffusion coefficients of 12gXe and 3He in the two bulbs. In doing so we take into 

account that the maser bulb and the pump bulb are kept at  different temperatures, 

TM and Tp respectively. This affects the local noble gas densities n~ and np  = 

nM%,  which are related to  each other because the partial pressure P of the gas 

is the same in the two connected bulbs. Assuming that the transfer tube volume 

is negligible compared to  the volumes of the two bulbs, VM and Vp, and knowing 

that the cell was filled initially with partial pressure PFill at  temperature TEIL (see 

Sect. 5.2.2) we find the common partial pressure t o  be 

Once the partial pressure PB of gas species B is known, the diffusion coefficient for 

inter-diffusion with species A is given by [41] 

where we have assumed that the partial pressures P are expressed in Torr (1 atm 

= 760 Torr), the coefficients CVAB and PaB are presented in Tab. 4.2, and self- 

diffusion is simply given by the special case in which B = A. Finally, the coefficients 

of self-diffusion and inter-diffusion through all the gases present in the bulb must be 
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Table 4.2: Coefficients describing the inter-diffusion of gas species A into gas species 
B according to Eq. (4.32). The coefficients are from Refs. [41, 731. 

combined. For instance, the diffusion coefficient for 3He is given by 

and an analogous expression holds for 12'Xe. Notice that we considered also the 

significant density of N2, used in our cells to  quench the radiative decays of Rb and 

prevent radiation trapping during the optical pumping process (see Sect. 2.1). In 

Figs. 4-15 and 4-16 we show the diffusion coefficients for 12'Xe, and 3He for a typical 

range of the noble gases fill pressures. 

Bulb Escape Times 

In Sect. 4.3.2 we have found the rates G p  and GM at  which polarized atoms escape 

the pump and maser bulb respectively. Now that we know the diffusion coefficients 

for the noble gases we can show the maser bulb escape times ( l /GM) for 3He (see 

Fig. 4-17) and 129Xe (see Fig. 4-18) in a typical range of fill pressures for a typical 

cell. 



Calculated Maser Bulb Diffusion Coefficients 

Figure 4-15: Contour plot showing the calculated diffusion coefficient, DM, of 3He 
in the maser bulb for a range of noble gas fill pressures, fixed PN, = 80 Torr and 
temperature TM = 50" C. 

Figure 4-16: Contour plot showing the calculated diffusion coefficient, D M ,  of 1 2 g ~ e  
in the rnaser bulb for a range of noble gas fill pressures, fixed PN, = 80 Torr and 
tempera,ture TM = 50" C. 



Calculated Maser Bulb Escape Times 

Figure 4-17: Contour plot showing 3He maser bulb escape time for a range of noble 
gas fill pressures, fixed PN2 = 80 Torr at TM = 50" C. 

Figure 4-18: Contour plot showing 12'xe maser bulb escape time for a range of noble 
gas fill pressures, fixed PN2 = 80 Torr at TM = 50" C. 



4.3.4 Modified Bloch Equations and Steady State Polariza- 

t ions 

In Sect;. 2.3 we presented the general theory for a spin-112 Zeeman maser bulb 

receiving a constant flux of polarized atoms from an outside source and whose feed- 

back rt:sonant circuit was in general detuned from the Zeeman frequency. In this 

section we solve the realistic problem of the double-bulb maser, in which the noble 

gas atoms are polarized in the pump bulb through spin-exchange collisions with 

optically pumped Rb and then diffuse into the maser bulb, where the maser oscilla- 

tion takes place. For simplicity we will assume that the tuned circuit is exactly on 

resonance at the Zeeman frequency (i.e., cu = a/2) .  

The process of spin-exchange polarization was discussed in Sect. 2.1. For con- 

venience we define a source term, S, and a pump bulb lifetime T, which take into 

account the effects of the spin-exchange interaction: 

The feedback of the resonant circuit was discussed in Sect. 2.3.1 and is characterized 

by the Rabi frequency, W R  (defined in Eq. (2.31)), and the radiation damping time, 

TRD (defined in Eq. (2.32)): 

As usua'l, PrJO is the equilibrium polarization that would be achieved in the maser 



bulb in absence of masing. We also introduced a characteristic feedback time T = 

T ~ D  P,,o, which depends on the geometry of cell and pickup coil, as well as the 

noble gas density and gyromagnetic ratio, but is independent of polarization and 

polarization transfer efficiency. 

The gas polarization profile in the transfer tube, II(y) ,  was discussed in Sect. 4.3.2, 

where for each bulb we also introduced the bulb escape rate, 

which depends on the gas diffusion coefficient DBulb, the cross section of the tube 

Att , its length L, and the bulb volume VBulb. 

Taking into account diffusion into and out of the transfer tube, we can now write 

the time variation of the pump bulb longitudinal polarization, Pp, and the analogue 

of the maser Eqs. (2.34) and (2.36) for the noble gas longitudinal and perpendicular 

polarizations, P, and PL, in the maser bulb (see also Fig. 4-14): 

Analytical solutions for the steady state polarizations can be found both in the case 

of polarization transfer with no losses, which applies to  3He, and in the case of 

lZgXe, where losses are not negligible. We will discuss the two cases separately in 

the next two sections, in a third section we will compare maser signals, powers and 

the expected thermal frequency noise. 



'He Equilibrium Solutions 

In Sect'. 4.3.2 we discussed the transfer of polarization without losses. For longitu- 

dinal a,nd perpendicular polarization, we choose the following functions: 

While the boundary conditions that n ( y )  has to meet were clear, the conditions 

for the perpendicular polarization diffusing out of the maser bulb needed further 

assumptions. We chose boundary conditions that imposed continuity at the entrance 

of the maser bulb (IIL(L) = PL) and a vanishing perpendicular polarization at the 

entrance of the pump bulb (nl(0) = 0) . As we will see in Sect. 5.4.5, whatever 

perpendicular polarization there may be in the pump bulb, it can easily be destroyed 

by applying a small, localized, longitudinal magnetic field. When we use such a field, 

Eq. (4.43) appears justified. Notice that we have neglected coherence losses due to 

magnetic field gradient-induced dephasing in the transfer tube. This approximation 

is good when the 3He T; has been maximized making use of a dedicated set of 

gradient trim coils (see Sect. 5.4.2). 

In writing our solutions it is convenient to use the following definitions: 



The first three equations simply modify the polarization lifetime and coherence time 

taking into account the escape times from the two bulbs. The dimensionless quantity 

X approaches unity when bulb escape rates dominate over other relaxations rates 

and optical pumping rates, which is usually the case for 3He. 

The steady st ate solutions for the longitudinal polarizations when the feedback 

system is turned off are: 

ST* 
PP,O = 1 - A ,  

Notice that when X approaches 1, PpIO c. ST/(1 + TGp/TIGM)), where ST is the 

polarization that would be achieved in a single (pump) bulb cell. In this limit, since 

GMT; x 1 we have roughly the same polarization in both bulbs, Pp)o - Pz,o. 

When we connect the feedback circuit, the polarizations in the two bulbs reach 

the following equilibrium values: 

The last two equations strongly resemble Eqs. (2.37) and (2.38) thanks to our def- 

initions in Eqs. (4.44). Again, when X approaches 1 we see that the longitudinal 

polarization is roughly the same in the two bulbs, Pp N P, = Pp,O~RD/T; N TIT;. 
In this limit, the threshold condition, TRD < T; , becomes T < T,' Pp,0. 

In Tab. 4.3 we list the typical values of the quantities that enter our equations 
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of motion. Choosing the fill pressures PHe,Fill = 600 Torr, PxPFill = 30 Torr, and 

using the Rb polarization obtained with our numeric optical pumping simulation 

(see Sect. 4.3.1 and in particular Fig. 4-10) for a narrow-band laser at  Tp = 114' C, 

we obtain the results listed in Tab. 4.4. 

Once the geometry of the cell and the laser source have been chosen, the most 

easily adjustable operating parameters are the gas fill pressures. We therefore show 

contoul- plots for the 3He equilibrium polarizations in Figs. 4-19 through 4-23 for a 

wide range of fill pressures. We also show the predicted values for TRD in Fig. 4-24. 

12'Xe Equilibrium Solutions 

In Sect. 4.3.2 we solved the problem of wall-collision-induced polarization relaxation 

in the transfer tube. For longitudinal and perpendicular polarizations, we choose 

the following profiles: 

sinh 69 
H(y) = coshby Pp + ---- (P, - Pp C O S ~  6L) ,  sinh 6L 

sinh 6 y 
Y = p_L 7 

where 116 = 1/Jm is the characteristic wall relaxation length. The first of 

these ecluations is simply the solution to the boundary-value problem in Eq. (4.23). 

The second equation, represents the perpendicular polarization which diffuses out 

of the maser bulb. As in the last section we choose the perpendicular polarization 

to vanish at  the entrance of the pump bulb. In the case of 12'Xe this condition is 

certainly met even without the application of an additional magnetic field to the 

pump bulb region. In fact, the interaction with polarized Rb in the illuminated 

region sufficiently detunes the 12'Xe frequency away from the maser frequency that 

it is no longer part of the masing ensemble (see Sect. 6.7.1). Again, we have neglected 
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Table 4.3: The 27 input parameters needed to calculate the steady state values of maser 
polarizations, maser powers and expected levels of thermal frequency noise given in 
Tab. 4.4. 

Descript ion 
Quality factor 

Gyromagnetic ratio 
Operating maser frequency 

Velocity averaged SE cross-section 
Polarization lifetime (pump) 
Polarization lifetime (maser) 

Coherence time (maser) 
Wall loss parameter 

3He fill pressure 
12'Xe fill pressure 

N2 fill pressure 
Pump bulb temperature 
Maser bulb temperature 

Fill temperature 
Pump bulb Rb density 
Static magnetic field 

Pick-up coil mean field 
Pump bulb length 
Pump bulb radius 

Transfer tube length 
Transfer tube cross-section 

Pump bulb volume 
Maser bulb volume 
Preamplifier gain 

Pick-up coil inductance 
Laser power 

Laser spectrum FWHM 

P a r a m e t e r  

Q 
Y 

W M  

k, 
T1.p 
TI 
T2 

K 

p ~ e , F i l l  

pxe, F ~ L L  

P N ~ ,  F ~ L L  

TP 
TM 
T~ill 

[Rbl 
Bo 
E'o 
1 

L 
Att = "pi 

VP 
VM 
G 

L ~ u  

Uni t s  
- 

Hz/G 
Hz 

cm3/s 
s 
s 
s 

cm/s 
Torr 
Torr 
Torr 
" C 
" C 
" c 

cmv3 
G 

GI* 
cm 
cm 
cm 
cm2 
cm3 
cm3 

- 

mH 
mW 
MHz 

3He 
16.4 

27r 3243.72 
4710 

6.7 x loe2' 
6000 
6000 
200 
0 

12'Xe 
15.6 

27r 1177.79 
1710 

1.75 x 10-l6 
500 
500 
300 

0.0006 
600 
30 
80 
114 
50 
22 

1.4 x 1013 
1.51 
444 
2.8 
0.83 

3 
7r 0 . 2 ~  = 0.13 

6 
4 

5,000 
92 
350 
10 



Table 4.4: Steady state parameters calculated using the input parameters in Tab. 4.3 and 
the equations introduced throughout Sect. 4.3. Note that the numerical values specifically 
refer to a cell with Pfi lFil l  = 600 Torr, PXeIFil1 = 30 Torr, illuminated with the low power, 
narrow-band laser. Most of the parameters listed here are displayed in the contour plots 
in the rest of this section for a range of noble gas fill pressures. 

Description 
Effective spin-exchange rate 

Effective polarization lifetime (pump) 
Effective polarization lifetime (maser) 

Effective coherence time (maser) 
Characteristic feedback time 

Pump bulb escape time 
Maser bulb escape time 

Diffusion coefficient (pump) 
Diffusion coefficient (maser) 

Polarization transfer efficiency 
Wall relaxation length 

Rb Polarization 
Absorbed laser light 

Pa ramete r  

S = PRbysYse 
T* 

Ti+ 
Ti+ 

7 = TRDP,,O 
~ / G P  
~ / G M  

DP 
DM 

X 
l /a  
P R ~  

I n  absence of masing 

3He 
8.9 x 

71 
64 
48 

0.030 
72 
65 
2.0 
1.5 

0.98 
- 

Longitudinal polarization (pump) 
Longitudinal polarization (maser) 

12'Xe 
0.0023 

130 
180 
145 
4.8 
323 
294 
0.45 
0.32 
0.23 
8.3 

PP,O 
pz,o 

Units  

11s 
s 
s 
s 
s 
s 
s 

cm2/s 
cm2/s 

- 

cm 
0.94 
191 

While masing 

- 

mW 

0.0028 
0.0028 

Longitudinal polarization (pump) 
Longitudinal polarization (maser) 

Precessing polarization 
Radiation damping time 

Maser amplitude 
Maser power 

Frequency noise at 24 h 
Static magnetic field induced by M, 

0.39 
0.23 

PP 
pz 
PI 

~ R D  

R 
W 

A%, 
8.rrMZ/3 

- 

- 

- 

- 
- 

s 
mV 

erg/s 
nHz 

PG 

0.0007 
0.00061 
0.00015 

11 
11 

l . l x l ~ - ~  
101 
1.2 

0.32 
0.033 
0.063 

21 
29 

2.1 x low8 
8 

1.2 



Calculated 3 ~ e  Polarizations in the Absence of Masing 

Figure 4- 19: Contour plot showing the calculated 3He longitudinal polarization, PPjo, 
in the pump bulb in the absence of masing for a range of noble gas fill pressures. 
Tp = 114' C, narrow-band laser used for optical pumping, other input parameters as 
in Tab. 4.3. 

Figure 4-20: Contour plot showing the calculated 3He longitudinal polarization, Pz,o , 
in the maser bulb in the absence of masing for a range of noble gas fill pressures. 
Tp = 114' C, narrow-band laser used for optical pumping, other input parameters as 
in Tab. 4.3. 



Calculated 3 ~ e  Polarizations While Masing 

Figure 4-2 1 : Contour plot showing the calculated 3He longitudinal polarization, Pp, 
in the pump bulb while masing for a range of noble gas fill pressures. Tp = 114O C, 
narrow-band laser used for optical pumping, other input parameters as in Tab. 4.3. 

Figure 4-22: Contour plot showing the calculated 3He longitudinal polarization, P,, 
in the maser bulb while masing for a range of noble gas fill pressures. Tp = 114' C, 
narrow-band laser used for optical pumping, other input parameters as in Tab. 4.3. 



Calculated 3 ~ e  Maser Coherence and 
Radiation Damping Time 

Figure 4-23: Contour plot showing the calculated 3He perpendicular polarization, PL , 
in the maser bulb while masing for a range of noble gas fill pressures. Tp = 114' C, 
narrow-band laser used for optical pumping, other input parameters as in Tab. 4.3. 

Figure 4-24: Contour plot showing the calculated 3He radiation damping time, TRD, 

for a range of noble gas fill pressures. Tp = 114' C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 



the coherence loss rate, l/Tz,tt, due to  magnetic field gradients in the transfer tube, 

because we assumed optimal trimming of our gradient coils. These losses can be 

taken into account by repla,cing 6 in Eq. (4.51), with 6' = J 2 r c l ~ p ~  + l/DTz,tt. 

It is convenient to  modify Eqs. (4.44) in the following way: 

These definitions are equivalent to  the previous ones in the limit of negligible wall re- 

laxation (6L + 0). The efficiency of polarization transfer, A ,  is manifestly worsened 

by wall relaxat ion (typically b2 L~ / sinh2 6 L -- 0.95). 

With the changes in the definitions above, the analytic solutions for the steady 

state polarizations are exactly equal to  those found in the previous section, with the 

exception of 
" - 

which also converges to Eq. (4.46) for 6L -+ 0. 

Since the diffusion coefficient is usually much smaller for 12'Xe than for 3He, 

the effective times in Eqs. (4.52) are not dominated by bulb escape, even when we 

neglect wall relaxation. As a result, the polarization transfer for 12'Xe is less efficient 

than for 3He and typically X - 0.1 - 0.3. 

For the parameters listed in Tab. 4.3 and using the Rb polarization values ob- 

tained with our numeric optical pumping simulation of a narrow-band laser at  



Tp = 114' C, we obtain the polarization contour plots shown in Figs. 4-25 through 4- 

29. We also show in Fig. 4-30 the predicted values for TRD. 

Maser Signals, Maser Powers and Expected Thermal Frequency Noise 

Of the quantities presented in the last two sections, only the radiation damping 

times and the T; are observable. Another quantity that we can accurately mea- 

sure is the maser signal, Vab7 from which we can calculate the maser power, Wng7 

and subsequently the level of expected frequency noise, Aq,. For convenience we 

reproduce here Eqs. (2.45), (2.43), and (2.70) derived in Ch. 2: 

Figures 4-31 and 4-32 show the contour plots of the expected signals for the two 

masers, while Figs. 4-33 and 4-34 show the maser powers. We have used the param- 

eters listed in Tab. 4.3, a pump bulb temperature Tp = 114' C and a narrow-band 

laser. The curves of equal power for 3He clearly show that the region of lowest 12gXe 

pressure and highest 3He pressure is optimal for the 3He maser. Instead, the highest 

12'Xe maser power is obtained in absence of 3He with approximately 60 Torr of 

12'Xe. Higher 129Xe pressures lead to poor Rb polarization (see Fig. 4-10) and com- 

plete absorption of laser light (see Fig. 4-11) due to high Rb-12gXe spin-destruction. 

For 12'Xe fill pressures below 60 Torr, both the 3He and 12'Xe pressures can be 

decreased, leaving maser powers and signals unchanged. This shows that there is a 

tradeoff between the decrease in number density, which drops with fill pressures, and 
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Calculated 12'xe Polarizations in the Absence of Masing 

Figure 4-25: Contour plot showing the calculated 12'Xe longitudinal polarization, 
Pp,o, in the pump bulb in the absence of masing for a range of noble gas fill pressures. 
Tp = 1:14O C, narrow-band laser used for optical pumping, other input parameters as 
in Tab. 4.3. 

Figure 4-26: Contour plot showing the calculated 12'Xe longitudinal polarization, 
P,,o, in the maser bulb in the absence of masing for a range of noble gas fill pressures. 
Tp = 114' C, narrow-band laser used for optical pumping, other input parameters as 
in Tab. 4.3. 



Calculated 12'xe Polarizations While Masing 

Figure 4-27: Contour plot showing the calculated 12'Xe longitudinal polarization, Pp, 
in the pump bulb while masing for a range of noble gas fill pressures. Tp = 114' C, 
narrow-band laser used for optical pumping, other input parameters as in Tab. 4.3. 

Figure 4-28: Contour plot showing the calculated 12'Xe longitudinal polarization, P,, 
in the maser bulb while masing for a range of noble gas fill pressures. Tp = 114O C, 
narrow-band laser used for optical pumping, other input parameters as in Tab. 4.3. 



Calculated 12'xe Maser Coherence and 
Radiation Damping Time 

Figure 4-29: Contour plot showing the calculated 12gXe perpendicular polarization, 
PL7 in the maser bulb while masing for a range of noble gas fill pressures. Tp = 114' C, 
narrow-band laser used for optical pumping, other input parameters as in Tab. 4.3. 

Figure 4-30: Contour plot showing the calculated 12'Xe radiation damping time, TRD, 

for a range of noble gas fill pressures. Tp = 114' C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 



an increase in polarization transport efficiency due to higher diffusion coefficients a t  

lower pressures. For fixed maser power, operating the masers with higher diffusion 

coefficients and lower densities has several advantages, and a major disadvantage. 

At high densities the magnetic induction created by the static magnetization of one 

gas species deteriorates the magnetic environment of the other species, shortening 

the other species' coherence time 1341. Thus low densities are advantageous. Higher 

diffusion coefficients obtained at  low fill pressures also improve spatial averaging of 

residual magnetic field gradients as well as pickup coil field inhomogeneity. More- 

over, in the next section we will argue that higher diffusion coefficients are likely to 

improve co-magnetometry. 

The disadvantage that comes with low fill pressures is that bulb escape time 

decreases and this worsens the thermal frequency noise as shown in Eq. (4.56). Since 

the 3He maser power is always one or two orders of magnitude smaller than the 129Xe 

power, 3He is the species most affected by thermal noise. As Fig. 4-35 shows, the 

curves of equal thermal noise for 3He are not quite as steep as the curves of equal 

power. Faster diffusion shortens the 3He bulb escape time. As the interaction time, 

T;, decreases so does the line Q and this worsens the level of thermal frequency 

nolse. 

A straightforward way to increase the 3He power is to  increase the pump bulb 

temperature. This induces an exponential increase in the Rb density and a corre- 

sponding increase in spin-exchange rate (provided that there is enough light to  keep 

the Rb polarization sufficiently high). In Fig. 4-37 through 4-40 we show maser 

signal and thermal frequency noise for both masers at  a pump bulb temperature 

Tp = 140° C. In Sect. 4.3.1 we computed the level of Rb polarization that can be 

attained at  this temperature in theory6 (see Fig. 4-12 and 4-13). Figure 4-39 shows 

6 ~ n  practice at  these higher temperatures our simulations seem to overestimate the flux of 1 2 9 ~ e  
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that at low 3He and 12gXe pressures, the thermal frequency noise remains substan- 

tial, whereas for 3He pressures above 1,400 Torr and 12'Xe pressures below 40 Torr 

the level of noise is much smaller. 

4.4 Co-Magnetometry 

The oscillation frequencies of our Zeeman masers depend to first order on the mag- 

netic field created by the main solenoid. Since the stability of our power supply 

varies between 10 and 100 ppm, a single-species noble gas maser would not be a 

very sensitive tool for LI tests. As we have already noted, maser frequency stability is 

drastically improved by employing a second co-located maser as a co-magnetometer. 

Evidence for imperfect co-magnetometry was obtained by applying small magnetic 

field gradients across the cell and observing sizable maser frequency shifts whereas 

perfect co-magnetometry would have yielded no effect. Preliminary experimental 

tests of co-magnetometry are reported in Sect. 6.8. 

In this section we study theoretically the spatial distribution of the two noble 

gas species. We try to understand how co-located they really are and whether this 

matters at all. Considering that the polarized atoms reach the maser bulb through 

a small opening, there is a legitimate concern that the different diffusion coefficients 

for the two species (see Sect. 4.3.3) and different wall relaxation rates may lead to 

a different mean distribution of the two masing species. 

polarization that reaches the maser bulb. We suspect that when the pump bulb temperature is 
increased a substantial density of unpolarized Rb vapor in the transfer tube depolarizes the lZ9Xe 
atoms, thus reducing the flux into the maser bulb. This effect has not been included in the models 
presented in this chapter and will be studied in Ch. 6. 



Calculated Maser Amplitudes 

Figure 4-31: Contour plot showing the calculated 3 ~ e  maser output voltage for a 
range of noble gas fill pressures. Tp = 114' C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 

Figure 4-32: Contour plot showing the calculated 12'Xe maser output voltage for a 
range of noble gas fill pressures. Tp = 114' C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 



Calculated Maser Powers 

Figure 4-33: Contour plot showing the calculated 3He maser power for a range of 
noble gas fill pressures. Tp = 114' C, narrow-band laser used for optical pumping, 
other input parameters as in Tab. 4.3. 

Figure 4-34: Contour plot showing the calculated 12'xe maser power for a range of 
noble gas fill pressures. Tp = 114' C, narrow-band laser used for optical pumping, 
other input parameters as in Tab. 4.3. 



Calculated Thermal Frequency Noise 

Figure 4-35: Contour plot showing the calculated 3He thermal frequency noise for a 
range of noble gas fill pressures. Tp = 114' C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 

Figure 4-36: Contour plot showing the calculated 12'xe thermal frequency noise for 
a range of noble gas fill pressures. Tp = 114O C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 



Calculated Maser Amplitudes 
(High Pump Bulb Temperature) 

Figure 4-37: Contour plot showing the calculated 3He maser output voltage for a 
range of noble gas fill pressures. Tp = 140' C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 

Figure 4-38: Contour plot showing the calculated 12'Xe maser output voltage for a 
range of noble gas fill pressures. Tp = 140' C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 



Calculated Thermal Frequency Noise 
(High Pump Bulb Temperature) 

Figure 4-39: Contour plot showing the calculated 3He thermal frequency noise for a 
range of noble gas fill pressures. Tp = 140' C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 

Figure 4-40: Contour plot showing the calculated 12gXe thermal frequency noise for 
a range of noble gas fill pressures. Tp = 140' C, narrow-band laser used for optical 
pumping, other input parameters as in Tab. 4.3. 



4.4.1 Imperfect Overlap of 1 2 g ~ e  and 3He Ensembles 

In Sect. 4.3 we have solved the equations of motion for our Zeeman masers implicitly 

a,ssumirlg the spatial homogeneity over the maser bulb of three quantities: (i) the 

main magnetic field Bo; (ii) the perpendicular polarization PL,ng; and (iii) the pick- 

up coil field B1. In this section we wish to look at what happens to maser co- 

magnetometry when we relax the first two assumptions. In Sect. 6.8.2 we will 

briefly explore the possible effects of departing from (iii). 

The equations of motion for a spatially extended masing ensemble, in which 

Bo(r') and PL,,,(F) have a spatial dependence and B1 is homogeneous, yield the 

following mean value for the maser frequency [37]: 

At present we are unable to  solve the maser equations of motion for an extended 

masing ensemble in a double-bulb cell and find an analytic expression for the steady 

state distribution of P1,,,(F). Nevertheless, we may use Eq. (4.57) to  study the 

effects of magnetic field gradients on the maser frequencies. 

In the presence of linear magnetic field gradients across the maser bulb we can 
+ 

write the longitudinal magnetic field as: Bo(q = B ~ ( G )  + G B ~  (g) F, where r' = 0 

is defined to  be the center of the maser bulb. Using Eq. (4.57) the maser frequency 

becomes 

wng = ~ n g ~ o  (8) + f n g e ~ o  (6) . (Cg ) , (4.58) 

where we have defined the noble gas center of (perpendicular) polarization as: 



The 12'Xe maser frequency is usually locked to the frequency of a reference oscillator 

wyaf by adjusting the correction Bimr to  the main magnetic field. must then 

satisfy the following equation: 

The frequency shift of the free-running %e maser with respect to the expected 

frequency yHewyaf/yxe is: 

?He ref  
b ~ H e  = YHeWHe - -Wxe 

Yxe 

A linear dependence of the frequency shift implied by Eq. (4.61) on the intensity of 

small gradients was indeed observed, suggesting a displacement of the 12'xe and 3He 

polarization centers by a few tens of pm,  both along the direction of the transfer 

tube, y,  and along the axis of the cylindrical maser bulbs previously in use [34]. 

As we noted, a direct attempt to evaluate Eq. (4.59) immediately meets the 

problem that we are unable to obtain the equilibrium spatial distribution PL,,,(F) 

from the set of non-linear equations of motion seen in Sect. 4.3.4. In the next section 

we show that we can find the centers of polarization if we assume that the polarized 

atoms after reaching the maser bulb spend an average time r radiating. We assume 

that then they leave the masing ensemble, either because field gradients and wall 

collisions make them de-cohere, or simply because they escape from the maser bulb. 

Even if we do not have a quantitative estimate for r, the solution presented in the 

next section leads to two interesting conclusions: (i) the centers of polarizations (Fn,) 

do not depend on the flux of incoming polarized atoms; and (ii) both finite lifetime 
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and wall relaxation lead to (Fn,) oc 1/ D in the limit of large D. The importance of (i) 

is clear: Instabilities in the optical pumping spin-exchange process, or temperature 

instability in the pump bulb will not move the center of polarization and they will 

not create time dependent frequency shifts in the masers (i.e., frequency noise) 

by moving the center of polarization across the inevitable residua,l magnetic field 

gradients. (ii) confirms that larger diffusion coefficients would help bring the centers 

of polarization closer together, regardless of the process that is responsible for their 

separation. 

A plausible choice for T is, for instance, the effective bulb escape time for the 

coherences: T; . Plugging this characteristic time and the other relevant parameters 

listed in Tabs. 4.3 and 4.4 into the formulae that we derive in the next section, yields 

the polarization centers shown in Figs. 4-41 and 4-42. From the plots we conclude 

that the distance between the centers should be on the order of few tens of pm and 

it is expected to  decrease with the fill pressures. 

4.4.2 Calculation: Polarization Distribution in a Spherical 

Bulb with Disk-Like Source, Bulk and Wall Relax- 

at ion 

We calculate the center of polarization of a gas with diffusion coefficient D that 

enters a spherical maser bulb of radius ro, through a hole subtending an angle 200 

from the center of the bulb. The atoms have a bulk relaxation time r and undergo 

wall-collisions characterized by a coefficient n (see also Sect. 4.3.2). We solve the 



Calculated Polarization Centers 

Figure 4-41: Contour plot showing the calculated polarization center, ( Y ) ~ , ,  for a 
range of noble gas fill pressures. Tp = 114' C, narrow-band laser used for optical 
pumping, and other input parameters as in Tab. 4.3. 

Figure 4-42: Contour plot showing the calculated polarization center, (yjxe, for a 
range of noble gas fill pressures. Tp = 114O C, narrow-band laser used for optical 
pumping, and other input parameters as in Tab. 4.3. 



diffusion Eq. (4.12) in steady state and impose the appropriate boundary conditions, 

describing a flux, 4, of polarized atoms per unit surface area per unit density entering 

the bulb through a circular aperture and a homogeneously relaxing bulb surface. 

Slightly modified boundary conditions greatly simplify our task: 

where we defined a-' = and the symbol VI indicates the variation along the 

normal to the bulb's surface. We therefore work in the approximation that wall 

relaxation takes place at the source too, but since the source is usually quite small 

this approximation is very good. 

The symmetry around the y axis allows us to  treat the problem in two dimen- 

sions: tlhe distance from the center of the bulb, r, and the angle 0, between the 

atom's position vector Fand the y axis. The center of the source is located at 0 = 0 

and the source extends to kgo.  We will use the following trial solution: 

which makes use of the Lagrange polynomials, Pl(cos 6 ) .  The boundary condition 



in Eq. (4.63) can also be defined in terms of these polynomials as follows: 

00 $ for 0 6 Oo 
f (0) = C P l f i ( c o s 0 )  = 

1=0 0 for 0 > O0 
1 

Pl = 5 (Pl-l (cos $0 )  - fi+1(cos $0)) . 

Substituting Eq. (4.64) into Eq. (4.63), we find that the radial function R(r )  must 

satisfy the following differential equation: 

This equation admits two solutions, expressed in terms of hyperbolic I and K Bessel 

functions [74] : 

Only Il12+l(ar) is acceptable in our case, since it does not diverge at  the origin. 

We therefore choose cl = 0 and cz = 1. The determination of the cul coefficients is 

now straightforward; using Eq. (4.63), Eq. (4.66), as well as the trial solution in Eq. 

(4.64), we find: 

Having completely solved Eq. (4.63) we can now determine two quantities of 

interest: The mean polarization in the bulb (P) and the polarization center (7). 
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Apart from numeric coefficients, we find that ( P )  is proportional to oo: 

We also find that the center of polarization is displaced from the center of the bulb 

in the direction of the source, it lies on the symmetry axis y (see Fig. 4-14) and it 

depends only on ol and oo: 

The general solutions are better expressed in terms of the dimensionless quantities 

t(aro) = tanh(aro)/aro and k = nro/D: 

As we anticipated at  the end of last section, (Y) does not depend on 4. 
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Figure 4-43: Calculated equilibrium polarization distribution in 2D for a circular 
cell with 1 cm radius. The polarized atoms (i-e., P = 1)  enter from an arc of 
approximately 23" corresponding to a transfer tube diameter of 4 mm. The atoms 
diffuse to the loss-free walls with diffusion coefficient D = 0.3 cm/s2 and we chose a 
bulk relaxation time T = 300 s. Using this distribution we obtain that the center of 
polarization is displaced towards the source by ( y )  = 26 pm. The distribution was 
obtained using a mesh of 44 x 44 points, with mesh spacing A = 0.05 cm and using 
the method of successive overrelaxation (SOR) [75] to solve the diffusion equation, 
uj+l,l+ uj-1,1+ uj,1+1 + Uj, l - l  - (4 + A 2 / ~ D ) ~ j , l  = 0, with the boundary conditions 
mentioned above. 

We will evaluate the equations above in the limits in which one relaxation mech- 

anism dominates over the other. The limiting expressions in which bulk relaxation 

vanishes, a = I / &  -+ 0, is 

When wall relaxation is negligible, k = 6ro / D -+ 0, then 



3 2 0  
- - - 1 ro cos 2 -- 8 rg cos2 $ 

175 ( T D ) ~  
+ o[~,"(TD)-91. 

5 1-0 

In Eq. (4.76) we have assumed a ro = r o / m  is small.7 As we anticipated at the 

end of the last section, in the appropriate limit both Eq. (4.73) and Eq. (4.76) show 

that (Y) oc 1/D. 

In Fig. 4-43 we show the steady polarization distribution obtained solving Eq. 

(4.63) rlumerically, in two dimensions, using the method of successive overrelaxation 

(SOR) [75]. The centers of polarization calculated with this alternative method agree 

very well with the analytical solution just presented. 

4.5 Maser Bulb Geometry and Self-Interaction 

The first incarnation of the dual noble gas maser was also designed for electric 

dipole rnoment searches [34]. Because of this, previous maser bulbs where cylindrical 

in shape and molybdenum plates were attached a t  each end of the cylinder and 

used as electrodes. We have since abandoned the cylindrical maser bulb. That 

shape had two disadvantages: (i) the pickup coil field was not homogeneous on the 

bulb reducing the effectiveness of the co-magnetometry along the cylinder axis, and 

(ii) the cylindrical shape induced magnetization self-interaction, which causes the 

maser frequency to depend on the longitudinal magnetization. The purpose of this 

section is to show that a spherical maser bulb eliminates self-interaction, under the 

approximation of homogeneous magnetization, which is approximately correct, as 

' ~ o t i c e  that equating (P) in Eq. (4.73) and in Eq. (4.74) we obtain again a result already 
derived in Sect. 4.3.2, which gives the wall relaxation coefficient K, = in terms of the mean 
observed lifetime. 



we saw in the previous section. 

Here we follow the theory of spin maser self-interaction worked out by Romalis 

and Happer (RH)8 [76]. However, we will make the simplifying assumption that the 

magnetization of our gases is homogeneous in the maser bulb. As we have already 

seen in Sect. 2.3, the time evolution of the magnetization is given by 

RH show that @, the ensemble-averaged magnetic induction, is different from 

Maxwell's macroscopically averaged field g. In particular, in Gaussian units, 

The difference between the two comes from "having excluded the magnetization 

of the core of the atoms." In other words, since a small portion of magnetization 

produces a magnetic induction at its own location equal to  8?rG/3 (see the last 

term of Eq. (2.5)) and we know that a magnetization does not interact with the 

field it produces, we conclude that the magnetic induction that the magnetization 

interacts with is precisely given by ge = - 8~&?/3 .  For definiteness we define 

three magnetic fields that make up the total magnetic field l?: A, the externally 

applied magnetic field, fit, the magnetic field produced by the maser coil, and f i M ,  

the magnetic field produced by the surrounding magnetization. 

Instead of solving the problem for a cylindrical bulb, we will consider the problem 

8~~ were interested in large samples of polarized 3He and the possibility of small masing 
regions (= 3 mm) in which the conditions for masing were locally met (for instance, when a strong 
magnetic field gradient was applied perpendicularly to  the Bo field). 



of self-interaction in a symmetric ellipsoidal bulb with semi-major axis length a ,  

which is along the axis of symmetry, and semi-minor axis length b. In [77] we find 

that the homogeneously magnetized ellipsoid produces a homogeneous magnetic 

field which, in general, is not collinear with the magnetization and can be written 

in the following way: 

where 

In the special case that the ellipsoid degenerates into a sphere (a = b), we have 

P = ,OL = Pz = - i. Combining Eq. (4.79) and Eq. (4.80), we find: 

which indeed shows how, for a spherical magnetization, GM drops out of the maser 

dynamics described by Eq. (4.77). 

In the general case though we have, 

and Eq. (4.77) yields a maser frequency W M  proportional to the the longitudinal 
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magnetization Mz and to the difference Pz - PI, 

By integrating Eqs. (4.81), we obtain for instance that pz - P1 = 0.1 for b/a  = 

0.77, which is roughly the ratio of the previous maser bulb's length and diameter. 

Self-interaction is suppressed much more strongly (i.e., Pz - PI = 0.001) when 

b/a  = 0.975, so that an imperfection of 2 - 3% in the sphericity of our bulbs, will 

make self-interaction negligible compared to the interaction with the other co-located 

magnetized species. 

4.6 Conclusions on Design Studies and Open 

Quest ions 

Most of the studies presented in this chapter were carried out before the construction 

of the new maser. We concentrated on four main areas of investigation: (i) the 

previous maser's limitations to LI sensitivity; (ii) the prospects of improving the 

temperature stabilization of the maser cell; (iii) the gas pressure optimization; and 

(iv) the co-magnetometry limitations ascribable to imperfect motional averaging 

and diffusion. We summarize here our conclusions for each point in turn: 

(i) Although the best frequency stability in the previous maser was obtained for 

measurement intervals of approximately 2 hours, the sensitivity to  slow frequency 

modulations of period T kept improving all the way to the desired T = 1 day. 

From this we concluded that the factor limiting the LI sensitivity was the level 

of medium term frequency noise and not the long term phase meander, which in 
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the previous system could be accounted for using maser amplitude correlations and 

a const,ant linear frequency drift. As a result of this new understanding a search 

for the sources of medium term frequency noise became the main focus of the new 

experiment. Thermal frequency noise, magnetic noise affecting the maser because of 

imperfect co-magnetometry, and noise induced by optical pumping light instabilities 

are currently being investigated, as we shall see in Ch. 6. 

(ii) We concluded that the limitations of the previous maser's temperature sta- 

bilization system were probably caused by the instability of the airflow. We also 

argued that indirect heating should solve this problem while also reducing the vi- 

brations induced on the cell by direct exposure to  the airflow. 

(iii) Modeling the interplay of optical pumping, polarization transport and maser 

action helped describe a number of competing effects. For instance, we found that in 

certain conditions, as we expected, it is conceivable to  decrease the noble gas pres- 

sures (in specific proportions) without affecting the intensity of the maser signals. In 

fact, lower gas pressures yield higher polarization mobility, which increases the flux 

of polarized atoms in the maser cell, but at  the same time decreases the interaction 

time with the cavity. In the optical pumping process, pressure broadening of the Rb 

absorption line allows for a better use of the broad-band light. On the other hand, 

at  lower gas pressures the Rb polarization can be kept closer to  saturation where 

spin-exchange optical pumping is probably more stable. 

As a practical example, we predict that if we intend to  use a narrow-band laser 

delivering at the cell approximately 350 mW of light, we should keep the 12gXe 

pressure below 50 Torr. For excessively low 3He pressures, the 3He maser becomes 

sensitive to  thermal frequency noise because of the short interaction time with the 

cavity. Hence, gas pressures above 1,000 Torr are needed. A similar reasoning helps 

selecting operating temperatures and gas pressures based on the amount of light 



available. The underlying rationale for decreasing the gas pressures is that better 

motional averaging should improve co-magnetometry. This brings us to  our la'st 

point. 

(iv) Our diffusion model basically confirms that imperfect co-magnetometry 

could be due to  a lack of spatial overlap of the two masing species. The order 

of magnitude of the frequency shifts observed when applying magnetic field gra- 

dients is consistent with the co-magnetometer limit at  ions arising from the slight 

inhomogeneities in the calculated noble gas polarization distributions. However, 

our theory needs further input from experiment since it is not clear a t  this moment 

what physical quantity should be used as the characteristic time in the diffusion 

model. 

Open Questions 

We close this chapter with a number of open questions that need more theoretical 

and experimental work to be answered. The first question was stated in the para- 

graph above: What is the characteristic time needed to find the correct polarization 

center? 

Second question: Are there other mechanisms that may lead to  imperfect co- 

magnetometry? Recent experiments suggest that the spatial inhomogeneity of the 

pick-up coil field and the fact that this field extends well beyond the maser bulb 

may provide alternative mechanisms. 

Third question: Is the thermal noise a limiting factor? In the previous system 

simple estimates indicated that the thermal frequency limit had not been reached. 

Our simulations instead clearly indicate that we may be close to  the thermal fre- 

quency noise limit. Only experiment can resolve this issue. 

Fourth question: Is there a way to model the loss of 12'Xe polarization due to 



the interaction with unpolarized Rb in the transfer tube? 

Fifth question: Why is there a factor of approximately 5 between the Allan 

deviat,ion and the LI sensitivity (see Fig. 4-Z)? Preliminary numerical simulations 

indicate that the two should differ only by a factor of 6. 





Chapter 5 

Experiment a1 Realization 

In this chapter we describe the design and construction of the new 12gXe/3He maser. 

We concentrate our attention on the components that recently have been entirely 

rebuilt, or added to the experiment. We begin by reviewing the new oven design, the 

blown air temperature control of the maser, and the procedure for making 12gXe/3He 

maser cells. We then discuss the characteristics and stabilization scheme of a new 

narrow-band laser used for Rb optical-pumping. This laser is now under test and its 

performance is being compared to the laser diode array (LDA) formerly used. Next, 

we provide an overview of the magnetic field environment: magnetic shielding, main 

field characteristics, field stabilization, and various attempts to confine the maser 

action to the maser bulb region. We conclude by describing the signal detection 

system. 



5.1 A New Oven Design to Improve Temperature 

Control and Accessibility 

In Sect. 4.2.1 we discussed the advantages of a temperature control system based on 

indirect heating of the maser cell. As Fig. 5-1 shows, hot and cold air circulate in 2.5" 

and 3" deep air ducts cut into the oven, surrounding high thermal conductivity pump 

and maser blocks, whose thermal capacity integrate out fast thermal fluctuations, 

providing st able heating of the maser cell. 

Table 5.1 presents the physical characteristics of various materials used in the ex- 

periment. Ulteml was chosen for the heated-air-carrying portion of the oven because 

it is an excellent non-magnetic thermal insulator and can withstand temperatures 

twice as high as the Nylatron plastics formerly used. 

The design was also changed to improve access t o  the cell. In the previous 

system, separate maser and pump ovens were assembled around the cell and needed 

to be taken apart when the maser cell had to be replaced: this procedure required 

several hours. The new oven design shown in Figs. 5-4 and 5-5 is geometrically more 

stable because the housing of the cell is machined into a single block of Ultem. The 

replacement of the cell is now a matter of just a few minutes. It is sufficient to pull 

the oven towards the open end of the solenoid, remove the oven lid, pull out the 

previous cell and insert the new one, which was previously installed on a spare cell 

holder. In addition, the 114" ID, insulated, semirigid Teflon tubing that bring hot 

and cold air and most of the wiring are connected to  the back of the oven and do 

not need to  be removed when replacing a cell. 

- - -- - - - 

'Available from Quadrant Engineering Plastic Products. 
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Figure 5-3: The new maser oven. Air circulates in narrow air ducts machined out of 
a single block of Ultem 1,000 and located beneath the white silicone RTV profiles, 
warming up and cooling down the boron nitride pump and maser blocks, respec- 
tively. The cell, mounted on its cell holder (see Fig. 5- 14) fits into the aperture in the 
middle of the oven. Visible on the maser block (bottom) is the 1,600 turn pick-up 
coil, which is part of a double-tuned circuit and acts as maser cavity (see Sect. 5.5.1). 
On the pump block (top) the picture shows two coils in a quasi-Helmholtz configura- 
tion, used for resonantly driving the Rb Zeeman transitions in the Rb magnetization 
detection scheme [34]. The oven is held within a Nylatron frame that fits within a 
Nylatron cylinder on which are wound magnetic field gradient correction coils. 
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Pump Block & 
Rb Drive Coil Form 

Material: Boron Nitride, Grade AX05 
4-8-2004 

Figure 5-6: Machine drawing of the pump block. All dimensions are in inches. 

The oven is installed on a cylindrical support that tightly slides inside a fixed 

Nylatron cylinder on which we installed a set of gradient coils (see Sect. 5.4.2). The 

support is keyed and slides on a rail screwed at  the top of the gradient cylinder al- 

lowing only longitudinal, but no rotational movement of the oven. Figure 5-3 shows 

the oven installed on its support. Pump and maser blocks are in place. The top 

of the a'ir ducts are sealed off with one-part silicone R T V ~  to prevent hot and cold 

air from entering the cell housing. Early testing showed that inserting Ultem shims 

into the air ducts and reducing their volume by approximately 80%, significantly 

improved the temperature control providing better insulation from ambient temper- 

2GE Company, RTV162. 



* - --- 2 2 0  0 I . ( X I  H( ) L t  1 04 L)CV[, 

-l.ll----c * - 1 22 *j 
- 

i , A i 
>- - 

I 

- -  . I 10 

( /  I , 
t 

- -- 2 LO - . 1 

2 ?O 20 
I '  

- - - . - -  -. - -  - - - ..L 

I - 
I I: . 

i 
I $ 1  , I  1 i i  

-C; 4--- 20 - + 2 0  
; t  

-a 1 20 Lfi 07 Through 

Maser Block & Pick-Up Coil Form 

Figure 5-7: Machine drawing of the maser block. All dimensions are in inches. 

ature fluctuations. In each air duct we installed thermometers for controlling the 

temperature of the air (see Sect. 5.1.1). 

The maser and pump blocks are built out of boron nitride.3 This is the ceramics 

with the highest thermal conductivity on the market, which can still be machined 

with ordinary cutting tools. The drawings in Figs. 5-6 and 5-7 show that the maser 

and pump blocks, besides providing a thermal buffer for the heating and cooling of 

the cell, are designed to accommodate respectively the pick-up coil (see Sect. 5.5.1) 

and a quasi-Helmholtz coil4 used to drive the Rb Zeeman transitions and monitor or 

lock the Rb magnetization (see Sect. 5.3.2). In both blocks, 2" deep holes provide 

3Grade AX05, available from Saint-Gobain Ceramics. 
4 ~ ~ o  200 turn coils are wound into the circular grooves cut in the pump block shown in Fig. 5-6. 



BRIDGE CIRCUIT 
Texas Components Resistors 

S & TX144 Series 
8-24-2004 

Figure 5-8: Circuit schematic of one of the six, three wire, balanced bridges used 
for sensitive temperature detection and lock. In equilibrium, Rset(R1, R2, R3) = 
RRrD = (100 + 0.385 T) i-2 where T is expressed in degrees Celsius. The double- 
switch allows us to select four set temperatures evenly distributed in the range 
between TMin and TMax. 

housing for the thermometers used to stabilize the block temperatures. 

5.1.1 Temperature Control 

The ambient temperature of the 12gXe/3He maser laboratory is maintained at  ap- 

proximately 21" C with characteristic oscillations of 0.1-1" C in amplitude (depend- 

ing on t,he measurement position in the lab) and a period of approximately 500 s, 

due to the cycling of the air conditioning unit. Most components in our experiment 

need further temperature stabilization. Less thermally sensitive components, such as 



photodiodes, are stabilized using independent, homemade temperature controllers. 

The external resonator and most of the double-resonant circuit (see Sect. 5.5) are 

contained in a separate thermally, electrically, and magnetically isolated enclosure 

which has an independent blown air temperature control system. The enclosure is 

heated slightly above room temperature, typically 30" C (see Sect. 6.1). 

Since our Zeeman masers are sensitive to magnetic disturbances we use through- 

out the experiment non-magnetic, wire wound, 100 0, three lead, platinum RTD 

elements covered in a ceramic enclosure for robu~tness .~  In order t o  obtain sensitive 

temperature resolution (z 0.1 mK) with small currents (to limit both noise and 

self-heating), the RTDs are in a balanced bridge driven by a lock-in amplifier? The 

bridge output signal measured with the lock-in amplifier is fed to  a PID tempera- 

ture controller driving an air process heater.7 In Fig. 5-8 we show the schematic 

of the bridge circuits. One arm of the bridge acts as a voltage divider, while dif- 

ferent combinations of the resistances8 Rl, Rz and R3, can be selected using two 

switches to  give four possible set resistor values. In equilibrium, RRTo matches the 

set resistance. 

Figure 5-9 shows the temperature control scheme used for locking the temper- 

ature of maser and pump blocks. A regulated flow of air through the heater and 

into the air channel delivers heat t o  the oven and then to the block via conduction. 

As we argued in Sect. 4.2.1, the amount of heat delivered to  the block depends not 

only on the temperature measured by RTD 2 located in the airflow, but also on the 

air mass flow that sets the temperature gradient along the air channel (the gradi- 

ent becomes smaller as the flow increases). The high thermal conductivity of the 
-- - 

5Available from Omega Engineering Inc., series 1PT100KN. 
'Standard Research System (SRS) lock-in amplifiers, models 830 and 850. 
7 ~ ~ - 1 3 0  PID controllers, once produced by Linear Research Inc. 
 he resistors used for the bridge have very low nominal temperature coefficient of resistance 

(= 0.3 ppm/" C) and are available from Texas Components, series S and TX144. 



Air mass flow 

Resistive cartridge heater 

TEMPERATURE CONTROL SCHEME 

Figure 5-9: Schematic of the double-lock blown air temperature control system used 
for locking the temperatures of the pump and maser bulbs. 



boron nitride helps diminish the effects of this gradient on the block temperature. 

The thermal capacity of the block helps to  integrate out the temperature fluctua- 

tions in the block as measured by RTD 1, located in a hole inside the block. The 

double-lock stabilizes the block in two stages: first, a short time constant (tens of 

seconds) feedback loop locks TRTD,1 to  some reasonable T' which brings the block 

temperature close to  the desired value. Then, more slowly (hundreds of seconds), 

a second feedback loop controls the gain of the first feed-back loop, and thus ad- 

justs T' to  be exactly the air temperature needed to make RRTD,l = Rset,l. This 

double-lock yields a temperature stability of a few mK in a day, as we will see in the 

experimental tests detailed in Sect. 6.1. This lock allows for easy capture and lock 

stability is excellent, whereas in a single lock to  RTD 1 capture is hard and even 

small perturbations break the lock. 

5.2 Double-Bulb Maser Cells 

The mixture of 129Xe, 3He, N2, and Rb usedg in the 12gXe/3He maser is contained in 

a Pyrex cell with a blown spherical (maser) bulb joined by a straight transfer tube 

to  a cylindrical (pump) bulb whose flat ends allow for a homogeneous illumination 

of the gas. In Fig. 5-10 we show the cell drawing. 

In order to  reduce the rate of nuclear spin relaxation caused by the interaction of 

12'Xe nuclei with magnetic impurities on the glass walls, the cells are coated with a 

self-assembling silane compound called oct adecyltrichlorosilane (CH3- (CH2) 17-SiC13r 

available from Sigma-AldrichlO), known as OTS. This compound consists of long 

hydrocarbon chains each with a trichlorosilane group at  one end. In the coating 

'We typically use 90% enriched '"xe (chemical purity 99.999%) and 99.9% enriched 3He, 
available from Spectra Gases, Alpha, NJ .  

'O~his  compound is stable, reacts violently with water, it is incompatible with strong acids, 
strong bases, strong oxidizing agents. Air-sensitive. Combustible. 
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Figure 5-10: Typical double-bulb glass cell before pull-off. All dimensions are in 
inches unless otherwise specified. 

process this group binds to  the silicates in the glass, relinquishing the chlorine atoms. 

The result is a carpet of hydrocarbon chains lining the cell walls. As 12'Xe atoms 

approach the cell walls they bounce off the hydrocarbon chains, keeping at  a distance 

from the depolarizing magnetic impurities always present on the cell walls. 

As Fig. 5-11 shows, initially the cell is connected to  a glass manifold that typically 

carries two cells. The manifold is designed to  be connected to  a gas filling station 

(providing vacuum to approximately lo-' Torr) with the help of a 112" Ultra- 

Torr seal. Two open tubes in the manifold allow pipet-access to  the cells during 
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Material: Pyrex 
5-4-2005 

Figure 5-11: Typical glass manifold used to make two maser cells. All dimensions 
are in inches unless otherwise specified. 

the cleaning and coating processes described in the next section, and a side arm 

accommodates a Rb ampoule. 

5.2.1 Cell Cleaning and Coating 

In this section we give a brief summary of our cleaning and coating procedures. 

More details can be found in Refs. [78] and [79]. 

Before the cells are coated, surface contaminants are removed from the glass using 

"piranha" solution, which consists of 3 parts of 30% H202 (hydrogen peroxide) and 

7 parts of 97% H2SO4 (sulfuric acid) by volume. The piranha solution is prepared 
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Figure 5-12: DI water inside an uncoated (left) and a coated (right) pump bulb. 
Clearly the water does not stick to the coated surface and the shape of the water 
surface is dramatically affected. 

inside a fume hood by pouring H2SO4 into 30% H202 (the acid should be added 

last). The solution, which is initially bubbling, hot, and viscous, is poured into 

the whole manifold and left there for about three hours. During this time the 

cells are inspected periodically to eliminate gas bubbles that may form and prevent 

homogeneous cleaning of the cell inner surface. The whole manifold is then rinsed 

three times with de-ionized (DI) water, three times with methanol, and again three 

times with DI water. After rinsing, the manifold is dried for about an hour in a 

rough-vacuum oven at  room temperature, after which air is allowed back in, and 

the manifold is left to rest overnight. 

A 2 millimolar OTS coating solution is prepared by adding 0.788 ml of OTS (with 

the help of an Eppendorf reference pipette) to every liter of a solution containing 

80% of hexane (C6HI4), 12% of carbontetrachloride (CC14), and 8% of chloroform 

(CHC13). This coating solution is left inside the cells for about five minutes. Par- 



ticular care is used while pipetting the solution into and out of the cells, so that 

the solution never touches the inner walls of the tubes at the height of the pull-offs. 

This is important because during the pull-off procedure burned coating could fall 

into the cells, contaminating them. The cells are then rinsed three times with chloro- 

form, put in a vacuum oven whose temperature is slowly increased to approximately 

200" C and left to polymerize at this high temperature for about a day. 

The quality of the coating can be tested by pouring DI water in the cell and 

observing that the water does not wet the surface (see Fig. 5-12) and rolls around 

in the cells much like mercury on a Teflon surface. After this test it is necessary to 

dry the manifold again by putting it in the vacuum oven at 200" C for a few hours. 

5.2.2 Cell Filling 

After coating, the manifold is attached to the gas filling station. The access tubes 

are sealed off by carefully melting the glass with an oxygen-propane torch. A sealed 1 

gram, natural abundance Rb ampoule is opened, dropped into the manifold sidearm 

and the top of the sidearm is quickly sealed off with the torch." The manifold is 

placed under vacuum and baked-out12 at 140" C for about a day, until the glass has 

out-gassed most impurities and the vacuum pressure has dropped to about Torr 

and looks stable. 

Cell filling begins with the fairly slow process of chasing Rb from the sidearm 

into the pump bulbs. This is done using a heat-gun to warm the manifold near the 

opened Rb ampoule and observing Rb vaporize and condense on the colder parts of 

the manifold. Particular attention is paid not to overheat the cells with the heat- 

' ' ~ b  oxidizes rapidly and exposure to  air should be minimized. 
12A simple makeshift oven is made by wrapping the cells in aluminum foil, winding heat tape 

on the top and then covering the tape with more aluminum foil. The heat tape should be kept 
away from the sidearm containing the Rb  ampoule to  prevent spreading Rb during the bake-out. 



gun to avoid damaging the coating (we avoid temperatures higher than 140" C). Rb 

chasing ends when the pump bulb contains one or two drops of Rb metal. The glass 

sidearm is then pulled off using the torch to  reduce the manifold volume that would 

waste %e later on during cell filling. 

As shown in Fig. 5-13, we identify three distinct regions when the manifold is 

connected to  the cell filling st ation, each with a well defined volume: the load volume, 

VLoad, where the gases are loaded one at  a time, the volume VTube that comprises 

the glass manifold (excluding the cell to  be filled) as well as other interstitial spaces 

on the cell filling station, and the cell volume Vcell = VM + Vp, which is made up 

by the maser and pump bulb volumes (we neglect for simplicity the volume of the 

transfer tube). VLoad and VTube are usually not known exactly, whereas Vcell, VM, 

and Vp are measured ahead of time, by weighing the water needed to  fill the various 

parts of the cell. For convenience we define r = VM/Vcell, the fractional volume of 

the cell occupied by the maser bulb. 

Before filling the cell it is necessary to  run a calibration procedure, which is 

equivalent t o  measuring VLoad and VTube. This is easily done by loading N2 in VLoad 

with pressure PI, then measuring the equilibrium pressure R, once N2 has been 

allowed to expand in the whole manifold by opening valve 1. Again, leaving valve 

1 open, we measure the slightly smaller equilibrium pressure P3 when the maser 

bulb hams been cooled from ambient temperature, TAmb, to liquid N2 temperature, 

TN2 = 77 K. Equating the number of atoms and molecules in the various volumes, 

we get the following equations: 



'Tube 

turbo pump station - 

gases 
___) 

GAS LOADING SCHEME 

Figure 5-13: Cell filling diagram. The cell manifold is attached to the gas filling 
station using a 112" Ultra-Torr seal. Valve 1 separates the load volume, VLoad, from 
the volume of the manifold, comprising the volume of the cell itself, Vcell, and the 
rest of the volume, Vnbe. 

which yield the volume ratios 

Once the calibration above has been carried out, the manifold and the load region 

are evacuated. 

Our goal is to  fill the cell with gas pressures Pxe, PN2 and PHe at ambient 

temperature. The maser bulb is immersed in liquid N2 for all the duration of the cell 
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filling procedure. 1 2 g ~ e  is loaded first. Since this gas is liquid at TN,, cryopumping 

ensures that all the gas will liquefy in the maser bulb. The desired '2gXe load 

pressure is then simply PxPXe,Load = PXeVCell/VLoad. Quickly after valve 1 is opened 

the pressure gauge will reach a pressure very close to zero, indicating that 12gXe 

has found its way to the cold maser bulb and condensed there. N2 is loaded next, 

there is no risk of N2 condensing in the maser bulb because the pressure inside the 

manifold is below 1 atm. With some algebra we find that the VLoad should be loaded 

with pressure: 

PNZ, Load = 
TNZ Pl 

- PNZ 
r (TAmb - TNZ ) + TNZ P3 

N2 is allowed to expand in the glass manifold, then valve 1 is closed and the load 

volume is evacuated using valve 2. VLOad is then loaded with 3He at a pressure 

Our calculation assumes that initially PHe,Load is greater that the N2 pressure from 

the previous load. If this is the case, when valve 1 is opened 3He flows in the 

glass manifold. Attention must be paid to close valve 1 as soon as the pressure has 

stabilized in order to prevent N2 from diffusing back into the load volume and mixing 

with 3He. If the pressure PHe,Lmd is higher than the pressure in the 3He bottle, one 

can can load 3He in n rounds, each time loading with the following pressure: 

Clearly there is no need to evacuate the load volume between one load and the next. 

This method was used several times with n = 2 or 3, to use 3He bottles with low 



Figure 5-14: A maser cell before (left) and after (right) being mounted on the cell 
holder. A large drop of Rb metal is visible at the top of the pump bulb in the pull-off 
tip. The cell holder is mostly empty to provide better thermal insulation between 
pump and maser region. Two holes at the bottom of the cell holder allow cooling 
of the transfer tube. The silicone RTV that covers the maser bulb helps improve 
the thermal connection with the maser block and is installed using a Teflon mold 
(center ) . 

residual pressures. While making especially high pressure cells it may be necessary 

to cool the whole cell and not just the maser cell. In those cases the formulae above 

are still valid if we choose r = 1. In all circumstances it is important that the final 

pressure inside the (cold) cell is kept below one atmosphere. This ensures proper 

sealing of the melted glass during pull-off. 



5.2.3 Cell Preparation 

As Figure 5-14 shows, after the cell has been pulled off, the liquid Rb is accumulated 

in the pull-off tip (typical volume is approximately 10 mm3), where it provides Rb 

atoms for optical pumping. The choke coils are wound (see Sect. 5.4.4) and the cell 

is installed on the cell holder, which is made out of two small Ultem pieces held 

together with one-part silicone RTV.13 To provide good thermal insulation between 

primp and maser regions, the inside of the cell holders is emptied to leave an air 

gap. Recently cell holders have been machined in such a way that cold air can be 

circulated around the transfer tube, in a small volume of approximately 2 em3. 

The maser bulb is then dipped into a mold full of liquid, two-parts silicone RTV, '~ 

which is left to dry overnight. The mold is machined out of two Teflon blocks and 

its cylindrical hole with 1" diameter is identical to the maser bulb receptacle in the 

pick-up coil (see Figs. 5-7 and 5-14). We found that even though silicone RTV is not 

a good thermal conductor (see Tab. 5. l), it still significantly improves the thermal 

connectlion between the maser cell and the maser block and decreases the maser 

bulb temperature by about 10" C, in typical operating conditions. 

5.3 Optical Pumping System 

High-power broad-band lasers satisfy the needs of most hyper-polarized noble gas 

NMR applications: medium or long term stability of spin-exchange optical pumping 

is rarely required and high gas pressures (severals atmospheres) are often desirable. 

On the other hand, in the 12gXe/3He maser the gas pressures are relatively low and 

the instability of spin-exchange optical pumping directly translates into maser fre- 

13GE Company, RTV162. 
l4  GE Company, RTV11. 



quency inst ability. Hence, it is worth investigating the advantages of using narrow- 

band lasers, which can be more stable and easier to control. As we pointed out in 

Sect. 4.3.1, the main drawback of such lasers (besides the cost) is the relatively low 

laser power, which translates into weaker maser signals more susceptible to ther- 

mal frequency noise. Given the complexity of our system and the uncertainties in 

the quantitative predictions of Rb optical pumping, discussed in Sect. 4.3.1, the 

trade-off between lower laser power and higher stability of narrow-band lasers can 

only be studied experimentally. The design studies presented in Ch. 4 provide some 

guidance, but only a direct comparison of the maser performance with the two types 

of lasers, trying out many different cells, will ultimately decide which laser will be 

used for the next LI test. 

The narrow-band laser currently employed is the Toptica TA 100 shown in Fig. 5- 

15. In the next section we review its characteristics and the methods used to stabilize 

laser power and frequency. Characteristics and stabilization methods for the Coher- 

ent Laser Diode Array (LDA) system used as broad-band optical pumping source 

are described in [68, 341. Below we limit ourselves to a brief description. 

5.3.1 Narrow-Band Laser Characteristics and Stabilization 

The Toptica TA 100 is a laser system in which a tapered amplifier serves as the 

output amplifier for the Toptica Laser Head DL 100, in the following referred to as 

"master oscillator." The master oscillator is a 35 mW, 1 MHz linewidth, external- 

cavity diode laser, whose frequency can be tuned by adjusting a grating in a "Lit- 

trow" setup (i.e., the first diffraction order of the grating is reflected back into the 

laser diode) with the help of a piezo actuator. The output beam of the master 

oscillator provides the seed for the tapered amplifier, whose output is a coherent 
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beam of approximately 500 mW.15 In Fig. 5-15 we show our setup. A test beam 

from the master oscillator emerges from the back of the laser (lower left corner) 

and is directed toward a photodiode after passing through a vacuum Rb cell kept 

at approximately 80" C in a small oven. The transmission profile in Fig. 5-16 shows 

the characteristic spectrum of the Rb Dl line. Laser frequency locking is usually 

realized by modulating the grating angle in the proximity of one of the main absorp- 

tion lines and using phase sensitive detection of the transmitted light at the piezo 

modulation frequency. The signal is proportional to the distance from the center 

of the absorption and is used, with the help of a homemade PID controller, to lock 

the laser frequency by properly adjusting the grating angle. After amplification, the 

laser light is circularly polarized by a X/4 plate and directed towards the maser cell 

for optical pumping. 

In the presence of high noble gas pressures, the absorption line of Rb is both 

broadened and shifted. In Fig. 5-16 we show the transmission profile (dashed) for 

a cell containing 700 Torr of 12gXe. The vacuum and pressure broadened profiles 

overlap,, but clearly it is optimal to lock the laser to the Rb line which is closest 

to the center of the pressure broadened profile. In our maser cells, 3He is usually 

the gas with the highest density. The shift for 3He has the opposite sign as that 

for 12gXe. At 114" C, the pressure shift amounts to approximately 6.2 GHz/amg 

and pressure broadening is approximately 18.7 GHz/amg [80]. Hence, locking to 

the Rb vacuum dips is feasible for 3He densities below 2 amg. Figure 5-16 also 

shows a linear decrease in laser intensity as the laser frequency is increased. This 

feature is due to the "feed forward application" of the Toptica laser, which adjusts 

15Unfortunately, in the first year of operation we have twice noticed a substantial reduction 
of laser power over time. After a few months of intensive use, the tapered amplifier had to be 
replaced. Degradation of the new amplifier appears to be occurring again a t  the time of this 
writing. Ultimately, the Toptica TA 100 may prove to  be too delicate to  perform the next LI tests, 
which should last for several months. 



Figure 5-15: The new narrow-band Toptica laser (- 10 MHz width) is tuned to the 
Rb Dl line (- 795 nm) and is employed for Rb optical pumping. A small portion 
of the light from the laser diode is transmitted through a semi-reflecting mirror and 
reaches a vacuum cell containing Rb vapor (lower left in the picture). Absorption 
spectroscopy of this light and small adjustments of the laser's grating allow for 
precise wavelength stabilization. The bulk of the light from the laser diode provides 
the seed for a tapered amplifier emitting approximately 500 mW of light, part of 
which is monitored (lower right in the picture) and used to stabilize the laser total 
power by adjusting the amplifier current. The laser beam is expanded, circularly 
polarized and directed towards the pump bulb. 



GHz 

Figure 5-16: Transmission spectrum of master oscillator light through a vacuum Rb 
Cell compared to the transmission spectrum of the amplified light detected after a 
cell containing also 700 Torr of 12gXe. 12gXe shifts and broadens the Rb absorption 
profile. The laser "feed forward" feature is responsible for the linear decrease of 
light intensity with laser frequency (see text). 

the master oscillator current proportionately to the amplitude of the piezo scan in 

order to suppress mode hops. The mode hop free range is usually limited to 20 GHz 

as shown in the figure. 

The laser power is locked by adjusting the tapered amplifier current and sta- 

bilizing the intensity of a few mW of light picked up from the main output beam 

with the help of a semi-reflecting mirror (see Fig. 5-15 on the right-hand side of the 

laser). In order to make the laser intensity lock independent of slow photodiode 

current drifts, we use a chopper to obtain an AC signal at  approximately 80 Hz and 

then we proceed with phase sensitive detection of the photodiode current. 



Both photodiodes used for the laser stabilization are temperature stabilized using 

homemade temperature controllers. 

5.3.2 Broad-Band Laser (LDA) Characteristics and Stabi- 

lization 

The Coherent16 Fiber Array Integrated Package (FAP-I) is a laser diode array emit- 

ting 30 W of unpolarized light with spectral width of approximately 2 nm and 

tunable to the Rb Dl line (= 794.7 nm). The line-shape and total power of the 

LDA are controlled by adjusting the injected current and the operating tempera- 

ture of the diode bar. The light from the diode array is coupled to an optical fiber 

bundle and then passed through a collimator producing a spot size roughly equal to 

the diameter of the pump bulb. The beam is linearly polarized with a beam-splitter 

cube and then circularly polarized with a ~eadowlark'? liquid crystal variable re- 

tarder (LCVR) acting as X/4 plate. The amplitude of a square voltage fed to the 

LCVR dynamically controls the angle of rotation of its axis18 and thus regulates the 

number of o+ polarized photons in the beam. 

Figure 5-17 presents a schematic of the two feedback loops used for the LDA 

stabilization. The stabilization technique is described in detail elsewhere [68, 341. 

Here, we provide only a brief summary. 

A small portion of the laser beam is picked off using a microscope slide, passed 

through a diffuser, a chopper, and then sent to a photo-diode. The amplitude of the 

voltage across the photo-diode is detected at the chopper frequency using a lock-in 

amplifier whose signal is then sent to a PID controller regulating the LDA's diode 

16Coherent, Inc., 5100 Patrick Henry Drive, Santa Clara, California 95054. 
17Meadowlark Optics, Inc,, 5964 Iris Parkway, F'rederick, CO 80530. 
 he voltage actually controls the relative optical length between fast and slow axis of the liquid 

crystal. 
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Figure 5-17: Schematic of the two feedback loops used for the LDA stabilization of 
laser total power and Rb magnetization in the pump bulb [68, 341. 

bar current. This first feedback loop controls the laser total power to a few parts in 

lo4 as we will show in Sect. 6.2. 

A second feedback loop is used to stabilize the Rb magnetization since the fre- 

quency of the broad-band laser cannot be controlled directly, as it was done with the 

Toptica laser. The Rb polarization in the pump bulb is slowly modulated (- 400 Hz) 

using a weak Zeeman drive applied to the pump bulb region with a set of coils in- 

stalled on the pump block (see Fig. 5-6). The polarization modulation induces a 

modulation on the intensity of the light transmitted through the pump bulb, which is 

then measured with a photodiode. The amplitude of the voltage modulation across 

the photodiode, VMRb, is detected using a lock-in amplifier. Since VMR, oc pib [Rb], 

near saturation (i.e., PRb x l), VMRh is roughly proportional to the Rb magnetiza- 

tion, PRh [Rb] . Control of the Rb magnetization in achieved by adjusting the voltage 

amplitude of the LCVR square voltage, which regulates the polarization of the light 
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so that Vhlna is held constant (to a few parts per thousand, see Sect. 6.2). 

5.4 Magnetic Field Environment 

In this section we describe the various components of the experiment dedicated to 

controlling the magnetic field environment, which is clearly vital since our Zeeman 

masers depend to first order on the magnetic field. We begin by describing the 

magnetic shields used to isolate the atoms from ambient magnetic noise. We then 

review the design of the main solenoid and the set of shim coils used to render 

the DC magnetic field more homogeneous. Next we describe the magnetic field 

stabilization scheme depicted schematically in Fig. I- 1. 

In addition, the oscillating magnetic field produced by the pick up coil during 

maser action can extend sufficiently far to stimulate emission in the transfer tube 

and in the pump bulb. There are a number of reasons why this is undesirable, as 

we will see in Sect. 6.7. To prevent masing outside of the maser bulb we currently 

use two different strategies: (i) we install choke coils around the transfer tube to 

dephase and screen out the pick-up field in that region (Sect. 5.4.4); (ii) we install 

a small longitudinal coil around the pump bulb to detune the atoms in the pump 

bulb away from resonance (Sect. 5.4.5). 

5.4.1 Magnetic Shielding 

The main solenoid is placed inside three concentric, cylindrical magnetic shields, as 

Fig. 5-18 shows. The innermost shield provides a protected return path for the field 

produced by the solenoid. All three shields provide isolation from ambient magnetic 

field noise, which in our laboratory has known drifts on the order of 200 pG/h and 

shows occasional sudden changes as big as 500 pG. We also measured an upper 
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MAIN SOLENOID 

Material: Co-Netic AA, 0.062" thick (shields), 
Al and Cu (main solenoid) 

Figure 5-18: Main solenoid and three nested ymetal  magnetic shields used in the 
12g~e /3He  maser. The shields are oriented east-west in the laboratory when per- 
forming an LI test. Removable end-caps on one side of the shields allow installation 
of the maser oven. The ends of each shield feature a 5" diameter access hole to pro- 
vide optical, electrical, and blown air access to maser oven and gradient cylinder. 
All dimensions are in inches. 

bound for the magnetic gradient noise in our laboratory: 1 9 ~ ~  < 4 / a  pG/cm. 

The effectiveness of the transverse shielding was measured in 1999 by applying an 

external magnetic field and measuring the shift with a magnetometer located inside 

the shields [34]. The transverse shielding factor, defined as the ratio of the magnetic 

field induced by the coil without and with the shields, was found to be approximately 

20?000. In a similar way, we recently measured the longitudinal screening factorlg to 

''We used a single, 2 m diameter, circular coil. We located the coil at  one end of the cylin- 
drical p-metal shields, thus applying an inhomogeneous magnetic field of a few Gauss along the 
2 axis and we measured the field inside the shields. The longitudinal shielding ratio quoted is 
the ratio between the expected field a t  the maser bulb site and the field intensity measured there 
with a magnetometer. We note however that  the notion of longitudinal and transverse shielding 



Main Solenoid Parameter Value 
Diameter 9.375" 
Length 44.5" 

Wall thickness 0.060" 
Turns density 50Jinch 
DC resistance 182.2 St 
Field at center 24.3 G/A 

Table 5.2: Characteristics of the solenoid used in the 12'XeJ3He experiment [34]. 

be approximately 280. In the longitudinal direction the screening factor is expected 

to be worse, since the cylindrical shields have large access holes at the two ends. 

The residual magnetization of the shields and solenoid's aluminum support are 

typically responsible for longitudinal magnetic field gradients of approximately 3 

pG/cm, which are about 10 times smaller than the longitudinal inhomogeneity of 

the electromagnet's field in the central region. Linear gradients can be corrected 

for with the help of shim coils, but the same is not true for more irregular residual 

fields. To make sure that the residual magnetization is as homogeneous as possible, 

we employ a degaussing system which consists of a 60 wire cable, 5 m long, installed 

on the gradient cylinder (see Fig. 1-1) through which a bipolar power supply can 

drive a current of approximately 8 A per wire, or 480 A total. The sign and intensity 

of the current can be varied to saturate the shields (at least the innermost ones) and 

progressively drive the shields' residual magnetization through a series of hysteresis 

cycles of decreasing amplitude, until it is reduced adiabatically to zero. The period 

of one hysteresis cycle is usually chosen to be on the order of few seconds to have 

large skin-depth so that the shield suffers minimal eddy current screening. The 

amplitude of the oscillations' envelope is brought to zero in about 300 s. So far, this 

degaussing procedure has produced only minor improvements on the overall maser 

is somewhat misleading because the small residual fields induced inside the shield by external, 
inhomogeneous magnetic fields, in general, are not collinear with them. 



Figure 5-19: Calculated profile of the magnetic field produced by the main solenoid 
along its symmetry axis, 2. An homogeneous field of approximately 1.5 G is obtained 
with a solenoid current of approximately 62.2 mA. 

performance. Probably over the size of the maser cell (z 2 cm diameter) the fields 

produced by the residual magnetization are fairly linear and can be shimmed out 

with proper tuning of the gradient coils. 

5.4.2 Main Solenoid and Gradient Coils 

The main solenoid was carefully wound by David Bear and Rick Stoner in 1999 from 

25 AWG copper wire2' on a hollow aluminum cylinder [34]. Although a two layer 

configuration was tried out, a single layer winding was found to produce the best field 

homogeneity. The completed layer was painted with marine spar varnish to prevent 

small excursions of the windings due to vibrations and mechanical stress. Table 5.2 

summarizes salient properties of the main solenoid. Based on these specifications 

the magnetic field can be easily calculated. Figure 5-19 shows the profile of the main 

2025 HAPT polyester-amide wire 



Figure 5-20: Design of the coils installed on the gradient cylinder (see Fig. 5-23). 
The best linearity in the central region is achieved by choosing d l  = 0.38 a and 
dZ = 2.55 a for the saddle coil and d = &/2 a for the Maxwell pair [81]. 

magnetic field along the i axis, Bo(z),  for a typical applied current of approximately 

62.2 mA. 

In the previous maser, the gradient coils were inlaid on a 8" long cylindrical 

shroud containing the whole maser. That layout had the disadvantage that the 

gradients coils were fairly small and not very homogeneous. Moreover, reproducing 

a particular shimming configuration to compare the properties of different cells was 

difficult because the shroud had to be entirely removed from the solenoid when a 

maser cell was replaced. 

The new set of gradient coils is now wound on a gradient cylinder designed to 

remain permanently located inside the main solenoid. This ensures that a certain 
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shimming configuration can be preserved. The larger dimensions of the cylinder 

also accommodates la,rger gradient coils producing magnetic field gradients that 

are linear over many centimeters. Figure 5-23 shows the machine drawing of the 

gradient cylinder. 

In the special grooves cut into the outer surface of the cylinder we wound three 

gradient coils. For all coils we used a single winding. Two saddle coils like that 

shown in Fig. 5-20 and rotated by 90" with respect to  each other, produce the 

linear dB,/dy and dBZ/dx gradients shown in Fig. 5-21. A Maxwell pair, like that 

depicted in Fig. 5-20, produces the linear dB,/dt gradient shown in Fig. 5-22. The 

dimensions of the gradient coils were chosen to give the best linearity [81]. The coil 

radius (I ,  = 11.65 cm determines dl = 0.38 a and d2 = 2.55 a for the saddle coils and 

d = &/2 a for the Maxwell pair. For better stability, after winding the coils the 

grooves were filled with non-corrosive, one-part silicone RTV. 



Calculated Gradient Coil Profiles 

Figure 5-21: Calculated profile of the longitudinal magnetic field gradient along the y 
direction produced by flowing 1 A through a saddle coil like that shown in Fig. 5-20. 
The same gradient is obtained in the 2 direction by using another saddle coil rotated 
by ~ / 2 .  

Figure 5-22: Calculated profile of the longitudinal magnetic field gradient along the i 
direction produced by flowing 1 A through a Maxwell pair (see Fig. 5-20). The best 
linearity in the central region is achieved by choosing d = &/2 a [81]. 





5.4.3 Magnetic Field Stabilization 

The solenoid and gradient trim coils are driven by a four-channel, homemade cur- 

rent controller box. The output current on each channel is stable to approximately 

10 ppm when free-running. In order to  further stabilize the magnetic field envi- 

ronment and provide real-time comagnetometry, the solenoid field is controlled by 

phaselocking the 12'Xe maser to  an ultra-stable, LI violation insensitive H maser, 

as shown in Fig. 1-1. Section 5.5 describes in detail the signal detection system in 

the 12'XeJ3He maser. Here we focus on the operation of the phase-lock loop. 

The maser signals are measured across a capacitance and multiplied 5,000 times 

using a low noise preamplifier. The highest SNR 12'Xe maser signal is sent to  a 

lock-in amplifier referenced to the H maser. The lock-in serves as a low-pass filter as 

well as a phase-sensitive detector. The output signal from the lock-in is processed 

by a PID circuit controlling the solenoid current. The loop's time constants are 

optimized by minimizing the phase noise of the locked species in the short term 

(- 200 s). 

A series of experiments carried out with the previous apparatus, comparing 

the long term stability of the l2'XeI3He maser with many different magnetic field 

lock settings, failed to demonstrate a direct connection between the noisiness of 

the magnetic field lock and the frequency noise that limits the masers' medium 

term stability. Although this may seem puzzling a t  first, if we assume perfect co- 

magnetometry, the noisiness of magnetic field corrections only induces phase noise in 

the free-running species, not frequency noise. If this were not the case, the frequency 

noise would also manifest itself as a random walk of the phase of the locked species, 

which certainly is not present since that species is phase locked. 

The optimization of the magnetic field lock mentioned above, if not fundamen- 



tal, remains nevertheless useful. Minimizing the phase noise of both masers makes 

the onset of other more damaging types of noise obvious for shorter measurement 

intervals. The optimization is particularly important when using the LDA, because 

the Rb magnetization lock scheme requires a stable magnetic field. 

5.4.4 Choke Coils 

A simple technique was introduced by Rick Stoner and David Bear to enhance the 

spatial uniformity of the masing ensembles, thereby improving the noble gas coher- 

ence times (T2) and the effectiveness of the 12'Xe comagnetometer. The transfer 

tube of each 12gXe/3He cell is wrapped with a series of five adjacent "choke coils," 

each consisting of six turns of 22 AWG copper magnet wire wound in a single layer, 

as shown in Fig. 5-14. 

Reactive back-currents (due to Lenz's Law) are induced in the choke coils by the 

time varying magnetic fields produced by the (co-axial) pick-up coil and also by the 

precessing noble gas magnetizations. The magnetic field produced by these back- 

currents reduces and dephases both the net transverse field in the transfer tube and 

the contribution of noble gas atoms in the transfer tube to the mean magnetization 

signal sensed by the detection coil. The segmented design of the choke coils allows 

the reactive magnetic fields to  adopt a profiled spatial dependence, thus providing 

more effective flux exclusion. 

5.4.5 Pump Bulb Solenoid 

A 60 turn solenoid is wound on the cylindrical pump bulb (see Fig. 5-14) with the 

purpose of applying a small longitudinal field, 6B, = 150pG, to the pump bulb 

region a.s shown in Fig. 4-14. This field does not need to be homogeneous. Its 
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purpose is simply to shift the 3He Zeeman frequency in the pump bulb away from 

the maser frequency, so that the pick-up coil peripheral field reaching the pump bulb 

does not excite w e  transition there. This solenoid was added when we realized that 

peripheral field effects can seriously compromise co-magnetometry as we will see in 

Sect. 6.7 and in particular can convert optical pumping light instability into maser 

frequency instability, as argued in Sect. 6.7.2. 

5.5 Signal Detection System 

Figure 5-24 shows the layout and the schematic of the l2'XeI3He maser double- 

resonant circuit. Time-varying magnetic fields produced by precessing noble gas 

magnetizations are detected by an inductive pick-up coil (L2, R2) surrounding the 

maser bulb.21 When running the maser, switch S2 is shorted and Sl is switched 

to  the lower position. Positive feedback to both noble gas species is provided via 

a dual-resonance tank circuit, formed by an external resonator coil (L1, R1) and 

ultra-stable tuning capacitors (C1, C2, C2+). The maser signals are measured as 

sinusoidally varying volt ages across the capacitor C2 + C2+. 

When doing free induction decay (FID) measurements (see Sect. 6.5), the system 

is operated with switch Sl in the upper position. In this configuration the resonator 

is disengaged and C3 is sufficiently small that the single resonant frequency is well 

above the operating frequencies of either maser. The so called "pulse box" is plugged 

into S2 and transverse Rabi pulses can be applied to  the atoms by inductively driving 

the main circuit with a secondary circuit connected to  a programmable function 

generator. The original design of this circuit is due to Rick Stoner and is discussed 

21~ormerly, two separate resonant circuits were used, one for each species. Even if those circuits 
had better quality factors, the single pick-up coil configuration with a double-resonant circuit 
turned out to be preferable. A single pick-up coil guarantees the same magnetic field distribution for 
both noble gas species and as we saw in Sect. 4.4 this is crucial for co-magnetometer effectiveness. 
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Figure 5-24: Layout (top) and equivalent circuit (bottom) of the double-resonant 
circuit. The values of the circuit components reflect our latest in situ tuning. 



further in [37]. The following sections describe in detail the design and operation of 

the components of the 12gXe/3He maser signal detection system. 

5.5.1 Pick-up and Resonator Coils 

Design of the 12gXe/3He maser resonant circuit begins with the pick-up coil, whose 

dimensions are dictated by the cell size. The wire gauge must be determined bal- 

ancing competing effects. Smaller gauge wire wound on a form of fixed size results 

in a larger number of turns and larger inductance. Unfortunately, more turns and 

smaller wire diameter yield also larger resistance, which in turn decreases the Q 

of any resonant circuit making use of that inductance and induces larger Johnson 

noise. Moreover, smaller wire gauge has a larger fractional content of AC resistance. 

This is important because the AC resistance appears t o  be more temperature sensi- 

tive than the DC resistance, potentially affecting the 12gXe /3~e  maser's long-term 

frequency stability [34]. 

Based of these stability considerations, we wound our new pick-up coil (see 

Figs. 5-7 and 5-3) with 1,600 turns of 28 AWG insulated magnet wire,22 a wire 

gauge significantly larger than the 32 AWG employed in the previous experiment. 

This enabled us t o  decrease the coil resistance by a factor of 2.9, while reducing the 

inductance only by a factor 1.6. Because of the larger wire diameter, the tempera- 

ture sensitive AC resistance was also greatly reduced. 

We employ the same resonator coil that was previously in use:23 a multilayer 

coil wound with 28 AWG insulated magnet wire on a Nylatron cylinder with 2.4" 

diameter and 5.4" length [34]. In the next section we explain in some detail how 

the pick-up and resonator coils are characterized. 

22Single layer Polyimide-ML insulation (thermal class 240" C) available from MWS Wire Indus- 
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Description Parameter Pick-up coil External resonator Units 
Wire gauge 28 25 AWG 
Inductance L 92.1 96.1 mH 

I>C resistance RDC 48.6 25.0 O 
AC resistance coeff. ~ A C  3.3 x lo-7 7.9 x lo-7 O/Hz2 
Stray capacitance c c o i ~  0.1 1 .O nF 

Resistance at  1.7 kHz R 49.6 27.3 O 
Resistance at 4.7 kHz R 55.9 42.5 O 

Table 5.3: Room-temperature characteristics of the pick-up and external resonator 
coils presently used in the l2'Xel3He maser. 

Coil Characterization 

Here we describe the procedure used to measure the inductance and AC resistance 

of our coils. Consider a simple RLC series circuit, where L is the inductance of 

the coil, R is its resistance, and C = CChl + Ci has two components: Cmil, the 

stray capacitance of the coil and Ci7 a low-loss capacitor whose value is known with 

good precision. An AC voltage is induced across L by bringing in its proximity a 

coil driven by a variable frequency function generator. By measuring with a lock-in 

amplifier the voltage V, across a small resistor r << R,  it is easy to find the resonant 

frequency w = (LC - R ~ C ~ / ~ ) - ' / ~  = l/m at which the detected voltage reaches 

the maximum, K~"". The approximation reflects the fact that in our coils the 

impedance of L is large and the impedance of C is usually small. L and Ccoil are 

found by measuring wi for several capacitor values Ci, and performing a linear fit of 

the function 1/w: = CcdlL + LCi. 

In order to  obtain the frequency-dependent AC resistance, it is necessary to 

measure the width at  half power Awi of the resonant curve (i.e., the frequency 

distance between the points where V,  = vTMaX/a) for each capacitor value Ci. For 

tries. 
2%ote that for realizing a double-resonant circuit at  least two inductances are needed. 



a generic series R L C  circuit it is well known that Q = w/Aw = wL/R, hence we 

have that Ri = AwiL. The right hand side of this equation is known and yields 

the total resistance of the coil at  frequency wi. In the relevant frequency regime for 

our masers, when wi is between 0 and 27i- 10 kHz, in addition to the DC resistance 

the coil resistances exhibit a quadratic behaviour: Ri = RDc + kACu2. The fit 

parameters for the two coils are summarized in Tab. 5.3. 

5.5.2 Resonant Circuit Tuning 

In this sect ion we outline the procedure for the tuning of the double-resonant circuit, 

which is done in two stages: an initial coarse tuning in which we assume that C2+ = 0 

and a fine tuning procedure in which the appropriate value of C2+ is found. 

We assume that both inductances have been built a t  this point. L1, R1, L2, 

R2, and Ccoil are henceforth treated as constants24 and tuning basically consists 

in picking the capacitances C1 and C2. These two degrees of freedom are used 

to  select the operating frequency of the 129Xe maser, w g ,  and to make sure that 

wHe/wXe = YHe/YXe = ~ x x  2.75408. Both maser frequencies should be chosen 

away from the noisy harmonics of 60 Hz. 

The part of the double-resonant circuit which is located in a temperature stabi- 

lized environment (see dashed box at  the lower left hand side in Fig. 5-24) has the 

following equivalent impedance: 

A generalization of the frequency-dependent quality factor p,(w) and dephasing a ( w )  

24For simplicity we consider only the stray capacitance of the resonator coil, Ccoil, and we neglect 
the stray capacitance of the resonator coil which is ten times smaller. 



Figure 5-25: Examples of calculated frequency-dependent quality factor pc(w) and 
dephasing a(w) for the double-resonant circuit. These functions replace and gener- 
alize to the double-resonant case the definitions introduced in Sect .2.3.1 and fully 
characterize the feed-back of our tank circuit. 

introduced in Eq. (2.26) is easily obtained by replacing Zc = l / iwC with ZRes: 

The two maxima of pc(w) are the generalized quality factors Qxe and QHe for the two 

species and they are located at the resonant frequencies wx, and WH, (see Fig. 5-25). 

Since the maxima positions depend only weakly on the coil resistances, approximate, 

analytic expressions for the resonant frequencies can be found by setting R1 = R2 = 
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where we have used the following definitions: 

Equations (5.10) are then used to find the desired capacitor values as a function 

of the chosen operating 12'Xe frequency and the frequencies' ratio: hence Ci = 

Ci (WE, y H X ) ,  with i = 1,2 .  Note that there is some flexibility for the choice of 

w z ,  since the magnetic field can be adjusted so that Bo = U E ' , ~ ~ , ,  but there is 

no tunability of the frequencies' ratio, which is given by nature. 

Once the optimal values of C1 and C2 are determined, the capacitors are soldered 

to  the main circuit board, which is then screwed on the top of the resonator coil. The 

resonator coil and main circuit board are then installed in a temperature stabilized 

container located inside a three layer p-metal shield which prevents the resonator 

coil from picking up ambient magnetic field. The maser oven is put inside the 

shields in the position and at  the temperature at  which maser operation is expected. 

The signals from the resonant circuit and the pick-up coil reach the junction box 

through homemade, rigid triax conductors, as Fig. 5-26 shows. Installation of the 

pick-up coils in their final shielding environment is necessary because the shields 

modify significantly the free space inductance of the coil measured in the last section. 

Similarly, changes in pick-up coil temperature affect its resistance and probably also 

its geometry. 

In order to  fine tune the resonator when all components are in situ the capacitor 

C2 installed on the main circuit board is purposefully chosen approximately 2 nF 

below its theoretical optimal value. C2 can be subsequently increased by soldering 

one or more capacitors C2+ in parallel on the junction box circuit. However, since 



Figure 5-26: Top view of the junction box with lid temporarily removed. Pick-up 
coil and external resonant circuit are connected to each other on the board carrying 
the capacitors C2+ and C3. The signals reach the box through long, rigid, tirax 
cables. The maser signal is amplified by a low-noise preamplifier, visible on the 
right-hand side. 

the box is not ovenized, C2+ should be as small as possible. The next section explains 

how we select the right value for C2+. 

Fine-Tuning 

Fine-tuning of the dual resonant circuit is an iterative process which consists of 

measuring the two resonant frequencies, selecting a capacitor value C2+, then mea- 

suring again the resonant frequencies, modifying further Cz+, and so on. Thanks to 

the careful characterization of the coils outlined in Sect. 5.5.1, fine-tuning requires 
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typically only one or two iterative steps. 

To measure the resonant frequencies the plug that shorts S2 (see Fig. 5-24) is 

removed and the short is replaced with a small resistor, r -- 1 0. The voltage across 

this resistor, VT, is monitored with a lock-in amplifier while the resonant circuit is 

inductively excited with the help of a small coil permanently installed in proximity 

of the pick-up coil, driven by a function generator with constant voltage VDriue, but 

varying frequency, w. Since the oscillating voltage induced in the resonant circuit 

is proportional to wVDriUe, K(w) = rI  cc rJw/(R2 + r + iwL2 + ZRes)l. For r << R2 

this expression is exactly proportional to pc(w) in Eq. (5.9). Hence, this procedure 

enables us to measure p , ( ~ ) , ~ ~  apart from an overall constant which can be easily 

found.26 A suboptimal C2 leads to an observed ratio W~:" /WZ,~~  > YHX. A simple 

way to find the optimal value of C2+ is to develop numerically the ratio of the 

resonant frequencies given in Eq. (5.10) to second order 

and then solve the quadratic equation 

for C 2 +  After soldering a capacitor with this value on the junction box circuit 

board, the ratio of the resonant frequencies is measured again and Eq. (5.14) is 

employed once more to find a further correction. This iterative process stops when 

the uncertainty on W~:/W;:~ is on the same order of magnitude of the difference 

2 5 ~ o t e  that p,(w) cannot be directly measured, since measuring the voltage across the pick-up 
coil does not simply give the voltage across the inductance L2. It rather gives the voltage across 
L2, R2 and the induced drive voltage, all connected in series. 

2 6 ~ h e  asymptotic value of V,(w) for high frequencies corresponds to  p, = 1. 



between this ratio and ~m Typically with one or two iterations we achieve the 

desired precision of a few parts in a thousand. 

5.5.3 Cabling and Grounding 

The l 2 " x e l 3 ~ e  maser cabling and grounding schemes follow standard principles 

discussed in the literature [82]. Electronic instruments used in the 12gXe /3~e  maser 

experiment are powered by a 110 VAC Ferrups Uninterruptable Power Supply (UPS) 

to  whose ground the equipment racks are also connected. All maser signals are 

measured differentially and are carried by homemade rigid triax consisting of a 

low capacitance, semi-rigid coaxial cable, housed inside 518" inner diameter hollow 

copper tubing, which provides electrical shielding. Teflon tubing is used to  insulate 

the coaxial cable from the copper tubing. 

The signal from the the maser pick-up coil reaches a homemade aluminum junc- 

tion box located just outside of the l2'XeI3He maser's magnetic shields. The junc- 

tion box (shown in Figure 5-26) houses the tuning capacitors, C2+ and C3. The A 

and B differential inputs on a low-noise voltage preamplifier27 mate directly to BNC 

bulkhead fittings on the junction box, while the cables from the external resonator 

and pick-up coil are attached to the junction box via standard bulkhead SMA fit- 

tings. The magnetic shields housing the 12gXe/3He maser oven and solenoid are 

connected to signal ground, as are the junction box case and the shielding on all 

signal-carrying cables including the copper tubing, and the resonator shields. 

haco 1201 Low Noise Voltage Preamplifier. 
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5.5.4 Signal Processing and Data Storage 

The detected maser signals are read as sinusoidally varying voltages across the ca- 

pacitor C2 + C2+. Typical raw signal levels are 2-10 pV. The signals are buffered 

and pre-processed by the low-noise voltage preamplifier. The amplifier is typically 

set with a wide frequency passband (300 Hz - 10 kHz) and a gain of 5,000. 

The amplified signals are sent to three separate SRS digital lock-in amplifiers. 

An SRS-830 lock-in serves as a prefilter and phase-sensitive detector for the magnetic 

field phase-lock loop (Sect. 5.4.3). Two SRS-850 lock-ins monitor and record the 

phase and amplitude of the 12gXe and 3He masers. The data are typically sampled 

at  112 Hz, as triggered by an ultra-stable signal derived from a reference hydrogen 

maser. The SRS-850 digital low-pass filters are set with bandwidth equal to 78 mHz 

and 24 dB/octave roll-off. All timebase and reference signals used in the 1 2 g X e / 3 ~ e  

maser experiment are derived from the same hydrogen maser clock, thus eliminat- 

ing concerns about unstable phase and frequency differences between the reference 

oscillators. Finally, data stored in the lock-in buffers are continuously downloaded 

via a GPIB interface to a computer for analysis and archiving. 



Chapter 6 

Current System Performance 

This final chapter provides an overview of the system's current status. We report 

here the operational details of the temperature control system and the laser stabi- 

lization schemes, and we assess their performance. We describe the methods used 

for measuring the primary parameters of the 12gXe/3He maser, such as polarization 

lifetimes, decoherence times, and radiation damping times, and we compare our 

observa'tions with the predictions of our modified Bloch theory. We then introduce 

a new topic: a study of the effects of peripheral pick-up coil fields on the maser 

frequency. We also show preliminary experimental tests on co-magnetometry. Fi- 

nally, we present an assessment of maser frequency stability and the maser's current 

sensitivity to Lorentz invariance violation. 

6.1 Performance of Temperature Control System 

We previously discussed the importance of temperature control in our experiment 

(Sect. 4.2) and the design of the temperature locking schemes of the most delicate 

components: the pump and maser bulbs (Sect. 5.1.1). In this section we report on 
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the details of the temperature locks and the temperature stability achieved to date. 

Table 6.1 shows the range of operational temperatures for each lock and typical 

root mean squares (RMS) of the locked signals. Maser and pump bulbs are tem- 

perature stabilized using indirect heating and the double-lock depicted in Fig. 5-9. 

Typical settings for the lock-in amplifiers and PID controllers used for the temper- 

ature locks are given in Tab. 6.2 and Tab. 6.3, respectively. 

Since long-term stability is crucial in our experiment, we have extensively studied 

the temperature stability of our locks and of the environment. Figure 6-1 shows 

the power spectrum (introduced in Sect. 2.4) of the ambient temperature in our 

laboratory for ten consecutive days. The air-conditioning cycle is responsible for 

the most prominent peak corresponding to a period of approximately 500 s. l/f 

noise is also present and is responsible for the long term instability shown in Fig. 6- 

2. The typical ambient temperature stability of approximately O . l o  C in a day is 

achieved by using an air-conditioning apparatus dedicated to the l2'XeI3He maser 

room and scrupulously making use of a double-door air-lock for accessing the room. 

The low temperature coefficient of the resistors used in the bridges (see Fig. 5-8) 

should make the measurements fairly insensitive to ambient temperature fluctua- 

tions and drifts. To assess the bridges' stability we temporarily replaced the RTDs 

with temperature stable resistors of the same kind used in the bridges and we mon- 

itored their resistance for ten days. Figure 6-3 shows the power spectrum of the 

measured resistance for one of the bridges, given in terms of the equivalent temper- 

ature corresponding to the measured resistance. The power spectrum is very flat 

and the 500 s period oscillations of the ambient temperature do not appear to affect 

the measurement. Figure 6-4 shows that the bridges' intrinsic stability is adequate 

to measure relative temperature changes of approximately 1 mK in a day, which is 



Description Temperature Range (' C) Typical RMS (mK) 
Maser Air 36-44 18 

Maser Block 43-49 
Pump Air 135-180 

Pump Block 115-140 
Resonator Air 30-32 

Table 6.1: Typical range of operational temperatures for various components and 
root mean squares (RMS) of the locked temperatures. The averaging time for each 
data point is approximately 4 s. 

Description FS (mV) TC (s) v,f (Hz) Airflow (SLM) 
Maser Air 20 1 509 60 

Maser Block 10 I 449 - 

Pump Air 10 0.3 33 1 80 
Pump Block 1 1 389 - 

Resonat or Air 20 1 569 40 

Table 6.2: Settings of the lock-in amplifiers driving and sensing the bridge circuits 
depicted in Fig. 5-8 and used for temperature control of maser cell and resonator. All 
filters slopes are set to 24 dB/Oct. We report full scale values (FS), time constants 
(TC), the prime numbers chosen as reference frequencies (v4) and the airflow rate 
used for each lock in standard liters per minute (SLM). 

Description Gain Tint (s) Tois (s) THF (s) Rout (ko)  
Maser Air 1 100 30 0.03 0 

Maser Block 3 300 0 0 1 
Pump Air 0.3 22 10.01 0.03 0.062 

Pump Block 1 300 0 0 I 
Resonat or 1 220 100 0 0.062 

Table 6.3: Settings of the PID controllers used for temperature control of maser cell 
and resonator. THF is the high frequency cutoff and Rout is the output resistance 
of the voltage controller. 



Measured Ambient Temperature 

Frequency 

Figure 6-1: Power spectrum of the ambient temperature measured in our laboratory 
for ten consecutive days. The noise corresponding to the 500 s air-conditioning cycle 
makes up approximately 40% of the temperature's noise. The first few harmonics of 
this signal are visible. l/ f noise is also present and is responsible for the long term 
instability illustrated in Fig. 6-2. 

Measurement interval 

Figure 6-2: Allan deviation of the ambient temperature for a data set 10 days long. 



our sensitivity goal. ' 
Finally, in order to assess the temperature stability of the gas inside the maser 

and pump bulb we prepared a mock cell containing an RTD in each bulb. The 

temperature stability of these free-running thermometers is shown in Figs. 6-5 and 6- 

6. The pump bulb stability is slightly worse than the maser bulb stability, proba,bly 

because the pump bulb is kept at  higher temperature (114" C instead of 50" C for 

the ma,ser bulb). The overall temperature stability is better then 1 mK in a day. 

These measurements do not take into account the heat load of the laser light used 

for optical pumping. Unstable laser power will result in unstable gas temperatures. 

This is of particular concern when we make use of the broad-band laser source, 

whose power (=  10 W) provides significant heating. In the next section we deal 

with the stabilization of the total laser power, which should help stabilize the heat 

deposited on the pump bulb. Presently we believe that heating by the laser is the 

main source of cell temperature instability. 

6.2 Performance of Optical Pumping System 

In Sect. 5.3 we discussed the characteristics and stabilization schemes used for the 

Toptica TA 100 narrow-band laser and for the broad-band Coherent Laser Diode 

Array (LDA). In Tab. 6.4 we report the typical operating range of each parameter 

and the root mean squares of the locked signals. Tables 6.5 and 6.6 list the typical 

settings of lock-in amplifiers and PID controllers. Figures 6-7 through 6-10 present 

'Both our modified Bloch theory in Sect. 4.3.4 and the data presented later in this chapter 
(Sect. 6.6.3) show that a 1 mK change in the pump bulb temperature leads to a fractional change 
in maser amplitudes of a few parts in lo5. Assuming a worst case scenario in which the same 
fractional variation applies to the longitudinal magnetizations in the maser bulb (estimated to be 
a t  most. few pG),  we find that the shifts induced in the masers are on the order of few tens of 
nHz in a day, i.e., compatible with our stability goals. In Sect. 6.8.3 we analyze the correlations 
between maser amplitudes and frequencies in more detail. 



Tests of Bridge Stability 

Frequency 

Figure 6-3: Power spectrum of a resistance measurement carried out monitoring 
a stable resistor with one of the balanced bridge circuits depicted in Fig. 5-8 for 
about 10 days. The result of this measurement is given in terms of the equivalent 
temperature uncertainty that would correspond to the resistance uncertainty. Note 
that the density of points a t  higher frequency is due to  the log scale of the 2 axis. 
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Figure 6-4: Allan deviation of a resistance measurement carried out monitoring a 
stable resistor with one of the balanced bridge circuits depicted in Fig. 5-8 for about 10 
days. The result of this measurement is given in terms of the equivalent temperature 
uncertainty that would correspond to the resistance uncertainty. 



Tests of Bulb Temperature Stability 

Measurement interval 

1 

.'.* 
@ T  

Figure 6-5: Allan deviation of the temperature measured for a day by a thermometer 
placed in the maser bulb of a mock glass cell. The bulb temperature was temperature 
stabilized at approximately 50" C. 
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Figure 6-6: Allan deviation of the temperature measured for a day by a thermometer 
placed in the pump bulb of a mock glass cell. The bulb temperature was temperature 
stabilized at approximately 114" C. 



Description Operating Range Typical RMS 
Toptica Power 350-280 mW 20 p W  

Toptica Frequency 794.7 nm 2 MHz 
LDA Power 10 W 1 mW 

VMR, 450 pV 0.4 pV 

Table 6.4: Typical range of operational parameters for narrow and broad-band lasers 
now being tested. The averaging time for each data point is approximately 4 s. 

Description FS (mV) TC (s) v,f (Hz) Slope (dB/oct) 
Toptica Power 200 0.3 73 24 

Toptica Frequency 2 0.1 30 18 
LDA Power 200 0.3 73 18 

VMR s 1 3 400 12 

Table 6.5: Settings of the lock-in amplifiers used for stabilizing laser power, fre- 
quency, and Rb magnetization signal. We report full scale values (FS), t '  ime con- 
stants (TC), the reference frequencies (vWf), and slopes of the filters used. Note 
that various filter slopes are chosen not because of noise rejection requirements, but 
because they introduce optimal phase shifts in the lock loops. 

Description Gain Tint (s) Toiff (s) THF (s) Rout (ka) 
Topt ica Power 0.1 0.1 0 0 10 

Toptica Frequency 0.3 0.3 0 0 100 
LDA Power 3 1 0.3 0.03 1 

VMR b 10 10 3 0.3 100 

Table 6.6: Settings of the PID controllers used for stabilizing laser power, frequency, 
and Rb magnetization signal. THF is the high frequency cutoff and Rout is the output 
resistance of the volt age controller. 



Measured Toptica Laser Stability 

Measurement Interval 

Figure 6-7: Allan deviation of the locked Toptica TA 100 laser power. 
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Figure 6-8: Allan deviation of the locked Toptica TA 100 laser frequency. 



Measured LDA Stability 

Measurement Interval 

Figure 6-9: Allan deviation of the locked LDA laser power. The average power was 
15 W. 

Measurement Interval 

Figure 6-10: Allan deviation of the locked Rb magnetization signal VM,, . The average 
signal was (V',) -- 453 pV. 



the stability of the laser powers, as well as the stability of the laser frequency for 

the Toptica laser and the stability of the locked Rb magnetization signal used to 

control the LDA. 

6.3 Cell Details 

Experimental work has focused on making and testing maser cells. Our most recent 

cell magking procedure, described in Sect. 5.2, is the result of trial and error process 

which lasted several months. Table 6.7 reports the gas fill pressures for 5 of the 

cells made to date. Initially we used cells like those in Fig. 5-10 but with transfer 

tube ID of approximately 2 mm instead of 4 mm. The names of the first-generation 

cells begin with the letter A, while the names of the cells with geometry like that in 

Fig. 5-10 begin with by the letter B. A-type cells were optimized for very low gas 

pressures. A narrow transfer tube diameter was used to  increase the 3He interaction 

time with the cavity a t  low pressures. However, the narrow tubing used for the 

transfer tube had very thick walls (the only standard tubing available had a 9 mm 

OD), which created a strong thermal connection between maser and pump bulbs and 

prevented proper cooling of the maser bulb. Also, the amount of Rb traditionally 

deposited in the pump bulb (a thin coating in part of the pump bulb) turned out 

t o  be insufficient for the low pressure cells as Rb was more rapidly chased into the 

maser k~ulb by the temperature gradient. We solved this problem by depositing 

macroscopic amounts of Rb (1 or 2 droplets) in the cells. Table 6.7 also lists other 

cell characteristics, whose definitions and measurement techniques will be discussed 

in the next sections. 



Cell name A1 B1 B2 B3 B4 Units 
P H ~   ill 240 600 800 1600 1400 Torr 
Pxe,~ili 
P N ~   ill 
3He TI 

12'Xe TL 
3He T,' 

12'Xe Ti 
Pol. Center (y) 

Rb amount 
Choke coils 

Pump solenoid 

13 30 40 
35 85 85 
13 1.5 - 

300 - - 

61 100 - 

120 200 
16 - 

coating droplet droplet 
no no no 
no Yes no 

40 
85 
4 

200 (370) 
130 
185 
200 

droplet 
Yes 
Yes 

25 Torr 
85 Torr 
- h 
- S 

- s 
- S 

- Pm 
droplet - 

Table 6.7: Characteristics of the maser cells made since October 2004. The fill 
pressures refer to  an ambient temperature of 21" C. The polarization and coherence 
lifetimes were measured at  TM = 50" C and Tp = 114" C except for the value within 
brackets, which was measured for Tp = 90" C. 

6.4 Time Evolution of Noble Gas Longitudinal 

Polarization Below Threshold 

The time evolution of the longitudinal polarization in the maser bulb, P,, when the 

resonator is disengaged (i.e., no feed-back) and the laser is turned off (at t = 0) 

is monitored as follows. A transverse Rabi field is applied to the maser bulb with 

the pick-up coil, thus creating a transverse noble gas magnetization that undergoes 

free induction decay (FID) [83]. Further tips are applied to the atoms at  fixed time 

intervals (N 2,000 s for 3He, 60 s for 12gXe) and the initial signal amplitude, which is 

proportional to  P,, is recorded. As Fig. 6-11 shows, these initial amplitudes decrease 

exponentially over time. Each tip is of the same size and sufficiently small (B,, 5 5") 

that pulsing does not contribute significantly to the rate of longitudinal polarization 

depletion. Theoretically, the time evolution of P,(t) is obtained from the modified 

Bloch Eqs. (4.39) and (4.40)) assuming S = w~ = 0. For simplicity, here we find 

approximate expressions for the characteristic relaxation rates, neglecting, in the 



case of 12'Xe7 the relaxation in the transfer tube and using a single bulb escape 

rate G p  - GM - G. Both approximations are quite good and do not alter the 

two most important features of the model: (i) the transfer of polarization between 

the two bulbs; and (ii) the different relaxation rates in the two bulbs. due to  spin- 

exchange with unpolarized Rb in the hot pump bulb. The equa,tions of motion for 

the longitudinal polarizations are: 

We assume that initially the spins are prepared in their equilibrium polarizations 

Pp,o and Pz,o given by Eqs. (4.45) and (4.46) respectively. The time evolution of 

the polarizations when the light is turned off evolves through a combination of two 

characteristic rates, 

which are the eigenvalues of the 2 x 2 matrix in Eq. (6.1). We have seen in Sect. 4.3 

that 3He diffuses quickly between the two bulbs compared to  its intrinsic relaxation 

and spin-exchange rates, which are both very small (i.e., G >> y,,, l /Tl).  Hence, for 

3He we have Ts - 1/2G and TL = TI. This means that we can confidently identify 

the long decay time TL of the longitudinal polarization (see Fig. 6-11) with the 3He 

intrinsic lifetime TI .  The observed 3He TI times are on the order of a few hours and 

vary greatly from cell to cell. The first cell we made, Al ,  had a 'He Tl -- 13 h, 

but more recently we have obtained much shorter lifetimes (see Tab. 6.7) and we 



suspect that a surface contaminant may be responsible for this effect (see below). 

For 12'Xe the approximations above are not valid. In fact, using the values given 

in Tabs. 4.3 and 4.4, we obtain that the "short" and the "long" characteristic times 

are on the same order of magnitude: Ts = 105 s and TL 4 340 s. In particular, 

the longest decay time TL # TI = 500 s. TL was measured for 12'xe, and strongly 

depends on the temperature of the pump bulb, since it depends on y,, as Eq. (6.3) 

indicates. This was verified in cell B3, for which we measured TL = 200 s for 

Tp = 114' C and TL = 370 s for Tp = 90' C .  

In the lower temperature measurement y,, should be negligible, so that probably 

TI 4 TL = 370 s, which is somewhat lower than expected. If we assume that wall 

relaxation dominates and that we can use Eq. (4.30) even for the double-bulb cell 

(after all the 2 bulbs have roughly the same size), we obtain a wall relaxation 

coefficient K = ro /3  TI ,  wall = 9 x cm/s, which is about three times larger than 

the value of K = 2.8 x cm/s quoted in Ref. [37]. This may indicate that wall 

relaxation for cell B3 is stronger than in the previous maser cells due to a surface 

contaminant (which relaxes also 3He), or to  an ineffective coating. 

Comparing the high and low temperature measurement above we can also esti- 

mate y,, for 12'xe. Again, we assume that TI = TL = 370 and we solve the Eq. (6.3) 

for y,,, using TL = 200 and the theoretical estimate for G = 11310 s-'. We obtain 

y,, z 0.01 s-', which is about 2.5 times larger than the theoretical prediction at  

Tp = 114' C using the model introduced in Sect. 4.3. Given the uncertainties in- 

volved in the theoretical estimates (spin exchange coefficients, diffusion coefficients 

from tabulated values, pump bulb temperature, etc. ) the observed disagreement 

between theory and experiment is not surprising. 
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Figure 6-1 1: Measurement of 3He longitudinal polarization lifetime, TI, in the maser 
cell Al obtained by applying small tips to  the 3He polarization ensemble at  fixed 
time intervals . Each tip is of the same size and sufficiently small that pulsing does 
not contribute significantly to  the rate of longitudinal polarization depletion. The 
exponential time constant of the polarization decay is the longitudinal polarization 
lifetime. 

6.5 Measurement of Noble Gas Decoherence Times 

Below Threshold 

In the last section we noted that applying a transverse Rabi field to the maser bulb 

creates a transverse noble gas magnetization that undergoes free induction decay 

[83]. Figures 6-12 and 6-13 show typical FID ringdowns for 3He and 12gXe after 

application of brief resonant Rabi  pulse^.^ Curve-fit ting the signal amplitude with 

a function of the form 

R,, (t) = co + cl cos(c2 t + c3) t ,  (6.4) 

2As we saw in Sect. 5.5, Rabi pulses can be applied to  the atoms by inductively driving the main 
circuit (a,fter disengaging the resonator) with a secondary circuit connected to  a programmable 
function generator. 



yields the noble gas ensemble effective decoherence time T; = l /cq,  defined in 

Eqs. (4.44) and (4.52) for 3He and 12'Xe respectively, and c2/2?r yields the beat 

frequency, ub. 

A series of such measurements are used to  trim the gradient coils (described 

in Sect. 5.4.2) with the purpose of achieving the best magnetic field homogeneity. 

Figure 6-14, for instance, shows the rate of de-coherence, c4, as the current in the 

dB,/dz gradient coil is varied. The parabolic shape of the curve is consistent with 

the quadratic dependence on magnetic gradients given in Eq. (2.9). The gradient 

coil current maximizing Ti  is chosen and the procedure is repeated for the dB,/dx 

and dB,/dy coils. 

We recently measured 12gXe and 3Ke decoherence times for three different Bo 

intensities in cell B3 after proper trimming of the gradient coils. Figure 6-15 shows 

only a weak dependence on the non-linear field inhomogeneities created by the main 

~o leno id .~  Other significant factors limiting the decoherence times are bulb escape 

and wall interaction, as we saw in Sects. 2.2.2 and 4.3.4. Bulb escape probably 

accounts for the short effective decoherence times observed in the lowest pressure 

cell Al (see Tab. 6.7). In the past, a sizable increase of the decoherence times was 

observed after installing the choke coils [34], but a systematic study of this effect 

has not been carried out in the new apparatus. 

6.6 Preliminary Tests of Modified Bloch Theory 

Our current understanding of the 12gXe/3He maser theory was amply discussed in 

Sects. 2.3 and 4.3.4. At present, only a small portion of the predictions made by 

that theory have been tested. The reason is threefold. First, the new maser has 

3 ~ h e s e  inhomogeneities should increase with the main field and cannot be compensated using 
the shim coils' linear corrections. 



Measured Free Induction Decays (FID) 

Measurement Time 

Figure 6-12: Typical 3He free induction decay (FID) ring-down. The exponential 
decay time is identified with the decoherence time T; introduced in Sect. 4.3.4. 

Measurement Time 

Figure 6-13: Typical 12'Xe free induction decay (FID) ring-down. The exponential 
decay time is identified with the decoherence time T; introduced in Sect. 4.3.4. 



Measured Decoherence Time Dependence on Gradients and Bo 

dB& Shim coil voltage 

Figure 6-14: Trimming of the dB,/dz gradient coil aimed at  achieving the best field 
homogeneity. The decoherence rate 1/T; is measured for various coil currents, until 
the current minimizing this rate is found. The parabolic fit is consistent with the 
quadratic dependence on magnetic gradients given by Eq. (2.9). 

Figure 6- 15: Noble gas decoherence times for three different Bo fields in cell BS, after 
careful trimming of the gradient coils. 



been fully operational for only few months at the time of this writing. Second, 

more diagnostic tools would be needed to carry out proper testing.4 Third, testing 

the maser theory is very time consuming and presently most of the time on the 

apparatus is dedicated to optimizing the stability of its many components. 

With these considerations in mind we show some preliminary comparisons of 

experimental results and theoretical predictions. We begin with an observation 

of the radiation damping times, we continue with the detection of underdamped 

oscillations in the maser amplitudes, and we conclude with a measurement of the 

maser amplitudes for various pump bulb temperatures in cells B1 and B2. 

6.6.1 Measurement of the Radiation Damping Times 

In Sect. 2.3.2 we noted that the effective radiation damping time can be directly 

measured by pumping the atoms in the low energy state and measuring the FID 

rates, 1/T2,0n and 1/T2,0ff, of the perpendicular polarization when the resonator 

is turned on and off. The effective radiation damping time is given by TRD = 

( l / T 2 , 0 n  - l/T2,0ff)-'- 

In Sect. 2.3.1 we defined the radiation damping rate as 

The modified Bloch theory gives specific predictions for Pz,o as indicated in Eqs. (4.46) 

and (4.53). 

Since Pz,o strongly depends on the pump bulb temperature, Tp, through the 

 o or instance, installing a pick-up coil around the pump bulb would be very helpful. This would 
allow: (i) measurement of the polarization of 12gXe before transport losses; (ii) optimization of the 
laser settings for best optical pumping; (iii) measurement of the noble gas decoherence times in the 
pump bulb; and (iv) accurate measure of the pump bulb temperature by detecting the frequency 
shifts induced by Rb on the precession frequency of the noble gases. 



Measured Free Induction Decays (FID) 

Figure 6- 16: For three pump block temperatures we list the estimated pump bulb tem- 
perature, Tp, and the measured transverse decoherence times, 1/TzIon and 1/T2,0f17 
for cell B1. The effective radiation damping time TRD is calculated using Eq. (2.40). 

Figure 6-17: Radiation damping times measured in cell B1 for the two noble gases 
and theoretical predictions using the set of input parameters given in Tab. 4.3. Above 
Tp = 120' C the theoretical TRD increases because the 12'Xe flux of polarized atoms 
in the maser bulb decreases. This is due to the depletion of resonant light in the 
pump bulb and the consequent Rb depolarization as Tp is increased. The polarized 
12'xe flux is further reduced by spin-exchange relaxation with unpolarized Rb in the 
transfer tube. This relaxation mechanism is not included in our theoretical estimates 
and may help explain the discrepancy with the experiment a1 data. 

12gXe times (s) 

T2,on Tz10ff ~ R D  

41 7 54 
34 9.5 42.5 
39 15.7 50 

Temperatures (" C) 

T~lock TP 
124 116 
111 103 
97 89 

3He times (s) 
T2,on T2,0ff ~ R D  

73 175 6.5 
73 169 8.4 
76 183 13 



Rb density and thus the rate of spin-exchange optical pumping, we have measured 

TRD a's Tp changes. These measurements are reported in Tab. 6-16 and plotted in 

Fig. 6-17 where we also show the theoretical predictions for a narrow-band laser 

with delivered power of approximately 250 mW. Our theoretical predictions are not 

very sa,tisfactory. Presently we believe that the the main uncertainties limiting the 

comparison of experiment and theory are: (i) Tp was not directly measured for lack 

of a temperature sensor on the pump bulb, but was deduced from TBlock using a fixed 

temperature difference5 of 8" C; (ii) there are great uncertainties in the simulation 

of spin-exchange optical pumping (see Sects. 2.1 and 4.3.1); and (iii) so far we have 

not found a convenient way to  take into account the 12gXe relaxation due to spin- 

exchange with unpolarized Rb vapor in the warmest section of the transfer tube. 

The latter mechanism is likely to  be the main source of reduction of the 12'Xe flux 

in the t.ransfer tube, which by reducing Pz,o lengthens TRD, as Eq. (6.5) shows. 

6.6.2 Observation of Underdamped Oscillations 

In Sect. 2.3.4 we saw that above threshold the maser amplitude may experience 

underdamped oscillations of frequency vo,, = 1 /?r d m .  Using the quantities 

listed in Tabs. 4.3 and 4.4, we obtain the theoretical frequencies v:tc,xe - 2.2 mHz 

and vg!c,He = 0.9 mHz. 

In Figs. 6-18 and 6-19 we show the maser amplitudes observed with cell B1 in 

a three day run for which most of the experimental settings were roughly those 

reported in Tab. 4.3. The underdamped oscillations are not obvious in the noisy 

maser amplitudes, but their power spectrums in Figs. 6-20 and 6-21 show that small 

oscillations are present and have roughly the expected frequencies. 

5 ~ h i s  is only a very crude approximation based on a measurement (performed using a mock 
cell) of the gradient between pump block and pump bulb (see Sect. 6.1). 



Measured Maser Amplitudes 

Figure 6-18: 3He maser amplitude in a three day data set collected with cell B1 and 
the narrow-band Toptica TA 100 laser. To the best of our knowledge the experimental 
setup parameters are those given in Tab. 4.3. 

Figure 6- 19: 12'Xe maser amplitude in a three day data set collected with cell B1 and 
the narrow-band Toptica TA 100 laser. To the best of our knowledge the experimental 
setup parameters are those given in Tab. 4.3. 



Power Spectra of Maser Amplitudes 
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Figure 6-20: Power spectrum of the 3He maser amplitude in Fig. 6-18. The peak at 
approximately 0.7 mHz is due to small underdamped oscillations of the 3He maser 
amplitude. 
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Figure 6-21: Power spectrum of the 1 2 g ~ e  maser amplitude in Fig. 6-19. The peak 
at approximately 2 mHz is due to small underdamped oscillations of the 12'xe maser 
amplitude. 



6.6.3 Measurement of Maser Amplitudes vs Pump Bulb 

Temperature 

A practical way to test the modified Bloch theory presented in Sect. 4.3.4 is to vary 

the pump bulb temperature, Tp, and measure the steady state maser amplitudes. 

We have done this for cells B1 and B2. The results are reported in Tabs. 6-22 

and 6-24. Figures 6-23 and 6-25 show the experimental values and the theoretical 

predictions, calculated using the modified Bloch theory with input parameters as in 

Tab. 4.3, except for the narrow-band laser intensity for which we used the value of 

250 mW. Whereas the 3He maser amplitudes are fairly well described by the theory, 

the 12gXe amplitudes are not. The three caveats mentioned at the end of Sect. 6.6.1 

apply to this preliminary measurement. In particular, 12gXe relaxation due to the 

interaction with unpolarized Rb in the warmest part of the transfer tube induces 

major losses when the pump bulb temperature is increased and the temperature 

of the transfer tube rises. We demonstrated that it is possible to recover a higher 

129Xe flux into the maser bulb (and consequently higher 129Xe maser amplitudes) by 

cooling the transfer tube with compressed air. The problem with this scheme though, 

is that cooling the transfer tube perturbs the overall cell temperature stability. 

Any scheme using such cooling during normal maser operation should include an 

additional temperature lock of the air used for cooling. However, this scheme will 

probably have the shortcomings of direct cooling that we tried to avoid with the 

redesign of the l2'XeI3He maser. 



Measured Maser Amplitudes vs Tp 
(Cell B1 ) 

TBlock ( O  C) TP (O  C) 12gXe Ampl. (mV) 3He Ampl. (mV) 
11 1 103 19.6 6.1 

Figure 6-22: For six pump block temperatures we list the estimated pump bulb 
temperatures, Tp, and the measured maser amplitudes of the two noble gas masers, 
using cell B1. 
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Figure 6-23: Maser amplitudes of the two noble gas masers in cell B1 as a function of 
the pump bulb temperature, Tp. The theoretical amplitudes are calculated using the 
modified Bloch theory with input parameters as in Tab. 4.3 except for the narrow- 
band laser intensity, which is here 250 mW. 



Measured Maser Amplitudes vs Tp 
(Cell B2) 

Tslock ( O  C) Tp ( O  C) 12'Xe Ampl. (mV) 3 ~ e  Ampl. (mV) 
104 96 25.7 6.1 

Figure 6-24: For seven pump block temperatures we list the estimated pump bulb 
temperatures, Tp,  and the measured maser amplitudes of the two noble gas masers, 
using cell B2. 

100 110 120 130 

Pump Bulb Temperature (" C) 

Figure 6-25: Maser amplitudes of the two noble gas masers in cell B2 as a function of 
the pump bulb temperature, Tp. The theoretical amplitudes are calculated using the 
modified Bloch theory with input parameters as in Tab. 4.3 except for the narrow- 
band laser intensity, which is here 250 mW. 



6.7 Peripheral Pick-Up Coil Field Effects 

In this section we deal with a maser frequency shift mechanism that was first oh- 

served when we began our co-magnetometry i n ~ e s t i ~ a t i o n s . ~  Our first attempt to  

measure the distance between the centers of polarization of the two masing species 

along ij (the direction of the transfer tube as shown in Fig. 6-28) by applying a 

dB,/dy gradient yielded the 3He frequency shift data shown in Fig. 6-26. Besides 

the linear slope that had been observed in the past, we found a surprising resonant 

feature, a narrow region in which a change in magnetic field gradient as little as 

few pG/cm induces a maser frequency shift of almost a mHz: an enormous shift by 

12gXe/3He maser standards. This region of hypersensitivity to magnetic gradient 

fluctuations is also the region, as Fig. 6-26 shows, in which the noble gas decoher- 

ence times are longest and it is there that the 12gXe/3He maser is most effectively 

operated. 

The dispersive-like frequency shift is due to the fringe field of the pick-up coil, 

which in the pump bulb is still intense enough to tip the 3He atoms and make them 

participate in the maser action. When 3He atoms in the pump bulb are immersed 

in a magnetic field slightly different from that of the maser bulb they pull the maser 

frequency towards their local Zeeman frequency. In the next section we develop a 

simple model that captures the essential features of this frequency shift mechanism. 

We then discuss the possibility that,  through this mechanism, optical pumping light 

instabilities may be converted directly into maser frequency inst abilities. Since this 

is to  be avoided at  all costs, we have installed a small longitudinal coil on the 

pump bulb. This coil locally shifts the Zeeman frequency of 'He in the pump bulb 

sufficiently far from the Zeeman frequency of 3 ~ e  in the maser bulb that the fringe 

6 ~ e  introduced co-magnetometry in Sect. 4.4 and we relate our experimental findings on that 
topic in Sect. 6.8. 



dB/dy Strength 

dBz/dy Voltage 

Figure 6-26: 3He maser frequency shift as a function of the dB , /dy  gradient applied 
on the maser cell when the 12'Xe maser is phase-locked. In the central region, where 
the shim coil creates a very homogeneous magnetic field (as the maximization of 
the 12'Xe Tz indicates), a sharp, dispersive-like shift is encountered. This frequency 
shift arises because the fringe field of the pick-up coil excites 3He coherence in the 
pump bulb. 

pick-up coil field becomes ineffective in exciting pump bulb coherence. We have not 

mentioned 12'Xe because, as we will argue in Sect. 6.7.2, the interactions of 12'xe 

with polarized Rb sufficiently shift the 12'Xe frequency in the pump bulb away from 

the 12'Xe maser frequency. 

234 



6.7.1 Masing of Two Spatially Separated Ensembles in 

Slightly Different Magnetic Fields 

In this section we study the behavior of a maser made up of two spatially separated, 

spherical ensembles of atoms of the same species. In our model the two ensembles 

interact with each other only indirectly, via feed-back from the pick-up coil. We 

choose the y axis along the axis of the pick-up coil and we assume that the centers 

of the two ensembles @ and @lie on ij: is located at yl and @is located at y2. As 

we saw in Eq. (2.21) of Sect. 2.3, in the frame rotating at  the maser frequency, w ~ ,  

the equations of motion for the two polarizations can be written as follows: 

The two ensembles lie in slightly different magnetic fields Bol and BO2 We define 

wi = yBoi and w2 = wl +A. The Rabi frequencies w ~ l  and W R ~  for the two ensembles 

are different. The two species occupy volumes Vl and V2 and the field of the pick-up 

coil defined in Eq. (2.22) has two distinct average strengths per unit current El and 

The radiation damping times, defined in Eq. (2.32), are proportional to each other: 

We have defined a = E2/e1, v = V2/V1, and we have assumed equal number density 

for the two ensembles. Following the derivation presented in Sect. 2.3.1, one can 



Region Volume (cm3) ti (G/A) (y) (cm) 
Maser Bulb 4 444 - 0 

Transfer Tube 0.3 153 2.5 
Pump Bulb 6 27.8 5 

Table 6.8: The three regions in which the noble gas atoms reside have different 
volumes, average pick-up field intensity ti, and average distance (y), from the center 
of the pick-up coil. 

show that the two Rabi frequencies differ by a factor a :  

As in Sect. 2.3.2 we have chosen the 2 axis along the perpendicular polarization, 

which gives the additional constraint P, + avp, = 0 and determines the maser 

frequency shift 6 = w~ - wl . In steady state the left-hand side of Eqs. (6.6) vanishes. 

After eliminating the other 5 variables from the 6 equations, we are left with the 

following fourth-order equation 

fTRD1T2 (a - 6) [(a - 6)2 - a2b2] , 

from which we learn that the maser frequency shift depends only on the ratio of the 

volumes u and on the relative magnitude of pZ)o and PZJo, and not on TI .  

A maser cell can be divided into three regions: maser bulb, pump bulb, and 

transfer tube. Volumes, average distance (y) from the geometric center of the maser 

bulb, and average pick-up field intensity for the three regions are given in Table 6.8. 

Since the pick-up field is strongest in the maser bulb, the contributions of the pump 



Maser Frequency Shift from wl  
0.4 

Figure 6-27: Numerical solution of Eq. (6.11) for the maser frequency shift 6 as a 
function of A. We used the following realistic parameters: cu = 27.81444, v = 614, 
p,,o/P,,o = 1.2, . ~ R D  = 10 S, T2 = 240 S. 

and transfer tube produce only small perturbations to  the maser frequency. We solve 

Eq. (6.1 1) for 6 << A and then check that our treatment is self-consistent. Neglecting 

all quadratic and higher terms in 6, we obtain the following approximate expression 

for the maser frequency shift (from the nominal frequency of the ensemble 1): 

For self-consistency, this approximation is valid only when 2 + (1 - cu2) >> 1, 

which is a condition usually met in our masers when we consider either the pump 

bulb ensemble (for which cu = 27.81444 << 1, v - 1, and rRD2/T2 x 10) or the 

transfer tube ensemble (for which v = 0.314 << 1, cu - 1, and Pz,o/p,,ov x 10) 

perturbations to  the maser bulb ensemble. 

Equation (6.12) shows that when the detuning A is small enough that we can 



neglect the quadratic term in the denominator, there is a significant perturbation 

to  the maser frequency (see Fig. 6-27). This perturbation slowly dies out as we 

increase the detuning. The maximum maser shift, 6k1,x, and the value of detuning 

for which it occurs, A*, are: 

Hence, to a good approximation the peak-to-peak amplitude of the dispersive feature 

in the maser frequency is roughly vz& = & and the peaks are 2 / T 2  apart. 

As we saw already in Fig. 6-26 such a feature was first observed in our experiment 

by applying d B , / d y  gradients that would increase both pump bulb and transfer 

tube average field, Bz ( y )  , proportionately to  their respective distance ytt and y p  

from the center of the applied shim-gradient (see Fig. 6-28). Figure 6-26 shows that 

the perturbation to  the maser frequency is maximum for gradient intensities that 

maximize the 12'Xe decoherence time and remains significant for all desirable T2 

values. This means that the standard shimming configuration in which the maser is 

commonly operated is also the configuration in which atoms in the pump bulb and 

in the transfer tube couple best to  the oscillation in the maser bulb. Any mechanism 

that perturbs the atoms' precession frequency in the pump bulb and in the transfer 

tube will efficiently pull the maser frequency. 

In order to  verify our theory, we wound a coil around the pump bulb (see 

Fig. 5.4.5) and scanned the resonance, this time applying a local B, field to the 

atoms in the pump bulb instead of a gradient on the whole cell. The result, re- 

ported in Fig. 6-29, shows that our theory captures very well the shape of the 



Figure 6 -28: Longitudinal magnetic field applied to the maser cell. When the d B , / d y  
(continuous line) is applied, the center of polarization of the 12gXe maser (see Eq. 
(4.59)) detects a net change in the longitudinal magnetic field. The 1 2 g ~ e  phase lock 
adjusts the main solenoid field to compensate for this offset. The resulting profile 
of B, along y is given by the diagonal dashed line. 

resonance. The theoretical curve was obtained for the realistic values cu = 27.81444, 

v = 614, pz,o/ PZJo = 1.2, TRD = 10 s and assuming that only 3 ~ e  is affected by the 

shift. The only parameter used that is not realistic is T2 = 240 s, which is a factor 

of two bigger than the observed 3He effective decoherence time. This large value 

of T2 may be correcting for our simplistic model of two ensembles localized at two 

points in space, as a representation of a maser occupying an extended region. 

We shall also see that Eq. (6.12) directly couples the Rb induced shifts, which 

may be caused by light instabilities, into maser frequency shifts: a mechanism that 

could seriously compromise the maser performance. Before exploring this issue 

further, we provide a simple interpretation of the maser frequency shift derived in 

this sect ion. 



Observed Pump Bulb Induced Maser Frequency Shift 
0.4 

Figure 6-29: Observed 3He maser frequency shift due the Zeeman frequency shift 
A induced on the 3He atoms in the pump bulb with the help of a small solenoid 
installed on the pump bulb itself. The theoretical curve is the numerical solution 
of Eq. (6.11) for which we used the following realistic parameters: a = 27.81444, 
v = 614, p,,o/Pz,o = 1.2, TRD = 10 S, T2 = 240 S. 
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The maser frequency shift in Eq. (6.11) may seem surprising at  first. In order to 

understand this frequency shift mechanism, we return to Eqs. (6.6) and solve the 

two equations p, = 0 and P, = 0 for the maser frequency, W M .  We find that W M  

is an average of the two Zeeman frequencies wl and w2, weighted by the in-phase 

components of the perpendicular magnetizations taking into account the different 

couplings of each ensemble to the pick-up coil field: 
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Perpendicular Polarizations 
t ~ ' " ' ' ' ' ' ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1  

Figure 6-30: Numerical solutions for the steady state perpendicular polarizations of 
the two ensembles 1 and 2, as a function of the Zeeman detuning A of ensemble 2. 
We used the following realistic parameters: cu = 27.81444, v = 614, p,,o/P,,o = 1.2, 
TRD = 10 S, T;! = 240 S. 

Longitudinal Polarizations 

Figure 6-31: Numerical solutions for the steady state longitudinal polarizations of 
the two ensembles 1 and 2, as a function of the Zeeman detuning A of ensemble 2. 
We used the following realistic parameters: cu = 27.81444, v = 614, pz,o/Pz,o = 1.2, 
TRD = 10 S, T2 = 240 S. 



Suppression Ratio 

Figure 6-32: Ratio of the maser detuning 6 to  the Zeeman detuning A of ensemble 2. 
We used the following realistic parameters: a = 27.81444, v = 614, pz,o/ P, ,O = 1.2, 
TRD = 10 S, T2 = 240 S. 

In Figs. 6-30 and 6-31 we present the steady state, numerical solutions for the two 

polarizations p' and F ,  as a function of the detuning, A,  for realistic parameters. 

Notice that p, is significantly different from zero only when the pick-up coil drive is 

almost resonant with the local Zeeman frequency w2. p, reaches its maximum for 

A = 0, where the maser frequency shift 6 = w2 - wl vanishes. This accounts for the 

dispersive-like shape of the frequency shift, which is not caused by a sudden change 

in the steady state polarizations (p ,  goes through a maximum for zero detuning 

and then continuously decreases for negative detunings), but is a consequence of the 

change in sign of the frequency difference A. 

6.7.2 Light Stability and Maser Frequency Stability 

In Sect. 2.1 we mentioned that both 12gXe and 3He in the pump bulb interact 

strongly with polarized Rb through the Fermi contact interaction. This interaction 
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produces a frequency shift in the noble gas Zeeman levels which is proportional to 

the Rb magnetization [84, 691: 

The enhancement factor, fin,, differs greatly for the two noble gas species: KH, = 5 

and K X ,  = 726 [84, 851. For pump bulb temperatures of approximately 114" C, 

[Rb] - 1.4 x 1013, and using Y R ~  = 27r 466 kHz/G we obtain 6wEt = 4.5 mHz 

and 6w:: = 294 mHz. 6w$: detunes the 12'xe precession frequency in the pump 

bulb away from the maser bulb frequency, making the oscillation of 12'Xe in the 

pump hulb negligible. The same is not true for 3He which can be brought back on 

resonance with the 3He maser frequency by a small gradient. For detunings smaller 

than 1/T2 this leads to a significant maser frequency shift. Figure 6-32 shows that 

near resonance the ratio 6/A 0.1 - 0.01. Hence, a 1% instability of the Rb 

magnetization in the pump bulb shifts the 3He maser by 4.5 - 0.45 pHz. Effects 

of this magnitude unacceptably link the stability of our maser to  the laser stability 

and the temperature stability of the pump bulb. 

The full scale of these Rb induced shifts can be observed by blocking the laser 

light for a few seconds when the maser is in operation. In one instance, we measured 

an immediate 3He frequency shift of about 500 pHz and a complete disruption of 

the 3He maser amplitude stability. 

As we already mentioned, we eliminate these shifts with the help of a small 

longitudinal coil on the pump bulb. This coil locally shifts the Zeeman frequency 

of 3He in the pump bulb sufficiently far from the Zeeman frequency of 3He in the 

maser bulb that the fringe pick-up coil field becomes ineffective in exciting pump 

bulb coherence. 



6.8 Assessment of Co-Magnetometry 

In this section we present a first assessment of co-magnetometry in the new 12gXe/3He 

maser. We already discussed the importance of co-magnetometry for rejection of 

common mode magnetic field noise in Sect. 4.4. Presently we believe that co- 

magnetometry limitations have three possible origins: (i) the imperfect spatial over- 

lap of the masing ensembles; (ii) the spatial inhomogeneity of the pick-up coil field; 

and (iii) the presence of the co-located noble gas species. 

In Sect. 4.4.2 we amply discussed the first point and we found that the slow 

diffusive transport of polarization combined with a localized source of polarization 

in the maser bulb may cause the centers of the masing ensembles to be separated 

in the y direction (the direction of the polarized inflow). We begin our assessment 

by showing that this prediction is verified and that co-magnetometry improves with 

lower pressures and faster diffusion, as expected. However, the interpretation of the 

data in terms of our diffusion model is not straightforward and further experimental 

investigation is needed to improve our understanding. 

Next, we note that the same effects explained by point (i) can probably also be 

explained considering the spatial inhomogeneity of the pick-up coil field. Although 

we do not have a complete model supporting this, in Sect. 6.8.2 we draw on the 

intuition built in the previous section to show that co-magnetometry along y may 

be compromised by variations in the pick-up coil field in that direction. This is true 

even in the case of perfectly overlapping masing ensembles. Section 6.8.3 concludes 

our discussion with an assessment of the co-magnetometry limitations due to the 

co-locat ed species. 



Cell Name DM,He (cm2/s) DM,Xe (cm2/s) Total Fill Pressure (Torr) 
B1 1.45 0.32 715 

Table 6.9: Maser bulb diffusion coefficients and total fill pressures for cells B1 and 
B3. The breakdown of the gas pressures for these cells was given in Tab. 6.7. 

6.8.1 Co-Magnetometry Limitations Ascribable to Diffusion 

Figure 6-33 shows the frequency shift observed on the 3He maser when a linear 

magnetic field gradient dB,/dy of increasing intensity is applied to the maser cell.7 

This frequency shift was measured in cells B1 and B3, whose gas fill pressures and 

noble gas diffusion coefficients are listed in Tab. 6.9. No measurable shifts were 

observed when dB,/dy and dB,/dz gradients were applied.8 

During the measurements the 12gXe frequency was locked to a reference value 

w.,.6 by adjusting the correction B y r  to  the main magnetic field. B,"Orr must satisfy 

the following equation, 

where the center of a noble gas polarization along y is: 

 h he narrow dispersive feature due to  peripheral pick-up coil field, shown in Fig. 6-26, was 
eliminated by applying a local longitudinal magnetic field to the pump bulb, as discussed in 
Sect. 6.7. 

8 ~ h i s  represents an improvement in co-magnetometry with respect to  the previous maser, in 
which sizable 3 ~ e  frequency shifts were observed when applying dB, /dz  gradients to  the cylindrical 
maser cells whose symmetry axis was oriented along 2 [34]. The spherical symmetry of our cells 
improves co-magnetometry in the 2 direction. 



Gradient Induced Frequency Shifts and Polarization Centers 

Monitor voltage of gradient coil 

0.1 0.2 0.3 0.4V 

Figure 6-33: 3He maser frequency shift when the 129Xe maser is phase-locked and a 
linear magnetic field gradient is applied to the maser cell. (Typical uncertainties in 
plotted points are 412pHz.) Perfect co-magnetometry would imply no shift a t  all. 

Figure 6-34: Distance between the centers of polarization for the two species, obtained 
using the 3He maser frequency shifts in Fig 6-33 and the formula: ( y H e )  - ( y X e )  = 

& w H ~ /  ( Y H ~  d B ,  / d y ) -  



The 3He frequency shift due to the gradients is therefore: 

This equation was used to calculate the distance between the centers of polarization 

shown in Fig. 6-34. In the region of best magnetic field homogeneity the sensitivity 

of the low pressure cell to magnetic field gradients is suppressed by one order of 

magnitude with respect to the sensitivity of the higher pressure cell. 

Figure 6-34 indicates that in both cells the center of the %e masing ensemble 

lies below the center of the 12'Xe masing ensemble as shown in Fig. 6-28. Hence, 

on average, the 3He atoms are more displaced towards the transfer tube than the 

12'Xe a.toms. This is surprising given the higher diffusion coefficient of 3He. A 

possible explanation is that the 3He atoms radiate before they have had a chance to 

motionally average their position over the whole cell. Another plausible explanation 

is that 3He atoms in the transfer tube possess some residual coherence able to 

displace the center of the 3He polarization. We note however that on cell B3 we 

installed choke coils on the transfer tube, which should limit this effect. 

We presently lack a theory describing the steady state spatial distribution PL (3 
of a masing ensemble taking into account both diffusion and a localized source of 

polarization. In Sect. 4.4, we solved the simpler problem for the center of polar- 

ization in a spherical cell with radius ro and a disk-like source of polarization that 

subtends an angle Bo from the center of the cell. We assumed that the polarization 

has a finite interaction time r .  A plausible choice for r, is the effective decoherence 

time T;. This is attractive especially considering Fig. 6-34 in which the centers of 

polarization, at least for cell B1 , seem to be sensitive to magnetic field gradients 



much like the decoherence rates. However, when we calculate (yHe) - (yXe) (using 

the T; values in Tab. 6.7 and Eq. (4.75)) we find (yHe) - (yXe) = 17 pm and 41 pm, 

for cell B1 and BS, respectively. The order of magnitude is roughly correct for cell 

B1, but it is definitely wrong for cell B3. Moreover, both differences are positive, 

suggesting that 12'Xe, in theory, is the species that should be more localized towards 

the entrance of the transfer tube. 

In conclusion, we have shown that co-magnetometry can be dramatically im- 

proved by using low gas pressures and by carefully shimming the gradient coils to 

obtain the longest possible decoherence times. However, a deeper understanding of 

the role played by diffusion in co-magnetometry can be gained only with a more 

extensive experimental study of co-magentometry. 

6.8.2 Co-Magnetometry and the Effects of a Spatially In- 

homogeneous Pick-Up Coil Field 

In this section we analyze, in a different regime, the consequences of the theory 

outlined in Sect. 6.7.1. We suppose that there is a significant variation of pick- 

up coil field between points y~ and yz, and we assume that these two points are 

sufficiently close to  each other that an applied gradient only creates a small shift 

a = (Y - yl)%dBz/dy < 1/T2 between wl and w2. We are then in the linear 

regime of Eq. (6.12) in which the following equation is valid: 

Notice that if the pick-up coil field were homogeneous ( a  = 1) the frequency shift 

from wl  would be the weighted average of a null shift with weight Vl Pz,o/(Vl P,,o + 
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V2p,,0) and shift A with weight V2p,,o/(&Pz,o + V2pr,0). Suppose, for instance, that 

p,,o = PZjo and Vl = V2, the shift would then be A/2, as one may have guessed. In 

other words, the maser behaves as if both ensembles were located a t  the intermediate 

position (y2 + y1)/2. However, when the pick-up field is not the same ( a  # 1) at 

points yl and y2 the frequency shift depends on the TRD and T2 of the gas species. 

This has consequences when we consider co-magnetometry. In order to see it we 

look at  a situation in which there are ensembles of both species at  both points yl 

and y2. We also assume for simplicity that p$ = pXe Z,O and pf; = P$. We lock 

the 12gXe frequency to a reference value by adjusting the intensity of the main 

magnetic field with a correction B y ,  that is 

where iT(A) is the approximate shift defined in Eq. (6.20). The frequency shift 

obtained in 3He, even when using the co-magnetometer, is 

Since the pick-up field is not homogeneous (a  # 1) co-magnetometry does not 

remove the effect of the magnetic field gradient along 6. This effect therefore yields 

another possible explanation for the shift in Fig. 6-33 and suggests two possible ways 

to  improve co-magnetometry: keeping the atoms in a region of very homogeneous 

pick-up field, or realizing the matching condition T:& IT? = rib1 IT?. Although 

this rough model does not lead to  a quantitative prediction (it is hard in our maser 

to  come up with a sensible estimate for the distance y2 - yl; the effect of motional 

averaging should also be taken into account), it does make a strong case for trying to  



prevent masing in regions of varying pick-up coil field intensity, such as the transfer 

tube. 

6.8.3 Shifts Due to the Co-Located Species 

In Sect. 4.5 we showed that by choosing a spherical shape for the maser bulb we could 

prevent maser self-interaction, implying that the maser frequency of one species 

does not depend on the magnetic induction of its own longitudinal magnetization. 

This makes each maser more stable, but also limits co-magnetometry. In fact, the 

12gXe co-magnetometer is insensitive to  the magnetic field fluctuations induced on 

3He by the 12'Xe longitudinal magnetization and it also detects changes of the 

3He longitudinal magnetization that do not perturb the 3He maser.' Here, we will 

estimate these limit a t  ions of co-magnetomet ry. 

The simple maser theory of Sect. 2.3 suggests that this limitation should not 

affect the long term stability of the maser, since the equilibrium longitudinal polar- 

ization P,,,, given in Eq. (2.37) does not depend on the flux of incoming atoms, or 

on Pl, which are most likely to  change or drift. P,,,, only depends on geometric 

quantities and the noble gas decoherence time, which are likely to  remain constant. 

However, P, can experience fluctuations around its equilibrium value and these are 

tightly related to  the small fluctuations in PL, as we saw in Sect. 2.3.4. Since the 

maser amplitude is proportional to P l ,  we estimate1' the medium term stability 

of P, by studying that of P l .  In the long run, as we have already mentioned, we 

expect P, to be more stable than PL. 

Figures 6-35 and 6-36 show the fractional stability of the maser signals from 

cell B1 for a three day data set already analyzed in Sect. 6.6.2. For cell B1, we 

 he use of a third, co-located species could resolve this issue, but we will not investigate that 
possibility here. 

''Unlike Pl, P, cannot be measured when the maser is in operation. 



Fractional Maser Amplitude Stability 
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Figure 6-35: Fractional stability of the 3 ~ e  maser amplitude for two data sets ap- 
proximately three days long. In one data set we used the Toptica narrow-band laser 
for optical pumping and a magnetic field of Bo - 1.5 G. In the second data set we 
used the borad-band LDA and a higher magnetic field of Bo = 6 G. 
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Figure 6-36: Fractional stability of the 1 2 g ~ e  maser amplitude for two data sets 
approximately three days long. In one data set we used the Toptica narrow-band 
laser for optical pumping and a magnetic field of Bo - 1.5 G.  In the second data set 
we used the borad-band LDA and a higher magnetic field of Bo - 6 G. 



estimate that the magnetic induction of either species is on the order of 1 pG 

(see Tab. 4.4). The frequency noise induced on the free-running maser by the two 

longitudinal magnetizations is therefore of order a few mHz times their fractional 

stability. Interestingly, we find that the frequency noise from fluctuations of P, at 

10,000 seconds may be as big as a fraction of a ,uHz. l1 In the next section we show 

that the l2'XeI3He maser is affected by this level of noise, but other mechanisms 

could also account for it. Therefore the impact of imperfect co-magnetometry on 

medium term frequency noise remains an open question. 

6.9 Assessment of Frequency Stability Achieved 

to Date 

In this section we report on the frequency stability of the new l2'XeI3He maser and 

we give a preliminary assessment of its sensitivity to  Lorentz invariance violation 

("LI sensitivity" for short). For definiteness, we concentrate on two data sets. The 

first data set (DS1) was collected over three days, using cell B1 at a magnetic field 

Bo o 1.5 G;  optical-pumping was performed with the narrow-band Toptica laser 

delivering approximately 250 mW of light to the cell.12 The second data set (DS2) 

was collected over little more than a day ( o lo5 s) using cell B2 at a magnetic field 

Bo = 6 G; optical-pumping was performed with the broad-band LDA delivering 

approximately 10 W of light. Other parameters characterizing the two runs are 

listed in Tab. 6.10. 

llF'or a measurement interval T = 10,000 s a simple estimate is: bvHe = 1 pG Y ~ ~ ( ~ R ~ ~ / R ~ ~  + 
BRHe/RHe)  550 nHz. 

12~egradation of the tapered amplifier, occurring for the second time in a year of operation 
(see Sect. 5.3.1), had reduced the output power from approximately 350 mW. Use of the Toptica 
narrow-band laser source was discontinued shortly after taking this data. 



Description Parameter DSl DS2 Units 
Cell name - B1 B3 - 

Magnetic field Bo 1.5 6 G 
Maser Frequency v ~ e  4,710 19,607 Hz 

v ~ e  1,710 7: 119 HZ 
Decoherence time Tl, He 73 88 s 

T;, ,xe 175 229 s 
Circuitqualityfactor Q H e  16.4 12.8 - 

Q ~e 15.6 25.6 - 

Maser power W H e  0.47 x lo-' 30 x lo-' erg/s 
Wxe 7.2 x lo-' 62 x lo-' erg/s 

Daily thermal noise o-Ft(l day) 150 18 nHz 

Table 6.10: Main parameters characterizing a l2'xeI3He maser data set (DS1) col- 
lected using the narrow-band Toptica laser and a second data set (DS2) collected 
using the broad-band LDA. 

The phase residual13 of DS1 is shown in Fig. 6-37. Figure 6-38 shows the phase 

residual after a fit eliminating possible frequency correlations with the maser am- 

plitudes (see Eq. (4.2)) and a constant frequency drift. Frequency noise generates 

the meander of the 3He phase. After carrying out the fit and thus removing fre- 

quency fluctuations due to amplitude instability and a constant frequency drift, the 

maser phase meander is reduced. This confirms, as we pointed out in Sect. 4.1, that 

accounting for amplitude correlations enhances our ability to  discern LI violating 

daily modulations in the 3He free-running frequency. 

The Allan deviation of the 3He frequency for DS1 is presented in Fig. 6-39. The 

dotted line with the characteristic slope decreasing as T - ~ / ~  is a fit of the phase 

noise (see Tab. 2.2). For measurement intervals T 2 400 s the phase noise becomes 

negligible and frequency noise dominates the maser performance. The continuous 

line indicates the calculated white thermal frequency noise (decreasing as T- ' /~  ), 

13we have performed a linear fit of the 3 ~ e  maser phase. The residual is the time integral of 
the time dependent maser frequency disturbances, such as noise and, possibly, the daily sidereal 
modulations which would be an indication of LI violation. 



vy(r), which is expected in our free-running maser and takes the following form: 

where 

are the thermal noise and the maser power expressions introduced in Eqs. (2.70) 

and (2.44), respectively. Equation (6.22) reflects the fact that the free-running 

species is affected by the thermal noise of the co-magnetometer, as well. The r-3/2 

slope of the Allan deviation for 12'Xe in Fig. 6-39 demonstrates that the 12'xe 

phase lock removes the frequency noise from the 12'Xe frequency. Co-magnetometry 

transfers this noise to the 3He maser by overcorrecting the magnetic field, hence the 

factor of yHe/yxe in Eq. (6.22). 

In order to  verify that the 129Xe/3He maser in DS1 was limited by thermal noise 

we operated the masers at  higher power and lower thermal noise, as Eq. (6.23) 

indicates. This goal was achieved by using the broad-band LDA instead of the 

Toptica laser and by quadrupling the main magnetic field, which turned out not to 

deteriorate the noble decoherence times (see Tab. 6.10). The phase residuals of DS2 

in Figs. 6-40 and 6-41 show a dramatic improvement in the SNR with respect to 

DS1. The Allan deviation of the 3He frequency in Fig. 6-42 indicates that thermal 

noise is not the limiting factor in DS2 and that long term frequency instabilities 

can be accounted for using amplitude correlations and a linear frequency drift. The 

instability of the LDA causes the maser amplitudes to  be more unstable in DS2 than 



3 ~ e  Phase Residual Before and After 
the Amplitude Correlation Fit 

(Data Set 1: Narrow-Band Laser, Bo - 1.5 G )  
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Figure 6-37: Residual of the 3He maser phase. Frequency noise generates the long 
term meander of the 3He phase, while phase noise is responsible for the short term 
jitter. 
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Figure 6-38: Residual of the 3He maser phase after a fit eliminating possible frequency 
corre1a)tions with the maser amplitudes and a constant frequency drift (see Eq. (4.2)). 
After ca,rrying out the fit, the meander is smaller than in Fig. 6-37, suggesting that 
the frequency noise ascribable to  amplitude instabilities and a constant frequency 
drift has been rejected from the maser frequency. 



1 2 g ~ e / 3 ~ e  Maser Stability 
(Data Set 1: Narrow-Band Laser, Bo - 1.5 G) 
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Figure 6-39: Allan deviation of the 3He frequency for DS1. The dotted line is a fit 
of the initial phase noise. Its characteristic slope decreases as 7--312 (see Tab. 2.2). 
The rV3l2 slope of the Allan deviation for the 12'Xe frequency demonstrates that 
the 12'Xe phase lock removes the frequency noise from 12'Xe. The continuous line 
indicates the calculated white thermal frequency noise (decreasing as r-ll2 ), vy ( r ) ,  
calculated using Eq. (6.22). In in this data set the maser frequency stability appears 
to be limited by thermal frequency noise. 



3 ~ e  Phase Residual Before and After 
the Amplitude Correlation Fit 

(Data Set 2: Broad-Band Laser, Bo - 6 G )  
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Figure 6-40: Residual of the 3He maser phase. Frequency noise generates the long 
term meander of the 3He phase, while phase noise is responsible for the short term 
jitter. 
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Figure 6-41: Residual of the 3He maser phase after a fit eliminating possible frequency 
correlations with the maser amplitudes and a constant frequency drift (see Eq. (4.2)). 
After ca,rrying out the fit, the meander is smaller than in Fig. 6-40, suggesting that 
the frequency noise ascribable to amplitude instabilities and a constant frequency 
drift, has been rejected from the maser frequency. 



l2 'xe I3~e  Maser Stability 
(Data Set 2: Broad-Band Laser, Bo = 6 G )  
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Figure 6-42: Allan deviation of the 3He frequency for DS2. The dotted line is a fit of 
the initial phase noise. Its characteristic slope decreases as T - ~ / ~  (see Tab. 2.2). The 
T - ~ / ~  slope of the Allan deviation for the '2gXe frequency demonstrates that the 12'Xe 
phase lock removes the frequency noise from 129Xe. The long term instability of the 
3He maser frequency is due to  the instability of the maser amplitudes (see Figs. 6- 
35, 6-36, 6-40, and 6-41) since fitting out (FO) the amplitude correlations (and a 
frequency drift) improves the Allan deviation (empty squares). The continuous line 
indicates the calculated white thermal frequency noise (decreasing as r-'I2), vFt (T) , 
calculated using Eq. (6.22). In this data set the maser frequency stability does not 
appear to be limited by thermal frequency noise, but by another white frequency 
noise source as we learn from the FO Allan deviation, whose slope decreases as r-'I2. 



Maser St ability Comparison 
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Figure 6-43: Comparison of the Allan deviations for DS1, DS2, and the average Allan 
deviation of the previous maser (see Sect. 4.1). Stability of the new maser at  one day, 
when the stable narrow-band laser is employed, is a factor of 3 to 5 better than the 
previous maser's stability. When the new maser is operated at  higher magnetic field 
and higher power (thanks to better optical-pumping from the broad-band LDA) the 
frequency stability for measurement intervals of 1,000 s improves by a factor of about 
7 with respect to  the previous system. Unfortunately, instabilities caused by the LDA 
spoil the long term stability. 



Lorentz Invariance Violation Sensitivity 

Measurement Interval (a) 

Figure 6-44: Comparison of Lorentz invariance violation sensitivity for DS1, DS2, and 
the average LI sensitivity of the previous maser (see Sect. 4.1). We carried out an LI 
analysis similar t o  that introduced in Sect. 4.1. We divided the data sets into samples 
of several fictitious rotation periods and performed the LI analysis on each data set 
for each rotation period. The new l2 'XeI3~e  maser, when operated at  sufficiently 
high maser power appears to have the potential for an increased LI sensitivity with 
respect to the previous maser. 



in DS1, as we saw in Figs. 6-35 and 6-36. 

A comparison of the Allan deviations for DS1, DS2, and the average Allan de- 

viation of the previous maser (see Sect. 4.1) is presented in Fig. 6-43. DS1 shows 

that the stability of the new maser at one day, when the stable narrow-band laser 

is employed, is a factor of 3 to 5 better than the previous maser's stability. On the 

other hand, when the new maser is operated at higher magnetic field and higher 

power the frequency sensitivity for measurement intervals of 1,000 s improves by a 

factor of about 7 with respect to the previous system. 

In order to extract preliminary indications of LI sensitivity, with the limited 

data available, we carried out an LI analysis similar to that introduced in Sect. 4.1. 

We divided the two data sets into samples of shorter, fictitious rotation periods 

and performed the LI analysis on each data set for each fictitious rotation period. 

Figure 6-44 shows that the LI sensitivity for a rotation period of 30,000 s is a factor 

of 4 or 5 better then in the previous maser. A similar improvement is expected for 

a rotation period of 1 day, but several days of data would be needed to verify this 

prediction. 

6.10 Looking Ahead 

In this chapter we have shown that the new temperature control system performs 

very well. The choice of materials for the new oven, maser and pump blocks, tubing, 

and insulation proved excellent. The new system is mechanically very robust. 

The power and frequency stabilization schemes for the Toptica narrow-band laser 

gave good results. However, the laser itself turned out to be too delicate for intensive 

use in the l2'XeI3He maser, which during LI tests needs to operate continuously for 

several months. During a testing period of about a year, slow deterioration of the 



laser's tapered amplifier happened twice and low laser power prevented us from 

consistently operating our masers at  sufficiently high powers. Nevertheless, our 

results with the Toptica laser confirm that the stability of narrow-band lasers is 

highly desirable. Future use of such lasers in the 129Xe/3He maser should be re- 

considered when more robust lasers with output powers greater than 1 W become 

available. 

The model describing the double-bulb l2'Xel3He maser that we developed in 

Ch. 4 is useful for developing an understanding of the transport of polarization be- 

tween the two bulbs, for investigating the different behavior of the two species, and 

for defining the effective time scales of the masers, such as bulb escape times, T;, 

TL, etc. The model is sufficiently reliable to  make order of magnitude predictions,14 

but is still too incomplete to  enable fine optimization of maser geometry, gas pres- 

sures, and operating temperatures. The weak points of the model are two: (i) the 

unreliability of the optical pumping simulation, due to  the well- known limit ations of 

the theory of spin-exchange optical pumping; and (ii) the loss of 12'Xe polarization 

due to  interaction with unpolarized Rb in the (warm) transfer tube, which is not 

included in the model. The latter effect was clearly observed for the first time in 

the new maser and ultimately prevented us from operating the maser at  the high 

temperatures (Tp z 140' C) for which the maser had been originally designed. A 

new model addressing both problems, or a new maser design allowing for cooling of 

the transfer tube, while maintaining excellent overall temperature stability, should 

be considered in the future. 

High maser powers were recently obtained, as we saw in the last section, by using 

the broad-band LDA and significantly raising the main magnetic field. The new gra- 

14F'or instance, the model predicts that  using a large pump bulb volume would favor the 3He 
maser, which has always been the maser with worse SNR. As expected, the new design delivered 
unprecedented 3 ~ e  maser powers. 



dient coils enabled us to  maintain high field homogeneity even at  this higher field. 

Thus, we diminished the effects of thermal frequency noise to an unprecedented 

level. This will enable us to  study more effectively the other sources of frequency 

noise still limiting the 129Xe/3He maser stability. On this subject, we have demon- 

strated the suppression of one order of magnitude in sensitivity to  magnetic field 

gradients, obtained by using lower gas pressures than in the past. We also discovered 

a mechanism coupling optical pumping light instability with maser frequency insta- 

bility and we removed this effect by installing an extra coil on the pump bulb (the 

effectiveness of this scheme should be properly assessed in the future). Admittedly, 

ambient magnetic field fluctuations and the intrinsic instabilities of the LDA st ill 

cause frequent disruption of the masers' stability and a better understanding of co- 

magnetometry and better control of the LDA must be developed. Nevertheless, our 

latest a,ssessment of frequency stability looks quite promising, since we have shown 

that there is no fundamental frequency noise that should prevent us to  achieve, in 

the near future, an improvement by a factor of 5 or 10 in Lorentz invariance violation 

sensitivity. 
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The invariance of the laws of nature under transforma- 
tions between inertial reference frames that differ in 
relative velocity ("boosts") is an essential feature of 
Lorentz symmetry, along with invariance under rotations. 
Experimental tests of boost invariance, such as the 
Kennedy-Thorndi ke experiment [ 11, have been performed 
for many years with increasing precision [2]. These ex- 
periments typically search for a variation of the velocity 
of light with the laboratory velocity and test boost in- 
variance in the context of classical electrodynamics. 
However, the fundamental role of Lorentz symmetry in 
physics makes it desirable to test boost invariance for 
other systems, such as massive particles with spin. 

In this Letter, we present a high-sensitivity experimen- 
tal test of boost invariance for the neutron, which we 
interpret in the context of the standard-model extension 
(SME) [3], a general theoretical framework that allows a 
comprehensive and systematic study of the implications 
of Lorentz-symmetry violation at observable energies. 
The SME provides a widely accepted formalism for the 
interpretation and comparison of experimental searches 
for violations of Lorentz symmetry and associated viola- 
tions of CPT symmetry (the product of charge conjuga- 
tion, parity inversion, and time reversal). The SME has 
been applied to many systems, including mesons [4], 
photons [ 2 , 5 ] ,  and leptons [6-81, as well as the neutron 
[9,10] and proton [ll]. An observable Lorentz violation 
could be a remnant of Planck-scale physics. One attractive 
origin is spontaneous Lorentz breaking in a fundamental 
theory [12], but other sources are possible 1131. 

Our experiment consists of a long-term monitoring of 
the frequencies of colocated 3 ~ e  and ' 2 9 ~ e  Zeeman mas- 
ers as the Earth rotates and revolves around the Sun. We 
search for a specific signature of a violation of boost 
invariance: an annual variation of the nuclear Zeeman 
splitting, modulated at the frequency of the Earth's daily 
sidereal rotation. Such an effect could arise from cou- 
plings of the 3 ~ e  and ' 2 9 ~ e  nuclear spins (each largely 
determined by a valence neutron) to background tensor 
fields, including a dependence of the Zeeman frequencies 

on the instantaneous velocity (magnitude and direction) 
of the laboratory. The appeal of the noble-gas maser 
experiment is the excellent absolute frequency stabil- 
ity [10,14,15], and thus the sensitivity to small, slow 
variations in the magnitude of Lorentz-violating spin 
couplings. 

Using the two-species noble-gas maser, we recently 
constrained the possible rotation-symmetry-violating 
couplings of the neutron spin with respect to an inertial 
reference frame based on the Earth [lo]. Here, we choose 
a Sun-based inertial reference frame, which allows us to 
study cleanly-for the first time in the fermion sector- 
the symmetry of spacetime with respect to boost trans- 
formations. (The pioneering work of Berglund et al. [16] 
does not distinguish between the boost and rotation ef- 
fects to which it is sensitive.) Our experiment's rest frame 
moves with the Earth around the Sun at a velocity of mag- 
nitude u, /c  = p, -- 9.9 X lo-', and the Lorentz trans- 
formation that describes the change of coordinates from 
the laboratory frame to the Sun-based frame includes 
both a rotation, R, and a boost along the velocity B. 

The most general, coordinate-independent Hamil- 
tonian, H, containing the Zeeman effect (from an applied 
magnetic field 6 )  and Lorentz-symmetry-violating cou- 
plings of the noble-gas nuclear spins, f ,  including leading 
terms to first order in p, takes the simple form 

Here, the vectors f and 6 are expressed in the lab frame, 
whereas the explicit Lorentz-symmetry-violating vector 
i, and 3 X 3 matrix A, have elements that are combi- 
nations of SME coefficients, which may be determined in 
terms of fundamental Lorentz-violating interactions 
[17,18], and are assumed constant in the Sun frame. The 
second term of Eq. (1) leads to a rotation-dependent 
modulation of the maser frequency. The third term con- 
tains cross couplings, in which the rotation induces daily 
sidereal modulations of the maser frequencies, while the 
boost transformation induces a sinusoidal variation of the 
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daily modulation amplitude over the course of the side- 
real year [19] as the direction of the velocity of the Earth 
va~ries with respect to the Sun. Terms from higher rank 
tensors (such as a yearly modulation in the maser fre- 
quency-for which our maser does not have the stability 
to set strong limits) have been neglected. 

We refer the reader to previous publications [lo, 14,151 
for details on the design and operation of our two-species 
noble-gas Zeeman maser. Here, we provide a brief review. 
Colocated ensembles of 1 2 9 ~ e  and 3 ~ e  atoms at pressures 
of hundreds of millibar are held in a double-chamber 
glilss cell placed in a homogeneous magnetic field of 
-- 1.5 G. Both species have spin-112 nuclei and the same 
sign nuclear magnetic dipole moment, but no higher- 
order electric or magnetic nuclear multipole moments. 
In one chamber of the glass cell, the noble-gas atoms 
arc: nuclear-spin polarized by spin-exchange collisions 
with optically pumped Rb vapor [20]. The noble-gas 
atoms diffuse into the second chamber, which is sur- 
rounded by an inductive circuit resonant both at the 3 ~ e  
and 1 2 9 ~ e  Zeeman frequencies (4.9 and 1.7 kHz, respec- 
tively). For a sufficiently high flux of population-inverted 
nuclear magnetization, active maser oscillation of both 
species can be maintained indefinitely. 

Because of the generally weak interactions of noble- 
gas atoms with the walls and during atomic collisions, the 
3 ~ e  and 1 2 9 ~ e  ensembles can have long Zeeman coher- 
ence (T2)  times of hundreds of seconds. It is thus possible 
to achieve excellent absolute frequency stability with one 
of the noble-gas masers by using the second maser as a 
comagnetometer. For example, Zeeman frequency mea- 
surements with a sensitivity of -100 nHz are possible 
with averaging intervals of about an hour [IS]. This two- 
species noble-gas maser can also serve as a sensitive 
NMR gyroscope [21]: the above quoted frequency stabil- 
ity implies a rotation sensitivity of 0.13 deg/h. 

For the boost-symmetry test, we choose a set of labo- 
ratory coordinates (t, x, y, z) ,  such that the i axis points 
south, the 2, axis points east, and the & axis points verti- 
cally upwards in the laboratory [22]. With the reasonable 
approximation that the orbit of the Earth is circular, the 
rotat ion, R , from the Sun-centered celestial equatorial 
frame to the standard laboratory frame is given by 

cosx coso, T ,  cosx sinw , T, - sinx 
cosw,T, 

sinx cos w , T,  sinx sinw, T, cosx 

In this equation, j = x, y, z denotes the spatial index in 
the laboratory frame, while J = X, Y,  Z denotes the spa- 
tial index in the Sun-centered frame using celestial equa- 
torial coordinates. The Earth's sidereal angular rotation 
frec~uency is w ,  = 277-/(23 h 56 min), and x - 47.6" is 
the colatitude of the laboratory, located in Cambridge, 
Massachusetts. The time T, is measured in the Sun- 
centered frame from the beginning of the sidereal day, 
which begins when the 2, and f axes align. 

The velocity 3-vector of the laboratory in the Sun- 
centered frame is 

Here, fl, is the angular frequency of the Earth's orbital 
motion. The time T is measured by a clock at rest at the 
origin, with T = 0 taken at 2:35 AM (U.S. Eastern 
Standard Time), March 20, 2000 [23]. The angle between 
the XY celestial equatorial plane and the Earth's orbital 
plane is q = 23.4". We have ignored the laboratory's 
velocity due to the rotation of the Earth, whose magni- 
tude, p, = r,w, sinxlc - 1.1 X (where r, is the 
radius of the Earth), is 2 orders of magnitude smaller than 
the orbital velocity. 

We assume that the Lorentz-violating coefficients of i, 
and A, are static and spatially uniform in the Sun frame, 
at least over the course of a solar year. The corresponding 
coefficients in the laboratory frame thus acquire a time 
dependence due to both the Earth's rotation and its revo- 
lution around the Sun. We also assume observer Lorentz 
covariance; hence direct Lorentz transformations yield 
the coefficients in the laboratory frame. 

In the boost-symmetry test, we used the ' 2 9 ~ e  maser as 
a comagnetometer to stabilize the magnetic field, which 
was oriented along the y axis (i.e., west to east). Thus the 
leading Lorentz-violating frequency variation of the free- 
running 3 ~ e  maser was given by 

where 

8vx = k[A, + P,(A,, sina,T + A,, cosa,T)], (5) 

Here A,, A,, A,,, A,,, . . . , are combinations of Sun-frame 
Lorentz-violating coefficients of A, and A,, and k = 

-8.46 X nHz/GeV [lo]. 
We note that Eqs. (4) and (5) cleanly distinguish the 

effects of rotation alone (terms proportional to A, and A,) 
from the effects of boosts due to the Earth's motion 
(terms proportional to A,,, A,,, A,,, A,,). In addition, 
these equations indicate that the sensitivity of our experi- 
ment to violations of boost-symmetry is reduced by a 
factor of /3, - loA4 with respect to the sensitivity to 
rotation-symmetry violation. However, for models of 
Lorentz violation that are isotropic in the frame of the 
cosmic microwave background [24], our experiment has 
greater sensitivity to boost-symmetry violation than to 
rotation-symmetr y violation. 

As discussed in [lo], we acquired noble-gas maser data 
in four different runs spread over about 13 months (see 
Fig. I). Each run lasted about 20 d, and we reversed the 
direction of the magnetic field after the first -10 d in 
each run to help distinguish possible Lorentz-violating 
effects from diurnal systematic variations. We fit this data 
to Eq. (4). Table I lists, for each run, the mean values we 
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determined for 6vx and 8vy ,  the amplitudes of sidereal 
day modulations of the '~e-maser  frequency due to 
Lorentz-violating coefficients in the 2 and P directions 
(Sun-centered frame). For each run, 6vX and Svy corre- 
spond to a very good approximation to a single high- 
precision measurement of the X and Y components of 
6 v,, performed at the mean time Ti. 

Next, we fit the values of 60, 8vy, and T j  in Table I to 
Eq. (5), thus obtaining the fit parameters reported in 
Table I1 and shown graphically in Fig. 1. We treated all 
fit parameters as independent and we extracted energy 
bounds for Lorentz-violating coefficients disregarding the 
possibility of accidental mutual cancellations. This analy- 
sis yielded no significant violation of boost invariance, 
with a limit of about 150 nHz on the magnitude of an 
annual modulation of the daily sidereal variation in the 
'He-maser frequency. 

To confirm that our result is consistent with the null 
hypothesis (i.e., no Lorentz-violating effect), we per- 
formed two checks. First, we generated 10000 faux 
3~e-maser  data sets including sidereal day frequency 
variations drawn from a normal distribution of zero 
mean but with standard errors for 6ux and Suy at each 
time T j  equal to the corresponding values found in the 
experiment. For each faux data set, we calculated the X 2  

of the fit to Eq. (5) and found that the value X 2  = 0.30 
from the real experimental data is highly probable for a 
system in which there is no daily sidereal modulation of 
the 3~e-maser  frequency at the experiment's level of 
sensitivity. In the second check, we performed a series 
of F tests to estimate the probabilities that the values of 
the fit parameters, determined from the maser data, arise 

Run mean date 

FIG. 1. Time course of the mean values of Sv, and Sv,. For 
each plot the dashed line is the best fit obtained from Eq. (5 ) ,  
using the fit parameters A,., A,, A,,, A,,, A,,, and A,, (see also 
the fit results in Table 11). Dotted lines indicate the 10 con- 
fidence bands for the fit model. 

entirely from statistical fluctuations. For all fit parame- 
ters, the F tests yielded probabilities greater than 30%, 
whereas it is customary to consider that a fit parameter is 
significantly different from zero only if the F test proba- 
bility is smaller than 5% or 1%. 

We also performed a series of checks for systematic 
effects, including sidereal day and year variations in 
maser temperature and signal amplitude (e.g., driven by 
variations in the optical-pumping laser). Temperature 
fluctuations in the ' ~ e  and the 1 2 9 ~ e  detection circuit 
can induce small maser-frequency shifts. Accurate tem- 
perature monitoring over the course of the 13-month 
experiment showed a maximum 1.6 mK sidereal day 
variation of maser temperature, corresponding to a maxi- 
mum sidereal day 'He-maser-frequency modulation of 
about 4 nHz, which is an order of magnitude smaller 
than our statistical sensitivity. A careful analysis of the 
maser amplitude showed a lack of phase coherence in 
sidereal day modulations over the 13-month data set, 
and hence an insignificant systematic sidereal-year varia- 
tion in the 'He-maser frequency. 

To interpret this test of boost invariance, we follow the 
conventions of Ref. [25] ,  Appendix C, which allows us to 
relate the maser frequencies to the various SME coeffi- 
cients for Lorentz and CPT violations. In particular, the 
neutron-and hence the frequency of each noble-gas 
maser-is sensitive to Lorentz and CPT violations con- 
trolled by the SME coefficients bA,  dAx, HAz, and g ~ z r  
[17]. Table I1 shows the corresponding bounds provided by 
our experiment to combinations of Sun-frame SME co- 
efficients, including the clean limit of GeV on 
boost violation. 

In conclusion, we used colocated ' ~ e  and 1 2 9 ~ e  
Zeeman masers to perform a high-sensitivity search for 
a violation of boost invariance of the neutron. We found 
no significant sidereal annual variation in the free- 
running 3~e-maser  frequency at a level of approximately 
150 nHz. This result provides the first clean test of boost 
symmetry for a fermion, and, in the context of the 
general standard-model extension, places a bound of 
about GeV on 11 previously unexplored coefficients 
among the 44 coefficients describing possible leading- 
order Lorentz- and CPT-violating couplings of the neu- 
tron. Significant improvements may be possible with a 

TABLE I. Mean and standard error of the two quadratures 
S v X  and S v y  of the sidereal day 3~e-maser-frequency modu- 
lations, for each of four runs. T j  indicates the mean date of the 
jth run. 

Tj 6 v x  (nHz) S v y  (nHz) 

41 15/99 156 2 90 37 2 90 
911 5/99 -100 t 112 -162 2 148 
3/10/00 42 t 86 25 2 76 
4/22/00 125 2 80 -25 t 99 
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TAHL,E 11. Limits from the present work on Lorentz violation of the neutron, expressed in terms of (i) the fit parameters of 
Eqs. (4) and ( 5 ) ,  i.e., coefficients for the general Lorentz-symmetry-violating vector i, and A, (both in the Sun frame); and 
(ii) combinations of Sun-frame SME coefficients for Lorentz and CPT violation (defined in Appendix B of Ref. [18]). Bounds on 
rotation-symmetry violation are set by the limits on A,. and A,, whereas bounds on boost-symmetry violation are determined from 
A,.,., A,.,, A,,, and A,,. --- 
A-- 

Measurable combinations of SME coefficients Fit para meters Fit results (GeV) 

by -- 0.0034d~ + 0. 0034gD y A, (8.0 2 9.5) x lo-32 
-6, 4- 0.0034d~ - 0.0034gDx AS (2.2 2 7.9) x 
- c o ~ ~ [ ( ; & ~  + t r i  - jj, - tgT)  + (gT - 22, + id,)] + sinv(dyz - rixT) A,, (-1.1 + 1.0) x 
-,GZT Acs (0.2 2 1.8) X 

[(lS 2 T -  t 42- - g, - tiT)-- (gT - 22, +trip)] Ass (- 1.8 +- 1.9) x 
cos7(HZT - dxy) - sinvHyT -- As, (-1.1 rt 0.8) X 
A-- 

" ~ e / ~ ~ e  Zeeman maser [26], with masers located on a 
rotating table [27], or with space-based clocks [28]. 
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