Simulation-Based Optimization of Markov Reward Processes

Marbach, P.
Tsitsiklis, J.N.
Simulation-Based Optimization of Markov Reward Processes

Peter Marbach and John N. Tsitsiklis

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139
e-mail: marbach@mit.edu, jnt@mit.edu

Abstract: We propose a simulation-based algorithm for optimizing the average reward in a Markov Reward Process that depends on a set of parameters. As a special case, the method applies to Markov Decision Processes where optimization takes place within a parametrized set of policies. The algorithm involves the simulation of a single sample path, and can be implemented on-line. A convergence result (with probability 1) is provided.

1This research was supported by a contract with Siemens AG, Munich, Germany, and by contract DMI-9625489 with the National Science Foundation.
1 Introduction

Markov Decision Processes and the associated dynamic programming (DP) methodology [Ber95a, Put94] provide a general framework for posing and analyzing problems of sequential decision making under uncertainty. DP methods rely on a suitably defined value function that has to be computed for every state in the state space. However, many interesting problems involve very large state spaces ("curse of dimensionality"), which prohibits the application of DP. In addition, DP assumes the availability of an exact model, in the form of transition probabilities. In many practical situations, such a model is not available and one must resort to simulation or experimentation with an actual system. For all of these reasons, dynamic programming in its pure form, may be inapplicable.

The efforts to overcome the aforementioned difficulties involve two main ideas:

1. The use of simulation to estimate quantities of interest, thus avoiding model-based computations.

2. The use of parametric representations to overcome the curse of dimensionality.

Parametric representations, and the associated algorithms, can be broadly classified into three main categories.

(a) One can use a parametric representation of the value function. For example, instead of associating a value $V(i)$ with every state i, one uses a parametric form $\hat{V}(i, r)$, where r is a vector of tunable parameters (weights), and \hat{V} is a so-called approximation architecture. For example, $\hat{V}(i, r)$ could be the output of a multilayer perceptron with weights r, when the input is i. Other representations are possible, e.g., involving polynomials, linear combinations of feature vectors, state aggregation, etc. When the main ideas from DP are combined with such parametric representations, one obtains methods that go under the names of "reinforcement learning" or "neurodynamic programming"; see [SB98, BT96] for textbook expositions, as well as the references therein. Some of the main methods of this type are Sutton's temporal difference (TD) methods [Sut88], Watkins' Q-learning algorithm [Wat89], and approximate policy iteration [BT96]. The distinguishing characteristic of such methods is that policy optimization is carried out in an indirect fashion: one tries to obtain a good approximation of the optimal value function of dynamic programming, and uses it to construct policies that are close to optimal. The understanding of such methods is still somewhat incomplete: convergence results or performance guarantees are available only for a few special cases such as state-space aggregation [TV96], optimal stopping problems [TV97], and an idealized form of policy iteration [BT96]. However, there have been some notable practical successes (see [SB98, BT96] for an overview), including the world-class backgammon player by Tesauro [Tes92].

(b) In an alternative approach, which is the one considered in this paper, the tuning of a parametrized value function is bypassed. Instead, one considers a class of policies described in terms of a parameter vector θ. Simulation is employed to estimate the gradient of the performance metric with respect to θ, and the policy is improved by updating θ in a gradient direction. Methods of this type have been extensively explored in the IPA (infinitesimal perturbation analysis) literature [CR94, HC91].
Many of these methods are focused on special problem types and do not readily extend to general Markov Decision Processes.

(c) A third approach, which is a combination of the above two, involves a so-called “actor-critic” architecture, that includes parametrizations of the policy (actor) and of the value function (critic) [BSA83]. At present, little is known about the theoretical properties of such methods (see, however, [Rao96]).

This paper concentrates on methods based on policy parametrization and (approximate) gradient improvement, in the spirit of item (b) above. It is actually not restricted to Markov Decision Processes, but it also applies to general Markov Reward Processes that depend on a parameter vector \(\theta \). Our first step is to obtain a method for estimating the gradient of the performance metric. In this connection, we note the “likelihood ratio” method of [Gly86], which has this flavor, but does not easily lend itself to on-line updating of the parameter vector. We find an alternative approach, based on a suitably defined “differential reward function,” to be more convenient. It relies on a gradient formula that has been presented in different forms in [CC97, CW98, FH94, JSJ95]. We exploit a variant of this formula and develop a method that updates the parameter vector \(\theta \) at every renewal time, in an approximate gradient direction. Furthermore, we show how to construct a truly on-line method that updates the parameter vector at each time step. In this respect, our work is closer to the methods described in [CR94] (that reference assumes, however, the availability of an IPA estimator, with certain guaranteed properties that are absent in our context) and in [JSJ95] (which, however, does not contain convergence results).

The method that we propose only keeps in memory and updates \(2K + 1 \) numbers, where \(K \) is the dimension of \(\theta \). Other than \(\theta \) itself, this includes a vector similar to the “eligibility trace” in Sutton’s temporal difference methods, and (as in [JSJ95]) an estimate \(\lambda \) of the average reward under the current value of the parameter vector. If that estimate was accurate, our method would be a standard stochastic gradient algorithm. However, as the policy keeps changing, \(\lambda \) is generally a biased estimate of the true average reward, and the mathematical structure of our method is more complex than that of stochastic gradient algorithms. For reasons that will become clearer later, convergence cannot be established using standard approaches (e.g., martingale arguments or the ODE approach), and a more elaborate proof is necessary.

In summary, the main contributions of this paper are as follows.

1. We introduce a new algorithm for updating the parameters of a Markov Reward Process. The algorithm involves only a single sample path of the system. The parameter updates can take place either at visits to a certain recurrent state, or at every time step. We also specialize the method to the case of Markov Decision Processes with parametrically represented policies.

2. We establish that the gradient (with respect to the parameter vector) of the performance metric converges to zero, with probability 1, which is the strongest possible result for gradient-related stochastic approximation algorithms.

The remainder of this paper is organized as follows. In Section 2, we introduce our framework and assumptions, and state some background results, including a formula for the gradient of the performance metric. In Section 3, we present an algorithm that performs
updates at visits to a certain recurrent state, present our main convergence result, and provide a heuristic argument. Section 4 deals with variants of the algorithm that perform updates at every time step. In Section 5, we specialize our methods to the case of Markov Decision Processes that are optimized within a possibly restricted set of parametrically represented randomized policies. The lengthy proof of our main results is developed in the appendices.

2 Markov Reward Processes Depending on a Parameter

In this section, we present our general framework, make a few assumptions, and state some basic results that will be needed later.

We consider a discrete-time, finite-state Markov chain \(\{i_n\} \) with state space \(S = \{1, \ldots, N\} \), whose transition probabilities depend on a parameter vector \(\theta \in \mathbb{R}^K \), and are denoted by

\[
p_{ij}(\theta) = P(i_n = j \mid i_{n-1} = i, \theta).
\]

Whenever the state is equal to \(i \), we receive a one-stage reward, that also depends on \(\theta \), and is denoted by \(g_i(\theta) \).

For every \(\theta \in \mathbb{R}^K \), let \(P(\theta) \) be the stochastic matrix with entries \(p_{ij}(\theta) \). Let \(\mathcal{P} = \{ P(\theta) \mid \theta \in \mathbb{R}^K \} \) be the set of all such matrices, and let \(\overline{\mathcal{P}} \) be its closure. Note that every element of \(\overline{\mathcal{P}} \) is also a stochastic matrix and, therefore, defines a Markov chain on the same state space. We make the following assumptions.

Assumption 1 The Markov chain corresponding to every \(P \in \overline{\mathcal{P}} \) is aperiodic. Furthermore, there exists a state \(i^* \) which is recurrent for every such Markov chain.

We will often refer to the times that the state \(i^* \) is visited as renewal times.

Assumption 2 For every \(i, j \in S \), \(p_{ij}(\theta) \) and \(g_i(\theta) \) are bounded, twice continuously differentiable, and have bounded first and second derivatives.

The performance metric that we use to compare different policies is the average reward criterion \(\lambda(\theta) \), defined by

\[
\lambda(\theta) = \lim_{t \to \infty} \frac{1}{t} E_{\theta}\left[\sum_{k=0}^{t} g_{i_k}(\theta) \right].
\]

Here, \(i_k \) is the state at time \(k \), and the notation \(E_{\theta}[\cdot] \) indicates that the expectation is taken with respect to the distribution of the Markov chain with transition probabilities \(p_{ij}(\theta) \). Under Assumption 1, the average reward \(\lambda(\theta) \) is well defined for every \(\theta \), and does not depend on the initial state. Furthermore, the balance equations

\[
\sum_{i=1}^{N} \pi_i(\theta) p_{ij}(\theta) = \pi_j(\theta), \quad j = 1, \ldots, N - 1, \tag{1}
\]

\[
\sum_{i=1}^{N} \pi_i(\theta) = 1, \tag{2}
\]
have a unique solution \(\pi(\theta) = (\pi_1(\theta), \ldots, \pi_N(\theta)) \), with \(\pi_i(\theta) \) being the steady state probability of state \(i \) under that particular value of \(\theta \), and the average reward is equal to

\[
\lambda(\theta) = \sum_{i=1}^{N} \pi_i(\theta) g_i(\theta). \tag{3}
\]

We observe that the balance equations (1)-(2) are of the form

\[
A(\theta)\pi(\theta) = a,
\]

where \(a \) is a fixed vector and \(A(\theta) \) is an \(N \times N \) matrix. Using the fact that \(A(\theta) \) depends smoothly on \(\theta \), we have the following result.

Lemma 1 Let Assumptions 1 and 2 hold. Then, \(\pi(\theta) \) and \(\lambda(\theta) \) are twice differentiable, and have bounded first and second derivatives.

Proof: The balance equations can be written in the form \(A(\theta)\pi(\theta) = a \), where the entries of \(A(\theta) \) have bounded second derivatives (Assumption 2). Since the balance equations have a unique solution, the matrix \(A(\theta) \) is always invertible and Cramer's rule yields

\[
\pi(\theta) = \frac{C(\theta)}{\det(A(\theta))}, \tag{4}
\]

where \(C(\theta) \) is a vector whose entries are polynomial functions of the entries of \(A(\theta) \). Using Assumption 2, \(C(\theta) \) and \(\det(A(\theta)) \) are twice differentiable and have bounded first and second derivatives.

More generally, suppose that \(P \in \overline{P} \), i.e., \(P \) is the limit of the stochastic matrices \(P(\theta_k) \) along some sequence \(\theta_k \). The corresponding balance equations are again of the form \(A(P)\pi = a \), where \(A(P) \) is a matrix depending on \(P \). Under Assumption 1, these balance equations have again a unique solution, which implies that \(\det(A(P)) \) is positive. Note that \(\det(A(P)) \) is a continuous function of \(P \), and \(P \) lies in the set \(\overline{P} \), which is closed and bounded. It follows that \(\det(A(P)) \) is bounded below by a positive constant \(c \). Since every \(P(\theta) \) belongs to \(\overline{P} \), it follows that \(\det(A(P(\theta))) \geq c > 0 \), for every \(\theta \). This fact, together with Eq. (4) implies that \(\pi(\theta) \) is twice differentiable and has bounded first and second derivatives. The same property holds true for \(\lambda(\theta) \), as can be seen by differentiating twice the formula (3). \(\square \)

2.1 The Gradient of \(\lambda(\theta) \)

For any \(\theta \in \mathbb{R}^K \) and \(i \in S \), we define the differential reward \(v_i(\theta) \) of state \(i \) by

\[
v_i(\theta) = E_0 \left[\sum_{k=0}^{T-1} (g_{i_k}(\theta) - \lambda(\theta)) \mid i_0 = i \right], \tag{5}
\]

where \(T = \min\{k > 0 \mid i_k = i^*\} \) is the first future time that state \(i^* \) is visited. With this definition, it is well known that \(v_{i^*}(\theta) = 0 \).

The following proposition gives an expression for the gradient of the average reward \(\lambda(\theta) \), with respect to \(\theta \). A related expression (in a somewhat different context) was given in [JSJ95], and a proof can be found in [CC97]. The latter reference does not consider the case where \(g_i(\theta) \) depends on \(\theta \), but the extension is immediate.
Proposition 1 Let Assumptions 1 and 2 hold. Then,

$$\nabla \lambda(\theta) = \sum_{i \in S} \pi_i(\theta) \left(\nabla g_i(\theta) + \sum_{j \in S} \nabla p_{ij}(\theta) v_j(\theta) \right).$$

Equation (3) for $\lambda(\theta)$ suggests that $\nabla \lambda(\theta)$ could involve terms of the form $\nabla \pi_i(\theta)$, but the expression given by Proposition 1 involves no such terms. This property is very helpful in producing simulation-based estimates of $\nabla \lambda(\theta)$.

2.2 An idealized gradient algorithm

Given that our goal is to maximize the average reward $\lambda(\theta)$, it is natural to consider gradient-type methods. If the gradient of $\lambda(\theta)$ could be computed exactly, we would consider a gradient algorithm of the form

$$\theta_{k+1} = \theta_k + \gamma_k \nabla \lambda(\theta_k).$$

Based on the fact that $\lambda(\theta)$ has bounded second derivatives, and under suitable conditions on the stepsizes γ_k, it would follow that $\lim_{k \to \infty} \nabla \lambda(\theta_k) = 0$ and that $\lambda(\theta_k)$ converges [Ber95b].

Alternatively, if we could use simulation to produce an unbiased estimate h_k of $\nabla \lambda(\theta_k)$, we could then employ the approximate gradient iteration

$$\theta_{k+1} = \theta_k + \gamma_k h_k.$$

The convergence of such a method can be established if we use a diminishing stepsize sequence and make suitable assumptions on the estimation errors. Unfortunately, it does not appear possible to produce unbiased estimates of $\nabla \lambda(\theta)$ in a manner that is consistent with on-line implementation based on a single sample path. This difficulty is bypassed by the method developed in the next section.

3 The Simulation-Based Method

In the previous section, we described an idealized gradient algorithm for tuning the parameter vector θ. In this section, we develop a simulation-based algorithm that replaces the gradient $\nabla \lambda(\theta)$ by an estimate obtained by simulating a single sample path. We will show that this algorithm retains the convergence properties of the idealized gradient method.

For technical reasons, we make the following assumption on the transition probabilities $p_{ij}(\theta)$. In Section 5, this assumption is revisited and we argue that it need not be restrictive.

Assumption 3 There exists a positive scalar ϵ, such that for every $i, j \in S$, we have

- either $p_{ij}(\theta) = 0, \ \forall \ \theta$, or $p_{ij}(\theta) \geq \epsilon, \ \forall \ \theta$.

\[6\]
3.1 Estimation of $\nabla \lambda(\theta)$

Throughout this subsection, we assume that the parameter vector θ is fixed to some value. Let $\{i_n\}$ be a sample path of the corresponding Markov chain, possibly obtained through simulation. Let t_m be the time of the mth visit at the recurrent state i^*. We refer to the sequence $i_{t_m}, i_{t_m+1}, \ldots, i_{t_m+1}$ as the mth renewal cycle, and we define its length T_m by

$$T_m = t_{m+1} - t_m.$$

For a fixed θ, the random variables T_m are independent identically distributed, and have a (common) finite mean, denoted by $E_\theta[T]$.

Our first step is to rewrite the formula for $\nabla \lambda(\theta)$ in the form

$$\nabla \lambda(\theta) = \sum_{i \in S} \pi_i(\theta) \left(\nabla g_i(\theta) + \sum_{j \in S} p_{ij}(\theta) \left(\frac{\nabla p_{ij}(\theta)}{p_{ij}(\theta)} v_j(\theta) \right) \right),$$

where $S_i = \{ j \mid p_{ij}(\theta) > 0 \}$. Estimating the term $\pi_i(\theta) \nabla g_i(\theta)$ through simulation is straightforward, assuming that we are able to compute $\nabla g_i(\theta)$ for any given i and θ. The other term can be viewed as the expectation of $v_j(\theta) \nabla p_{ij}(\theta)/p_{ij}(\theta)$, with respect to the steady-state probability $\pi_i(\theta) p_{ij}(\theta)$ of transitions from i to j. Furthermore, the definition (5) of $v_j(\theta)$, suggests that if $t_m < n \leq t_{m+1} - 1$, and $i_n = j$, we can use

$$\tilde{v}_{in}(\theta, \tilde{\lambda}) = \sum_{k=n}^{t_{m+1}-1} \left(g_{ik}(\theta) - \tilde{\lambda} \right),$$

(6)

to estimate $v_j(\theta)$, where $\tilde{\lambda}$ is some estimate of $\lambda(\theta)$. Note that $v_j(\theta) = 0$ and does not need to be estimated. For this reason, we let

$$\tilde{v}_{in}(\theta, \tilde{\lambda}) = 0, \quad \text{if} \quad n = t_m.$$

By accumulating the above described estimates over a renewal cycle, we are finally led to an estimate of $\nabla \lambda(\theta)$ given by

$$F_m(\theta, \tilde{\lambda}) = \sum_{n=t_m}^{t_{m+1}-1} \left(\tilde{v}_{in}(\theta, \tilde{\lambda}) \nabla p_{i_{n-1};i_n}(\theta) + \nabla g_{in}(\theta) \right).$$

(7)

Note that the denominator $p_{i_{n-1};i_n}(\theta)$ is always positive, since only transitions that have positive probability will be observed. Also, the random variables $F_m(\theta, \tilde{\lambda})$ are independent and identically distributed for different values of m, because the transitions during distinct renewal cycles are independent.

We define $f(\theta, \tilde{\lambda})$ to be the expected value of $F_m(\theta, \tilde{\lambda})$, namely,

$$f(\theta, \tilde{\lambda}) = E_\theta[F_m(\theta, \tilde{\lambda})].$$

(8)

The following proposition confirms that the expectation of $F_m(\theta, \tilde{\lambda})$ is aligned with $\nabla \lambda(\theta)$, to the extent that $\tilde{\lambda}$ is close to $\lambda(\theta)$.

7
Proposition 2: We have

\[f(\theta, \lambda) = E_\theta[T] \nabla \lambda(\theta) + G(\theta)(\lambda(\theta) - \lambda), \]

where

\[G(\theta) = E_\theta \left[\sum_{n=t_{m+1}}^{t_{m+1}-1} \frac{(t_{m+1} - n) \nabla p_{i_{n-1}i_n}(\theta)}{p_{i_{n-1}i_n}(\theta)} \right]. \tag{9} \]

Proof: Note that for \(n = t_m + 1, \ldots, t_{m+1} - 1 \), we have

\[\tilde{v}_{i_n}(\theta, \lambda) = \sum_{k=n}^{t_{m+1}-1} (g_{i_k}(\theta) - \lambda(\theta)) + (t_{m+1} - n)(\lambda(\theta) - \lambda). \]

Therefore,

\[F_{i_n}(\theta, \lambda) = \sum_{n=t_{m+1}}^{t_{m+1}-1} a_n \nabla p_{i_{n-1}i_n}(\theta) + \sum_{n=t_{m+1}}^{t_{m+1}-1} (t_{m+1} - n)(\lambda(\theta) - \lambda) \frac{\nabla p_{i_{n-1}i_n}(\theta)}{p_{i_{n-1}i_n}(\theta)} + \sum_{n=t_m}^{t_{m+1}-1} \nabla g_{i_n}(\theta), \]

where

\[a_n = \sum_{k=n}^{t_{m+1}-1} (g_{i_k}(\theta) - \lambda(\theta)). \tag{10} \]

We consider separately the expectations of the three sums above. Using the definition of \(G(\theta) \), the expectation of the second sum is equal to \(G(\theta)(\lambda(\theta) - \lambda) \). We then consider the third sum. As is well known, the expected sum of rewards over a renewal cycle is equal to the steady-state expected reward times the expected length of the renewal cycle. Therefore, the expectation of the third sum is

\[E_\theta \left[\sum_{n=t_m}^{t_{m+1}-1} \nabla g_{i_n}(\theta) \right] = E_\theta[T] \sum_{i \in S} \pi_i(\theta) \nabla g_i(\theta). \tag{11} \]

We now focus on the expectation of the first sum. For \(n = t_{m+1}, \ldots, t_{m+1} - 1 \), let

\[\Delta_n = (a_n - v_{i_n}(\theta)) \frac{\nabla p_{i_{n-1}i_n}(\theta)}{p_{i_{n-1}i_n}(\theta)}. \]

Let \(F_n = \{i_0, \ldots, i_n\} \) stand for the history of the process up to time \(n \). By comparing the definition (10) of \(a_n \) with the definition (5) of \(v_{i_n}(\theta) \), we obtain

\[E_\theta[a_n | F_n] = v_{i_n}(\theta). \tag{12} \]

It follows that \(E_\theta[\Delta_n | F_n] = 0 \).

Let \(\chi_n = 1 \) if \(n < t_{m+1} \), and \(\chi_n = 0 \), otherwise. For any \(n > t_m \), we have

\[E_\theta[\chi_n \Delta_n | F_{t_m}] = E_\theta[E_\theta[\chi_n \Delta_n | F_n] | F_{t_m}] = E_\theta[\chi_n E_\theta[\Delta_n | F_n] | F_{t_m}] = 0. \]
We then have
\[
E_\theta \left[\sum_{n=t_{m+1}}^{t_{m+1}-1} \Delta_n \mid F_{t_m} \right] = E_\theta \left[\sum_{n=t_{m+1}}^{\infty} \Delta_n \mid F_{t_m} \right]
\]
\[
= \sum_{n=t_{m+1}}^{\infty} E_\theta [\Delta_n \mid F_{t_m}]
\]
\[
= 0.
\]
(The interchange of the summation and the expectation can be justified by appealing to the dominated convergence theorem.)

We therefore have
\[
E_\theta \left[\sum_{n=t_{m+1}}^{t_{m+1}-1} a_n \frac{\nabla p_{i_{n-1}i_n}(\theta)}{p_{i_{n-1}i_n}(\theta)} \right] = E_\theta \left[\sum_{n=t_{m+1}}^{t_{m+1}-1} v_{i_n}(\theta) \frac{\nabla p_{i_{n-1}i_n}(\theta)}{p_{i_{n-1}i_n}(\theta)} \right].
\]

The right-hand side can be viewed as the total reward over a renewal cycle of a Markov reward process, where the reward associated with a transition from \(i \) to \(j \) is \(v_j(\theta)\frac{v_{i_{n=tm}}(\theta)}{v_{i_{n=tm+1}}(\theta)} \).

Recalling that any particular transition has steady-state probability \(\pi_i(\theta)p_{ij}(\theta) \) of being from \(i \) to \(j \), we obtain
\[
E_\theta \left[\sum_{n=t_{m+1}}^{t_{m+1}-1} a_n \frac{\nabla p_{i_{n-1}i_n}(\theta)}{p_{i_{n-1}i_n}(\theta)} \right] = E_\theta[T] \sum_{i \in S, j \in S_i} \pi_i(\theta)p_{ij}(\theta) \left(\frac{\nabla p_{ij}(\theta)}{p_{ij}(\theta)}v_j(\theta) \right).
\]

By combining Eqs. (11) and (13), and comparing with the formula for \(\nabla \lambda(\theta) \), we see that the desired result has been proved.

3.2 An Algorithm that Updates at Visits to the Recurrent State

We now use the approximate gradient direction provided by Proposition 2, and propose a simulation-based algorithm that performs updates at visits to the recurrent state \(i^* \). We use the variable \(m \) to index the times when the recurrent state \(i^* \) is visited and the corresponding updates. The form of the algorithm is the following. At the time \(t_m \) that state \(i^* \) is visited for the \(m \)th time, we have available a current vector \(\theta_m \) and an average reward estimate \(\bar{\lambda}_m \). We then simulate the process according to the transition probabilities \(p_{ij}(\theta_m) \) until the next time \(t_{m+1} \) that \(i^* \) is visited and update according to
\[
\theta_{m+1} = \theta_m + \gamma_m F_m(\theta_m, \bar{\lambda}_m),
\]
\[
\bar{\lambda}_{m+1} = \bar{\lambda}_m + \gamma_m \sum_{n=t_m}^{t_{m+1}-1} (g_{i_n}(\theta_m) - \bar{\lambda}_m),
\]
where \(\gamma_m \) is a positive stepsize sequence (cf. Assumption 4 below). To see the rationale behind Eq. (15) note that the expected update direction for \(\bar{\lambda} \) is
\[
E_\theta \left[\sum_{n=t_m}^{t_{m+1}-1} (g_{i_n}(\theta) - \bar{\lambda}) \right] = E_\theta[T](\lambda(\theta) - \bar{\lambda}),
\]
which moves \(\bar{\lambda} \) closer to \(\lambda(\theta) \).
Assumption 4 The stepsizes γ_m are nonnegative and satisfy

$$\sum_{m=1}^{\infty} \gamma_m = \infty, \quad \sum_{m=1}^{\infty} \gamma_m^2 < \infty.$$

Assumption 4 is satisfied, for example, if we let $\gamma_m = 1/m$. It can be shown that if θ is held fixed, but λ keeps being updated according to Eq. (15), then λ converges to $\lambda(\theta)$. However, if θ is also updated according to Eq. (14), then the estimate $\hat{\lambda}_m$ can "lag behind" $\lambda(\theta_m)$. As a consequence, the expected update direction for θ will not be aligned with the gradient $\nabla \lambda(\theta)$.

An alternative approach that we do not pursue is to use different stepsizes for updating λ and θ. If the stepsize used to update θ is, in the limit, much smaller than the stepsize used to update λ, the algorithm exhibits a two-time scale behavior of the form studied in [Bor97]. In the limit, $\hat{\lambda}_m$ is an increasingly accurate estimate of $\lambda(\theta_m)$, and the algorithm is effectively a stochastic gradient algorithm. However, such a method would make slower progress, as far as θ is concerned. Our convergence results indicate that this alternative approach is not necessary.

We can now state our main result.

Proposition 3 Let Assumptions 1-4 hold, and let $\{\theta_m\}$ be the sequence of parameter vectors generated by the above described algorithm. Then, $\lambda(\theta_m)$ converges and

$$\lim_{m \to \infty} \nabla \lambda(\theta_m) = 0,$$

with probability 1.

3.3 A Heuristic Argument

In this subsection, we approximate the algorithm by a suitable ODE (as in [Lju77]), and establish the convergence properties of the ODE. While this argument does not constitute a proof, it illustrates the rationale behind our convergence result.

We replace the update directions by their expectations under the current value of θ. The update equations for θ and λ take the form

$$\begin{align*}
\theta_{m+1} &= \theta_m + \gamma_m f(\theta_m, \hat{\lambda}_m), \\
\hat{\lambda}_{m+1} &= \hat{\lambda}_m + \gamma_m E_{\theta_m}[T] (\lambda(\theta_m) - \hat{\lambda}_m),
\end{align*}$$

where $f(\theta, \lambda)$ is given by Proposition 2. With an asymptotically vanishing stepsize, and after rescaling time, this deterministic iteration behaves similar to the following system of differential equations:

$$\begin{align*}
\dot{\theta}_t &= \nabla \lambda(\theta_t) + \frac{G(\theta_t)}{E_{\theta_t}[T]} (\lambda(\theta_t) - \hat{\lambda}_t), \quad (17) \\
\dot{\hat{\lambda}}_t &= \lambda(\theta_t) - \hat{\lambda}_t. \quad (18)
\end{align*}$$

Note that $\hat{\lambda}_t$ and $\lambda(\theta_t)$ are bounded functions since the one-stage reward $g_t(\theta)$ is finite-valued and, therefore, bounded. We will now argue that $\hat{\lambda}_t$ converges.
We first consider the case where the initial conditions satisfy $\lambda_0 \leq \lambda(\theta_0)$. We then claim that

$$\dot{\lambda}_t \leq \lambda(\theta_t), \quad \forall \ t > 0. \quad (19)$$

Indeed, suppose that at some time t_0 we have $\dot{\lambda}_{t_0} = \lambda(\theta_{t_0})$. If $\nabla \lambda(\theta_{t_0}) = 0$, then we are at an equilibrium point of the differential equations, and we have $\dot{\lambda}_t = \lambda(\theta_t)$ for all subsequent times. Otherwise, if $\nabla \lambda(\theta_{t_0}) \neq 0$, then $\dot{\theta}_{t_0} = \nabla \lambda(\theta_{t_0})$, and $\dot{\lambda}(\theta_{t_0}) > 0$. At the same time, we have $\dot{\lambda}_{t_0} = 0$, and this implies that $\dot{\lambda}_t < \lambda(\theta_t)$ for t slightly larger than t_0. The validity of the claim (19) follows. As long as $\dot{\lambda}_t \leq \lambda(\theta_t)$, $\dot{\lambda}_t$ is nondecreasing and since it is bounded, it must converge.

Suppose now that the initial conditions satisfy $\lambda_0 > \lambda(\theta_0)$. As long as this condition remains true, $\dot{\lambda}_t$ is nonincreasing. There are two possibilities. If this condition remains true for all times, then $\dot{\lambda}(t)$ converges. If not, then there exists a time t_0 such that $\dot{\lambda}_{t_0} = \lambda(\theta_{t_0})$, which takes us back to the previously considered case.

Having concluded that $\dot{\lambda}_t$ converges, we can use Eq. (18) to argue that $\lambda(\theta_t)$ must also converge to the same limit. Then, in the limit, θ_t evolves according to $\dot{\theta}_t = \nabla \lambda(\theta_t)$, from which it follows that $\nabla \lambda(\theta_t)$ must go to zero.

We now comment on the nature of a rigorous proof. There are two common approaches for proving the convergence of stochastic approximation methods. One method relies on the existence of a suitable Lyapunov function and a martingale argument. In our context, $\lambda(\theta)$ could play such a role. However, as long as $\dot{\lambda}_t \neq \lambda(\theta_t)$, our method cannot be expressed as a stochastic gradient algorithm and this approach does not go through. (Furthermore, it is unclear whether another Lyapunov function would do.) The second proof method, the so-called ODE approach, shows that the trajectories followed by the algorithm converge to the trajectories of a corresponding deterministic ODE, e.g., the ODE given by Eqs. (17)-(18). This line of analysis generally requires the iterates to be bounded functions of time. In our case, such a boundedness property is not guaranteed to hold. For example, if θ stands for the weights of a neural network, it is certainly possible that certain “neurons” asymptotically saturate, and the corresponding weights drift to infinity. We conclude that we need a line of argument specially tailored to our particular algorithm. In rough terms, it proceeds along the same lines as the above provided deterministic analysis, except that we need to ensure that the stochastic terms are not significant.

3.4 Implementation Issues

In this subsection, we indicate an economical way of computing the direction $F_m(\theta, \dot{\lambda})$ of update of the vector θ.

Taking into account that $\ddot{v}_{tm}(\theta, \dot{\lambda}) = 0$, Eq. (7) becomes

$$F_m(\theta, \dot{\lambda}) = \frac{t_{m+1}}{\sum_{n=t_m+1}^{t_{m+1}} \ddot{v}_{in}(\theta, \dot{\lambda})} \frac{\nabla p_{in} \dot{g}_{in}(\theta)}{\ddot{p}_{in} \dot{g}_{in}(\theta)} + \frac{t_{m+1}}{\sum_{n=t_m}^{t_{m+1}} \ddot{v}_{in}(\theta)} \frac{\nabla g_{in}(\theta)}{\ddot{p}_{in} \dot{g}_{in}(\theta)}$$

$$= \frac{t_{m+1}}{\sum_{n=t_m+1}^{t_{m+1}} \left(\nabla g_{in}(\theta) + \frac{\nabla p_{in} \dot{g}_{in}(\theta)}{\ddot{p}_{in} \dot{g}_{in}(\theta)} \sum_{k=n}^{t_{m+1}} (g_{ik}(\theta) - \dot{\lambda}) \right) + \nabla g_{i*}(\theta)}$$

$$= \frac{t_{m+1}}{\sum_{k=t_m+1}^{t_{m+1}} \left(\nabla g_{ik}(\theta) + (g_{ik}(\theta) - \dot{\lambda}) \sum_{n=t_m+1}^{k} \frac{\nabla p_{in} \dot{g}_{in}(\theta)}{\ddot{p}_{in} \dot{g}_{in}(\theta)} \right) + \nabla g_{i*}(\theta)}$$

11
where

\[z_k = \sum_{n=k+1}^{K} \gamma_n \frac{p_{ini_{n-1}}(\theta)}{p_{ini_{n}}(\theta)}, \quad k = t_m + 1, \ldots, t_{m+1} - 1, \]

is a vector (of the same dimension as \(\theta \)) that becomes available at time \(k \). It can be updated recursively, with

\[z_{t_m} = 0, \quad (20) \]

and

\[z_{k+1} = z_k + \gamma_{k+1} \frac{p_{i_ki_{k+1}}(\theta)}{p_{i_{k+1}i_{k+1}}(\theta)}, \quad k = t_m, \ldots, t_{m+1} - 2. \quad (21) \]

In order to implement the algorithm, on the basis of the above equations, we only need to maintain in memory \(2K + 1 \) scalars, namely \(\lambda \), and the vectors \(\theta, z \). In the next section, we suggest a variant of the algorithm that updates the parameter vector \(\theta \) at every time step, rather than at visits to the recurrent state \(i^* \).

4 Algorithms that Update at Every Time Step

We now propose a fully on-line algorithm that updates the parameter vector \(\theta \) at each time step. Recall that in the preceding subsection, \(F_m(\theta, \lambda) \) was expressed as a sum of terms, with one additional term becoming available subsequent to each transition. Accordingly, we break down the total update into a sum of incremental updates carried out at each time step.

At a typical time \(k \), the state is \(i_k \), and the values of \(\theta_k, z_k, \) and \(\lambda_k \) are available from the previous iteration. We update \(\theta \) and \(\lambda \) according to

\[\theta_{k+1} = \theta_k + \gamma_k \left(\nabla g_{i_k}(\theta_k) + \left(g_{i_k}(\theta_k) - \lambda_k \right) z_k \right), \]

\[\lambda_{k+1} = \lambda_k + \gamma_k \left(g_{i_k}(\theta_k) - \lambda_k \right). \]

We then simulate a transition to the next state \(i_{k+1} \) according to the transition probabilities \(p_{i_j}(\theta_{k+1}) \), and finally update \(z \) by letting

\[z_{k+1} = \begin{cases} 0, & \text{if } i_{k+1} = i^*, \\ z_k + \frac{\nabla p_{i_ki_{k+1}}(\theta_k)}{p_{i_{k+1}i_{k+1}}(\theta_k)}, & \text{otherwise.} \end{cases} \]

In order to prove convergence of this version of the algorithm, we will use an additional condition on the stepsizes.

Assumption 5 The stepsizes \(\gamma_k \) are nonincreasing. Furthermore, there exists a positive integer \(p \) and a positive scalar \(A \) such that

\[\sum_{k=n}^{n+t} (\gamma_n - \gamma_k) \leq At^p \gamma_n^2, \quad \forall n, t > 0. \]
Assumption 5 is satisfied, for example, if we let $\gamma_k = 1/k$. With this choice, and if we initialize λ to zero, it is easily verified that λ_k is equal to the average reward obtained in the first k transitions.

We have the following convergence result.

Proposition 4 Let Assumptions 1-5 hold, and let $\{\theta_k\}$ be the sequence of parameter vectors generated by the above described algorithm. Then, $\lambda(\theta_k)$ converges and

$$\lim_{k \to \infty} \nabla \lambda(\theta_k) = 0,$$

with probability 1.

The algorithm of this section is similar to the algorithm of the preceding one, except that θ is continually updated in the course of a renewal cycle. Because of the diminishing stepsize, these incremental updates are asymptotically negligible and the difference between the two algorithms is inconsequential. Given that the algorithm of the preceding section converges, Proposition 4 is hardly surprising.

4.1 A Modified On-Line Algorithm

If the length of a typical interval between visits to the recurrent state i^* is large, as is the case in many applications, then the vector z_k may become quite large before it is reset to zero, resulting in high variance for the updates. For this reason, it may be preferable to introduce a forgetting factor $\alpha \in (0, 1)$ and update z_k according to

$$z_{k+1} = \alpha z_k + \frac{\nabla p_{i_k^*k+1}(\theta)}{p_{i_k^*k+1}(\theta)},$$

without resetting it when i^* is visited. This modification, which resembles the algorithm introduced in [JSJ95], can reduce the variance of a typical update, but introduces an additional bias in the update direction. Given that gradient-type methods are fairly robust with respect to small biases, this modification may result in improved practical performance.

As in [JSJ95], this modified algorithm can be justified if we define the differential reward by

$$v_i(\theta) = E_\theta \left[\sum_{k=0}^\infty (g_{ik}(\theta) - \lambda(\theta)) \mid i_0 = i \right],$$

instead of Eq. (5), approximate it with

$$v_i(\theta) \approx E_\theta \left[\sum_{k=0}^\infty \alpha^k (g_{ik}(\theta) - \lambda(\theta)) \mid i_0 = i \right],$$

(which is increasingly accurate as $\alpha \uparrow 1$), use the estimate

$$\tilde{v}_{in}(\theta, \tilde{\lambda}) = \sum_{k=n}^\infty \alpha^k (g_{ik}(\theta) - \tilde{\lambda}),$$

instead of Eq. (6), and then argue similar to Section 3. The analysis of this algorithm will be reported elsewhere.
5 Markov Decision Processes

In this section, we indicate how to apply our methodology to Markov Decision Processes.

We consider a Markov Decision Processes [Ber95a, Put94] with finite state space \(S = \{1, \ldots, N\} \) and finite action space \(U = \{1, \ldots, L\} \). At any state \(i \), the choice of a control action \(u \in U \) determines the probability \(p_{ij}(u) \) that the next state is \(j \). The immediate reward at each time step is of the form \(g_i(u) \), where \(i \) and \(u \) is the current state and action, respectively.

A (randomized) policy is defined as a mapping

\[
\mu : S \mapsto [0, 1]^L,
\]

with components \(\mu_u(i) \) such that

\[
\sum_{u \in U} \mu_u(i) = 1, \quad \forall \ i \in S.
\]

Under a policy \(\mu \), and whenever the state is equal to \(i \), action \(u \) is chosen with probability \(\mu_u(i) \), independent of everything else. If for every state \(i \) there exists a single \(u \) for which \(\mu_u(i) \) is positive (and, therefore, unity), we say that we have a pure policy.

For problems involving very large state spaces, it is impossible to even describe an arbitrary pure policy \(\mu \), since this requires a listing of the actions corresponding to every state. This leads us to consider policies described in terms of a parameter vector \(\theta = (\theta_1, \ldots, \theta_K) \), whose dimension \(K \) is tractably small. We are interested in a method that performs small incremental updates of the parameter \(\theta \). A method of this type can work only if the policy has a smooth dependence on \(\theta \), and this is the main reason why we choose to work with randomized policies.

We allow \(\theta \) to be an arbitrary element of \(\mathbb{R}^K \). With every \(\theta \in \mathbb{R}^K \), we associate a randomized policy \(\mu(\theta) \), which at any given state \(i \) chooses action \(u \) with probability \(\mu_u(i, \theta) \). Naturally, we require that every \(\mu_u(i, \theta) \) be nonnegative and that \(\sum_{u \in U} \mu_u(i, \theta) = 1 \). Note that the resulting transition probabilities are given by

\[
p_{ij}(\theta) = \sum_{u \in U} \mu_u(i, \theta) p_{ij}(u), \tag{22}
\]

and the expected reward per stage is given by

\[
g_i(\theta) = \sum_{u \in U} \mu_u(i, \theta) g_i(u).
\]

The objective is to maximize the average reward under policy \(\mu(\theta) \), which is denoted by \(\lambda(\theta) \). This is a special case of the framework of Section 2. We now discuss the various assumptions introduced in earlier sections.

In order to satisfy Assumption 1, it suffices to assume that there exists a state \(i^* \) which is recurrent under every pure policy, a property which is satisfied in many interesting problems. In order to satisfy Assumption 2, it suffices to assume that the policy has a smooth dependence on \(\theta \); in particular, that \(\mu_u(i, \theta) \) is twice differentiable (in \(\theta \)) and has bounded first and second derivatives. Finally, Assumption 3 is implied by the following condition.
Assumption 6: There exists some $\epsilon > 0$ such that $\mu_u(i, \theta) \geq \epsilon$ for every i, u, and θ.

Assumption 6 can be often imposed without any loss of generality (or loss of performance). Even when it is not automatically true, it may be profitable to enforce it artificially, because it introduces a minimal amount of "exploration," and ensures that every action will be tried infinitely often. Indeed, the available experience with simulation-based methods for Markov decision processes indicates that performance can substantially degrade in the absence of exploration: a method may converge to a poor set of policies for the simple reason that the actions corresponding to better policies have not been sufficiently explored.

Since $\sum_{u \in \mathcal{U}} \mu_u(i, \theta) = 1$, for every θ, we have $\sum_{u \in \mathcal{U}} \nabla \mu_u(i, \theta) = 0$, and

$$\nabla g_i(\theta) = \sum_{u \in \mathcal{U}} \nabla \mu_u(i, \theta)(g_i(u) - \lambda(\theta)).$$

Furthermore,

$$\sum_{j \in \mathcal{S}} \nabla p_{ij}(\theta) v_j(\theta) = \sum_{j \in \mathcal{S}} \sum_{u \in \mathcal{U}} \nabla \mu_u(i, \theta) p_{ij}(u) v_j(\theta).$$

Using these relations in the formula for $\nabla \lambda(\theta)$ provided by Proposition 1, and after some rearranging, we obtain

$$\nabla \lambda(\theta) = \sum_{i \in \mathcal{S}} \sum_{u \in \mathcal{U}} \pi_i(\theta) \mu_u(i, \theta) q_{i,u}(\theta) \frac{\nabla \mu_u(i, \theta)}{\mu_u(i, \theta)},$$

where

$$q_{i,u}(\theta) = (g_i(u) - \lambda(\theta)) + \sum_{j \in \mathcal{S}} p_{ij}(u) v_j(\theta)$$

$$= E_{\theta} \left[\sum_{k=0}^{T-1} (g_i(u_k) - \lambda(\theta)) \mid i_0 = i, u_0 = u \right],$$

and where i_k and u_k is the state and control at time k. Thus, $q_{i,u}(\theta)$ is the differential reward if control action u is first applied in state i, and policy $\mu(\theta)$ is followed thereafter. It is the same as Watkins’ Q-factor [Wat89], suitably modified for the average reward case.

From here on, we can proceed as in Section 3 and obtain an algorithm that updates θ at the times t_m that state i^* is visited. The form of the algorithm is

$$\theta_{m+1} = \theta_m + \gamma_m F_m(\theta_m, \lambda_m),$$

$$\lambda_{m+1} = \lambda_m + \gamma_m \sum_{n=t_m}^{t_{m+1}-1} (g_{i_n}(u_n) - \lambda_m),$$

where

$$F_m(\theta_m, \lambda_m) = \sum_{n=t_m}^{t_{m+1}-1} \frac{\nabla \mu_{i_n,u_n}(i_n, \theta_m)}{\mu_{i_n,u_n}(i_n, \theta_m)},$$

and

$$q_{i_n,u_n} = \sum_{k=n}^{t_{m+1}-1} (g_i(u_k) - \lambda_m).$$

Similar to Section 4, an on-line version of the algorithm is also possible. The convergence results of Sections 3 and 4 remain valid, with only notation changes in the proof.
6 Conclusions

We have presented simulation-based method for optimizing a Markov Reward Process whose transition probabilities depend on a parameter vector θ, or a Markov Decision Process in which we restrict to a parametric set of randomized policies. The method involves simulation of a single sample path. Updates can be carried out either whenever the recurrent state i^* is visited, or at every time step.

Regarding further research, there is a need for computational experiments in order to delineate the class of practical problems for which this methodology is useful. In addition, further analysis and experimentation is needed for the modified on-line algorithm of Section 4.1, in order to determine whether it has practical advantages. Finally, it may be possible to extend the results to the case of infinite state spaces, or to weaken some of our assumptions.

References

A Proof of Proposition 3

In this appendix, we prove convergence of the algorithm

\[\theta_{m+1} = \theta_m + \gamma_m F_m(\theta_m, \bar{\lambda}_m), \]
\[\bar{\lambda}_{m+1} = \bar{\lambda}_m + \gamma_m \sum_{n=t_m}^{t_{m+1}-1} (g_{i_n}(\theta_m) - \bar{\lambda}_m), \]

where

\[F_m(\theta_m, \bar{\lambda}_m) = \sum_{n=t_m}^{t_{m+1}-1} \left(\bar{v}_{i_n}(\theta_m, \bar{\lambda}_m) \frac{\nabla p_{i_{n-1}i_n}(\theta_m)}{p_{i_{n-1}i_n}(\theta_m)} + \nabla g_{i_n}(\theta_m) \right), \]
\[\bar{v}_{i_n}(\theta, \bar{\lambda}) = \sum_{k=n}^{t_{m+1}-1} (g_{i_k}(\theta) - \bar{\lambda}), \quad n = t_m + 1, \ldots, t_{m+1} - 1, \]

and

\[\bar{v}_{i_{t_m}}(\theta, \bar{\lambda}) = 0. \]

For notational convenience, we define the augmented parameter vector \(r_m = (\theta_m, \bar{\lambda}_m) \), and write the update equations in the form

\[r_{m+1} = r_m + \gamma_m H_m(r_m), \]

where

\[H_m(r_m) = \begin{bmatrix} F_m(\theta_m, \bar{\lambda}_m) \\ \sum_{n=t_m}^{t_{m+1}-1} (g_{i_n}(\theta_m) - \bar{\lambda}_m) \end{bmatrix}. \quad (23) \]

Let

\[\mathcal{F}_m = \{\theta_0, \bar{\lambda}_0, i_0, i_1, \ldots, i_{t_m}\} \]

stand for the history of the algorithm up to and including time \(t_m \). Using Proposition 2 and Eq. (16), we have

\[E[H_m(r_m) | \mathcal{F}_m] = h(r_m), \]

where

\[h(r) = \begin{bmatrix} E_\theta[T] \nabla \lambda(\theta) + G(\theta)(\lambda(\theta) - \bar{\lambda}) \\ E_\theta[T](\lambda(\theta) - \bar{\lambda}) \end{bmatrix}. \]

We then rewrite the algorithm in the form

\[r_{m+1} = r_m + \gamma_m h(r_m) + \varepsilon_m, \quad (24) \]

where

\[\varepsilon_m = \gamma_m (H_m(r_m) - h(r_m)) \]

and note that

\[E[\varepsilon_m | \mathcal{F}_m] = 0. \]

The proof rests on the fact that \(\varepsilon_m \) is "small," in a sense to be made precise, which will then allow us to mimic the heuristic argument of Section 3.3.
A.1 Preliminaries

In this subsection, we establish a few useful bounds and characterize the behavior of ε_m.

Lemma 2

(a) For any i, j such that $p_{ij}(0)$ is nonzero, the function $\nabla p_{ij}(\theta)/p_{ij}(\theta)$ is bounded and has bounded first derivatives.

(b) There exist constants C and $\rho < 1$ such that

$$P_{\theta}(T = k) \leq C\rho^k, \quad \forall \, k, \theta,$$

where the subscript θ indicates that we are considering the distribution of the interrenewal time $T_m = t_{m+1} - t_m$ under a particular choice of θ. In particular, $E_{\theta}[T]$ and $E_{\theta}[T^2]$ are bounded functions of θ.

(c) The function $G(\theta)$ is well defined and bounded.

(d) The sequence $\tilde{\lambda}_m$ is bounded, with probability 1.

(e) The sequence $h(r_m)$ is bounded, with probability 1.

Proof:

(a) This is true because $p_{ij}(\theta)$ has bounded first and second derivatives (Assumption 2), and $p_{ij}(\theta)$ is bounded below by $\epsilon > 0$ (Assumption 3).

(b) Under Assumptions 1 and 3, and for any state, the probability that i^* is reached in the next N steps is at least ϵ^N (where N is the number of states), and the result follows.

(c) Note that

$$E_{\theta}\left[\sum_{n=t_{m+1}}^{t_{m+1}-1} \frac{(t_{m+1} - n)\nabla p_{i_{n-1}i_n}(\theta)}{p_{i_{n-1}i_n}(\theta)}\right] \leq C E_{\theta}[T^2],$$

where C is a bound on $\|\nabla p_{ij}(\theta)/p_{ij}(\theta)\|$ (cf. part (a)). The right-hand side is bounded by the result of part (b). It follows that the expectation defining $G(\theta)$, exists and is a bounded function of θ.

(d) Using Assumption 4 and part (b) of this lemma, we obtain

$$E\left[\sum_{m=1}^{\infty} \gamma_m^2 (t_{m+1} - t_m)^2\right] < \infty,$$

which implies that $\gamma_m(t_{m+1} - t_m)$ converges to zero, with probability 1. Note that

$$\tilde{\lambda}_{m+1} \leq (1 - \gamma_m(t_{m+1} - t_m))\tilde{\lambda}_m + \gamma_m(t_{m+1} - t_m)C,$$

where C is a bound on $g_i(\theta)$. For large enough m, we have $\gamma_m(t_{m+1} - t_m) \leq 1$, and $\tilde{\lambda}_{m+1} \leq \max\{\lambda_m, C\}$, from which it follows that the sequence λ_m is bounded above. By a similar argument, the sequence $\tilde{\lambda}_m$ is also bounded below.
(e) Consider the formula that defines $h(r)$. Parts (b) and (c) show that $E_{\theta_m}[T]$ and $G(\theta_m)$ are bounded. Also, $\lambda(\theta_m)$ is bounded since the $g_i(\theta)$ are bounded (Assumption 2). Furthermore, $\nabla \lambda(\theta_m)$ is bounded, by Lemma 1. Using also part (d) of this lemma, the result follows.

Lemma 3 There exists a constant C (which is random but finite with probability 1) such that

$$E[\|\varepsilon_m\|^2 \mid \mathcal{F}_m] \leq C \gamma_m^2, \quad \forall \ m,$$

and the series $\sum_m \varepsilon_m$ converges with probability 1.

Proof: Recall that $g_i(\theta_m)$ and λ_m are bounded with probability 1 (Assumption 2 and Lemma 2(d)). Thus, for $n = t_m, \ldots, t_{m+1} - 1$, we have $|\hat{v}_{in}(\theta, \bar{\lambda})| \leq C(t_{m+1} - t_m)$, for some constant C. Using this bound in the definition of $F_m(\theta_m, \bar{\lambda}_m)$, we see that for almost all sample paths, we have

$$\|F_m(\theta_m, \bar{\lambda}_m)\| \leq C(t_{m+1} - t_m)^2,$$

for some new constant C. Using Lemma 2(b), the conditional variance of $F_m(\theta_m, \bar{\lambda}_m)$, given \mathcal{F}_m, is bounded. Similar arguments also apply to the last component of $H_m(r_m)$. Since $\varepsilon_m = \gamma_m (H_m(r_m) - E[H_m(r_m) \mid \mathcal{F}_m])$, the first statement follows.

Fix a positive integer c and consider the sequence

$$w^c_n = \sum_{m=1}^{\min\{M(c), n\}} \varepsilon_m,$$

where $M(c)$ is the first time m such that $E[\|\varepsilon_m\|^2 \mid \mathcal{F}_m] > C \gamma_m^2$. The sequence w^c_n is a martingale with bounded second moment, and therefore converges with probability 1. This is true for every positive integer c. For (almost) every sample path, there exists some c such that $M(c) = \infty$. After discarding a countable union of sets of measure zero (for each c, the set of sample paths for which w^c_n does not converge), it follows that for (almost) every sample path, $\sum_m \varepsilon_m$ converges. \hfill \Box

We observe the following consequences of Lemma 3. First, ε_m converges to zero with probability 1. Since γ_m also converges to zero and the sequence $h(r_m)$ is bounded, we conclude that

$$\lim_{m \to \infty} (\theta_{m+1} - \theta_m) = 0, \quad \lim_{m \to \infty} (\lambda(\theta_{m+1}) - \lambda(\theta_m)) = 0, \quad \lim_{m \to \infty} (\bar{\lambda}_{m+1} - \bar{\lambda}_m) = 0,$$

with probability 1.

A.2 Convergence of $\bar{\lambda}_m$ and $\lambda(\theta_m)$

In this subsection, we prove that $\bar{\lambda}_m$ and $\lambda(\theta_m)$ converge to a common limit. The flow of the proof is similar to the heuristic argument of Section 3.3.

We will be using a few different Lyapunov functions to analyze the behavior of the algorithm in different "regions." The lemma below involves a generic Lyapunov function ϕ and characterizes the changes in $\phi(r)$ caused by the updates

$$r_{m+1} = r_m + \gamma_m h(r_m) + \varepsilon_m.$$
Let $D_c = \{(\theta, \lambda) \in \mathbb{R}^{K+1} | |\lambda| \leq c\}$. We are interested in Lyapunov functions ϕ that are twice differentiable and such that ϕ, $\nabla \phi$, and $\nabla^2 \phi$ are bounded on D_c for every c. Let Φ be the set of all such Lyapunov functions. For any $\phi \in \Phi$, we define

$$\varepsilon_m(\phi) = \phi(r_{m+1}) - \phi(r_m) - \gamma_m \nabla \phi(r_m) \cdot h(r_m),$$

where for any two vectors a, b, we use $a \cdot b$ to denote their inner product.

Lemma 4 If $\phi \in \Phi$, then the series $\sum_m \varepsilon_m(\phi)$ converges with probability 1.

Proof: Consider a sample path of the random sequence $\{r_m\}$. Using part (d) of Lemma 2, and after discarding a set of zero probability, there exists some c such that $r_m \in D_c$ for all m. We use the Taylor expansion of $\phi(r)$ at r_m, and obtain

$$\varepsilon_m(\phi) = \phi(r_{m+1}) - \phi(r_m) - \gamma_m \nabla \phi(r_m) \cdot h(r_m) \leq \nabla \phi(r_m) \cdot (r_{m+1} - r_m) + M ||r_{m+1} - r_m||^2 - \gamma_m \nabla \phi(r_m) \cdot h(r_m) = \nabla \phi(r_m) \cdot \varepsilon_m + M ||r_{m+1} - r_m||^2,$$

where M is a constant related to the bound on the second derivatives of $\phi(\cdot)$ on the set D_c. A symmetric argument also yields

$$\nabla \phi(r_m) \cdot \varepsilon_m - M ||r_{m+1} - r_m||^2 \leq \varepsilon_m(\phi).$$

Using the boundedness of $\nabla \phi$ on the set D_c, the same martingale argument as in the proof of Lemma 3 shows that the series $\sum_m \nabla \phi(r_m) \cdot \varepsilon_m$ converges with probability 1. Note that $||r_{m+1} - r_m|| = ||\gamma_m h(r_m) + \varepsilon_m||$, which yields

$$||r_{m+1} - r_m||^2 \leq 2\gamma_m^2 ||h(r_m)||^2 + 2||\varepsilon_m||^2.$$

The sequence $h(r_m)$ is bounded (Lemma 2) and γ_m^2 is summable (Assumption 4). Furthermore, it is an easy consequence of Lemma 3 that ε_m is also square summable. We conclude that $||r_{m+1} - r_m||$ is square summable, and the result follows.

From now on, we will concentrate on a single sample path for which the sequences ε_m and $\varepsilon_m(\phi)$ (for the Lyapunov functions to be considered) are summable. Accordingly, we will be omitting the "with probability 1" qualification.

The next lemma shows that if the error $\tilde{\lambda}_m - \lambda(\theta_m)$ in estimating the average reward is positive but small, then it tends to decrease. The proof uses $\tilde{\lambda} - \lambda(\theta)$ as a Lyapunov function.

Lemma 5 Let L be such that $||G(\theta)|| \leq L$ for all θ, and let

$$\phi(r) = \phi(\theta, \tilde{\lambda}) = \tilde{\lambda} - \lambda(\theta).$$

We have $\phi \in \Phi$. Furthermore, if $0 \leq \tilde{\lambda} - \lambda(\theta) \leq 1/L^2$, then

$$\nabla \phi(r) \cdot h(r) \leq 0.$$
Proof: The fact that \(\phi \in \Phi \) is a consequence of Lemma 1. We now have

\[
\nabla \phi(r) \cdot h(r) = -(\lambda - \lambda(\theta)) E_\theta[T] - \| \nabla \lambda(\theta) \|^2 E_\theta[T] + (\lambda - \lambda(\theta)) \nabla \lambda(\theta) \cdot G(\theta).
\]

Using the inequality \(|a \cdot b| \leq ||a||^2 + ||b||^2 \), to bound the last term, and the fact \(E_\theta[T] \geq 1 \), we obtain

\[
\nabla \phi(r) \cdot h(r) \leq -(\lambda - \lambda(\theta)) + L^2(\lambda - \lambda(\theta))^2,
\]

which is nonpositive as long as \(0 \leq \lambda - \lambda(\theta) \leq 1/L^2 \).

In the next two lemmas, we establish that if \(|\bar{\lambda}_m - \lambda(\theta_m)| \) remains small during a certain time interval, then \(\bar{\lambda}_m \) cannot decrease by much. We first introduce a Lyapunov function that captures the behavior of the algorithm when \(\bar{\lambda} \approx \lambda(\theta) \).

Lemma 6 As in Lemma 5, let \(L \) be such that \(\|G(\theta)\| \leq L \). Let also

\[
\phi(r) = \phi(\theta, \bar{\lambda}) = \lambda(\theta) - L^2(\lambda(\theta) - \bar{\lambda})^2.
\]

We have \(\phi \in \Phi \). Furthermore, if \(\lambda(\theta) - \bar{\lambda} \leq 1/4L^2 \), then

\[
\nabla \phi(r) \cdot h(r) \geq 0.
\]

Proof: The fact that \(\phi \in \Phi \) is a consequence of Lemma 1. We have

\[
\nabla \phi(\theta, \bar{\lambda}) = \left(1 - 2L^2(\lambda(\theta) - \bar{\lambda}) \right) \nabla \lambda(\theta),
\]

and

\[
\nabla \lambda(\theta, \bar{\lambda}) = 2L^2(\lambda(\theta) - \bar{\lambda}).
\]

Therefore, assuming that \(|\lambda(\theta) - \bar{\lambda}| \leq 1/4L^2 \), and using the Schwartz inequality, we obtain

\[
\nabla \phi(r) \cdot h(r) = \left(1 - 2L^2(\lambda(\theta) - \bar{\lambda}) \right) \left(\| \nabla \lambda(\theta) \|^2 E_\theta[T] + (\lambda(\theta) - \bar{\lambda})G(\theta) \cdot \nabla \lambda(\theta) \right)
\]

\[
+ 2L^2(\lambda(\theta) - \bar{\lambda})^2 E_\theta[T]
\]

\[
\geq \frac{1}{2} \| \nabla \lambda(\theta) \|^2 - \frac{1}{2} \| \lambda(\theta) - \bar{\lambda} \| \| \nabla \lambda(\theta) \| + 2L^2(\lambda(\theta) - \bar{\lambda})^2
\]

\[
\geq 0.
\]

\[\square\]

Lemma 7 Consider the same function \(\phi \) as in Lemma 6, and the same constant \(L \). Let \(\alpha \) be some positive scalar smaller than \(1/4L^2 \). Suppose that for some integers \(n \) and \(n' \), with \(n' > n \), we have

\[
|\lambda(\theta_n) - \bar{\lambda}_n| \leq \alpha,
\]

and

\[
|\lambda(\theta_{n'}) - \bar{\lambda}_{n'}| \leq \alpha,
\]

and

\[
|\lambda(\theta_m) - \bar{\lambda}_m| \leq \frac{1}{4L^2}, \quad m = n + 1, \ldots, n' - 1.
\]

Then,

\[
\bar{\lambda}_{n'} \geq \bar{\lambda}_n - 2\alpha(L^2\alpha + 1) + \sum_{m=n}^{n'-1} \epsilon_m(\phi).
\]

22
Proof: Using Lemma 6, we have
\[\nabla \phi(r_m) \cdot h(r_m) \geq 0, \quad m = n, \ldots, n' - 1. \]
Therefore, for \(m = n, \ldots, n' - 1 \), we have
\[
\phi(r_{m+1}) = \phi(r_m) + \gamma_m \nabla \phi(r_m) \cdot h(r_m) + \varepsilon_m(\phi)
\geq \phi(r_m) + \varepsilon_m(\phi),
\]
and
\[
\phi(r_{n'}) \geq \phi(r_n) + \sum_{m=n}^{n'-1} \varepsilon_m(\phi). \tag{25}
\]
Note that \(|\phi(r_n) - \tilde{\lambda}_n| \leq L^2 \alpha^2 + \alpha \), and \(|\phi(r_{n'}) - \tilde{\lambda}_{n'}| \leq L^2 \alpha^2 + \alpha \). Using these inequalities in Eq. (25), we obtain the desired result.

Lemma 8 We have \(\liminf_{m \to \infty} |\lambda(\theta_m) - \tilde{\lambda}_m| = 0. \)

Proof: Suppose that the result is not true, and we will derive a contradiction. Since \(\lambda(\theta_{m+1}) - \lambda(\theta_m) \) and \(\tilde{\lambda}_{m+1} - \tilde{\lambda}_m \) converge to zero, there exists a scalar \(\epsilon > 0 \) and an integer \(n \), such that either \(\lambda(\theta_m) - \tilde{\lambda}_m > \epsilon \), or \(\lambda(\theta_m) - \tilde{\lambda}_m < -\epsilon \), for all \(m > n \). Without loss of generality, let us consider the first possibility.

Recall that the update equation for \(\tilde{\lambda} \) is of the form
\[
\tilde{\lambda}_{m+1} = \tilde{\lambda}_m + \gamma_m E_{\theta_m}[T](\lambda(\theta_m) - \tilde{\lambda}_m) + \delta_m,
\]
where \(\delta_m \) is the last component of the vector \(\varepsilon_m \), which is summable by Lemma 3. Given that \(\lambda(\theta_m) - \tilde{\lambda}_m \) stays above \(\epsilon \), the sequence \(\gamma_m(\lambda(\theta_m) - \tilde{\lambda}_m) \) sums to infinity. As \(\delta_m \) is summable, we conclude that \(\tilde{\lambda}_m \) converges to infinity, which contradicts the fact that it is bounded.

The next lemma shows that the condition \(\lambda(\theta_m) - \tilde{\lambda}_m \) is satisfied, in the limit.

Lemma 9 We have \(\liminf_{m \to \infty} (\lambda(\theta_m) - \tilde{\lambda}_m) \geq 0. \)

Proof: Suppose the contrary. Then, there exists some \(\epsilon > 0 \) such that the inequality
\[
\tilde{\lambda}_m - \lambda(\theta_m) > \epsilon
\]
holds infinitely often. Let \(\beta = \min \{ \epsilon, 1/L^2 \} \), where \(L \) is the constant of Lemma 5. Using Lemma 8, we conclude that \(\tilde{\lambda}_m - \lambda(\theta_m) \) crosses infinitely often from a value smaller than \(\beta/3 \) to a value larger than \(2\beta/3 \). In particular, there exist infinitely many pairs \(n, n' \), with \(n' > n \), such that
\[
0 < \tilde{\lambda}_n - \lambda(\theta_n) < \frac{1}{3} \beta, \quad \tilde{\lambda}_{n'} - \lambda(\theta_{n'}) > \frac{2}{3} \beta,
\]
and
\[
\frac{1}{3} \beta \leq \tilde{\lambda}_m - \lambda(\theta_m) \leq \frac{2}{3} \beta, \quad m = n + 1, \ldots, n' - 1.
\]
We use the Lyapunov function
\[
\phi(r) = \phi(\theta, \tilde{\lambda}) = \tilde{\lambda} - \lambda(\theta),
\]
and note that
\[\phi(r_{n'}) \geq \phi(r_n) + \frac{\beta}{3}. \] \hfill (26)

For \(m = n, \ldots, n' - 1 \), we have \(0 < \hat{\lambda} - \lambda(\theta) < \beta \leq 1/L^2 \). Lemma 5 applies and shows that \(\nabla \phi(r_m) \cdot h(r_m) \leq 0 \). Therefore,
\[
\phi(r_{n'}) = \phi(r_n) + \sum_{m=n}^{n'-1} \left(\gamma_m \nabla \phi(r_m) \cdot h(r_m) + \varepsilon_m(\phi) \right) \leq \phi(r_n) + \sum_{m=n}^{n'-1} \varepsilon_m(\phi).
\]

By Lemma 4, \(\sum_m \varepsilon_m(\phi) \) converges, which implies that \(\sum_{m=n}^{n'-1} \varepsilon_m(\phi) \) becomes arbitrarily small. This contradicts Eq. (26) and completes the proof.

We now continue with the central step in the proof, which is the proof that \(\lim_{m \to \infty} (\lambda(\theta_m) - \hat{\lambda}_m) = 0 \). Using Lemma 9, it suffices to show that we cannot have \(\limsup_{m \to \infty} (\lambda(\theta_m) - \hat{\lambda}_m) > 0 \). The main idea is the following. Whenever \(\lambda(\theta_m) \) becomes significantly larger than \(\hat{\lambda}_m \), then \(\hat{\lambda}_m \) is bound to increase significantly. On the other hand, by Lemma 7, whenever \(\lambda(\theta_m) \) is approximately equal to \(\hat{\lambda}_m \), then \(\hat{\lambda}_m \) cannot decrease by much. Since \(\hat{\lambda}_m \) is bounded, this will imply that \(\lambda(\theta_m) \) can become significantly larger than \(\hat{\lambda}_m \) only a finite number of times.

Lemma 10 We have \(\lim_{m \to \infty} (\lambda(\theta_m) - \hat{\lambda}_m) = 0 \).

Proof: We will assume the contrary and derive a contradiction. By Lemma 9, we have \(\lim \inf_{m \to \infty} (\lambda(\theta_m) - \hat{\lambda}_m) \geq 0 \). So if the desired result is not true, we must have \(\lim \sup_{m \to \infty} (\lambda(\theta_m) - \hat{\lambda}_m) > 0 \), which we will assume to be the case. In particular, there is some \(A > 0 \) such that \(\lambda(\theta_m) - \hat{\lambda}_m > A \), infinitely often. Without loss of generality, we assume that \(A \leq 1/4L^2 \), where \(L \) is the constant of Lemmas 5 and 6. Let \(\alpha > 0 \) be some small constant (with \(\alpha < A/2 \)), to be specified later. Using Lemma 9, we have \(\lambda(\theta_m) - \hat{\lambda}_m > -\alpha \) for all large enough \(m \). In addition, by Lemma 8, the condition \(|\lambda(\theta_m) - \hat{\lambda}_m| \leq \alpha \) holds infinitely often. Thus, the algorithm can be broken down into a sequence of cycles, where in the beginning and at the end of each cycle we have \(|\lambda(\theta_m) - \hat{\lambda}_m| \leq \alpha \), while the condition \(\lambda(\theta_m) - \hat{\lambda}_m > A \) holds at some intermediate time in the cycle.

We describe the stages of such a cycle more precisely. A typical cycle starts at some time \(N \) with \(|\lambda(\theta_N) - \hat{\lambda}_N| \leq \alpha \). Let \(n'' \) be the first time after \(N \) that \(\lambda(\theta_{n''}) - \hat{\lambda}_{n''} > A \). Let \(n' \) be the last time before \(n'' \) such that \(\lambda(\theta_{n'}) - \hat{\lambda}_{n'} < A/2 \). Let also \(n \) be the last time before \(n' \) such that \(\lambda(\theta_{n}) - \hat{\lambda}_n < \alpha \). Finally, let \(n''' \) be the first time after \(n'' \) such that \(|\lambda(\theta_{n''}) - \hat{\lambda}_{n'''}| < \alpha \). The time \(n''' \) is the end of the cycle and marks the beginning of a new cycle.

Recall that the changes in \(\theta_m \) and \(\hat{\lambda}_m \) converge to zero. For this reason, by taking \(N \) to be large enough, we can assume that \(\lambda(\theta_n) - \hat{\lambda}_n \geq 0 \). To summarize our construction, we have \(N < n < n' < n'' < n''' \), and
\[
|\lambda(\theta_N) - \hat{\lambda}_N| < \alpha,
\]
\[
0 \leq \lambda(\theta_n) - \hat{\lambda}_n < \alpha,
\]
\[
|\lambda(\theta_m) - \hat{\lambda}_m| \leq A, \hspace{1cm} m = N, \ldots, n'' - 1,
\]
\[
\lambda(\theta_{n''}) - \hat{\lambda}_{n''} < \frac{A}{2},
\]

24
\[
\lambda(\theta_{n''}) - \hat{\lambda}_{n''} > A
\]
\[
\alpha \leq \lambda(\theta_m) - \hat{\lambda}_m \leq A, \quad m = n + 1, \ldots, n'' - 1,
\]
\[
\frac{A}{2} \leq \lambda(\theta_m) - \hat{\lambda}_m \leq A, \quad m = n' + 1, \ldots, n'' - 1,
\]
\[
\alpha \leq \lambda(\theta_m) - \hat{\lambda}_m, \quad m = n'', \ldots, n''' - 1.
\]

Our argument will use the Lyapunov functions
\[
\phi(r) = \phi(\theta, \hat{\lambda}) = \lambda(\theta) - L^2 \left(\lambda(\theta) - \hat{\lambda} \right)^2,
\]
where \(L \) is as in Lemma 5 and 6, and
\[
\psi(r) = \psi(\theta, \hat{\lambda}) = \hat{\lambda} - \lambda(\theta).
\]

We have
\[
\epsilon_m(\phi) = \phi(r_{m+1}) - \phi(r_m) - \gamma_m \nabla \phi(r_m) \cdot h(r_m),
\]
and we define \(\epsilon_m(\psi) \) by a similar formula. By Lemma 4, the series \(\sum_m \epsilon_m(\phi) \) and \(\sum_m \epsilon_m(\psi) \) converge. Also, let
\[
\delta_m = \hat{\lambda}_{m+1} - \hat{\lambda}_m - \gamma_m E_{\delta_m}[T] (\lambda(\theta_m) - \hat{\lambda}_m).
\]

We observe that \(\delta_m \) is the last component of \(\epsilon_m \) and therefore, the series \(\sum_m \delta_m \) converges and \(\lim_{m \to \infty} \delta_m = 0 \). Finally, let \(C \) be a constant such that \(|\nabla \psi(r_m) \cdot h(r_m)| \leq C \), for all \(m \), which exists because \(\psi \in \Phi \) and because the sequences \(h(r_m) \) and \(\hat{\lambda}_m \) are bounded.

Using the above observations, we see that if the beginning time \(N \) of a cycle is chosen large enough, then for any \(k, k' \) such that \(N \leq k \leq k' \), we have
\[
\gamma_k C \leq \frac{A}{32},
\]
\[
\left| \sum_{m=k}^{k'} \epsilon_m(\phi) \right| \leq \frac{A^2}{96C},
\]
\[
\left| \sum_{m=k}^{k'} \epsilon_m(\psi) \right| \leq \frac{A}{32},
\]
\[
\left| \sum_{m=k}^{k'} \delta_m \right| \leq \frac{A^2}{8C}.
\]

Finally, we assume that \(\alpha \) has been chosen small enough so that
\[
2(\alpha + L^2 \alpha^2) \leq \frac{A^2}{96C}.
\]

Using the fact that \(\lambda(\theta_{n''+1}) - \hat{\lambda}_{n''+1} \geq A/2 \), we have
\[
\lambda(\theta_{n''}) - \hat{\lambda}_{n''} = \lambda(\theta_{n''+1}) - \hat{\lambda}_{n''+1} + \gamma_{n''} \nabla \psi(r_{n''}) \cdot h(r_{n''}) + \epsilon_{n''}(\psi) \geq \frac{A}{2} - \frac{A}{16}.
\]

25
Furthermore, we have
\[
\frac{A}{2} \leq \left((\lambda(\theta_{n''}) - \tilde{\lambda}_{n''}) - (\lambda(\theta_{n'}) - \tilde{\lambda}_{n'}) \right) \\
= -\psi(r_{n''}) + \psi(r_{n'}) \\
= - \sum_{m=n'}^{n''-1} \gamma_m \nabla \psi(r_m) \cdot \mathbf{h}(r_m) - \sum_{m=n'}^{n''-1} \varepsilon_m \psi \\
\leq \sum_{m=n'}^{n''-1} \gamma_m C + \frac{A}{32},
\]
which implies that
\[
\sum_{m=n'}^{n''-1} \gamma_m \geq \frac{A}{2C} - \frac{A}{32C}.
\]
Then,
\[
\tilde{\lambda}_{n''} = \tilde{\lambda}_n + \sum_{m=n}^{n''-1} \gamma_m E_{\theta_m}[T](\lambda(\theta_m) - \tilde{\lambda}_m) + \sum_{m=n}^{n''-1} \delta_m \\
\geq \tilde{\lambda}_n + \sum_{m=n'}^{n''-1} \gamma_m (\lambda(\theta_m) - \tilde{\lambda}_m) + \sum_{m=n}^{n''-1} \delta_m \\
\geq \tilde{\lambda}_n + \left(\frac{A}{2C} - \frac{A}{32C} \right) \left(\frac{A}{2} - \frac{A}{16} \right) - \frac{A^2}{8C} \\
\geq \tilde{\lambda}_n + \frac{A^2}{24C}.
\]

We have shown so far that \(\tilde{\lambda}_m \) has a substantial increase between time \(n \) and \(n'' \). We now show that \(\tilde{\lambda}_m \) can only have a small decrease in the time between \(N \) and \(n \). Indeed, by Lemma 7, we have
\[
\tilde{\lambda}_n \geq \tilde{\lambda}_N - 2(\alpha + L^2 \alpha^2) + \sum_{m=N}^{n-1} \epsilon_m(\phi).
\]
By combining these two properties, we obtain
\[
\tilde{\lambda}_{n''} \geq \tilde{\lambda}_N - 2(\alpha + L^2 \alpha^2) - \frac{A^2}{96C} + \frac{A^2}{24C} \\
\geq \tilde{\lambda}_N + \frac{A^2}{48C}.
\]
We have shown that \(\tilde{\lambda}_m \) increases by a positive amount during each cycle. Since \(\tilde{\lambda}_m \) is bounded above, this proves that there can only be a finite number of cycles, and a contradiction has been obtained.

\textbf{Lemma 11} \ The sequences \(\tilde{\lambda}_m \) and \(\lambda(\theta_m) \) converge.
Proof: Consider the function $\phi(r) = \lambda(\theta) - L^2(\lambda(\theta) - \check{\lambda})^2$, and the same constant L as in Lemma 6. Let α be a scalar such that $0 < \alpha \leq 1/4L^2$. By the preceding lemma and by Lemma 4, there exists some N such that if $N \leq n \leq n'$, we have

$$|\lambda(\theta_n) - \check{\lambda}_n| \leq \alpha,$$

and

$$\left| \sum_{m=n}^{n'-1} \varepsilon_m(\phi) \right| \leq \alpha.$$

Using Lemma 6,

$$\phi(\theta_{n'}) \geq \phi(\theta_n) + \sum_{m=n}^{n'-1} \varepsilon_m(\phi) \geq \phi(\theta_n) - \alpha, \quad N \leq n \leq n',$$

or

$$\lambda(\theta_{n'}) - L^2(\lambda(\theta_{n'}) - \check{\lambda}_{n'})^2 \geq \lambda(\theta_n) - L^2(\lambda(\theta_n) - \check{\lambda}_n)^2 - \alpha,$$

which implies

$$\lambda(\theta_{n'}) \geq \lambda(\theta_n) - L^2\alpha^2 - \alpha, \quad N \leq n \leq n'.$$

Therefore,

$$\liminf_{n' \to \infty} \lambda(\theta_{n'}) \geq \lambda(\theta_n) - L^2\alpha^2 - \alpha, \quad N \leq n,$$

and this implies that

$$\liminf_{m \to \infty} \lambda(\theta_m) \geq \limsup_{m \to \infty} \lambda(\theta_m) - L^2\alpha^2 - \alpha.$$

Since α can be chosen arbitrarily small, we have $\liminf_{m \to \infty} \lambda(\theta_m) \geq \limsup_{m \to \infty} \lambda(\theta_m)$, and since the sequence $\lambda(\theta_m)$ is bounded, we conclude that it converges. Using also Lemma 10, it follows that $\check{\lambda}_m$ converges as well. \square

A.3 Convergence of $\nabla \lambda(\theta_m)$

In the preceding subsection, we have shown that $\lambda(\theta_m)$ and $\check{\lambda}_m$ converge to a common limit. It now remains to show that $\nabla \lambda(\theta_m)$ converges to zero.

Since $\lambda(\theta_{m}) - \check{\lambda}_m$ converges to zero, the algorithm is of the form

$$\theta_{m+1} = \theta_m + \gamma_m E_{\theta_m}[T](\nabla \lambda(\theta_m) + e_m) + e_m,$$

where e_m converges to zero and e_m is a summable sequence. This is a gradient method with errors, similar to the methods considered in [Del96] and [BT97]. However, [Del96] assumes the boundedness of the sequence of iterates, and the results of [BT97] do not include the term e_m. Thus, while the situation is very similar to that considered in these references, a separate proof is needed.

We will first show that $\liminf_{m \to \infty} \|\nabla \lambda(\theta_m)\| = 0$. Suppose the contrary. Then, there exists some $\epsilon > 0$ and some N such that $\|\nabla \lambda(\theta_m)\| > \epsilon$ for all $m > N$. In addition, by taking N large enough, we can also assume that $\|e_m\| \leq \epsilon/2$. Then, it is easily checked that

$$\nabla \lambda(\theta_m) \cdot (\nabla \lambda(\theta_m) + e_m) \geq \frac{\epsilon^2}{2}.$$
Let $\phi(r) = \lambda(\theta)$. Note that $\phi \in \Phi$. We have

$$
\lambda(\theta_{m+1}) = \lambda(\theta_m) + \gamma_m E_{\theta_m} [T] \nabla \lambda(\theta_m) \cdot (\nabla \lambda(\theta_m) + \varepsilon_m) + \varepsilon_m(\phi)
\geq \lambda(\theta_m) + \gamma_m \frac{\varepsilon^2}{2} + \varepsilon_m(\phi).
$$

(27)

Since $\varepsilon_m(\phi)$ is summable (Lemma 4), but $\sum \gamma_m = \infty$, we conclude that $\lambda(\theta_m)$ converges to infinity, which is a contradiction.

Next we show that $\limsup_{m \to \infty} \| \nabla \lambda(\theta_m) \| = 0$. Suppose the contrary. Then, there exists some $\varepsilon > 0$ such that $\| \nabla \lambda(\theta_n) \| > \varepsilon$ for infinitely many indices n. For any such n, let n' be the first subsequent time that $\| \nabla \lambda(\theta_{n'}) \| < \varepsilon/2$. Then,

$$
\frac{\varepsilon}{2} \leq \| \nabla \lambda(\theta_n) \| - \| \nabla \lambda(\theta_{n'}) \|
\leq \| \nabla \lambda(\theta_n) - \nabla \lambda(\theta_{n'}) \|
\leq C \| r_n - r_{n'} \|
= C \left\| \sum_{m=n}^{n'-1} \gamma_m h(r_m) + \sum_{m=n}^{n'-1} \varepsilon_m \right\|
\leq C \sum_{m=n}^{n'-1} \gamma_m \| h(r_m) \| + C \sum_{m=n}^{n'-1} \varepsilon_m,
$$

for some constant C, as $\nabla^2 \lambda(\theta)$ is bounded (Lemma 1). Recall that $\| h(r_m) \|$ is bounded by some constant B. Furthermore, when n is large enough, the summability of the sequence ε_m yields $C \sum_{m=n}^{n'-1} \varepsilon_m \leq \varepsilon/4$. This implies that $\sum_{m=n}^{n'-1} \gamma_m \geq \varepsilon/4CB$. By an argument very similar to the one that led to Eq. (27), it is easily shown that there exists some $\beta > 0$ such that

$$
\lambda(\theta_{n'}) \geq \lambda(\theta_n) + \beta,
$$

which contradicts the convergence of the sequence $\lambda(\theta_m)$.

\[\square\]

B Proof of Proposition 4

In this section, we prove the convergence of the on-line method introduced in Section 4, which is described by

$$
\begin{align*}
\theta_{k+1} &= \theta_k + \gamma_k \left(\nabla g_{i_k}(\theta_k) + (g_{i_k}(\theta_k) - \bar{\lambda}_k) z_k \right), \\
\bar{\lambda}_{k+1} &= \bar{\lambda}_k + \gamma_k (g_{i_k}(\theta_k) - \bar{\lambda}_k), \\
z_{k+1} &= \begin{cases} 0, & \text{if } i_{k+1} = i^* \\
z_k + \frac{\nabla p_{i_{k+1}}(\theta_{k})}{p_{i_{k+1}}(\theta_k)}, & \text{otherwise}. \end{cases}
\end{align*}
$$

The proof has many common elements with the proof of Proposition 3. For this reason, we will only discuss the differences in the two proofs. In addition, whenever routine arguments are used, we will only provide an outline.
As in Appendix A, we let \(r_k = (\theta_k, \lambda_k) \). Note, however, the different meaning of the index \(k \) which is now advanced at each time step, whereas in Appendix A it was advanced whenever the state \(i^* \) was visited. We also define an augmented state \(x_k = (i_k, z_k) \).

We rewrite the update equations as

\[
 r_{k+1} = r_k + \gamma_k R(x_k, r_k),
\]

where

\[
 R(x_k, r_k) = \begin{bmatrix}
 \nabla g_{ik}(\theta_k) + (g_{ik}(\theta_k) - \lambda_k)z_k \\
 g_{ik}(\theta_k) - \lambda_k
\end{bmatrix}.
\] (28)

Consider the sequence of states \((i_0, i_1, \ldots)\) visited during the execution of the algorithm. As in Section 3, we let \(t_m \) be the \(m \)th time that the recurrent state \(i^* \) is visited. Also, as in Appendix A, we let

\[
 F_m = \{\theta_0, \lambda_0, i_0, \ldots, i_{t_m}\}
\]

stand for the history of the algorithm up to and including time \(t_m \).

The parameter \(\theta_k \) keeps changing between visits to state \(i^* \), which is a situation somewhat different than that considered in Lemma 2(b). Nevertheless, the same argument applies and shows that for any positive integer \(s \), there exists a constant \(D_s \) such that

\[
 E \left[(t_{m+1} - t_m)^s \mid F_m \right] \leq D_s.
\] (29)

We have

\[
 r_{t_{m+1}} = r_{t_m} + \sum_{k=t_m}^{t_{m+1}-1} \gamma_k R(x_k, r_k) = r_{t_m} + \bar{\gamma}_m \hat{h}(r_{t_m}) + \epsilon_m,
\] (30)

where \(\bar{\gamma}_m \) and \(\epsilon_m \) are given by

\[
 \bar{\gamma}_m = \sum_{k=t_m}^{t_{m+1}-1} \gamma_k,
\] (31)

\[
 \epsilon_m = \sum_{k=t_m}^{t_{m+1}-1} \gamma_k \left(R(x_k, r_k) - \hat{h}(r_{t_m}) \right),
\]

and \(\hat{h} \) is a scaled version of the function \(h \) in Appendix A, namely,

\[
 \hat{h}(r) = \frac{h(r)}{E_\theta[T]} = \begin{bmatrix}
 \nabla \lambda(\theta) + \frac{G(\theta)}{E_\theta[T]}(\lambda(\theta) - \bar{\lambda}) \\
 \lambda(\theta) - \bar{\lambda}
\end{bmatrix}.
\] (32)

We note the following property of the various stepsize parameters.

Lemma 12

(a) For any positive integer \(s \), we have

\[
 E \left[\sum_{m=1}^{\infty} \gamma_{t_m}^2 (t_{m+1} - t_m)^s \right] < \infty.
\]
(b) We have
\[\sum_{m=1}^{\infty} \tilde{\gamma}_m = \infty, \quad \sum_{m=1}^{\infty} \tilde{\gamma}_m^2 < \infty, \]
with probability 1.

Proof: (a) From Eq. (29), and because \(\gamma_{tm} \) is \(\mathcal{F}_m \)-measurable, we have
\[E[\gamma_{tm}^2 (t_{m+1} - t_m)^s] = E \left[\gamma_{tm}^2 (t_{m+1} - t_m)^s \mid \mathcal{F}_m \right] \leq E[\gamma_{tm}^2] D_s. \]
Hence,
\[\sum_{m=1}^{\infty} E[\gamma_{tm}^2 (t_{m+1} - t_m)^s] \leq D_s \sum_{k=1}^{\infty} \gamma_k^2 < \infty, \]
and the result follows.

(b) By Assumption 4, we have
\[\sum_{m=1}^{\infty} \tilde{\gamma}_m = \sum_{k=1}^{\infty} \gamma_k = \infty. \]
Furthermore, since the sequence \(\gamma_k \) is nonincreasing (Assumption 5), we have
\[\tilde{\gamma}_m^2 \leq \gamma_{tm}^2 (t_{m+1} - t_m)^2. \]
Using part (a) of the lemma, we obtain that \(\sum_{m=1}^{\infty} \tilde{\gamma}_m^2 \) has finite expectation and is therefore finite with probability 1. \(\square \)

Without loss of generality, we assume that \(\gamma_k \leq 1 \) for all \(k \). Then, the update equation for \(\tilde{\lambda}_k \) implies that \(|\tilde{\lambda}_k| \leq \max\{|\tilde{\lambda}_0|, C\} \), where \(C \) is a bound on \(|g_i(\theta)| \). Thus, \(|\tilde{\lambda}_k| \) is bounded by a deterministic constant, which implies that the magnitude of \(\tilde{h}(r_k) \) is also bounded by a deterministic constant.

We now observe that Eq. (30) is of the same form as Eq. (24) that was studied in the preceding appendix, except that we now have \(r_{tm} \) in place of \(r_m \), \(\tilde{\gamma}_m \) in place of \(\gamma_m \), and \(\tilde{h}(r_{tm}) \) in place of \(h(r_m) \). By Lemma 12(b), the new stepsizes satisfy the same conditions as those imposed by Assumption 4 on the stepsizes \(\gamma_m \) of Appendix A. Also, in the next subsection, we show that the series \(\sum_m \varepsilon_m \) converges. Once these properties are established, the arguments in Appendix A remain valid and show that \(\lambda(\theta_{tm}) \) converges, and that \(\nabla \lambda(\theta_{tm}) \) converges to zero. Furthermore, we will see in the next subsection that the total change of \(\theta_k \) between visits to \(i^* \) converges to zero. This implies that \(\lambda(\theta_k) \) converges and that \(\nabla \lambda(\theta_k) \) converges to zero, and Proposition 4 is established.

B.1 Summability of \(\varepsilon_k \) and Convergence of the Changes in \(\theta_k \)

This subsection is devoted to the proof that the series \(\sum_m \varepsilon_m \) converges, and that the changes of \(\theta_k \) between visits to \(i^* \) converge to zero.

We introduce some more notation. The evolution of the augmented state \(x_k = (i_k, z_k) \) is affected by the fact that \(\theta_k \) changes at each time step. Given a time \(t_m \) at which \(i^* \) is visited, we define a "frozen" augmented state \(x_k^F = (i_k^F, z_k^F) \) which evolves the same way as \(x_k \) except that \(\theta_k \) is held fixed at \(\theta_{tm} \) until the next visit at \(i^* \). More precisely, we let
\(x_{t_m}^F = x_{t_m} \). Then, for \(k \geq t_m + 1 \), we let \(i_k^F \) evolve as a time-homogeneous Markov chain with transition probabilities \(p_{ij}(\theta_{t_m}) \). We also let \(t_{m+1}^F = \min\{k > t_m \mid i_k^F = i^*\} \) be the first time after \(t_m \) that \(i_k^F \) is equal to \(i^* \), and

\[
z_{k+1}^F = z_k^F + \frac{\nabla p_{i_k^F i_{k+1}^F}(\theta_{t_m})}{p_{i_k^F i_{k+1}^F}(\theta_{t_m})}.
\]

We start by breaking down \(\varepsilon_m \) as follows:

\[
\varepsilon_m = \sum_{k=t_m}^{t_{m+1}-1} \gamma_k \left(R(x_k, r_k) - \hat{h}(r_{t_m}) \right)
\]

where

\[
\varepsilon_m = \varepsilon_m^{(1)} + \varepsilon_m^{(2)} + \varepsilon_m^{(3)} + \varepsilon_m^{(4)} + \varepsilon_m^{(5)},
\]

We will show that each one of the series \(\sum_m \varepsilon_m^{(n)} \), \(n = 1, \ldots, 5 \), converges with probability 1.

We make the following observations. The ratio \(\nabla p_{i_k^F i_{k+1}^F}(\theta_k)/p_{i_k^F i_{k+1}^F}(\theta_k) \) is bounded because of Assumptions 2 and 3. This implies that between the times \(t_m \) and \(t_{m+1} \) that \(i^* \) is visited, the magnitude of \(z_k \) is bounded by \(C(t_{m+1} - t_m) \) for some constant \(C \). Similarly, the magnitude of \(z_k^F \) is bounded by \(C(t_{m+1}^F - t_m) \). Using the boundedness of \(\hat{\lambda}_k \) and \(\hat{h}(r_k) \), together with the update equations for \(\theta_k \) and \(\hat{\lambda}_k \), we conclude that there exists a (deterministic) constant \(C \), such that for every \(m \), we have

\[
\|R(x_k, r_k)\| \leq C(t_{m+1} - t_m), \quad k \in \{t_m, \ldots, t_{m+1} - 1\}, \quad (33)
\]

\[
\|R(x_k^F, r_k)\| \leq C(t_{m+1}^F - t_m), \quad k \in \{t_m, \ldots, t_{m+1}^F - 1\}, \quad (34)
\]

\[
\|r_k - r_{t_m}\| \leq C\gamma_{t_m}(t_{m+1} - t_m)^2, \quad k \in \{t_m, \ldots, t_{m+1} - 1\}, \quad (35)
\]

\[
\|R(x_k, r_{t_m}) - R(x_k, r_k)\| \leq C\gamma_{t_m}(t_{m+1} - t_m)^3, \quad k \in \{t_m, \ldots, t_{m+1} - 1\}. \quad (36)
\]
Lemma 13 The series $\sum_m \varepsilon_m^{(1)}$ converges with probability 1.

Proof: Let B be a bound on $\|\hat{h}(r_k)\|$. Then, using Assumption 5, we have

$$\|\varepsilon_m^{(1)}\| \leq B \sum_{k=t_m}^{t_{m+1}-1} (\gamma_{t_m} - \gamma_k) \leq BA\gamma_{t_m}^2 (t_{m+1} - t_m)^p.$$

Then, Lemma 12(a), implies that $\sum_m \|\varepsilon_m^{(1)}\|$ has finite expectation, and is therefore finite with probability 1.

Lemma 14 The series $\sum_m \varepsilon_m^{(2)}$ converges with probability 1.

Proof: When the parameters θ and λ are frozen to their values at time t_m, the total update $\sum_{k=t_m}^{t_{m+1}-1} R(x_k^F, r_{t_m})$ coincides with the update $H_m(r_m)$ of the algorithm studied in Appendix A. Using the discussion in the beginning of that appendix, we have $E[H_m(r_m) \mid F_m] = h(r_{t_m})$. Furthermore, observe that

$$E\left[\sum_{k=t_m}^{t_{m+1}-1} \hat{h}(r_{t_m}) \mid F_m\right] = \hat{h}(r_{t_m}) E_{t_m}[T] = h(r_{t_m}).$$

Thus, $E[\varepsilon_m^{(2)} \mid F_m] = 0$. Furthermore, using Eq. (33), we have

$$E[\|\varepsilon_m^{(2)}\|^2 \mid F_m] \leq C\gamma_{t_m}^2 (t_{m+1} - t_m)^4.$$

Using Lemma 12(a), we obtain

$$E\left[\sum_{m=1}^{\infty} \|\varepsilon_m^{(2)}\|^2 \right] < \infty.$$

Thus, $\sum_m \varepsilon_m^{(2)}$ is martingale with bounded variance and, therefore, converges.

Lemma 15 The series $\sum_m \varepsilon_m^{(3)}$ converges with probability 1.

Proof: The proof is based on a coupling argument. For $k = t_m, \ldots, t_{m+1} - 1$, the two processes x_k and x_k^F can be defined on the same probability space so that

$$P(i_{k+1}^F \neq i_{k+1} \mid i_k^F = i_k) \leq B\|\theta_k - \theta_k^F\| \leq B\|r_k - r_{t_m}\| \leq BC\gamma_{t_m} (t_{m+1} - t_m)^2,$$

for some constants B and C. We have used here the assumption that the transition probabilities depend smoothly on θ, as well as Eq. (35).

We define \mathcal{E}_m to be the event

$$\mathcal{E}_m = \{x_k^F \neq x_k \text{ for some } k = t_m, \ldots, t_{m+1}\}.$$

Using Eq. (37), we obtain

$$P(\mathcal{E}_m \mid t_m, t_{m+1}) \leq BC \sum_{k=t_m}^{t_{m+1}-1} \gamma_{t_m} (t_{m+1} - t_m)^2 = BC\gamma_{t_m} (t_{m+1} - t_m)^3.$$
Note that if the event E_m does not occur, then $\varepsilon_m^{(3)} = 0$. Thus,

$$E[||\varepsilon_m^{(3)}|| \mid t_m, t_{m+1}] = P(E_m \mid t_m, t_{m+1})E[||\varepsilon_m^{(3)}|| \mid t_m, t_{m+1}, E_m].$$

Since $h(r_k)$ is bounded, and using also the bounds (33)-(34), we have

$$||\varepsilon_m^{(3)}|| \leq \gamma_{t_m} C \left((t_{m+1} - t_m)^2 + (t_{m+1}^F - t_m)^2 \right),$$

for some new constant C. We conclude that

$$E[||\varepsilon_m^{(3)}|| \mid t_m, t_{m+1}, E_m] \leq \gamma_{t_m} C \left((t_{m+1} - t_m)^2 + E[\left(t_{m+1}^F - t_m \right)^2 \mid t_m, t_{m+1}, E_m] \right).$$

Now, it is easily verified that

$$E[\left(t_{m+1}^F - t_m \right)^2 \mid t_m, t_{m+1}, E_m] \leq 2E[\left(t_{m+1}^F - t_m \right)^2 \mid t_{m+1}, E_m] + 2(t_{m+1} - t_m)^2 \leq C(t_{m+1} - t_m)^2,$$

for some new constant C. By combining these inequalities, we obtain

$$E[||\varepsilon_m^{(3)}|| \mid t_m, t_{m+1}, E_m] \leq C\gamma_{t_m} (t_{m+1} - t_m)^2,$$

and

$$E[||\varepsilon_m^{(3)}|| \mid t_m, t_{m+1}] \leq BC\gamma_{t_m}^2 (t_{m+1} - t_m)^5,$$

for some different constant C. Using Lemma 12(a), $\sum_m ||\varepsilon_m^{(3)}||$ has finite expectation, and is therefore finite with probability 1. □

Lemma 16 The series $\sum_m \varepsilon_m^{(4)}$ converges with probability 1.

Proof: Using Eq. (36), we have

$$||\varepsilon_m^{(4)}|| \leq \gamma_{t_m} \sum_{k=t_m}^{t_{m+1}-1} C\gamma_{t_m} (t_{m+1} - t_m)^3 = C\gamma_{t_m}^2 (t_{m+1} - t_m)^4.$$

Using Lemma 12(a), $\sum_m ||\varepsilon_m^{(4)}||$ has finite expectation, and is therefore finite with probability 1. □

Lemma 17 The series $\sum_m \varepsilon_m^{(5)}$ converges with probability 1.

Proof: Using Assumption 5 and the bound (33) on $||R(x_k, r_k)||$, we have

$$||\varepsilon_m^{(5)}|| \leq C(t_{m+1} - t_m) \sum_{k=t_m}^{t_{m+1}-1} (\gamma_{t_m} - \gamma_k) \leq AC\gamma_{t_m}^2 (t_{m+1} - t_m)^{p+1}.$$

Using Lemma 12(a), $\sum_m ||\varepsilon_m^{(5)}||$ has finite expectation, and is therefore finite with probability 1. □

We close by establishing the statement mentioned at the end of the preceding subsection, namely, that the changes in r_k between visits to the recurrent state i^* tend to zero as time goes to infinity. Indeed, Eq. (33) establishes a bound on $||r_k - r_{t_m}||$ for $k = t_m, \ldots, t_{m+1} - 1$, which converges to zero because of Lemma 12(a).