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Abstract

This report is a preliminary version of work omn an intrinsic
approximation process arising in the context of a non-isotropic perturbation
theory for certain classes of linear differential and pseudodifferential
operators P on a manifold M. A basic issue is that the structure of P
itself determines the minimal information that the initial approximation
must contain, This may vary from point to point, and requires corresponding
approximate state spaces or phase spaces.

This approximation process is most naturally viewed from a seemingly
abstract algebraic context, namely the approximation of certain infinite-
dimensional filtered Lie algebras L by (finite—dimensional) graded nilpotent
Lie algebras g, , or 8(x,£)’ where x ¢ M, (x,§) ¢ T*M/0. It requires the
notion of "weak homomorphism”, A distinguishing feature of this approach is
the intrinsic nature of the approximation process, in particular the
minimality of the approximating Lie algebras. The process is closely linked
to "localization”, associated to an appropriate module structure on L.

The analysis of the approximating operators involves the unitary
representation theory of the corresponding Lie groups. These
representations are for the most part infinite—dimensional, and so involve a
kind of "quantization”, Not all the representations enter, The filtered
Lie algebra L leads to an "approximate Hamiltonian action” of G(x,&)‘ the
group associated to 8(x,¢)’ and thus induces (via an adaptation of a

construction of Helffer and Nourrigat) an intrinsically defined "asymptotic

ii



moment—map” with image in g?x’g). The relevant representations are those
associated to this image by the Kirillov correspondence.

The genesis of this work has been in the context of 1linear partial
differential operators, in particular the question of hypoellipticity. For
example, our framework leads to a mnatural hypoellipticity conjecture
enlarging on that of Helffer and Nourrigat. We believe, however, that the
approximation process is likely to have broader applicability, particularly
in those contexts where the process can be extended to filtrations with an
L9 term. This yields not simply a graded nilpotent algebra, but a semi-
direct sum with a graded nilpotent. As we show, one such context arises in

the approximation of non-linear control systems,
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$0. Introduction

This report is a preliminary version of work to date on an
approximation process arising in the context of constructing an appropriate
non—isotropic "perturbation” theory for certain classes of naturally arising
linear differential operators P, This requires the construction of
approximate state spaces or phase spaces. These will depend on the
structure of P itself, and may vary locally, i.e., from point to point of
the base manifold M, or microlocally, i.e. from point to point of the
cotangent space, A basic issue is that the structure of P itself determines
the minimal amount of information that the initial approximation must
contain, and this may vary from point to point,

It is a remarkable fact that this approximation process is most
naturally viewed from a seemingly abstract algebraic context, namely the
"approximation” of certain infinite—dimensional filtered Lie algebras L (of
vector fields or of pseudo—differential operators) by finite—~dimensional
graded Lie algebras gxo s Or g(xo EL)? where xgeM, (xo,to)sT*MIO. The
algebras gx0 (or g(xo JE, )) are not determined purely by the abstract
structure of L as a Lie algebra over R, but also depend on the module
structure of L over an R—algebra F on which L acts as a Lie algebra of
derivations. In the local case we take F to be C°(M), and in the microlocal
case essentially the algebra of zero-order pseudo—differential operators
with real principal symbol. The algebra F is essential in obtaining the
correct "localization”, Here “approximation is <closely 1linked to
*localization®, this being either at the level of the base manifold or at

the level of the cotangent space, Roughly speaking, one treats P as an



element of the "enveloping algebra® of the filtered Lie algebra, and
approximates it by an element in the enveloping algebra of the finite-
dimensional graded Lie algebra g. A distinguishing feature of this approach
is the intrinsic nature of the approximation process (i.e., coordinate-
independence and functoriality), im particular the minimality of the
approximating Lie algebras,

The analysis of the approximating operator leads naturally into the
unitary representation theory (i.e., "Fourier analysis”) of the simply—
connected Lie group G corresponding to the finite—dimensional graded Lie
algebra g. These representations are, for the most part, infinite—
dimensional, and so involve a kind of "quantization”. The decomposition
into irreducible representations may be viewed as a finer subdivision of the
approximating state space or phase space.

Not all the irreducible representations enter into the approximation,
Vhich ones do appears to be determined by the original filtered Lie algebra.
This is discussed most naturally at the level of the cotangent or phase
space, with its associated Poisson bracket structure. According to the
theory of Kirillov [26], Kostant [27] and others, the irreducible unitary
representations of G are intimately related to the orbits in g*, the dual
space of g, under the coadjoint action of G. If one has a Hamiltonian
action of G on the sympletic manifold N one gets an intrinsically defined
moment-map §:N —)g‘ which is equivariant with respect to the G—-actions, As
a8 heuristic principle one expects the irreducible representations which
enter into the "quantization” (if it exists) of the G-action on N to be those

associated to the coadjoint orbits lying in the image of §., (In case G and



N are compact this is given precise realization in recent work of Guillemin
and Sternberg [14]). In our context the original infinite—dimensional
filtered Lie algebra L leads to an "approximate” Hamiltonian action of
G(xo’go). This allows us, adapting a construction of Helffer and Nourrigat
([191, [211, (321, [33]1), to intrinsically define an "asymptotic” moment-
mapping, with image in g*(xo JEo)” This image determines the relevant
representations.

As indicated above, the genesis of this work has been in the context of
linear partial differential operators, particularly the question of
bypoellipticity, and, to a lesser extent, local solvability and construction
of parametrices, i.e., approximate inverses, In this context (aside from
the metaplectic group, which enters in the study of second order operators)
the Lie algebras which arise are graded nilpotent. We believe, however,
that the approximation process is 1likely to have rather ©broader
applicability than to questions of hypoellipticity, or, for that matter, the
study of linear P.D.,E.’s., For example, under appropriate conditions the
approximation process can be extended to the case where the filtration
contains an L0 term, Now the procedure now longer yields only a graded

nilpotent Lie algebra, but a semi—-direct sum goég)g, where go

is "arbitrary”
and g is graded nilpotent as before. In a series of papers (see for example
[4]) Crouch has shown that in the context of approximation of non-linear
control systems by means of Volterra series certain solvable Lie algebras,
of the form R ® g, with g graded nilpotent, naturally arise. Starting with
a filtered Lie algebra L suggested by [4], one finds that the resulting Lie

algebra coming from the approximation process is of the correct type, It



appears quite likely that this process can be brought to bear on the
questions treated by Crouch,

The organization of this report is as follows: In 81 we construct the
local approximation process and examine its properties. In 82 we show how
to carry out a version of the group—level 1lifting process of Rothschild-
Stein [37] and the corresponding homogeneous—space approximation process of
Helffer and Nourrigat [20] in the more general context of 81, We in
addition illustrate the connection of these results with questions of
hypoellipticity.

In 83 we shall treat the microlocal version of the approximation
process, including a discussion of the asymptotic moment-map. In this
context we can frame a natural hypoellipticity conjecture emnlarging on that
of Helffer and Nourrigat ([19]1, [21], [321, [33]).

In 84 we shall extend the approximation process (both 1local and
microlocal) to the case when the filtration has an L0 term., We shall also
briefly examine the connection with the work of Crouch,

We shall conclude in 85 with a summary of the main directions for
further work,

In the remainder of this Introduction we shall go into more detail on
the motivation and background of this work.

The initial idea of using graded nilpotent Lie algebras for local
(i.e., on the base manifold) approximation (akin to normal coordinates)
seems to be due to Stein [38]. The aim was to develop a generalized
Calderén—Zygmund theory of singular integral operators in a non—abelian,

non—isotropic context, i.e. with certain directions weighted differently




from others, (This is how the nilpotent groups arose. The only Lie groups
with dilations are nilpotent, though not all nilpotent groups have
dilations), The analysis of the resulting non—~Euclidean balls is fundamental
to the theory.

The approximation process appears as follows, One begins with a
hypoelliptic operator P on M, constructed as a polynomial with c®
coefficients in the vector fields X;,...,X; satisfying the Hormander
spanning conditions ([23]1), i.e., the iterated commutators span the tangent
space at each point of M, Corresponding to these vector fields one
introduces the free nilpotent Lie algebra g on k generators of step r, r
being the order of iterated commutators of the Xi's needed to span (in the
nbhd of a point xoeM). Let G be the corresponding group. Notice that in
general dim G > dim M. Because the spanning condition is satisfied it is
possible to "1ift" the vector fields Xl""’xk’ in a nbhd of x5, to vector
fields il”"’ik on a manifold M of dimension equal to dim G, and so that
the ii are free up to step r at each point in a nbhd of io € ﬁ, i.e., the
commutators up to step r satisfy no inessential linear relations at io. At
each point ¥ in a nbhd of 20 M can be locally identified with a nbhd of the
identity in G, and the ii can be approximated by ii' the generators of g,
viewed as left—invariant vector fields, This is an approximation in the
following sense: The dilations on g (and hence on G) introduce a natural
notion of "local order” at a point for functions or vector fields via, for
example, Taylor series with non-isotropically weighted variables, Then ii
differs from ii by a term of lower order in this sense., (This is a more

stringent requirement than lower order in the classical semse. A vector



field may be of lower order classically, but of comparable, or higher, order
in this sense, and hence not negligible). One then approximates f", the 1lift
of P, at ¥ by ﬁig a (homogeneous) left—invariant differential operator on G,
In the particular context considered by Rothschild and Stein it is seen that
the f’i‘ are also hypoelliptic, and hence have fundamental solutions ﬁg of
special type (i.e., homogeneous distributions). One glues together the ﬁi
to construct a parametrix E for f", and pushes this down to get a parametrix
E for P, An important point here is that the ﬁi‘ vary smoothly with X.
Later Metivier [30] showed that, under an appropriate constancy of rank
condition for the Xl”“’xk one could use groups Gx of the same dimension as
M; however, these groups would in general vary with the point xgM.

The main comcern in this work was not with deriving hypoellipticity
criteria, but rather in constructing parametrices and obtaining sharp
a priori estimates for operators known to be hypoelliptic, primarily the
fundamental sum—of-squares of vector fields operators of Hormander [23].
The primary emphasis was on the structure theory rather than the
representation theory of the nilpotent Lie groups involved,

When considering primarily such sum—of-squares operators the

representation theory of the groups Gx can be disregarded, since the

representation theoretic criteria for hypoellipticity are automatically
satisfied, However, hypoellipticity is mnot restricted to second-order
operators, and does not inhere specifically in the spanning condition,
Rather, the spanning condition (more precisely, the rank needed for
spanning) determines which group to use as a local model, and then the

hypoellipticity of the given operator is studied via the wunitary



representation theory of that particular group. The importance of

representation theoretic conditions, as distinct from spanning conditioms,

for hypoellipticity was first emphasized, I believe, in my own work [35].
Here a general representation theoretic criterion was formulated for
homogeneous left—invariant operators on nilpotent Lie groups, and shown to
hold for the Heisenberg group, the prototype (and simplest) mnon-abelian
nilpotent Lie group. Interestingly, all the ~unitary irreducible
representations, including the "degenerate®™ ones not appearing in the
Plancherel decomposition, play a role. The criterion was later shown to be
valid for arbitrary graded nilpotent Lie groups by Helffer and Nourrigat
([17), [18]). The issue motivating the work in [35] was not, however, local
approximation by nilpotent Lie groups, but a seemingly unrelated question,
namely, to better understand a mysterious quantization process arising in
the microlocal analysis of certain degenerate—elliptic operators,

From the mid 1960's onward the emphasis in the study of linear P.,D.E.’s
was on the use of phase space (i.e., cotangent rather than base space)
methods, This included both sophisticated phase space decompositions (going
back at least as far as Hormander’s partition of unity in his analysis of
subelliptic estimates [22]) and the use of symplectic geometry. One studied
Hamiltonian mechanical systems on phase space, the Hamiltonians coming
essentially from the principal symbols of the operators being considered.
The connection between these classical systems and the original operators
was basically made via a kind of geometrical optics or W.K.B. type of
relationship.

In the context of degenerate—elliptic operators, again going back at



least to Hormander's test—operators in [22], and to the work of Grusim [12],
certain "intermediate” P.,D.0.'s (partial differential operators) arose, with
polynomial coefficients constructed out of the ®"total® symbol of the
original operator, The analysis of the original operator required the study
of these intermediate P.D.0.’'s, acting on certain intermediate Hilbert
spaces. If the original phase space methods are viewed as a 1st
quantization, then the above context is reminiscent of a 2nd quantization
process,

In the particular context of my notes [34] a “"test—operator” (i.e.
unitary equivalence class of intermediate P.,D.0.'s) is introduced for each
point (x,¢) e 2, the characteristic variety (i.e., zero—set of the principal
symbol), assumed to be symplectic, of the original degemerate-elliptic
operator P, The intermediate Hilbert space at (x,&) is 1?(&*), where 2k =
codim 3 in T*M/0. In fact L?(Rk) is the Hilbert space associated to a
polarization of the (necessarily symplectic) normal space N(E)(x’g) to 3 at
(x,€). The striking similarity was noted in [34] between (1) this 2nd
quantization process on the one hand, and (2) the "coadjoint—orbit” method
of Kirillov [26] for obtaining the unitary irreducible representations of a
nilpotent Lie group G by polarizing all the coadjoint orbits of G in g*.
The work in [35] was undertaken with the hope of elucidating this analogy
with the Kirillov theory. One explicit link was the following. Returning
to the context of [34], it was shown that N(z)(x,g) x R could be naturally
identified with hk' the Lie algebra of the Heisemberg group Hk. For this
group the gemeric representations (equivalently, coadjoint orbits) are

parameterized by one parameter, Planck'’s "constant”™, It was shown that the



test-operators associated with the ray through (x,&) correspond to the
images, under the representations with positive Planck'’s constant, of a
homogeneous left-invariant operator 5 on Hy. This observation reinforced
the expectation expressed in [35] that one could eventually use nilpotent
groups for microlocal approximation, In particular, in conjunction with the
conjectured representation theoretic hypoellipticity criteria for these
groups, this could 1lead to hypoellipticity results for more general
operators P, and, in fact, could 1lead to the formulation of natural
hypoellipticity criteria which might have no simple explicit expression in
terms of the classical (total) symbol of P, and hence be totally overlooked.

The preceding analogy, arising as it does in the specific context of a
symplectic characteristic variety ), needs certain important refinements in
order to give the correct intuitions more gemerally: (1) In the symplectic
case the group, Hk’ which arises does not vary with the point (x,&) of 2.
(2) There are only two classes of representations, the generic ones
associated with non-zero Planck’s constant, and the 1-dimensional ones
associated with zero Planck’s constant, The former are, essentially, in
one~to—one correspondence with the characteristic variety ), and the latter
are controlled via a kind of transverse (to }) ellipticity comdition, In
particular, ) is singled out as special in various ways.

In more general contexts, even in essentially ®"rank 2" contexts as
treated in Boutet—Grigis—Helffer [31, and as applied by Helffer to the group
theoretic context in [16], there are more than two <classes of
representations: in particular, to each point (x,£) & } there may correspond

a whole family of representations,
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In our context of microlocal nilpotent approximation to a filtered Lie
algebra {Li} the above points are easy to discuss, Given P, there may be
one, several, or mno {Li} pertinent to its analysis., The characteristic
variety 2 of P will influence this determination of {Li}, but does not play
a really decisive role, We then obtain a graded nilpotent Lie algebra
8(x,,E,) at every point of T*M/0, not just at points of ) j;i.e., we deal
with the total phase space. However the algebras, and their ranks, will
vary from point to point, and, generally, at points not on 3, 8(x0'§o) is
trivial, i.e., of rank 1, To each (x0’§0) there is associated a family of
unitary irreducible representations of G(xo»§o)’ namely those associated to
the coadjoint orbits in g:xo,go) which are in the image of the asymptotic
moment—map at (x0,§0). This may be viewed as a refined "phase space
decomposition” determined by the filtered Lie algebra {Li}: To each point
(q,&) of the phase space T'M/O we associate a subset of the "irreducible

phase spaces” in T*(G(x )), namely those in the image of the asymptotic

0+%o
moment—map. This setting is itself suggestive of an infinite-dimensional
Kirillov theory, or, better, the approximation of an infinite dimensional
Kirillov theory by finite—dimensional Kirillov theory.

Both to aid the reader in wunderstanding the viewpoint and results
presented here, and to give proper acknowledgement, we would like to make
clearer the relation to other work in this general area, in particular the
microlocal work of Helffer and Nourrigat ([21], [321, [33]). The idea of
introducing filtered Lie algebras in the context of hypoellipticity and of
thereby obtaining intrinsically defined nilpotent approximations seems to be

new, The local construction of nilpotent Lie algebras by Stein, Folland,
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Rothschild, Goodman, Helffer, Nourrigat, and others (including Crouch, in
the context of control) is not intrinsic,in that a Lie algebra is introduced
externally, for example a free nilpotent on an appropriate number of
generators, and of appropriate rank), The same is true of the microlocal
construction of Helffer and Nourrigat to be discussed below, The 1local
construction of Metivier [30], under the correct constancy of rank
conditions, does not introduce the nilpotent Lie algebras externally, but is
also mnot intrimnsicy; it involves an explicit choice of vector fields
XiseeasXgo

What are the advantages of an intrinsic comstruction of the nilpotent
Sxo(OI g(xo’éo)), and the introduction of filtered Lie algebras {iLi}?  For
one thing, of course, an intrinsic construction leads to functoriality
properties., Moreover, by insuring that the gx's (or g(x,g)'s) are intrinsic
we can view them as a family (as x varies in a nbhd of X4, Or (x,€) in a
nbhd of (xo,§0)) of local invariants of the initial data (i.e., the filtered
Lie algebra) somewhat reminiscent of the local ring of a singularity [13].
Under appropriate "stability” conditions on these invariants, one can hope
to obtain local (or microlocal) canonical form results for the initial data
(e.g., akin to the canonical form results in Tréves [39], Chapter 9). Also,
the significance of the "spanning” condition is more sharply brought out; in
the intrimsic construction, unlike the external construction, something like
a spanning condition is needed to even comstruct the Lie algebra 8x,
(Without such a condition the construction yields an infinite graded Lie
algebra).

The introduction of the filtered algebra {Li} is extremely natural, It
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defines the class of operators we are examining, namely the "enveloping”
algebra "U(L)" of {L1} (not to be confused with the usual enveloping
algebra; in the local case this consists of the differential operators on M
constructed out of (non—commutative) polynomials in the vector fields im L,
with coefficients in CzﬂM). and in the microlocal case polynomials in the
¢DO’'s (pseudo-differential operators) in L, with coefficients O-order ¢DO’s
on M). At the same time it defines sharp form of hypoellipticity, L-
hypoellipticity, which, for P ¢ "U(L)", depends only on the leading part of
P with respect to the filtration, The same operator P could be viewed as
lying in "U(L)" for various filtered Lie algebras L,L', and satisfy the
criteria for L-hypoellipticity, but not L'—hypoellipticity (or satisfy them
for no filtration, as for example if P is not hypoelliptic). The filtration
also suggests a notion of L-wave—~front set associated with the phase space
decomposition discussed earlier, coinciding with the standard notion of WF-
set in the case of the natural rank 1 filtered algebra L,

The intrinsic construction does not require that the gemerators of L
all be of degree 1, but works equally well in general, For example, the
analogue of Metivier’s approximation result holds in this more general
setting, and hence, apparently, so do the corresponding hypoellipticity
results of Rothschild [36], The fact that L need not be generated by 1! is
of interest particularly in the microlocal context. In this context the
setting is often “geometrical”, the operator P (and associated symbol
calculi) under investigation being characterized, for example, in terms of
the symplectic geometry of various varieties associated to the total symbol,

and not in terms of an explicitly associated set of first order pseudo-
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differential operators (the analogue of vector fields). This is the case,
for example, for the operator class Lok studied, for example, in Boutet
de Monvel [2], Helffer [15], Boutet-~Grigis—Helffer [3], Grigis([Q], [10],
[11]1), ©both in connection with hypoellipticity and propagation of
singularities. One can, as shown in [15], choose associated lst—order ¢DO's
but the choice is not unique, It turns out, however, that there is an
intrinsically associated filtered Lie algebra {Li} of rank 2, not
necessarily generated by Ll, so that LMk is, essentially, "Uk(L)", and so
that the notion of hypoellipticity studied in the above papers is,
essentially, L~hypoellipticity., Of course, for most purposes, one can
undoubtedly use an ad hoc extension of the "external” method in order to
bhandle the case where the generators are not all of degree 1; however, the
free nilpotent algebras thus introduced are much larger than necessary, and
one thereby loses a good deal of naturality.

In a noted dated Nov, 22, 1981, and privately circulated, we sketched
out a program of microlocal nilpotent approximation in the context of a
filtered Lie algebra L of 1st order ¢DO’s. VWe formulated a microlocal
*spanning” condition at (x,£) e T‘M/O, and determined a process for
intrinsically associating to (L,(x,&)), where (x,f) is of finite rank r, a
pair (g(x,§)'“)’ where g(x,&) is a graded nilpotent Lie algebra of rank r,
and n ¢ gtx,g)/o. The aim was to associate to each P ¢ *"U™(L)”, in an
intrinsic way, 5 € U%om(g(x,g)) so that L-hypoellipticity of P at (x,¢)
would be equivalent to hypoellipticity of l‘; at m, with respect to the
natural filtration, The 1latter was to have a representation—theoretic

criterion, but involving only a subset of the representations of G(x £ )
L4
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(equivalently, only a subset B“c:g?x.g) of coadjoint obits) depending on L
but not on P, A provisional suggestion for Pn was made, inspired by the
results in [3], [16] which, as indicated above, we viewed as corresponding
to L of rank 2,

The construction of g(x,§)’ while intrinsic, seemed hard to work with,
and not amenable to computation, In particular, it was not clear how to
relate g(x,t) analytically to L as a genuine approximation. More recently
we discovered a more explicit variant of our construction which circumvents
this difficulty. In contrast with the externally introduced free
nilpotents, the g(x’g) do not come equipped with partial homomorphisms into
L. However, one can prove that any "cross-section” B from B(x,&) to L
provides a "weak—homomorphism”, which can be used to prove (in the local
context) variants of "lifting"-theorems, and, in general, seem to provide
adequate substitutes for partial homomorphisms,

The provisional ideas about L-hypoellipticity also need to be modified
in two essential and related points, both involving r(x,g) (the image in
gzx’g) of the "asymptotic” moment-map, to be discussed below). To begin
with, although there is no difficulty in making an intrinsic association to

P s U:(L) (the ordinary enveloping algebra) of f e Uﬂ (g(x,t))’ this is not

om
necessarily possible for P & *U™(L)". However, it can be shown (modulo
details we have not carried out; see Note 3,24.,3) that P —)u(ﬁ) is well-
defined for those n associated to orbits in r(x,ﬁ)' Also, in general, rn is
very likely larger than necessary for L-hypoellipticity of P, only r(x’g)

being required.

Independently of our own work Helffer and Nourrigat were investigating
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related questions, as part of their study of "maximal hypoellipticity”,
growing out of their earlier work on the representation theoretic
hypoellipticity criterion for nilpotent Lie groups. This was primarily in
the context of differential (or, 1later, pseudo-differential) operators
constructed out of explicitly given vector fields or 1st-order ¢DO’'s
satisfying the spanning condition, corresponding, in my framework, to L
being generated by Ll. They externally introduced a nilpotent Lie algebra
(a free nilpotent), and wished to characterize the maximal hypoellipticity
at (x,&) in terms of a subset, P(x’g), of representations, They succeeded
in obtaining a precise determination of r(x’g), and in formulating a precise
conjecture, They have made substantial analytic progress, proving
sufficiency of the representation theoretic condition in a variety of cases,
and recently ([32], [33]) necessity in general. As they point out, this
conjecture, if true, would, in particular, subsume many of the known
regularity results for linear P.D.E.’s under a single broad rubric. Among
the tools used are the microlocal techniques of Hormander ([24], [25]) and
Egorov [5] for the study of subelliptic estimates. In particular Nourrigat
([32]1, 1[331), generalizing techniques of Hormander, derives a kind of
substitute for the lifting theorems, by showing how, in a precise sense, the
generating ¢DO’s are approximated at (x,§) by the representations in r(x,§)°
One no longer approximates by the regular representation, as in the lifting
theorem, but by a subset of irreducibles, We first learned of the set
r(x,{) and the microlocal approximation result from Nourrigat at the Boulder
conference on P,.D.E.'s of July 1983,

The construction of P(x’g) is made in terms of an explicitly chosen
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partial homomorphism from the free nilpotent to the generating ¢DO’'s. An
analogous set r(x,§)C:3:x,§) can be introduced in our context, and shown to
be an invariant of L. This is done by choosing an arbitrary cross—section B
from B(x,8) to L, defining rfi’g), and proving it independent of the choice
of B. Using this set r(x,t) we can formulate a sharp form of our earlier
conjecture for L-hypoellipticity naturally incorporating that of Helffer and
Nourrigat for maximal hypoellipticity. If we regard I(x’g) as the image of
an asymptotic moment-map, which we shall see is quite reasonable, then in
view of the result of Guillemin-Sternberg [14] mentioned earlier, the
conjecture seems extremely natural,

Although we present some analytic applications, our main contribution
here is the formulation and construction of the approximation process,
Various of the techniques (and results) of Helffer and Nourrigat can, with
modification, doubtless be carried over to our more general context. For
example, as we shall indicate, a modified version of Nourrigat'’s proof of
the approximation result appears to carry over, and this, basically, is what
is needed to prove the necessity portion of his maximal hypoellipticity
criterion. We do not pursue this line, however, since we feel that a more
natural and fruitful approach would be based more squarely on the invariants
of L, in particular on the "phase space” decomposition determined by L.

This remains a program for the future.
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81, Local Nilpotent Approximation

The initial context for this work is a family xl,...,xk of C° vector
fields defined in a neighborhood of x; & M, and satisfying the Hormander
spanning condition of rank r, That is, the Xi's, along with their iterated
commutators of lemgth r span Tx,M’ the tangent space at xg.

We have already indicated in the Introduction how this setting leads to
the introduction of nilpotent Lie groups for the purpose of approximating
differential operators P expressible as polynomials in the vector fields
XyseeasXys

In the initial context P was "the" Db-—Laplacian on the boundary M of a
strongly pseudoconvex domain D, If one used a generalized upper half-plane
3 to geometrically approximate D at X0, then it was mnatural to use the
boundary of 3 to approximate M., But this boundary turns out to be the
Heisenberg group Hn, the most elementary (and also most fundamental) non-—
abelian nilpotent Lie group.

The later work of Stein and collaborators relied less on this type of
geometric "normal coordinates™ approximation, and more on the algebraic
structure of X;,...,X.

Let 8k,s denote the free mnilpotent Lie algebra on k generators
§1,...,§k. and of step s. Then there is & unique partial homomorphism
l:gk,s —>vector fields on M in a neighborhood of Xy such that l(gi) = X; for
i=1l,...,k.

Write 8k,s — 81 @ @gs. To say that A is a partial homomorphism

means that
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(1.1) A is linear in R
(1.2) X([Yi.Yj]) = [A(Y;), l(Yj)] for every Y; & g;, Yj e g; with i+jss

The pertinent 8k,s is the one with s=r, where r comes from the spanning
condition, This leads to a "lifting"” process, since dim 8x,r DAY be greater
than dim M. When the rank of the X;'s is not constant near x; this extra
dimensionality may be unavoidable., Under a constancy of rank condition
Metivier, in a paper [30] applying nilpotent approximation in the context of
spectral theory, was able to construct approximating nilpotent Lie algebras
gy with dim gy = dim M, but with 8x necessarily varying (smoothly) with x
near xg.

The construction of g as given by Stein, Rothschild and others is mnot
intrinsic, in that g is introduced externally amnd, at 1least a priori,
depends on the explicit choice of vector fields X;,...,X;. (What happens,
for example, if we take instead Yl"“’Yk' some "invertible®” 1linear
combination of the Xl,...,Xk?) The construction of Metivier, under the
constant rank assumption, does not introduce g externally, but it is also
not intrinsic,

In what follows we show how to make an intrinsic construction of a
graded nilpotent Lie algebra gxo as an invariant attached to a filtered Lie
algebra L at x;. In a sense made precise by our version of the 1lifting
theorem, gxo is an approximation to L at Xg. The algebra gxo depends not
just on {L1} as an abstract Lie algebra over R, but also on its C”(M) module

structure.
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This intrinsic construction has a number of advantages.

(1) It leads to natural functoriality results.

(2) It handles at the same time the case where the generators of L are
not all of rank 1.

(3) It recovers the Metivier approximation in an intrinsic fashion,
and extends it to the more gemeral context (2).

(4) It generalizes to other contexts, such as the microlocal and non—

nilpotent local contexts, which we shall treat in 83 and 84,

One basic distinction between the intrinsic and the external
constructions is that the former does not come equipped with a partial
homomorphism, In fact, since the Lie algebras will vary with the point X0
one cannot expect to have available a partial homomorphism. However, a less
stringent substitute notion is available, namely that of weak homomorphism.
In the context of the intrinsic construction this notion is extremely
natural., Much of the technical difficulty of carrying over to the intrinsic
context results like the 1lifting theorem comes from having only weak
homomorphisms to work with.

A further distinction between the intrinsic construction and the
external construction is worth noting. In the external construction, as we
saw, no spanning condition is needed in order to construct the nilpotent Lie
algebra or the partial homomorphism (though such a condition is needed to
construct the 1lifting)., In the intrinsic construction something like the

spanning condition is needed to even construct the nilpotent Lie algebra



20

gxo. (Without such a condition the construction yields an infinite graded
Lie algebra, with finite-dimensional terms of ecach degree,) The precise
conditions, as we shall see, is that i; = i§+1 = aee = ir;i for all iZO,
i.e., the sequence stablizes. This is automatically the case if “spanning”
holds. In light of Frobenius’ theorem (or better, Nagano’s theorem in the
real—-analytic case) the above condition (modulo a constancy of rank
assumption in the C” case) is like a spanning condition on an integral
submanifold,

We begin with some preliminaries. We shall work primarily in the c”
category, and deal with modules L of C® vector fields on M, a smooth,
paracompact, manifold. That is, modules over the ring C”(M) of real-valued
C® functions. At times we shall only want to take M an open neighborhood of
Xy, and generally we shall work with germs., In the C° category partitions
of unity are available.

We will have occasion to work with the formal power series or real-
analytic categories, In the real-analytic context we do not have partitions
of unity, so we should, strictly speaking, probably work at the level of
sheaves of modules rather than modules, but we shall forego this degree of

precision,

Notation:
(1.3) C:,C&denote germs at x of real-valued C*, respectively real-
analytic functions; '}x denotes the ring of formal power

series at x,



(1.4)

Remarks 1,1:
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If L is a C®(M)-module of vector fields, i’x denotes the é:—
module of germs at x of vector fields in L, Similarly in the
real-analytic case. If we pass to formal power series

instead of germs we obtain an J -module.

1) Each of the three rings in (1.3) is a local ring with

identity. The unique maximal ideal ﬂlx consists of the germs

(resp., formal power series) vanishing at x. Moreover, the

composition
* Q0 é:
R —)Cix - —_
m
x

is bijective, Similarly in the remaining two cases. (See,

for example, Malgrange [29]).
2) Ox and '}x are Noetherian, (Malgrange [29]).

3) If L is the module of all vector fields in the C° or
real-analytic context, then f“x is finitely generated over
é:, éx (and '}x, if we pass to formal power series), Imn fact,
choose local coordinates, and take 3/9x| seens %"n (more

precisely, their germs) as generators.

4) As a corollary of 2) and 3) we get: Let B be any
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submodule over O; of germs of real-analytic vector fields at
x (resp., any submodule over"}x of formal vector fields).

Then B is finitely generated.

Def. 1.2: Let M be a C° manifold, F = C*(M), and x ¢ M.

A filtered Lie algebra L at x of C” vector fields (with increasing

filtration), is a, generally infinite dimensional, Lie algebra over R of
vector fields on M, together with a sequence of subspaces Li i=1,2,...,
such that

() Ltcrzcidc,,,

(2) [Li,Ld1 c it Vij

3) L= U 1i
o=

(4) Each L! is an F-module, i.e., FL! C L1, where FLl refers to

multiplication of vector fields by C” functionms,
(5) As an ﬁx (i.e., é:) module ii is finitely generated for each i,
Remarks 1,3:

1) 1In view of remark 3) above, if we assume the spanning condition

(see below) at x, then ﬁ: is automatically finitely generated.
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2) In practice one often uses a stronger condition than (5), namely
(5 local): There exists an open neighborhood U of x such that for every i
L;(0) is finitely generated as a Cc®(U)-module.

Then (5 local) of course implies (5) for every xeU. In fact it implies
a slightly stronger, and useful consequence:

Suppose (5 1local) holds for the mneighborhood U. Let Xl,...,Xj be
elements of Li(U) such that the germs Xlx""’xjx generate ﬂi. (Such
generators exist since (5) holds at x). Then there exists a nbhd V of x
such that XIIV,...,Xj'V generate L1(V) as a C®(V)-module.

We omit the simple proof. A somewhat more carefully worded variant of

these remarks holds in the real-analytic case,

Examples 1.4:

1) Take X;,...,X; vector fields in a =nbhd of x, and take
1! = all C® linear combinations of b SRS 2 = !+ ity L.
Lt = L3 4 d,Ld,
That each LI is a C”-module follows from the identity [fX,Y] = fIX,Y] +
[£,Y1X. Finite generation is obvious,

2) Take X;,...,%, Yq,...,Yg vector fields. Set 1! = all C® linear
combinations of Xl,...,Xk; L2 = (all C® linear combinations of Yl""'Yi) +

!+ [L1,L1]: and set
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i i
k

i, i
5 ... 4?1, L.

jl"”’jke{l'Z}

. . <
J1+-o-+Jk—J

=
Gt
]

1%k

3) 1f Llcr?2c... is a filtered Lie algebra at x which is not of
finite rank (see below), we can "embed” it in a filtered Lie algebra of

arbitrary rank r, as follows. Define the filtered Lie algebra

L' if i<r
The module of all Co° vector fields

if il2r.

(By remark 1,13 we maintain the finite generation condition.)

Notation:
(1.5) For vector fields in a nbhd of x, let agivector fields —)T&M be
the [R-linear map which is evaluation at x., Clearly e, depends only on the

germ of vector field at x,

Def. 1,5: The filtered Lie algebra L is of finite rank at x if there exists
r such that ax:i; —>T;M is surjective. The smallest such r is called the

rank of L at x,

Notes 1,6:
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1) In the case of the first example above the finite rank condition is

just the standard spanning condition.

2) If ax:ié = T;M is surjective, so is a S R TyM for all y

vy

sufficiently close to x. Thus, if x is of finite rank r, them y is of

finite rank £ r for all y sufficiently close to

x. Moreover, ﬂ; = set of

germs of all C® vector fields at y for y sufficiently close to x. 1In

particular i; = i; Vszr.

Pf: Let €1seeesCy be a basis for T&M.. Choose germs Xlx""’ X e LT

such that Xi(x) = e;.

tangent bundle.

nx X

Then these germs, in a nbhd of x, form frames for the

Prop. 1.7: Let {Li}, x be a filtered Lie algebra of finite rank, r, at x.

Let
ii
i X .
8, = — - (where Lx =0) .
i-1, . qd
X x x
Then

(1) For i>r, gl=0.

(2) For ilr, g; is a finite—dimensional vector space over R.

(3) Let ﬂi:Li - gi be the canonical [R—-linear projection. Define

8x=8i® ... ®g. Then via the m;'s g,

inherits canonically the

structure of graded (milpotent) Lie algebra over R,

(4) m;(£X) = £(X)n;(X) for XeL' and £ & C”,
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gy is graded of rank r, but it may be of "step” ( r., That is,

fewer than r commutators may yield 0. For example, R® with non-standard

dilations can be graded of rank > 1, though it is of step 1.

(1)
(2),(4)

(3)

By Note 1,6.2 I‘,; = I:; Vsir.
I:i is a module over é:, and by definition gi inherits the

structure of module over é:/ixx = [R, By hypothesis I:; is

finitely generated over C:,

and so g; is finite-dimensional
over R,

Define a bracket [ 1:gi x gJ —)gi'"j as follows:
X X X

For X1, xJ ¢ g;, gi, respectively, choose i, vi ¢ i, Li
s.t.

my (11 = X%, nyxd) = x4,

Let [X, XJ1 = x;, 17", 71,

To prove that this bracket is well-defined it suffice to
show:

Y

ri-1 rioPj ci+j—-1 o ri+
Ly + & Ly, LITC L3797 + & L77J,
But [L171, L31cLi*i™ by (2) of Detf. 1.2

oi » - oi * . * 3 oi
and [h L}, LJ1 ¢ & (L3, Ld1 + (& ,Ld1E1,
Again by (2), the first term is in ﬁxl',i"'j.
Of the second term all one can say is that it is in

i_ i
Ll = Li.

Now we use the fact that our filtration begins with an Ll—

term, Thus, i+j-1 = i+(j-1) 2 i. So, since the filtration
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is increasing, ii(: L§+j~1.
This proves that our bracket is well-defined; and from the
definition it is clear that it satisfies the conditions for a

Lie bracket,

Note 1.9: Even if {Li} is not of finite rank at x, each gi is finite
dimensional; only now g8y = gi C)gi C)... is an infinite direct sum, It is

still a Lie algebra over R with respect to the above—-defined bracket.

The graded Lie algebra gy = gi @ e @gf{ is clearly intrinsically
associated to {Li}, x, We begin our examination of 8y by asking how much
"collapsing” has taken place in its construction, VWe shall need an
elementary but basic tool which we shall also use later for other purposes,

and which arises becaunse we are dealing with local rings.

Prop. 1.10: Nakayama's Lemma (see [13]). Let A be a commutative local ring

with unit, and M a finitely generated A-module such that M = mM, where m is

the unique maximal ideal in A, Then M = {0}.

Cor. 1,11: Let M’ be a submodule of M such that M = M’ + mM, Then M=M'.

Pf: Let N = M/M'. Then N is still a finitely generated A-module., But

N/mN = M/mM + M’ = {0} by hypothesis, so N = mN, and N = {0} by Nakayama.

Cor. 1,12: M/mM is a finite—dimensional vector space over the field A/m,
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Let ¢:M —>M/mM be the natural projection map and vqy,...,V, 2 basis for this

vector space. Choose eq,...,e, in M such that ¢(ei) =v Then ej,...,ey

i-

form a set of generators for M over A.

Pf: Since M is finitely generated as an A-module, M/mM is finitely
generated as an A/m module., But m being a maximal ideal, A/m is a field,
and so M/mM is a finite—dimensional vector space.

The converse is harder, and uses Nakayama. Choose a basis Vi,...,V,
for M/mM, and preimages eq,...,e, under ¢. Let M be the submodule of M
spanned by €1,...,e,. It follows immediately that M = M + mM. So, by Cor.

1

1,11, M=M .,

In our context we take A é: and m = 1t

o The first consequence is

Lemma 1.13: gi =0 ¢ﬁ’ﬂi—1 = ﬂi. (The non-trivial direction is =), In

particular, if r is the rank of {Li}, x then gi # 0. That is, g, cannot be

"small” unless {Li}, x is "small”,

Pf: Cor. 1.11,

Remark 1.,14: Note here in passing that

. i it &
g, = = as =— modules (i.e., as vector
Y B Y | ei,ei-1 Ty
L> “+m L o (L°/L” ) spaces over R)
x x X x X X

This follows immediately from the fact that
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iiii-t
I‘Jl ‘_> X X
x i,+i-1
x(Lx/Lx )

. . fi-1 *i
is onto, with kernel Lx + ﬁxLx.

We next examine the functoriality properties of -

Def. 1.15: Let {L!},x be a filtered Lie algebra, and h = b; ® ... ®b, a
graded (nilpotent) Lie algebra. A weak homomorphism y (at x) from h into L
consists of an R—-linear map y such that

(1) y:b; »Li

(2) For any Yi’ Yj e hy, hj, respectively,

piti-1 . pit]

7([Yi, Yj]) - [y(Yi), Y(Yj)] e L_ h L (after passing to

X x
germs at x)

Remark 1.16: Suppose {Li}, x is of rank r at x, and h = th) ...C)hs, with

s2r, Then if A:h =L is a partial homomorphism them A is also a weak

homomorphism, By a partial homomorpism we mean an [R—-linear map such that
(1) a:h; -L

(2) For any Y., Y. & by, hj, respectively, with i+j$s,

J

MITLYD = [T, AT .

Generally, we also wish to assume

(3) The image x(hi), i.e., this finite—dimensional vector space,
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generates Ll as a module over C”, modulo Li-l, for ifr. (This condition
certainly holds if we take L as in Example 1,4.1 and use the original

definition of partial homomorphism).

Pf: (of remark)., It suffices to show that A satisfies (2) of Def, 1.15
for i+jd>s, But itjds = it+jdr, so i+j-1 2 r. Hence ii+j"1 consists of all

C® vector fields at x, so done.

Notice that although the notion of weak homomorphism is referred to a
point x, via the appearance of ﬁx, that of partial homomorphism is not; that
is, the 1latter assumes the L1 are all defined in some fixed (though
arbitrarily small) nbhd of x, and the homomorphism is viewed as holding in
this nbhd., In particular, the preceding proof shows that if A is a partial
homomorphism near x then it is a weak homomorphism at y for all y in a nbhd
of x. This is one reason why the notion of partial homomorphism is too

stringent in general.

Def. 1.17: Let {Li},x be a filtered Lie algebra, with g, canonically

associated to it. Let ni:L1 -)gi be the canonical projection., A cross-—

section of n is an R-linear map B such that
(1) p:gl oLl
(2) m;ep =1d for every i.
Clearly, since n; is surjective, such cross—sections exist; one takes a

basis for g; and maps to preimages under m;.
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Prop. 1.18: Let B:gy =L be a cross—section. Then

(1) B([Yi, Y

(2)

(3)

g

|

for every Yi' Y

For every Xi e Li, X; -8B °“i(xi) e i;-l Y

1) - [B(Y,), B(Y,)] ¢ fivicl g it (after passing to
i j x x x
germs at x)

3

g gi, gi, respectively, That s 8 is 3 weak
homomorphism .

i

ri
XX

For any cross—sections $, B', B(Yi) - B'(Yi) € ii'l + ﬁxLi

V Yi ) g;.

(1)

(2)

(3)

Suffices to show ni+j(ﬁ[Yi,Yj] - [B(Y;), B(Yj)]) = 0., But this
equals ni+j(B[Yi,Yj]) - ni+j[B(Yi), B(Yj)]. The first term equals

[Y., Y.], by definition of cross—section., But the second term

i’ )

equals [Y,, Yj] by the definition of Lie bracket for g_.

Suffices to show n;(X;-Bo mn;(X;)) = 0. But this equals n(X;) -

(e B)(m;(X;)) = 0, by (2) of definition of cross section,

Follows from (2), together with (2) of definition of cross—

section, by taking X, = B(Y;) and replacing B by B’ in (2).

We next prove the "universal® property of 8¢

Prop. 1.19: Let {Ll},x be of rank r at x, and let by @ ... @, ve a




32

graded Lie algebra, with y:h -5 L a weak homomorphism, Then the map m e y
(i.e., ;e yi:hi -932 ) is a homorphism of graded Lie algebras,

¥y:h—L

\\\ ln
\»3

Moreover, if, in particular, y(h;) generates Li over € modulo Li™1 for
every ilr, the nmoy is surjective.
Pf: Clearly moy is R-linear, Need to show

n,,.o0%

i+j .[Yi, Yj] = [nio vi(Yi), njo'yj(Yj)] .

i+j
By definition of [ , 1 in g, , the right-hand side equals
ﬂi+j[Yi(Yj). Yj(Yj)]. But, by definition of weak homomorphism,
"i+j(7i+j[Yi’Yj] - [Yi(Yi): Yj(YJ)]) =0,

Surjectivity, under the hypotheses of the Proposition follows

immediately from the definition of -3

Cor, 1.20: If h=h @ ... @® h, where sir=rank at x of {L'}, and if
A:h - L is a partial homomorphism (in a nbhd of x), then there are

corresponding homomorphisms m_ oA —9gy for all y in a (smaller) nbhd of x.

y
Moreover, if A satisfies (3) of Remark 1,16, then for all y in a possibly
smaller nbhd of x, nyi’l:h —)gy is surjective. That is, for all y in a nbhd

of x, is a quotient of h.

8y

Follows from above Prop. and from Remark 1.16, if we recall that rank

Ll £ r at al1 y in a nbhd of x.
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It is not clear what is the most natural notion of weak morphism
between two filtered Lie algebras {Li},x, xeM and {Ki},y, yeN, We give ome

variant at the germ level,

Def. 1.21: A weak morphism between {Li}.x and {Ki},y consists of a sequence

of R-linear maps Wi:ii —)ﬁ; , together with an R-linear map ¢:é:(M) —96;(N)
such that

(1) g (M) i (N)
(2) W,(£X) = ¢(OW;(X) VY £e CSOND, X & Lg
(3) Wil okt

cit+j—-1 . 2it+j
(4) [W;(X;), V(X1 - Wy, 5(0X;,X51) e K+ myK; J

for X, X, ¢ ﬂi, ijx, respectively,

J
Notes 1.22:
1) Of course an interesting special case occurs when (4) is replaced

by the stronger assumption (4'): v, (X;), wj(xj)] = wi+j[Xi'xj]'

2) We do not assume that the Wi piece together to form a single R-
linear map W:I',x —)ﬁy such that W, = W[Li. We instead assume the
weaker consistency condition (3), which is all that can be

expected in various examples (such as 3) below).
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Examples 1.23:

1)

2)

3)

Let ¢:M >N be a diffeomorphism, and suppose that kit = ¢,(Li),
where ¢, denotes push—forward of vector fields. Then for every
xeM ¢ defines a weak morphism between {Li},x ana (ki}, p(x),
where ¢:C(M) -)C;(N) is given by £ > feg 1, Of course here (4')
is satisfied, as well as the strong consistency condition in Note

1.22.2.

M=N, ¢=identity, Li c.Ki, and Wi:Li 5k% the inclusion map. Note
that the induced morphism of graded Lie algebras (see Prop. 1.24)
is not necessarily injective, In fact rank Lx may certainly be
greater than rank Kx' As an illustration take Ki as in Example

1.26.1 below, and L1 arbitrary.

Let {Li},x and {Ki},y both be of finite rank, with associated

graded nilpotents Bg» hy ,respectively, Suppose there is a

morphism A:g, - hy of graded Lie algebras, and let $ be an
arbitrary cross—section for hy. Define ¢:é:(M) - é;(N) by
¢:£ »> the constant function f£(x) ; define wvi:ii o ki by

Wi = Bioxibni. Then Wi is a weak morphism,

Prop. 1.24:

(a)

The composition of weak morphisms is again a weak morphism,



Cor.

1.15:

(b)

(c)

(a)

(v)

(c)
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A weak morphism Q:{Li},x —9{Ki},y induces canonically a morphism
of graded (milpotent, if x,y are of finite rank) Lie algebras
$:8, —hg.

(V) = 3.¥,

This is obvious except for (4) which involves a small calculation
requiring application of (1), (2), (3).

L o .
Define Qi:g; —éh; as follows, Choose an arbitrary cross—section

B% for g . Let Qi = ﬂ§°§i°B%. Clearly ii is R-linear.

Claim:
3. (vi 3 3 i i
1) [3;(Y"), ij(Yj)] = §i+j([Yi.Yj]) for Yi’Yj & By, 8%
respectively.
A
(2) &; is well-defined independently of the choice of cross

section B,
In fact (1) follows from the definition of [ , ] in g, hy, from
Prop. 1,18, (1), and an argument analogous to that in (a) above.

Statement (2) follows from Prop. 1.18.(3).

By Prop. 1.18.(2), Y onl = Ia mod terms in LI + & Ll

and by
(1)-(3) of the definition of weak morphism, @

K
io

i sends the "error”

terms into the kind of kermel of =«

(see Example 1.23.,1), The isomorphism class of the graded Lie
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algebra g, attached to {Li},x is invariant under diffeomorphisms applied to

{Liy,x.

We next illustrate the computation of 8y in a number of cases (in each
[\
of which the rank is finite). We retain the notation oy for evaluation of

]
vector fields (see (1.5)).

Examples 1.26:

1) Let Li, i=1,2,... consist of all C” vector fields in a nbhd of Xg.
As in Remark 1.1.3 we see that L1 is locally finitely generated by taking as

generators D/DX,,”.,éém‘where X{seeesX, are local coordinates, Clearly Xq is

n

of rank r=1, and so 8, = gi ,» abelian, with standard isotropic dilations,
L

1

Claim: 8%
D— 0

is canonically isomorphic to 'I'x M viewed as a vector space with
o
standard dilations, In fact, the map oy :ii —)T; M is surjective and
o °

factors through ﬁx ii to give a map
- (]

Using the generators B/BM,...,‘%éx“ as local frames we see that p is also
injective, and hence bijective, Notice that this example is the general

case of r=1,

2) If (L1} is generated by 1, as in Example 1.4.1, then g, is
]
1

generated by 8y » i.e.,
o
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g, = [gi [...[gi . gi 1...1
o . %o o *o

i factors

This follows from the definition of Lie bracket in g, and the fact that
(]

n;:LY gl is surjective.
0

3) Let g = g4 ® ... QDgr be a graded nilpotent Lie algebra, and G
a corresponding Lie group (uniquely determined in a nbhd of e)., View the

elements of g as left—invariant vector fields on G, and let

i

i_ ©

= ) @ Qg sy -
i=1

ji.e., take C”(G) linear combinations of the left—invariant vector fields.

Claim At any xe&G, {Li} bas rank r, and g, = g canonically.

Pf: Basis elements of gq C) e C)gi form frames for Li (i.e., are
everywhere linearly independent and spanning). This shows in particular
that rank = r, Let ‘rx:Li —>8; be defined by applying a;, identifying T,G
canonically with g, and projecting onto the i-th component, Passing to the
germ level we see just as in Example 1) that Ty factors through
ii—l + mxii to give a bijection between gi and g;. The definition of Lie

bracket in 84 shows that this is a Lie algebra isomorphism,
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4) Let H be a Lie group with Lie algebra h, Choose an increasing

filtration by finite-dimensional subspaces hl g h, % .o C¢Z b, = h such that

(h View the elements of h as left—invariant vector fields on

i» B3l Chy,

j.
H, and define L1 to be C¥(H) ®R h;. Then, just as in example 3), onme sees

that for any xcH, 8¢ is of rank r and

the graded Lie algebra associated to the filtered Lie algebra h, (Notice
that h defines a filtration on the vector space TxH, and 8z defines the

corresponding grading.)

5) Let M = V, a finite-dimensional graded vector space, i.e.,
V=1V () ces () V. , on which we define stardard dilations §; (t>0) by
éthi = ti. Using the dilations Gt one can intrinsically define (without
explicit choice of coordinates) the notion of homogeneity (in a nbhd of 0)
for a C” function and a C” vector field. (The vector field is homogeneous
of degree k if, applied to functions, it lowers homogeneity by degree
exactly k; since the functiomn is C” this implies that the derivative = 0 if
the degree of homogeneity of the function is less tham k.)

Choose a basis for V consisting of bases for the Vi‘ If LN is one of

the standard coordinate functions for V., then Uik is homogeneous of degree

k, and so is a/anjk. Say that a vector field is of local order £iat 0 if
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the coefficient fjk(“) of a/aujk has its Taylor series at 0 begin with terms
of order 2 k~i, where order is determined as above. (This can be formulated
more intrisically in terms of §,).

Since the highest grading occurring in V is r, it follows that

(1) Every homogeneous vector field is of degree £ r,

(2) Every vector field is of local order £ r,

A
For X of local order { i there is an intrinsically defined "leading” term X,

namely the unique vector field homogeneous of degree i such that Xé% is of
local order £ i-1, 1In 1local coordinates i is the sum of the terms
Esk(u)a/aujk where Ejk(n) is the sum of the terms of order k~i in the Taylor
expansion of fjk(u). (Of course we can then continue and define the
component homogeneous of degree i-1, etc.)

Let gi, i=1,...,r be the space of vector fields homogeneous of degree
i, Then [gi. gj] C-gi+j. Hence g = gl ® ... @ gT is a clearly finite-
dimensional and, hence, nilpotent subalgebra of the vector fields on V,

Let L! = all vector fields on V of local order £ i at 0., It is easy to
check that

1) L is a C°(V) - module.

2) [Li, Li1 c Liti

3) 1lcr2c...cuf =11 ||, = a1l C® vector fields on V near 0.

4)  oy(LF) = To(V)  (and ag(L™1) # Te(V) unless V. = {0}).
(Statement 4), and thus 3), follows from (2) above, Statement 2) implies
that the leading term of the commutator is the commutator of the 1leading
terms,) To show that Li, iZl, is finitely gemnerated it suffices, since

Li =10 C) gl C) ces C) gi to show that LO is finitely generated. But
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one (non-minimal) set of generators is given by all vector fields in L0 with
coefficients polynomials of degree £ r in the classical, isotropic, sense,
To see this recall that any C~ function vanishing at O of order 2 r in the
classical sense is a C* linear combination of monomials of degree r; and any
vector field with coefficients monomials of degree r in the classical sense
is in LD,

Let gy = g(l) @ @ 35 be the graded nilpotent associated to

{Li},0. Let 26 = g(i) except for i=1. Define g:(l) as

3}
°_ .

. 1 _
=T (in contrast to gy = - i
070 00

’~N
The proof of Prop. 1.7 goes through unchanged to show that -4 inherits the
structure of graded nilpotent Lie algebra. Since [Lo, Lj] c LI it follows

that ;0 = ;5@ o @25 is (canonically) the quotient of gog by the ideal

(lying in g(l)), which is in the center of g,. (With a bit more work this

ideal could be naturally identified with an explicit subspace of L0

consisting of polynomial-coefficient vector fields).

Claim: There is a natural isomorphism ;0 = g.
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Pf: Define the R-linear map yzié —)gi by X —)2, the leading term,
of degree i, Clearly, y is surjective and factors through ﬂg"l + ﬁoﬂi. In
fact, ﬁoﬂg C ﬂ3~1 and kernel y = ﬁg—l, so y determines a vector space
isomorphism between 26 and gi. It is easily seen that the Lie algebra

structure is preserved.

6) Let M and g be as in Example 5). Let h = hy ® ... C) h, be a
graded subalgebra of g such that ao(h) = TyV.

Let Li consist of all C”(V) linear combinations of vector fields in hj’
jﬁi. Then {Li},o is a filtered Lie algebra of ranmk r, Let gog be the
associated graded nilpotent., Let ¥y be the restriction to Ll of the
corresponding map in Example 5). Choosing some representation

X = fjk(u)ij ’

ki
Jj
where ij is a basis for hk over R, we see that

y(X) = } £,(OT, .
j

An easy argument then shows that y induces a natural Lie algebra isomorphism
g = h.

Let H be the simply connected nilpotent Lie group with Lie algebra h.
Then by the same argument as in Folland [7], using the existence of the

dilations, one can show that the infinitesimal action of h on V can be
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exponentiated to give a transitive right action of H on V, In other words,
letting GO denote the simply connected group associated to 8¢’ V is a right
homogeneous space of GO (and ToV is golk, where k is the graded subalgebra
of all vector fields in -0 vanishing at 0.) This is interesting to compare

with the homogeneous space lifting theorem of 82,

7) Special case of Example 6). Let X;,...,X; be homogeneous (of
degree 1) vector fields on V, h; the vector space over R spanned by the

Xi's’ and h the Lie algebra gemerated by hy.

8) Same setting as Example 7). Let Yl""’Yk be vector fields of
local order {1 at O whose iterated commutators of order £ r span TOV. Let
Xl""'xk’ homogeneous of degree 1, be the corresponding leading terms, h1
the vector space they span, and h the graded Lie algebra generated by by.
Let L1 be the space of all C* linear combinations of Yy5¢00,Y;, and L the
filtered Lie algebra generated by 1. Let gy be the graded nilpotent
associated to L,0,

We wish to examine the relationship of gg to h, VWe begin with a
special case. Take V = V; @Vz = E @lé, Y, = 3/dx, Y, = 3/dx + 2 3/at.
Then X; = X, = 9/0x, so h = h; = 1 - dim space spanned by a/9x. (In
particular, ag(h) # TyV.) However, gg; = gl @ g2 @ gs, the rank 3
nilpotent Lie algebra generated by the Y;, Y, themselves. Probably the
easiest way to see this is to put a different grading on V; namely, make the
t component of order 3, Then Y;, Y, are both homogeneous (of degree 1) and

we can apply the result of Example 6. (This is legitimate since no dilation
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structure on M is involved in the definition of gx.)
The above illustrates that g, need not equal h in general. However,
Claim: There is & canonical surjective morphism of graded Lie algebras

8o >h =0. (Thus h is the quotient of g, by a graded ideal.)

Pf, Define y as in Example 6. Noting, as in Example 5, that the
leading term of a commutator is the commutator of the corresponding leading
terms we see that y maps L! into and onto hi. Clearly, y factors through to
induce a map g% —9hﬁ —-> 0., The above remark about the leading term of a

commutator shows that this map is a Lie algebra homomorphism,

We give two cases in which the above map ) —>h is an isomorphism (as
shown by dimension arguments).
Case 1, As a Lie algebra over R, h is the free nilpotent on k generators of
rank r., (This does not imply that as a Lie algebra of vector fields on

V h is free of rank r at O,

2 _ @ 2
Example: b =— x— ;b =—. V=V, @V, .)

ax it ot x ¢

Pf: 8o is generated by g%, which has dim £ k since L1 has k

generators. Also, go has rank = r, Hence dim L) £ dim h, and so gg —h is

an isomorphism,

Case 2. Yl""’Yk satisfy the Metivier condition (to be discussed below)

and, in addition, the vector fields in h span TOV. (I don't know whether
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this latter assumption in fact follows from the Metivier condition,)

Pf: Metivier condition = dim 8y = dim V; spanning condition on

h = dim h 2 dim V.

Def, 1,27: The filtered Lie algebra {Li},xo. of finite rank r at xg,

satisfies the Metivier comdition if there is a nbhd U of Xq such that for

every i=1,...,r dim ax(Li) is independent of xeU., This is & transposition
to the general context of Metivier's [30] condition in the context where 1l
generates L.

The following proposition, in conjunction with the 1lifting theorem,
leads to hypoellipticity results, It shows, in particular, that the
nilpotent Lie algebras arising in Metivier [30] can be givem am intrimsic

formulation and generalize to the context where 1! need not generate L,

Prop. 1.28: Suppose that {Li},xo satisfies the Metivier condition,

Then

(1) For all x in a nbhd of xg, dim g, = dim M. Furthermore g, = gi C)

.

gi() ces 6;8§ where n; = dim gi is independent of x.,
(2) The gy vary "smoothly” for x in a nbhd of X5, and the smoothness
is compatible with the projection operators ni:Li - gi. More
precisely, choosing bases we can identify each gz, as a graded

1 r
vector space, with R® @ ... ®R® in such a way that the Lie

algebra operations are C® with respect to x, That is, we can
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regard x ~>g, as defining a smoothly varying family of Lie algebra
{ Y .

structures on R @ ... ®R® . Moreover, for any X ¢ L' the map

i i. ©

x-n (X) e gy is C.

The proof will be given following some preliminaries needed as well for the

lifting theorem,

Note 1.29: Although, under the Metivier hypothesis, the gy vary smoothly

with x, the gy need not be isomorphic as Lie algebras. In this case Cor.

1.20 shows there is no partial homomorphism from g, to {Li} in a nbhd of
—_—— o .

X0, For, by that corollary, such a homomorphism would induce Lie algebra

homomorphisms, and hence isomorphisms, by equality of dimension, from -
0

onto g, for all x in a nbhd of Xq-

Let {Ll},x; be of rank r. Then o (L) C o (12)C...Ca (L") = T M

forms a filtration of TxM. Let

; ax(Li)
ax(L )

r
so Sx ==C) S; defines the associated graded vector space.
i=!

.
sl

. Oy .
Let L' — 8]—>0 be the natural quotient of the evaluation map a,.
Clearly ﬁi(Li_l + mei) = 0, Passing to the germ level, &i factors through

to give a map ai filling in the diagram below:
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a .
x5 s; > 0
7
/
i s
x ; %x (1.m
/
v /
i
gx
0

. i_ Al - 1l r
Def. 1.30: Let hl = ker o;, and h, = h; ® ... @ hl.
Lemma 1,31:
. 1901 _ 4. i . P
(2) dim g /by = dim S, so dim g, /h, = dim M,
(b) b, is a graded subalgebra of g , i.e., [h;, hi]fl h;+3.
(c) If the Metivier condition holds at X0, then hx = 0; in fact hx =0

for all x in a nbhd of xg5. That is, Qi is an isomorphism for all

x in a nbhd of Xq.
This result in effect is an extension to the general context of a result of
Helffer-Nourrigat [20]. Because of the intrinsic, minimal, nature of g,

part (c) is sharper than their corresponding result. (They can only show h,

is an ideal).

Pf:
(a) obvious.

(b) The basic point is that if two vector fields both vanish at Xy, SO
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does their commutator, Let Yj' e hi, Y'j e hi , With preimages
(] o

(under x) X1, XJ. By definition of b, , I xi71, xi™1 ja 1i-1,
Li 1, respectively, such that axo(Xi-Xi—l) = 0 and axa(xj—Xj-l) =
0. Hemce o, ([x*-x*"1, xi-xi1]) = 0. But the Lie bracket = [X%,
Xd] + element in Li*J71  Hence [Y1, Y] = nitj([xi, xi1) e hi:j.

For 1%ir 1let k; = dim Sio. Choose vectors e} ] Txo(M)' 15j5ki

such that e%,...,ei is a basis for axc(Ll), e%,...,ei : e%,...,ei

is a basis for a (L2), etc., Choose xi e Li such that o (X@) =
Xo J Xqe )

e}. For x sufficiently close to x,5, the vectors ax(X§) e T M are
linearly independent, since the qxo(Xi) are, This, together with
the Metivier hypothesis, implies that the ax(x§) with ili, form a
basis for ax(Li ) for all ig £ r (for x sufficiently close to xg),
which varies smoothly with x. In particular, in a nbhd U of
X0, Li is the space of sections of a vector bundle with fiber
ax(Li). Thus, in this nbhd, any XeL! can be written as
i’

ir_i’ . . ®
X = 2 fj Xj , with uniquely determined fj e C (1.8)

i'si

By definition of X}, a

i-1 i _ . .
xo(X) & axo(L ) €=$fj(xo) =0 Yj. This

says simply that f; e my

, ice., that X e LI + m_ L1, That is,
L] [

hxo = 0. The same argument shows hy = 0 for any x ¢ U.

We can now prove Prop. 1,28,

Pf:

(1)

Clear from (a) and (c) of preceding lemma, and fact that, by
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Metivier hypothesis, dim S} is constant for x & U.

'(2) Maintain the notation in (c¢) of preceding proof, For xeU let
Yg(x) = ni(X%). By definition of the X§ and preceding argument,
the aiix}) form a basis for Si, for each xeU and each i. Hence,
since ai is an isomorphism, the Y%(x) form a basis for gi. We
shall show that the Lie bracket of the Y}(x) is smooth in x., Fix
iy, 9, Jy» Jp. By definition of the bracket, [Y}:(x), Y%t(x)] =

s "‘ia([x%", x;:t]). By (1.8)

where the f} are smooth,

Fix x., Then fg = the constant function f}(x) + element in m So

xo

i +i

i +i i 1%,

i i +1i
n b laxt 22D =Y et 2! R .
x iy" iy L7 i
J

So, since f} is smooth, the bracket is smooth,
Similarly, using (1.8) we see that for any XeLi, ni(x) =3 f;(x)Yg(x).

So, x F%ﬂi(X) is smooth with respect to the given bases.

Lemma 1.32: Let B be an arbitrary cross—section of {Li},x. Then for every
. iy _ 1 i 0 _
20, o (LY = a (p(gl ® ... ® gln. a®= on.

This follows immediately from the stronger Lemma 1,35 proved below. A
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simple direct argument also follows from diagram (1.7).

Our definition of hx has been completely intrinsic., It is useful to
have the following characterization, more in line with the analogous

construction of Helffer—Nourrigat.

Cor, 1.33: Let B be an arbitrary cross—section of {Li},x. Then

i_ -1 1 i-1 1 _ -1
b= (a0 B e Be @ ... @ I, Bl = (e 0 MO
Pf. Follows immediately from preceding lemma and diagram (1.7).

Cor, 1.34:
(a) a (B(g.)) = TM.
(b) The mapping u —éeﬁ(“)x is locally a submersion from a nbhd of 0 in

gy to a nbhd of x in M.

Pf:

(a) Follows immediately from Lemma 1,32 and the spanning condition,

(b) Follows from (a) and the fact that the differential:To(gx) —)T&M
of the above map is given by v+>a_(B(v)); here we identify g,

with its tangent space at 0,

The following consequence (Cor., 1.36) of Nakayama's Lemma will be a
basic tool in our proof of the lifting theorem in 82 (and, in its microlocal

variant, in our discussion of the asymptotic moment-map in $3). It is our
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substitute for an explicit a priori relation between g, and a set of
generators for {Li},x. The result holds at the germ level, and this is
sufficient in practice for handling the local level, especially in view of

Remark 1.3.2.

Lemma 1.35: Let {Li}.x be a filtered Lie algebra of finite rank, r. Let d
= dim g,. Let {Ya}’ 1%afd be an arbitrary graded basis for g; i.e., a basis
such that each Y, & gi for some i, which we denote by |a|. Let B be an
arbitrary cross—section. Then for each ilr the germs of vector fields

{B(Ya)}|alﬁi span ii as a é: module.

Pf: By induction on i. Suppose trme for i-1. Let {x,}, la] = i, be a

basis for
. L,
i i
g x [ d +ﬁ L d hd
i-1 xi

Given the cross—section B, let [Bi(Ya)] denote the image in ii/ii—l of
B(Y,). Now, by Cor. 1.12 together with Remark 1.14, it follows that
{[p;(Y )1} generates iilii—l as a é: -module. So, L¥ = (span of
{B(Ya)}|a|=i) + L1 (this not being a direct sum). But by the induction
hypothesis, R span of {B(Ya)]|a|$i—1‘ It remains omnly to treat the

case of i=1. But for i=1, Lj 4 = 0, and
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and the result follows from Cor. 1.12.

Of course, when i=r the statement follows directly from the spanning

hypothesis.
Cor, 1.36: Let X ¢ ii. Then

X= ) o B(Y)+ ) E£B(T) + ) gBY) (1.8)
Ja|=1 Ja JSi Je|=1

where the ¢, & R are uniquely determined by the equation

n, (X) = } o ¥, - (1.9)

o=

-

. ]
where the fa are in Cx’

°

and the gy in m

c+ (The f, and g, are not

necessarily uniquely determined).

Pf. By the Lemma,
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X= } faB(Ya) * } haﬁ(Yc)'
Ia'(i |a|=i

with £, b, in é:. For |a| =i, let ¢, = ha(x) and g, = h,-c,. This gives

a representation (1.8). Applying n; to both sides of (1.8) yields (1.9).

Remarks 1.37:

1) Most of the work in this section has been based on elementary local
algebra considerations, and so (see Remark 1.1.1) carries over to the real-

analytic and formal power series contexts. In particular, we can define

analytic’ formal’

85 8y and the corresponding h 's, 1¢ pformal ;o tpe
*formalization” of the C* filtered algebra L, or if L is the "C™-version" of
the real-analytic filtered algebra L3131¥ti¢ iyen variants of Prop. 1.19
and 1.24 show that there are, respectively, canonically defined surjective

Lie algebra morphisms

formal

8, 8, -0 (1.10)
analytic S5 =0
x x

onto h_, and, hence, canonical

formal analytic
hx ’ hx X

mapping hx onto

isomorphisms of homogeneous spaces
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analytic g formal
__—_:nal Tic g_fx_ g—:ormal R all of dimension = dim M, (1.11)
hx y X h x

I do not know in general when the maps in (1.10) are isomorphisms; however,

this is easily seen to hold if L satisfies the Metivier condition,

2) Suppose that the strong finite gemeration condition (5 local) of
Remark 1.3.2 is satisfied at x;. Then Remark 1.3.2, together with Lemma
1,35, shows that any cross—section p at ) determines, for each x
sufficiently close to X, 8 graded [R-linear surjective map gxo - 8y via
Yes giot-—)ni(ﬁ(Y)). This map is in general not a morphism of Lie algebras
(since Y =>B(Y), is not necessarily a weak homomorphism except when x=x;).
However, as x approaches X the "deviation” from a Lie algebra morphism

approaches 0, (Compare with the proof of Prop. 1.28).
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82. The Local Lifting Theorem

In this section we prove a version of the Rothschild-Stein 1lifting
theorem, based on the treatment of Goodman [8], and follow this by a proof
of the corresponding homogeneous space (rather than group) version of
Helffer-Nourrigat [20].

Goodman has observed that, simply for purposes of lifting, it is not
necessary to insist on a free nilpotent group. We carry this idea further
in showing that such a lifting can be carried out in the general context of
filtered Lie algebras via the intrinsically associated nilpotent Lie
algebras. The lifting results give a precise sense in which these nilpotent
Lie algebras "approximate” the original filtered Lie algebras., This is of
interest since, in view of Prop. 1.19, these algebras are in some sense
"minimal” approximants.

Direct applications are to hypoellipticity, as we shall show in this
section, and, possibly, to approximation of control systems, as we shall
indicate in 84,

One significant fact is that weak (vs, partial) homomorphisms, which
are all that we have available, are sufficient., One consequence is that we
can do a direct lifting in the Metivier case.

Although the main line of the argument is very close to that of
Goodman, there are differences due to dealing with weak homomorphisms, among
them an increased complexity of "bookkeeping”., To save space we shall not
give full details.

Let g = 81 (3 cee C) g be a graded nilpotent Lie algebra. Then the

natural dilations &, (t>0) given by &, f g8; = tl are Lie algebra
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automorphisms, and determine associated Lie group automorphisms. The
discussion of homogeneity with respect to dilations and of local order £ i
in Example 1.26.5 carries over fully to the present context,

For Yeg, let ¥ denote the pull-back via the exponential map exp:g —G
(the associated simply—connected nilpotent Lie group) of the left—invarianmt
vector field on G associated to Y. (More loosely, ¥ is the left—invariant

vector field associated to Y, written in expomential coordinates).

Y(f e exp)(u) -l f(exp v exp tY), £f e C(G) (2.1)
dt Jt=0

IfYe g; then f, viewed as a vector field on g, is homogeneous of degree i.
That is, homogeneity as an element of the Lie algebra g, or, more generally,
as an element of U(g), the enveloping algebra, is consistent with the notion

of homogeneity as a differential operator on a graded vector space.

Notation 2,1: C:(U) is the set of C” functions vanishing of order 2 m at

0 &8 g, in the sense of Example 1.26.5. (U is a nbhd of 0 in g). C:(U)
c®(v) if mfo.

Note that

Cm . CmCCm+n (2.2)
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“If f & C: and X is a vector field of local order £ j at 0, then fX is

of local order £ j-m.. (2.3)

(Of course this statement is useful only when m 20.)

o]
m0 = Clz

N

(<] o
more genmerally, C  Cmjy CC. . (2.4)

(We often use the inclusion my C C;.)
Let {Li},xo be a filtered Lie algebra of rank r on the manifold M, Let
p be an arbitrary cross—section., In analogy with Goodman, define a map

W:C: (M) --)C?;(gx ) (really from a nbhd of x; in M to a nbhd of 0 in g ) via
o © o
() () = £(eP Pz ) (2.5)

Notice that for any vector field X on M and f & C: (M)
[

W(£X) = W(£)*WK ; if £ e m= then W(f) e mt < C . (2.6)
x0 0 k

The theorem below states that W is a "weak intertwining” between the
elements of {L1} and the elements of 8y » viewed as left—invariant vector
]

fields.
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Theorem 2.,2: (Lifting Theorem), Let Y ¢ gxi and let X = B(Y). Then
o

WX = (f+R)W, where R is a C” vector field in a nbhd of 0 in gy Wwhich is of
o

local order £ i-1 at 0.

Remarks 2.3:
1) Since in general the map u —)eB(“)xo is not a diffeomorphism, but
only a submersion (see Cor, 1.34),the vector fields R are not uniquely

determined.

2) Each R can be expressed as a C~ linear combination of the frames ¥.
It then follows directly from the homogeneity degrees of the R’s that the
span at 0 of the vector fields Y+R is the same as that of the ?, i.e., all

Of TOgXD .

3) Although gx° is in some sense the minimal algebra to which one can
1lift, the same proof holds if we replace gx‘ by any graded nilpotent g with
a weak homomorphism y from g to L at x_ such that the associated Lie algebra
homomorphism n y:g —égxo (see Prop. 1.19) is surjective; (alternately, for
any graded nilpotent g together with a surjective homomorphism to gx,)’
This follows from the fact that Lemma 1,35 and its corollary, which are
basic ingredients in the proof of the lifting theorem, hold with B replaced

by vy. This is seen from a trivial argument with the diagram in Prop. 1.19.

The lifting theorem has the following corollary.
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Cor., 2.4: Let X & Li. Then WX = (ni(X) + S)W where S is of local order

Notice that although W depends on B the element =xn,(X) e gi is
o

intrinsic.

Pf: Apply the lifting theorem, and then use Cor. 1.36, together with

(2.6).

We pass next to the proof of the lifting theorem, following Goodman,

One begins with the following identities between formal series in an

associative algebra (X,Y,Z being elements of the algebra, and DX

= ad X: Y =
XY-¥X)

4 ex+tY = exE(X)Y (2.7)
dt £=0

eXY =4 exﬂl’tB(X)Y (2.8)

dt £=0

a4 xetvstz _ d] 3+t | 4] Xtz (2.9)
at|. o at|,_ at |, _

where
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X k
E(X) =1 _ - 2 —i—l-)-—-ni (2.10)
DX 20 (k+1)!
D
B(X) = “_'gﬁ" = 2 ~—1-ka§ (bk = k—-th Bernoulli number). (2.11)
1-e X k20 kl

The identities (2.7)-(2.9) are to be interpreted in finite terms, as graded

identities, via the symmetrization operator o, given by

o(x%Y) = -1 (x%% + X® 1yx +...+ XY
n+1

For example, (2.7) is equivalent to

k
Loa'n = Y L _Ew, am0,1.2,... (2.7g)
n! (k+1) Im!

k+m=n
We will be applying these in the context of two associative algebras,
that determined by the Lie algebra of vector fields on M in a nbhd of x,,
and that determined by the Lie algebra of vector fields omn gy in a nbhd of
o

ol

From (2.8) it follows that, for Yeg, , the curves in G
]

%o

t —>exp u exptY and t »>exp(u+tB(u)Y) have the same tangent vector at t=0,
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SO

¥r(w =4  fu+tB(WY). (2.12)

dt £=0
That is, at u Y is the directional derivative in the direction B(u)Y.
(Since g, is nilpotent the series for B(u) terminates after finitely many
L]
terms, so that B(u)Y is polynomial in u.)

Next one works at the level of formal power series at u=0, That is,

one constructs R such that Thm, 2.2 (1) holds as an equality of Taylor

series at u=0,

o

Notation: For ¢ ¢ Cm(gx ) defined in a nbhd of 0, and ¢, & C
_——— [}

@
¢ ~ 2 ¢, means that ¢ - 2 py © Cm+1 for every m, (2.13)
n k<m

Since B is R~linear it follows that

WE(u) ~ } ~—1—(ﬁ(n)nf)(x0), for any f ¢ C: (M . (2.14)
220 n! 0

We may express this by saying that, formally, W = eB(u). (As in Lemma 1.35
let {Ya}, 1£afd be a graded basis for gxo , with {na} the corresponding dual
basis. Then, by the R-linearity of B, (2.14) gives the Taylor coefficients
at 0 of Wf, with respect to the coordinates L in terms of the Taylor

coefficients of f at x,.)
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Then, by (2.8), for every 1%ad

WB(Y ) - 4] Bw)+tB(B(w))B(Yy)

dt £=0

(2.15)

Examine the right—hand side of (2.15)., If B were a homomorphism of Lie

algebras over IR and, hence, of associative algebras, then as formal series

B(u) + tB(B(u))p(Y,) would equal B(u+tB(u)Y,). But replacing f by Wf in

(2.12) and using (2.14) we get

(IWE) (w) ~ g (eB(u+tB(u)Y)f)lx , where ~ denotes equality (2.16)

dt =0 0
of Taylor series at u=0,

Thus, if p were a Lie algebra homomorphism, we would have WB(YG) = §;W

formally.

The crux of our work then consists of showing that with $ "close
enough” to a homomorphism we can get good control of the difference between
B(B(u)Y,) and B(B(u))B(Y,).

We start with the basic weak homomorphism equation from Def, 1.15 which

we write in the more convenient form
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8(r), prl = paix, v, + LTIl oy plvive] (2.17)
0

for Yy, Ya € glzl, glzl, respectively.

where lal (as in Lemma 1.35) denotes the weight of Y,.

VWrite

u= } uYYY .
1% lﬁr

Following Goodman, 1let K = {k(y)},vlsr denote a multi-expoment,

K] = 3 k(y), the usual length of K, and w(K) = 3 k(y) |y| the weight of K.

Let
D =ad ¥ ok =TT o&(
Y Y Y
Y
o~ K k(y) 1
Y P, U Y K o K

~ o
pK =TT X"
¥ 7

and let o, as before, be the symmetrization operator., Note that
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K

u e CW(K) (2.18)

By definition of B, and R-linearity of B we have

B(u) = } bKch(DK)
k|20
B(B(n)) = ) bKuKa(BK) (2.19)
|20

An induction on |K|, starting from the equation (2.17), proves
Lemma 2.5:

BK(B(YG)) = B(DK(YQ)) + plelw@®-1 | b i la|+w(®)
0

(0f course, for K=0 we don’t need the two error terms on the right—hand

side) .

Cor. 2.6: B(ﬁ(u))B(Ya) ~ B(B(u)Y,) + Ty(u) + S,(u), where
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Kela]+w(K)-1
T () ~ ) beu il
k|21

K,. o|la]+w(K)
Sa(n) ~ } bKn (mxoL| l )
k|21

(Notice, |K|21 for all the above terms.,)

Substituting this into (2.15), and using (2.9) we get

WB(YG) - 23. eB(u)+tB(B(u)YG) . ;%. eB(u)+t'1‘a(u)
t=0 £=0
(2.20)
-} eB(u)+tsa(u)
dtlioo

We saw in (2.16) that the first term is fuw.

the remaining two terms are given by

d B(n)+tTa(u)
—_ e = WE(ﬁ(u))Ta(u)
dt £=0
_d_ eﬁ(u)+tsa(u) = WE(B(u))Sa(u)
at|,

Using (2.7) we see that

(2.21)

As in (2.19) we can express E(B(u)) in terms of the dual basis {ny}.
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(~1)K K

E(B(u)) = oXa(0%) (2.22)
P_o (K+1) !

|k

But B(Yy) € L'Yl, and each B(YY) has a coefficient of u, to accompany

Y
it in (2,22). Thus a simple computation shows that

E(B(u))T (u) ~ 2 cxuxi'a|+w(K)—1
[ qpal
(2.23)
E(ﬂ(u))Su(u) ~ 2 aKuKﬂ|“l+W(K)_1 + } dxux(ﬁx £|a|+w(x)),
k|21 [K]21 0

where the cy, ag, dg are (universal) constants,
Now use Lemma 1,35, together with the fact that, since xqg is of rank r,
Ir = ﬂ;*l = ,.. . We express this as follows:

xo o

Let X ¢ ﬁi .

°

If i<r X = } £8(X) , £ = C oD
s 0

lo|$i
(2.24)

If 2 X= ) £8(Y) , £ &€ (W)
< 0
|e|ic

In the summations in (2.23) it will be more convenient to use w(K)
instead of |K| as the index of summation. (Note that w(K) 2 1 ¢= K] 2 1).

Now use (2.24) in conjunction with (2.,23), The first summation gives
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r-|a|

K
EGEIT @ ~ ) o ) £, xB(T)
w(K)=1 v ]e]+wix)-1
(2.25)
K
+ ) st ) 8 4yxB(T,))
u(K)Zr—|a|+1 Iylﬁr
where fayK’ 8ayK lie in C:o .
Next apply W. Letting
K .
} u W(fayK) if lﬁnﬁr—lal
o - w)=n (2.26)
ay
Y w W, g)  if wr-|a
w(K)=n
we get
WEB ()T (u) ~ ) 0P wp(x ) (2.27)
a ay R4
||
n21

Since uK € C:(K) it follows that
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(n)
ay

0 & c: for every n21. (2.28)

Also, a close examination of the indices appearing in the preceding

derivation gives

1%nfr-|a| and |y|${]e]+n-1

(0) _ o uniess (2.29)

oy

(]

or n>r-|a|

Since |v]| £ r, in either alternative in (2.29) n 2 |r]-|e]+1. We conclude

from (2.28) and (2.29) that

(n)
ay

® © >
[} 4 Cn ClYI"'lal'l"l for all e, Y, and all nZl, (2.30)

A similar analysis is dome with the second sum in the second identity

in (2.23). Using the fact, noted in (2.6), that if f & 1t_ then

xo
W(f) e iy C €T, we find that
K el+w(K),, _ (n)
W) deu (ﬁxoLI ' N =) 2, Wp(Y,) (2.31)
w(K)21 ]7|$r

n21

where
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g™ ¢ ¢ cS for all a, y, and all n21 (2.32)
ay n+l r]-|e|x1 R . .
Let
(n) _ _(n) (n)
Pay = Oy * Qav :

Adding the results of (2,27) and (2.31) we obtain from (2.20) and (2.21)

that

~ T (n) (n) o i
WB(Y) ~T W+ } Poy WB(Y), where ¢ - ¢ C Ty -Ja ]+t (2.33)

n21
Jv|ic

The identity (2.33) is of the basic form introduced by Goodman, but the
condition on ¢§$) is more delicate than that arising in his treatment, Let

¢, denote the matrix (¢&$)), and let ¥, ﬂ(?), WB(?) denote the respective

column vectors (Y,), (B(Y,)), (WB(Y,)).
Since ¢ has its entries in C:, i.e. , of successively higher degree,
the formal series S = ¢, converges asymptotically. Since n21, S vanishes

to order 2 1 at u=0, so the geometric series T = Y S"™ converges
n;_l

asymptotically (and vanishes to order 2 1 at u=0)., Next use the more

(n)

delicate condition on ¢aY

. . . . . @
. This implies that Say is in C|7'—|a|+1’ and
hence that ng , the ay entry of S, lies in CTY|’|a|+n'

Thus
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T (2.34)

x
C
ay © Ir|-le]x1
and, since I+T is the formal inverse of (I-S), we obtain from (2.33) that
WB(Y) = (I+T)YW, as formal series | (2.35)

Notice that (2.34) and (2.35) prove the formal series version of the lifting

theorem,

Remarks 2,7:

1) Thus far we have not really needed the spanning condition ay (LY) =
o
T; M, but only the stability condition ﬂ; = i§+l = .e. » It is only when
1] o (-4

we pass to the C” rather than the formal level that we need the stronmger

condition, so that we can apply the implicit function theorem.

2) This work at the formal level should not be confused with working
with gisrmal (see Remark 1,37), which can be a strictly smaller-dimensional
Lie algebra than gxo. For example, two elements in Li formally equivalent
at xo may nevertheless have distinct projections in gio and hence, by Cor.
2.4, distinct lifts. For some purposes we may wish to 1lift to gifrmal (see
for example Remark 4.3.3). However, for most purposes of analysis we must
retain information at the germ rather than formal series level. For
example, we may need to 1lift at all points x in a nbhd of X, vwhile

maintaining smoothness in x., As another example, P(x £)° to be discussed in
>

$3 (and its local analogue TI,) do not appear definable at the purely formal
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series level.

The passage from the formal series level to the C” level is now exactly
the same as in Goodman: First use Borel’s theorem to find a matrix, also
denoted T, of genuine C” functions in a nbhd of u=0 having the original
matrix T as its formal power series expansion, Thus (2,35) is replaced by
the corresponding C* equality, but with an error term in C: = /\ C:.

>
(Notice that C: is invariant under arbitrary diffeomorphisms, as needn:: for
the remainder of the argument.). By the spanning condition (see Cor, 1.34)
it follows that the map u -)eB(“)xo is a submersion in a nbhd of u=0, so one
can apply the C® implicit function theorem to find local coordinates
ty5..0sty in a nbhd of u=0 such that t;,...,t; are local coordinates in a
nbhd of X5, and such that the above map takes the form of projection
(t1seeanty) 2 (tq,c00,ty). Thus (WE)(ty,...,ty) = £(tg,...,ty). (This,
coincidentally, gives additional sense to the term "1lifting".). From this
one easily sees that the error term can be written as QW, where Q is a

column of vector fields of local order — «, Taking R = TY+Q proves the

theorem.

Remark 2.8: A corresponding lifting theorem holds in the real-analytic
context. Start from the equation WX = (Y+R)W which holds in the C* sense.
But now W and X are real-analytic; and ?, being a left—invariant vector
field on Bx is real-analytic (in fact, polynomial, as we saw in (2.12),
since 8x, is nilpotent)., Thus RVW is real-analytic, even though R is only

C®., Using the real-analytic version of the implicit function theorem to
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express W as a projection, and using Taylor series truncation, it is easy to
find R’ real analytic such that R'W = RW, and with the correct local order

at u=0,
We next introduce the "enveloping® algebra "U(L)".

Def, 2.9: Let m be a non-negative integer. Then *U™(L)” is the vector

space of all differential operators of the form

P = 2 a (x)X ...X 'l
a 0.1 a,
lo|<a j

where X, e L% , a,(x) e C:(M) (the complex-valued C~ functions), and
t

= o-c+ :®
Iul “1"‘ aJ
Notes 2.10:

1) *"U(L)” is not the same as the enveloping algebra Ug(L) in the
algebraic sense; it is, rather, the image of C;(M) ® g U(L) under the

natural map into the differential operators on M,
2) The representation of P in the above form is not unique.
For g graded nilpotent let U (g) denote the elements in Ug(g)

homogeneous of degree m, Given P & "U™(L)" and Xq € M we would like to be

~
able to intrinsically assign to P the element P, ¢ U (g, ) given by
o o
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P = 2 a (x)X ...X , where X =qn_"(X ) eg . (2.36)
X a 0 a Q. Q. x a. x
0 !a|=m 1 ] 1 0 1 0
~
In general, in view of the non-uniqueness of represemtation, P, is not

[\]
well-defined as the example below shows, (This is quite natural, since in

general dim M < dim g, ). However, as we shall discuss in 83, n(P_ ) is
] o

well-defined, where = is any unitary irreducible representation of G,
[+

associated to a coadjoint orbit in I .
o0

Example 2.,11: Let

M= ml-l- mz , X. = —-a--’ X =t _-?_-’ X =t _-?-—.' X. = -—a—..’ X = .—?.... .
t  x,x 1 ot 2 ax 3 ax 4 ax 5 ax
1’ 1 2 1 2

Let h1 be the span of Xl’ Xy, X3, and hz the span of X4, Xs. Then the
graded Lie algebra h = h; + h, determines a filtered Lie algebra as in
Example 1.26.6. Note that X,Xg - X3X, = 0 as an element of 'Us(L)”. though
# 0 as an element of Uz(h).

If the Metivier condition of Def, 1.27 holds then since dim 8y = dim M,
the map u —exp p(u)x from gy to M is a local diffeomorphism, and not just
a submersion; so the associated map W is just pull-back with respect to this
diffeomorphism, In particular it follows from Cor, 2.4 that

~J

1_49 . : . { m—
WPW Px + S8, where S is a differential operator of local order X m-1.
0

~
Thus Px is well—-defined.
(]

Maintain the Metivier condition, We want to complete part (2) of Prop.
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1.28 by showing that this local diffeomorphism can be arranged to vary

smoothly with x,

Lemma 2.12: Suppose the filtered Lie algebra {Li},xo satisfies the Metivier
condition, Then for x in a nbhd of Xy it is possible to choose the cross-
section B :g, —>L in such a way that the map (x,u) —> exp Bz(u)x is smooth

simultaneously in x and u.

Pf., We keep the notation from the proof of Prop. 1.28.(2). Since the
Y}(x) form a basis for gi, we can define a cross—section by Bx(Y}(x)) = X}.
Thus the map (x,u) > exp B, (u)x becomes simply the map (x,u) >
exp(Zhijxg(x))x. But the vector fields X% are C”, so we are done,

Cor, 2.13: Choose P as above, and W correspondingly. Then the "remainder”
terms R and 8 in Thm. 2.2 and Cor. 2.3 vary smoothly with x in a nbhd of x,

(simultaneously with smoothness in u).

Pf: (In the case of Thm., 2.2 we are, of course, assuming Y is chosen
to vary smoothly with x). W (Y )W_* = Y+ R, and W XW_~ = n2(X) + S,

Since everything else is smooth, so are R and S,

The type of smoothmess in x occurring in Prop. 1.28 and in the above
results seems essential for applying the techniques of Rothschild-Stein
[37]. It is possible that in our context, by elaborating on the observation

in Remark 1.37.2 one may avoid lifting to a free nilpotent, but 1ift instead
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to a Metivier context, (In any case, one expects all hypoellipticity

information to involve only the T ; in particular, only the g, .)

In the context of a filtered Lie algebra L ome can define a natural

notion of hypoellipticity (which we shall also wish to use in 83):

Def. 2.14: Let P be as element of *"U™(L)". Then P is L-hypoelliptic at xg

if there is an open nbhd U of X0 such that for every Q & "UM(L)” there

exists a constant CQ > 0 such that

2 2 2 ®
of Lc,(]lpt] + ||t ) YE e C,(D) . (2.37)
[l "L2<U) PN 5 " H£]1 20 0

This is, of course, just the analogue of the maximal hypoellipticity notion
of Helffer—-Nourrigat ([19], [21]); in fact, from one vantage point it is
simply maximal hypoellipticity in the context where there can be gemerators
of degree not equal to 1. We feel, however, that this notion is viewed most

naturally in the context of the filtrationm L.

Remarks 2,.15:

1) In the preceding definition we assume to be on the safe side, that
the strong finite generation condition (5 1local) of Remark 1.3.2 is
satisfied at x,.

2) We are assuming also that xq is of finite ramk r, Also, if Ll does
not generate L, we assume that m is an integer multiple of the least common

multiple of 1,2,...,r. Then there seems to be no obstacle to extending the
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arguments in [17], [19] (based on Thm, 17 and Lemma 18.2 of [37]) to show
that L-hypoellipticity at x; -> hypoellipticity in a nbhd of x,;. (The

condition on m, while necessary in gemeral, is quite harmless.)

Rothschild ([36]), using the nilpotent algebras constructed by Metivier
in [30], derives a sufficiency criterion for the hypoellipticity of
differential operators constructed from vector fields. (The necessity of
her condition, for maximal hypoellipticity, follows from Helffer-Nourrigat
[20]). ©Using our Prop. 1.28 and Cor., 2.13 in place of the Metivier
construction, the proof seems to carry over, essentially unmodified, to the

context where L1 need not generate. We state this as

Prop. 2.16: Let {Li},xo satisfy the Metivier condition (and the conditions
in Remarks 2.15), Then
P ¢ "U™(L)” is L-hypoelliptic at xg 6—)n(§;°) is left—invertible
for every non-trivial unitary irreducible representation

n of Gx .

Helffer and Nourrigat [20], motivated in part by Folland [27] (see also
Example 1.26.6) prove that in Goodman'’s original 1lifting context (L1
generating, and with a partial homomorphism) ome can obtain an actual local
diffeomorphism rather than simply a lifting, by passing to a suitable right
homogeneous space of the group and the corresponding induced (by the
identity) representation instead of the right regular representation (as in

the lifting theorem).
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The corresponding result holds in our context, starting from our

version of the lifting theorem. The homogeneous space in question is that

associated to the intrinsically constructed graded subalgebra
B, =1l @ .. @ nt bl being ker @l , of Def. 1.30. Aside from
X, X, b x, ? X, x, ’ * T

technical modifications of the type needed in our proof of the 1lifting
theorem, the argument is essentially that of Helffer and Nourrigat., We
shall therefore limit ourselves to a statement of the result, and omit the
proof.

Let GXD/}Ixo denote the right cosets of on. Then right translation by
Gxo determines a representation of Gk. on l?(Gxo/HXO) which, at the Lie
algebra level, maps Y ¢ g to its push-forward vector field (well-defined)
under the canonical projection “:Gx, —)Gx,/Hx, (equivalently, to the vector

field on G, /H, associated to the right action of Gy on G /Hg ). This
° [ ° L}

-]
turns out to be T(0,h,)"* the unitary representation of G, induced by the 1-
i °
dimensional identity representation of H, . (In terms of our earlier
o
notation, Y = "(0,0)(Y)')

Following Helffer-Nourrigat, we introduce a concrete realization of

H(O,hxe)’ Choose a supplement Vioto hioin gio,and let

v o= @V .
0 i=1 0
By Lemma 1.31 dim V;o = dim M. For u ¢ Vgglet LIS 1£ifr, denote its
projection in Vi . Then there exists a map vy:Vy —>g;, defined by
o ° 0
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u.

r-1 1 _ ey(u)’

e e vee € ueV; (2.38)

Define h(u,a):Viox gxo ~9hx° and c(n,a):Vkox gxa ~>V&° by

e-y(u)ea - eh(u.a)ev(ﬁ(“:a)) (2.39)

Since Vx is a graded subspace of gy the natural dilations on 8z
o [ ] 0

induce dilations on Vg . The map Yy clearly commutes with dilations, and
]

hence so do b and o. The induced representation “(O,h* ) is realized on
¢

Lz(on ) via

n(0,h )(e*)f(u) = f(o(u,a)) , daeg . (2.40)
) %o

Thus

I’I

n(O.hx )(a)f(u)
0 dt

f(o(u,ta)) (2.41)

In particular, since ¢ commutes with dilations,

n(O,hx )(Y) is a vector field omn V; homogeneous of degree i (2.42)
0 . °
R i
if Y e gxc.

(This is consistent with the intrinsic realization of (o h, )(Y) as the
E
°

push-forward of Y under n.)
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Let B:gxo —>L be a cross-section, and define Gxo from a (sufficiently

small) nbhd of 0 in V; to a nbhd of x; in M via
0

ex (w) = eB(v(n))x

(2.43)
0 0

One sees easily from Cor. 1.34 that 8, is a local diffeomorphism. Let
(-]

9; denote the pull-back of vector fields with respect to 6, .

[} o

We can now state the theorem,

Theorem 2.17: Let ¥ & gi . Then 6 B(Y) = m(, b ) *+ R, vhere R is a
o ’ °

C® vector field in a nbhd of 0 in Vk of local order £ i-1 at 0.

[

Of course, since 9: is a diffeomorphism, the vector fields
14

“(O.h*o)(Y) + R span at 0,

Cor. 2.18: Let X & L'. Then 6F X = n(o,hxo)(nio(x)) + S, where S is of

local order £ i-1 at 0.
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8§3. Microlocal Nilpotent Approximation

The correct formulation in the microlocal context is suggested by the
motivating problem, that of microlocal hypoellipticity. Since microlocal
hypoellipticity should be invariant under Fourier integral conjugation, one
takes the 1local context and conjugates by FIO's (Fourier integral
operators). Vector fields become 1lst-order ¢DO’'s (with pure imaginary
principal symbols); C® functions become O-order ¢DO’'s. The microlocal
analogue of the spanning condition (alternately viewed, a microlocal
controllability condition) is at the outset more problematical, Once one
realizes that we are allowing the cotangent vector (x,¢{) at x to vary, and
that the approximation should depend on & as well as x, one sees that
spanning is too strong a criterion, We shall discuss the correct condition
below,

It suffices (and is probably most natural) to carry out the
approximation process at the principal symbol level. We shall assume our
¢DO's are "classical”, i.e., that their total symbols have positive-
homogeneous asymptotic expansions, in particular, positive—homogeneous
principal symbols. With some minor modification, as we shall indicate, our
work can probably be carried out in the context of the larger symbol

classes, S{,o of Hormander. (Since the principal symbol of —jl- = iﬁj, we

BXJ

shall, in order to deal with real principal symbols, find it more convenient
to work with %—~ principal symbol.)

Various of the constructions (and results) are quite analogous to those
in 81, so we can give here a somewhat terser exposition. (For a specific

result of 81, the corresponding microlocal correlate will be denoted by the
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suffix "m"; e.g., Prop. 1.7 m.)
Let M be a paracompact C® manifold, and let Sﬁom be the vector space

over R of functions p:T’M/O —>R such that

p(x,48) = adp(x,8) for A0 (3.1)

As is well-known

i . @j i+j
(a) shom sl’mm < Shon% (3.2)

(b) {Slilom , thom}(: Sﬁ:g—l, where ° denotes multiplication, and
{,} denotes Poisson bracket.

(¢) {f,gh} = g*{f,h} + {f,g}°h, for any f,g,h & C*(T*M/0)
Specializing to the case where j=0 or 1, we get

(a) Sgom is an RR-algebra under multiplication, (3.3)
(b) Siom is a Lie algebra over R with respect to Poisson bracket,

(c) siom is an Sgom—module under multiplication,

(d) Siom acts, via Poisson bracket, as a Lie algebra of derivations of

Sgom: moreover, the actions are comsistent, i.e., (3.2)(c) holds

1 0
for £,h ¢ shom and g & Sy ..

As in 81, let * denote germs, but now in a comic nbhd, For example,
éiom(xo,to) denotes germs in a conic mbhd of (x, o) -
The following result is simply the conic version of Remark 1,1.1, with

M replaced by S*M/0, the unit-sphere bundle in T*M/0.
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égom (xo'ga) is a local ring with identity, with maximal ideal
ﬁ(x g,) consisting of all germs eéqual to O on (the ray through) (3.4)
0250

(x4,&p). Moreover, the map

&0

0 “hom(x,2,)
R -——9Sh°m (x,,£.) 5 is bijective,
0°~0 (xongo)

Def. 3.1: A filtered Lie algebra L at (xo,ﬁo) of homogeneous symbols is a

Lie subalgebra over R, generally infinite dimensional, of S%om' together
with a sequence of subspaces Li i=1,2,..., such that
1 lci2cdc |
2) [Li, LI] cLiti vy
M -
(3) L= ,U' Li
J:
(4) Each L* js an Sgom-module under multiplication
(5) As an égom (x°,§°)~module iéxo'éo) is finitely gemerated for each

i.

(For our purposes all points (xo,xéo), A>0, i.e., the ray through (xo,to),
are essentially equivalent.)

In the local case the spanning condition, of ramk r, is equivalent by
Note 1.6.2 to the condition that i;a = all germs of C* vector fields at x5,

We make the analogous definition here.

Def. 3.2: The filtered Lie algebra L is of finite-rank at (xg, €o) if there

. T _ &1 .
exists r such that L(xo,go) = Shom(xo,ﬁn)‘ The smallest such r is called

e et bt e w5 g
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the rank of L at (xo,ﬁo).

Notes 3.3:
1) This is, in fact, an ellipticity condition. More precisely, L is
of rank r at (xo,go) (—-—)3‘Fe foo'tc) s.t. f(x5,8g) # 0, and r is the

smallest such integer,

Pf:

( =) obvious.

( &) Since f(xy, §g) # 0, 1/f e éi%M(xo:§o)' and so for any g ¢
&l . &0 < 3 5 rT .
Shom(x“,éo) 1/f * g e shom(xo,ée)' Since f & L(xo.go) and L(‘oogo) is an

&0 s O o
shom(x LE) module it follows that g ¢ L(xo’go).

2) We shall see below that, just as in the local case, to construct

8(x_,& ) Ve do not need the full strength of the finite-rank condition, but
0?%¢

L e . ses T = 7T+l =
merely the stabilization condition L(x,,éo) = L(xo’go) T eee o

3) The closest analogue to the map ¢, and the diagram (1.7) seems to
be the following. Let a be the canonical 1-form on T‘M/O s.t., da = w0, the
symplectic form. (In local coordinates @ = } {;dx;.) By Euler’s theorem it
follows immediately that a(xo JE, y(He) = f£(x9,&y) if f is positive—
homogeneous of degree 1, and a )(H ) = 0 if g is positive—homogeneous

xo’go g
of degree 0., In particular, since Hgf = ng + ng, a(xo’go)(ﬂf) = 0 if

£ e L} , fo i.
-4 M(xb’go) (xo’go) r any 1
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4) If f = i, the symbol of a vector field X on M, them, of course,

£(xg,8) = X(xg,80) = <K &, = <ag (%), gpd.

Let {Li} be a filtered Lie algebra of vector fields. Since X =X is a
Lie algebra isomorphism we obtain a filtered Lie algebra of symbols (th by
letting Il be an1 Sgom linear combinations of symbols in Li. The above
shows that (L'} is of ramk r at xg > ¥ s T, M/0, {ii}(xo £ ) is of

rank £ r, (This rank can vary with &.)

5) Recall that Sf’o is defined to be the set of all C” functions p on
I’M/O (real-valued for our purposes) such that for each compact set KC M
lagagp(x,g)l £ CK(1+|§|)j"“l. In this context two functions and, hence,
germs, are identified if they agree for '&l sufficiently large. The
statements (3.2) and (3.3) hold with Si,o replacing sﬁom' j = 0,1, An
element f ¢ Si’o is "elliptic” in a conic nbhd of (xo,éo) provided 1%?%:gf
If(xo, Aﬁo)l > 0. Thus, Def. 3.1 could naturally be extended to this

context provided one can find an appropriate localization for Sg 0 as a

substitute for (3.4). At the moment it is not clear how best to do this,

6) It follows from 1) that if (x5, ;) is of finite rank, r, then

(x,¢) is of finite rank $ r for all (x,&) in a conic nbhd of (xg,&g) -

Prop. 3.4: Let iy, (xg,8q) be a filtered Lie algebra of fimite ramk, r,
Th th i icall sociated i , M, wh =
en eéere 1s a canonica y as cia pair g(xo léo) n where g(xa 'go)

1 T : . .
g(xo’go) () ees C) g(xa’go) is a graded mnilpotent Lie algebra over R, and
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* *
ne g(xo’go)lo. (In fact, n ¢ gfxo’ €o) .)

Pf: Define g%x E.) by
. e?>o

e i

L
i (xo.§o)

g = (3.5)
(x5:8)) ~ Lig

L + 1 ii
(xoaéo) (xo,éo) (xo,ﬁo)

Then exactly the same proof as for Prop. 1.7 shows that the corresponding
statements (1)-(4) hold.

Next define n as follows:

i

v v .
X,n> = X(xo,to), where X ¢ L(xo’go)

For X ¢ g?x (3.6)

050"

v
is any element such that ni(X) = X,

Since r is the smallest integer i s.t, L%x £ ) contains an elliptic
2
element, it follows immediately that n is well-defined and satisfies the

asserted properties.

Notes 3.5:
1) The proof of Note 3.3.1 shows that ﬂfx g,) can be generated as an
0o?>0
sgom module by a single generator, namely any elliptic element, It follows

that g¥ is a 1-dimensional vector space.
(xoogo)

2) The analogues of Lemma 1,13 and Remark 1.14 hold, with the same
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proofs as in the local case.

The notions of weak homorphism, partial homomorphism, and cross—section
carry over to the microlocal context, as do Prop. 1.18, 1.19, and Cor, 1,20,
In particular, g(xo,go) enjoys the "universal” property analogous to that of
gxo . This shows that g(xo,§0) is in some sense the minimal nilpotent
approximation to L at (x;,§;). We shall later in this section give a more
precise sense to this notion of approximation,

The definition of weak morphism carries over, as does the functoriality
result, Prop. 1,24. (To obtain functoriality also at the level of the

E 3
canonically determined n ¢ 8(x,, &, ) appears to require additional structure,
(/] o

which is present in the following basic example.)

Example 3.6:

1) Let ¢:T*M/0 - T°N/0 be a homogeneous canonical transformation
mapping (xg, §,) to (xé, 56). (It suffices that ¢ be defined in a conic
nbhd of (xy,&).) Given {L1}, (x5, &) define K* = {f ¢71|f & L1}. Then

. 3 i i ’ 1 -
¢ determines a weak morphism from {L },(xo £ ) to {K%}, (xovﬁa) via
f >fo ¢—1, and hence an associated morphism g‘of graded nilpotents., As in

A
Cor. 1.25, rank is preserved and ¢ is an isomorphism, Also, the associated
dual map 3* takes n' e g* " .’ to the corresponding € * of
(x,,€&,) n E(x, ,€,)"

course, at the operator level, this example corresponds to invariance of

8*(x°:§o) under FIO conjugation.

2) Special case of the preceding: M=N and ¢ leaves Li invariant, i.e.,
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ﬂ¢(x’§) = {fo¢'1|f e i%x,g)} for every (x,f) in a conic nbhd of (xq,8g) «

3) The "identity" map $t=i%x,§) -)I%x,tﬁ) (t>0, fixed) induces the
isomorphism gt:g(x,g) —)g(x’tg). An immediate computation shows s:(nt)
tn, where n, is the corresponding dual element.

We next determine g for a few examples.
(x,,&,)

Example 3.7: Let g = 81 (3 e @D g, be a graded nilpotent Lie algebra,

and G the corresponding (simply-connected) Lie group, Let n & g‘/O, and
view n as an element (e,n) of T:G/O. For Yeg the associated left—invariant
vector field Y determines a symbol, also denoted Y, in siom via (x,&) e
T6/0 - ¥(x,¢). The injection g —)Siom given by Y =Y is a Lie algebra
homomorphism. Let L1 consist of all sgom linear combinations of symbols ¥
such that Y e g; + ... + g;. Clearly {L!} is a filtered Lie algebra.
Let k be the smallest integer such that nfgk # 0. Since g is graded, Vi C)

8k+1 @9 cee 6)3r is an ideal for any subspace Vi of gy, in particular for

%x

Vk = ker(n‘gk). Thus’ 81 @ ses @ gk—l kev‘(?lrSK\

algebra,

is a graded Lie

Claim: {L} is of rank k at (e,n), and E(e,n) is canonically isomorphic to

g @ .. @ gy

s the associated element of gte n) is the
>

%«
Kev (VU 9.0

%« )
KQY(VU 30

element of ( * determined by n.
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The statement regarding rank is obvious, Next, since the homomorphism
g -)Siom is, in particular, a weak homomorphism g — L, it induces, by Prop.
1,19m, a graded homomorphism from g onto 3(3,11)' It remains only to
determine the kermel of this map g; —)g%e’ﬂ) for each i=1,...,r. This is
clearly all of g; for idk. We know g](r'e’,q) is one dimensional, Hence, using
the map a(xv’go) of Note 3.3.3 and the associated diagram (1.7m), we see
that for i=k the kermel is ker(n‘ gk). (This also proves the last statement
of the claim.) The following lemma completes the argument by showing that
for i<k the kernel is O.

Lemma 3.8. Let Yl,....Y e g1 @ ces @ 8x—1 be linearly independent.

j
Jd
Then for any al,...,aj € sgom such that ;Z;_\ ai(x,t)Yi(x,ﬁ) = 0 in a conic

nbhd of (e,n), aj(e,n) =0 Vi=1l,...,j.

Pf:

Fix i, and choose ¢ & (g + ... + gk—l)* such that <p,Y;> =1 and
<‘P’Y)l> =0 for {# i. For e)0 sufficiently small (e, sp+n) lies in the given
conic nbhd. Since n annihilates g @ @ 8x-1° fg(e, eptn) =
Cepin, Yo > = e<p,Yg> = 8; . Thus, a;(e, eptn) = 0. Let & =0,

Our computation shows, in particular, that even when L comes from g the
associated approximation 8(e,n) depends on n itself and not just on its
coadjoint orbit in g*. This is as it should be. For example, the
"characteristic variety” is in general not invariant under the c¢oadjoint

action,
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Example 3.9: Let {Li},xo be a filtered Lie algebra of vector fields; and

for any (x0’§0) P T; M/0 1let {ii}.(xo,ﬁo) be the associated filtered Lie
0
algebra of symbols, as in Note 3.3.4. Then there is a canonical surjective
homomorphism of graded Lie algebras - -)g(x JE ) —>0. (As observed in
Note 3.3.4 rank (x0,§0) < rank xo). In fact, let B be a cross section of
{Li},xo. Then B is a weak homomorphism and so, since X =X is a Lie algebra
isomorphism, determines a weak homorphism gxo-éiz(xo,io). By Prop. 1.19m
this determines a surjective homomorphism of graded Lie algebras
gxo-—)g(xo,éo) —>0. Finally, Prop. 1.18 (3) shows that this homomorphism is
independent of the choice of B. Heuristically, if we focus attention at
(xo,§o) only a part of the information (i.e., representation theory) in gxo
is needed, namely representations lifted from g(xo’go): of these, only the

ones in r(x LE) are needed.
o (]

Example 3.10: Suppose {L1}, (x9,&p) is of rank 1. Then we know 8(x ,£ ) =
o?%0
R. In fact, {Li}, (x &) is the filtered Lie algebra of symbols associated
0’70
to the rank ome filtered Lie algebra of vector fields of Example 1,26.1,

with gy = TxoM. So, by Example 3.9, g(x £ ) is naturally identified with
0 0?3
Tx, M
8!

(x5,&4) in T*M. Under this identification n corresponds to (xn,&0) .
0°%0 0°50

and g:x LE ) is thus naturally identified with the line through
] v

Example 3.11: The next example defines filtered Lie algebras related to the

operator classes L™X of Boutet de Monvel [2], as mentioned in the
Introduction, Let } be a smooth conic submanifold of T‘M/O. Let L1 =

{ueSiom|u=0 on 3) and let L2 =13 = .., = Siom. Then {L1} is of rank 1 at
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any point (x,&) e 3, and of rank 2 at any (x3,§p) & 2. In fact, since > is
smooth, we can find local defining functions UgseeesUy € siom (where k =
codim 3) that that du;,...,duy are linearly independent at (x5,&p), (and
hence at all nearby points). The Bys...,U are generators for i%x,§) for
all (x,&) e 2 near (x3,§p). Let N(E)(x’g) denote the conormal space to 2,
and define a graded Lie algebra structure on N(Z)(x,t) (:)!R via [(dfy,rq),
(dfz,l'z)] = (0, w(dfl,dfz)l(x’g)) = (0, {fl,fz}l(x'g)). Note that these Lie
algebras are not isomorphic unless the rank of wlz is constant in a nbhd of

(xo,ﬁo) in 2-

Claim: For (x,&) e I near (x4.&g), N(E)(x’g) ® R=z 8(x,£)" This follows

from the next lemma and the definition of Lie bracket in B(x,£)"
Lemma 3.12: Suppose dul,...,dnk are linearly independent at the point (x,§)

e 2. For any ay,...,a; & Sgom such that 3 ai(x',ﬁ')ui(x',ﬁ') = 0 in a comic

nbhd of (x,§), 84(x,8) = ... = a,(x,§) = 0.

d(aiui)l(x,é) = ai(x,é)dui|(x,§) + ui(x,t)dail(x,g). But ui(x,t) =0,

Remark: Any homogeneous canonical transformation ¢ mapping } into 2 induces

an isomorphism between 8(x,¢) and 8g(x,£)° (See Example 3.6.2).

We next show how to comstruct in our context the analogue of the set
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P(xo’go) of Helffer-Nourrigat ([19]1, ([21], [32], [33]1). Because of the
minimality of g(xo JE, ) the construction is particularly natural in our
general context. When L is generated by Ll, so that the Helffer-Nourrigat
construction is defined, the relation to the construction below can be
stated precisely. (see Cor, 3.19).

As in our proof of the lifting theorem, the main tools will be Lemma
1.35 and Cor. 1,.36m,

Let (L1}, (x,,¢,) be a filtered Lie algebra, of rank r, with B(x,,£, )"
the associated graded nilpotent and dual vector. Let {St] denote the

standard dilations on B(x ,& )’ defined as multiplication by ti on g%x £
U ?%e 0?50

Def. 3.13:

1) A sequence is a sequemce f{t_, (x,,§ )} with t e Rr*, (x,,€,) ¢

T'M/0, such that x, —xy, |&,| 2=, and n - L .
1l 1€al
2) Let B be a cross-section. The sequenmce {t,, (x;,§,)} is B-
admissible if there exists } & g:x LE ) such that lim B(8t Y)(x,,8,) exists

and equals <\,Y> W e 8(x ,€)°

Notes 3.14:
1) Of course, if the 1limit exists VY it is linear in Y, and so
. *
determines ,ﬁs 8(x ,&)°
2) 1In view of 3) below, the definition depends only on the "germ of B”

at (x5,8y), i.e., the image in L .

3) Since L CSL  end B is R-linear
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. 4 .
_ L1 n i
BB, M (x ,&) =t [& [B(D(x, ) Weeg, o) (3.7
n le | 0°%0
n
But
n §0
p(M(x_, ) =2p(N)(x,, —) .
" Rl N
n 0
Since
§0
B(Y)(xo, —) = 0 if i<r (and # 0 if i=r and Y#0)
151
it follows that for any B—admissible sequence:
for i<r, 9 [s; = 0 unless t'|¢_| e (3.8)
’ (xoigo) n''n * .
t:l&nl converges; in particular til&nl is bounded. (3.9)

(more particularly, tn ->0.)

Prop. 3.15: Let By, B, both be cross—sections, Then the sequence

{tn, (xn,gn)} is py-admissible &= it is Bz~admissib1e. Moreover, the 1limit

2 € g:x JE) determined by this sequence is independent of the choice of B.
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Pf:

Let {t,, (x,,£,)} be Bi-admissible, with associated limit { & 8tx_,¢,)
Let Y ¢ g%xb’zo’. We must show lim Bz(st Y)(xn,gn) = {{,Y>.

Since B,(Y) e L1, and since n%xo e, )(B2(D) = Y, by definition of

cross—section, it follows from Cor. 1.36m that, at the germ level,

B,(D) = B (D) + } £8,(Y) + } g B, (Y) .
Je|<i Je]=i

where the f are in sgom and the g, are in m(xo,go)'

Applying (3.7) we see it suffices to prove that

. 4 4
ta by J6 00 Y fulag TR (X Gy, D
n Ial(i §n l§nI
§n n
+ } ga(xn, )Bl(Ya)(xn’ )) exists, and =0.
|a|=i gn §nl
'§V\ Q
But £ (x,, TE—T) converges as n > «, to f (x5, -TgWJ; hence
Y\ [
i-la 2n : . .?ﬁ
t, | Ifa(xn’ lfn\) - 0, since |a|(1. Also, g, (x,, TE:TJ - 0. But

since is the B;-limit of the sequence, it follows from (3.7) that

$in

tnalﬁnIBI(Ya)(xn, —Tg—Té converges, to <Jf, Y, Writing t§|§n| =
A

ti_a(t:|§n|) concludes the proof.

We can thus speak of admissible sequences, without referemce to a
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particular cross—section,

Def. 3.15: Let,g(xo’g ) denote the set of admissible sequences at (x0'§0)'
0

The asymptotic moment—map is the map i(ﬁ,'tu):’l (xo’gq) -9gzxo’§°) defined

by {tn’ (xn,gn)} h)ﬂ. Let r(xo’gh) denote the image of Q(X,.Eo)‘

Prop. 3.16:

1) There are two natural RY actions on;g(x £ ) namely {t ,(x )iy
[ ]

n’gn
{st),(x,,8,)), and {t ,(x,;,§,)} > {t,,(x,,s§)}. The first passes under
i(x € ) to the dilation ﬁ_—) 5:& . The second passes to scalar
o >0
multiplication Jl-é s{. 1In particular, P(x £ ) is invariant under both
0 29,
operations,

2) r(x LE) is closed in gtx €
6’0 °?*%e

3) ne r(xo’go).

Pf:

1) is immediate.

2) follows, exactly as in Helffer-Nourrigat [21], by taking a
subsequence of a double sequence,

3) Choose t, —0, and take (x,, &;) = (xg, €o