
Completeness in the Monadic Predicate Calculus

We have a system of eight rules of proof. Let's list them:

PI At any stage of a derivation, you may write down a sentence
φ with {φ} as its premiss set.

TC If you have written down sentences ψ1, ψ2,..., ψn in a deri-
vation, and φ is a tautological consequence of
{ψ1,ψ2,...,ψn}, then you may write down sentence ψ, taking
the premiss set to be the union of the premiss sets of the
ψis. In particular, if φ is a tautology, we can write φ with
the empty premiss set.

CP If you have derived ψ with premiss set Γ ∪ {φ}, you may
write (φ → ψ) with premiss set Γ.

US If you've derived (∀ x)φ, you may derive φx/c with the same
premiss set, for any constant c.

UG If you've derived φx/c from Γ and if the constant c doesn't
appear in φ or in any of the sentences in Γ, you may derive
(∀ x)φ with premiss set Γ.

QE From ¬(∀ x)¬φ, you may infer (∃ x)φ with the same premiss
set, and vice versa.
From (∀ x)¬φ, you may infer ¬(∃ x)φ with the same premiss
set, and vice versa.
From ¬(∀ x)φ, you may infer (∃ x)¬φ with the same premiss
set, and vice versa.
From (∀ x)φ, you may infer ¬(∃ x)¬φ with the same premiss
set, and vice versa.

EG If you have written φx/c, for any constant c, you may write
(∃ x)φ with the same premiss set.

ES Suppose that you have derived (∃ x)φ with premiss set ∆ and
that you have derived ψ with premiss set Γ ∪ {φx/c}, for
some constant c. Suppose further that the constant c does
not appear in φ, in ψ, or in any member of Γ. Then you may
derive ψ with premiss set ∆ ∪ Γ.

Something we were careful to check as we introduced each of
the rules was that the rules were logical-consequence preserving,
meaning that, if you use the rule to write a sentence, the
sentence you write will be a logical consequence of its premiss
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set, provided that any earlier lines in the proof that you relied
on in applying the rule were logical consequences of their
premiss sets. It follows that, at each stage in a derivation
according to the rules, the sentence you write down will be a
logical consequence of its premiss set. Hence we have this:

Strong Soundness Theorem. If you can derive a sentence
φ from a premiss set that is included in the set Γ,
then φ is a logical consequence of Γ.

Defining a theorem of logic to be a sentence which is derivable
from the empty set, we have this:

Weak Soundness Theorem. If a sentence is a theorem of
logic, it's valid.

What we now want to see is that every valid sentence is a
theorem of logic and that every logical consequence of Γ is
derivable from Γ. This will tell us that we have enough rules to
capture every logically correct argument; we don't need to add
any more rules. Hence the results we're about to prove are called
a completeness theorem. First we need a technical notion:

Definition. A set of sentences Γ is deductively
consistent (or d-consistent) iff there is no con-
junction of members of Γ whose negation is a theo-
rem of logic.

To say that a set of sentence is d-inconsistent means that it is
inconsistent and, moreover, that you can show it is consistent by
deriving an explicit contradiction. For example {"Fa," "(∀ x)(Fx
→ Gx)," "¬Fb," "¬Gb," "¬Ga"} is d-inconsistent, because the sen-
tence "¬(Fa ∧ (∀ x)(Fx → Gx) ∧ ¬Gb)" is a theorem of logic.* We
have this:

* For the sake of readability, I've left off extra parentheses,
writing ¬(φ′∧′ψ ∧ θ), instead of ¬(φ ∧ (ψ ∧ θ)). To be strictly
legal, the parentheses should be supplied. The derivation is as
follows:

1 1. (Fa ∧ (∀ x)(Fx → Gx)) PI
1 2. Fa TC,1
1 3. (∀ x)(Fx → Gx) TC,1
1 4. (Fa → Ga) US,3
1 5. Ga TC,2,4
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Lemma. Every consistent set is d-consistent.

Proof: Let Γ be a consistent set. Then there is an interpretation
A under which all the members of Γ are true. Now suppose that Γ
is d-inconsistent. That mean that there are members γ1, γ2,..., γn
of Γ such that the sentence ¬(γ1 ∧ γ2 ∧ ... ∧ γn) is a theorem of
logic. Since it's a theorem of logic, it's valid, so true in A.
But clearly we can't have γ1, γ2,..., γn, and ¬(γ1 ∧ γ2 ∧ ... ∧ γn)
all true in A. Contradiction.⌧

What we need to show is the converse this lemma, that every
d-consistent set of sentences is consistent. This was first
proven by Kurt Gödel in 1931 as his doctoral dissertation. It's
not an easy proof.

Given a d-consistent set Γ, we want to construct a model in
which all the members of Γ are true. Our plan is to start with Γ
and build it up by adding more sentences until we get a set of
sentences that completely describes an interpretation under which
all the members of Γ are true. We'll deal with the quantifiers by
constructing our model in such a way that every member of the
universe of the interpretation is named by some constant. That
means that an existential sentence will be true iff some instance
is true, and a universal sentence is true iff every instance is
true.

6. ((Fa ∧ (∀ x)(Fx → Gx)) → Ga) CP,1,5
7. ¬(Fa ∧ (∀ x)(Fx → Gx) ∧ ¬Ga) TC,6
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Definition. A Henkin set* is a set of sentences ∆
with the following properties:
(a) ∆ is d-consistent.
(b) For each sentence φ, either φ ∈ ∆ or ¬φ ∈ ∆.
(c) Whenever an existential sentence is in ∆,

some instance of the sentence is in ∆.

Here are the basic facts about Henkin sets:

Fun Facts. Suppose ∆ is a Henkin set. We have:
(i) A conjunction is in ∆ iff both conjuncts are

in ∆.
(ii) A disjunction is in ∆ iff one or both dis-

juncts are in ∆.
(iii)A conditional is in ∆ iff the consequent is

in ∆ or the antecedent is outside ∆.
(iv) A biconditional is in ∆ iff either both com-

ponents are in ∆ or both are outside it.
(iv) A negation is in ∆ iff the negatum is out-

side ∆.
(v) An existential sentence is in ∆ iff some

instance of it is in ∆.
(vi) A universal sentence is in ∆ iff every in-

stance of it is in ∆.

Proof: I'll only prove facts (i) and (v); the rest are similar.

(i) If (φ ∧ ψ) is in ∆ but φ isn't in ∆, then, by (b), ¬φ is in
∆. But this is impossible. Since ¬((φ ∧ ψ) ∧ ¬φ) is a theorem
(by TC), {(φ ∧ ψ), ¬φ} is a d-inconsistent, contrary to (a).

* While it was Gödel who first proved a completeness theorem,
the way we prove completeness today is to use a simpler technique
discovered by Leon Henkin in 1949.
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If (φ ∧ ψ) is in ∆ but ψ isn't in ∆, then, by (b), ¬ψ is in
∆. But this contradicts (a), since {(φ ∧ ψ), ¬ψ} is d-inconsis-
tent.

If φ and ψ are both in ∆ but (φ ∧ ψ) isn't in ∆, then, by
(b), ¬(φ ∧ ψ) is in ∆. But this contradicts (a), since {φ, ψ,
¬(φ ∧ ψ)} is d-inconsistent.

(v) It follows by clause (c) that, if an existential sentence is
in ∆, then some instance of it is in ∆. For the converse, sup-
pose that φx/c is in ∆ but (∃ x)φ isn't in ∆. Then, by (b), ¬(∃ x)φ
is in ∆ But this contradicts (a), because {φx/c, ¬(∃ x)φ} is d-
inconsistent, as the following derivation shows:

1 1. φx/c PI
1 2. (∃ x)φ 1,EG

3. (φx/c → (∃ x)φ) CP,1,2
4. ¬(φx/c ∧ ¬(∃ x)φ) TC,3⌧

Our proof of the completeness theorem breaks into two parts:

First Completeness Lemma. If ∆ is a Henkin set,
then there is an interpretation under which all
and only the members of ∆ are true.

Second Completeness Lemma. Every d-consistent set
is contained within some Henkin set.

The Henkin set obtained in the Second Completeness Lemma will not
be a Henkin set for the original language, but a Henkin set for a
language obtained from the original language by adding some new
constants. A more precise version of the lemma is this:

Given ∆, a d-consistent set of sentences in a
language _, there is a language M,obtained from _
by adding infinitely many individual constants,
such that in M there is a Henkin set that con-
tains ∆.

Clearly these two lemmas, taken together, will prove that every
d-consistent set is consistent.
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Proof of First Completeness Lemma: Enumerate the constants in the
language as c0, c1, c2, c3,....* Define an interpretation A, as
follows:

|A| = {natural numbers 0,1,2,...}
A(ci) = i
A(R) = {i: Rci ∈ ∆}

We want to prove that, for each sentence φ, φ is true under A
iff φ is an element of ∆. This follows immediately from the
following:

Claim. For any natural number i and formula φ, i satisfies φ
under A iff φx/ci is an element of ∆.

* Here I am assuming that there are infinitely many constants in
the language. If there are only finitely many constants, the
proof will be the same except that the universe of the interpre-
tation will be a finite initial segment of the natural numbers,
rather than the whole set of natural numbers. Note that the
Henkin set we construct in the Second Completeness Lemma will
contain infinitely many constants.

I am also assuming that the constants of the language can be
arranged in a list c0, c1, c2, c3,.... For certain purely abstract
formal languages that are considered in pure mathematics, this
assumption won't be satisfied. The completeness theorems hold
even without this assumption.
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Proof: Let Σ be the set of formulas φ such that, for every number
i, i satisfies φ under A iff φx/ci is an element of ∆. To show

that every formula is in Σ, it will be enough to show that Σ
contains the atomic formulas and that it is closed under
conjunction, disjunction, forming conditionals, forming
biconditionals, negation, existential quantification, and
universal quantification.

Atomic formulas are in Σ: If φ is an atomic formula of the form
Rx, we have

i satisfies Rx under A
iff i ∈ A(R)
iff Rci ∈ ∆

If φ is an atomic formula of the form Rcj, then φx/ci is equal to

φ, and we have

i satisfies Rcj under A
iff Rcj is true under A
iff A(cj) ∈ A(R)
iff j ∈ A(R)
iff Rcj ∈ ∆
iff Rcj

x/ci ∈ ∆

Σ is closed under conjunction: Suppose φ and ψ are in Σ. We have

i satisfies (φ ∧ ψ) under A
iff i satisfies φ under A and i satisfies ψ under A
iff φx/ci ∈ ∆ and ψx/ci ∈ ∆
iff (φx/ci ∧ ψx/ci) ∈ ∆ (by Fun Fact (i))

iff (φ ∧ ψ)x/ci ∈ ∆.

Σ is closed under disjunction, forming conditionals, forming
biconditionals, and negation. Similar.

Σ is closed under existential quantification. Suppose φ is in Σ.
We have:

i satisfies (∃ x)φ under A
iff (∃ x)φ is true under A
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iff, for some natural number j, j satisfies φ under A
iff, for some natural number j, φx/cj ∈ ∆
iff some instance of (∃ x)φ is an element of ∆
iff (∃ x)φ is an element of ∆
iff ((∃ x)φ)x/ci ∈ ∆.

Σ is closed under universal quantification. Similar.⌧

Proof of Second Completeness Lemma. We're going to form our
Henkin set by starting out with ∆ and forming larger and larger
sets Γ0, Γ1, Γ2, Γ3,..., making sure that, at each stage, the set
of sentences we construct is d-consistent. A couple of
preliminaries. First, we add infinitely many individual constants
to the language. Next, we enumerate the sentences of the expanded
language as σ0, σ1, σ2,....

Let Γ0 = Γ. Then Γ0 is d-consistent.
In forming Γ1, there are three possibilities:

Case 1. Γ0 ∪ {σ0} is d-consistent and σ0 isn't existential. In
this case, we let Γ1 = Γ0 ∪ {σ0}.

Case 2. Γ0 ∪ {σ0} is d-consistent, and σ0 has the form (∃ x)φ. Pick
a constant that doesn't appear in Γ0 ∪ {σ0}, and let Γ1 = Γ0 ∪
{(∃ x)φ, φx/c}. (The reason we added infinitely many constants was
to make sure we could find a new constant here.). I claim that Γ1
is d-consistent. For suppose not. Then there exist γ1, γ2,..., γk
in Γ0 such that the sentence ¬(γ0 ∧ γ1 ∧ ... ∧ γk ∧ (∃ x)φ ∧ φx/c)
is a theorem of logic. But we can extend a derivation from the
empty set of ¬(γ0 ∧ γ1 ∧ ... ∧ γk ∧ (∃ x)φ ∧ φx/c) to a derivation
from the empty set of ¬(γ0 ∧ γ1 ∧ ... ∧ γk ∧ (∃ x)φ), as follows:

1. ¬(γ0 ∧ γ1 ∧ ... ∧ γk ∧ (∃ x)φ ∧ φx/c)
2 2. (γ0 ∧ γ1 ∧ ... ∧ γk ∧ (∃ x)φ) PI
2 3. ¬φx/c TC,1,2
2 4. (∀ x)¬φ UG,3
2 5. ¬(∃ x)φ QE,4

6. ((γ0 ∧ γ1 ∧ ... ∧ γk ∧ (∃ x)φ) → ¬(∃ x)φ) CP,2,5
7. ¬(γ0 ∧ γ1 ∧ ... ∧ γk ∧ (∃ x)φ) TC,6
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But this is impossible, since Γ0 ∪ (∃ x)φ} is d-consistent.

Case 3. Γ0 ∪ {σn} is d-inconsistent. In this case, we let Γ1 be Γ0
∪ {¬σ0}. I claim that, in this case too, Γ1 is d-consistent. We
know that, since Γ0 ∪ {σ0} is d-inconsistent, there exist γ1,
γ2....., γk in Γ0 such that the sentence ¬(γ1 ∧ γ2 ∧ ... ∧ γk ∧ σ0)
is a theorem of logic. If Γ1 were d-inconsistent, then there
would exist sentences δ1, δ2,..., δm in Γ0 such that the sentence
¬(δ1 ∧ δ2 ∧ ... ∧ δm ∧ ¬σ0) is a theorem of logic. But then we
could put these two derivations together, followed by a single
application of TC to get a derivation from the empty set of ¬(γ1
∧ γ2 ∧ ... ∧ γk ∧ δ1 ∧ δ2 ∧ ... ∧ δm). This contradicts the
assumption that Γ0 is d-consistent.

Thus we see that, in any case, Γ1 is d-consistent.

We continue this process. We form Γ2 from Γ1 by adding
either σ1 or ¬σ1 and also, if we add σ1 and σ1 is existential, by
adding an instance of σ1. Γ2 will be d-consistent. We form Γ3 from
Γ2 by adding either σ2 or ¬σ2 and also, if we add σ2 and σ2 is
existential, by adding an instance of σ2. Γ3 will be d-
consistent. And so on. At the n+1st step, having formed a d-
consistent set Γn, we form Γn+1 as follows:

If Γn ∪ {σn} is d-consistent and σn isn't
existential, Γn+1 = Γn ∪ {σn}.

If Γn ∪ {σn} is d-consistent and σn has the form
(∃ x)φ, pick a constant c that doesn't appear in
any of the members of Γ ∪ {n}, and let Γn+1 be Γn ∪
{(∃ x)φ, φx/c}.

If Γn ∪ {σn} is d-inconsistent, let Γn+1 = Γn ∪
{¬σn}.

In any event Γn+1 will be d-consistent. The proof is just as
above.

Now let Γ∞ be the union of all the Γns. Γ∞ is a Henkin set.⌧
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We now know that, every d-consistent set is consistent. This
gives us the following:

Strong Completeness Theorem. If φ is a logical
consequence of Γ, then there is a derivation of φ
whose premiss set is included in Γ.

Proof: If φ is a logical consequence of Γ, then Γ ∪ {¬φ} is
inconsistent. So it's d-inconsistent, which means that there are
sentences γ1, γ2,..., γn in Γ such that ¬(γ1 ∧ γ2 ∧ ... ∧ γn ∧ ¬φ)
is derivable from the empty set. We can extend this derivation,
as follows:

1. ¬(γ1 ∧ γ2 ∧ ... ∧ γn ∧ ¬φ)
2 2. γ1 PI
3 3. γ2 PI
........................................................
n+1 n+1. γn PI
2,3,...,n+1 n+2. φ TC,1,2,...,n+1⌧

Weak Completeness Theorem. If φ is valid, it's a
theorem of logic.

Proof: If φ is valid, it's a logical consequence of the empty
set, so that, by the Strong Completeness Theorem, it's derivable
from the empty set.⌧

Löwenheim-Skolem Theorem.* If a set of sentences Γ
is consistent, there is a model whose universe is
the natural numbers in which every member of Γ is
true.

Proof: If Γ is consistent, it's d-consistent. For each d-
consistent set of sentences, our construction gives an
interpretation with universe the set of natural numbers in which
all members of the set are true.⌧

* Whereas the Strong Completeness Theorem doesn’t really
depend upon the countability of the language, the Löwenheim-
Skolem Theorem does.
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Compactness Theorem. A set of sentences Γ is
consistent iff every finite subset of Γ is
consistent.

Proof: The left-to-right direction is trivial, since an
interpretation under which all the members of Γ are true will be
an interpretation under which all the members of each finite
subset of Γ are true. To get the right-to-left direction, suppose
that Γ is inconsistent. Then Γ is d-inconsistent, so that there
exist γ1, γ2,..., γn in Γ such that the sentence ¬(γ1 ∧ γ2 ∧ ... ∧
γn) is a theorem of logic. Then {γ1, γ2,..., γn} is a finite, d-
inconsistent subset of Γ. So it's a finite, inconsistent subset
of Γ.⌧

Corollary. If φ is a logical consequence of Γ,
then it is a logical consequence of some finite
subset of Γ.

Proof: If φ is a logical consequence of Γ, then there is a
derivation of φ whose premiss set is a finite subset of Γ. φ is a
logical consequence of this finite subset.⌧


