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Conpl eteness in the Mnadi c Predicate Cal cul us
W have a system of eight rules of proof. Let's list them

At any stage of a derivation, you may wite down a sentence
o Wwth {¢} as its prem ss set.

If you have witten down sentences vyi, vy2,..., yn in a deri-
vation, and ¢ is a tautol ogical consequence of
{wi,v2,...,vyn}, then you may wite down sentence vy, taking

the prem ss set to be the union of the prem ss sets of the

vis. In particular, if ¢ is a tautology, we can wite ¢ with
the enpty prem ss set.

If you have derived y with premiss set I' O {¢}, you may
wite (¢ - y) with prem ss set T.

If you've derived (Ox)¢e, you may derive ¢/ with the sane
prem ss set, for any constant c.

If you' ve derived ¢*/. fromT and if the constant ¢ doesn't
appear in ¢ or in any of the sentences in I', you nmay derive
(Ox)e with prem ss set T.

From -(0x)-e, you may infer ([X)o with the sane prem ss
set, and vice versa.

From (Ox) -, you may infer —=(IX)e wth the sane prem ss
set, and vice versa.

From =(0Ox) e, you may infer ([X)-e with the sanme prem ss
set, and vice versa.

From (Ox) e, you may infer =([X)-¢ with the sanme prem ss
set, and vice versa.

If you have witten ¢/, for any constant c, you nay wite
(X))o with the sanme prem ss set.

Suppose that you have derived (X))o with prem ss set A and

that you have derived y with premiss set T' O {¢*/¢}, for
sone constant c. Suppose further that the constant c¢ does

not appear in ¢, in y, or in any nenber of I. Then you nay
derive y with prem ss set A O T.

Sonet hing we were careful to check as we introduced each of

the rules was that the rules were | ogical -consequence preserving,
meaning that, if you use the rule to wite a sentence, the
sentence you wite will be a | ogical consequence of its premss
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set, provided that any earlier lines in the proof that you relied
on in applying the rule were | ogical consequences of their

prem ss sets. It follows that, at each stage in a derivation
according to the rules, the sentence you wite down will be a

| ogi cal consequence of its prem ss set. Hence we have this:

Strong Soundness Theorem |f you can derive a sentence
¢ froma premss set that is included in the set T,
then ¢ is a |ogical consequence of T.

Defining a theoremof logic to be a sentence which is derivable
fromthe enpty set, we have this:

Weak Soundness Theorem |If a sentence is a theorem of
logic, it's valid.

What we now want to see is that every valid sentence is a
t heorem of logic and that every |ogical consequence of T is

derivable fromTI. This will tell us that we have enough rules to
capture every logically correct argunent; we don't need to add
any nore rules. Hence the results we're about to prove are called
a conpl eteness theorem First we need a technical notion:

Definition. A set of sentences I' i s deductively
consistent (or d-consistent) iff there is no con-

junction of menbers of I' whose negation is a theo-
rem of | ogic.

To say that a set of sentence is d-inconsistent neans that it is
i nconsi stent and, noreover, that you can show it is consistent by

deriving an explicit contradiction. For exanple {"Fa," "(0Ox)(Fx
- &X)," "=Fb," "-Gb," "-G"} is d-inconsistent, because the sen-

tence "-(Fa O (Ox)(Fx - &) O -G)" is a theoremof logic.* W
have this:

* For the sake of readability, 1've left off extra parentheses,

witing -(o0y 0O6), instead of ~(¢ O (y O00O)). To be strictly
| egal , the parentheses should be supplied. The derivation is as
foll ows:

1 1. (Fa O (Ox)(Fx - &)) Pl

1 2. Fa TC 1

1 3. (Ix)(Fx - &) TC 1

1 4. (Fa - &) uUS, 3

1 5. Ga TC 2,4
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Lemma. Every consistent set is d-consistent.

Proof: Let I be a consistent set. Then there is an interpretation
A under which all the nmenbers of I' are true. Now suppose that T

is d-inconsistent. That nean that there are nenbers vyi, v2,..., Tn
of T such that the sentence -(y1 Oy, O... Oy, is a theorem of
logic. Since it's a theoremof logic, it's valid, so true in A4
But clearly we can't have vyi, v2,..., vyn, @and =(ys Oy, O ... 0O vn)

all true in 4. Contradiction. Xl

What we need to show is the converse this |lemm, that every
d-consi stent set of sentences is consistent. This was first
proven by Kurt Gbdel in 1931 as his doctoral dissertation. It's
not an easy proof.

G ven a d-consistent set I, we want to construct a nodel in
which all the nmenbers of T' are true. Qur plan is to start with I
and build it up by adding nore sentences until we get a set of
sentences that conpletely describes an interpretation under which
all the nenbers of I' are true. We'll deal with the quantifiers by
constructing our nodel in such a way that every nenber of the
uni verse of the interpretation is naned by sone constant. That
means that an existential sentence will be true iff sonme instance
is true, and a universal sentence is true iff every instance is
true.

6. ((Fa O (Ox)(Fx - &)) - G) CP,1,5
7. ~(Fa O (Ox)(Fx - &) O -Ga) TC, 6
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Definition. A Henkin set* is a set of sentences A

with the follow ng properties:

(a) A is d-consistent.

(b) For each sentence ¢, either ¢ O A or - O A.

(c) \Wenever an existential sentence is in A,
some instance of the sentence is in A.

Here are the basic facts about Henkin sets:

Fun Facts. Suppose A is a Henkin set. W have:

(i) A conjunctionis in Aiff both conjuncts are
in A.

(ii) Adisjunctionis in Aiff one or both dis-
juncts are in A.

(tit)A conditional is in A iff the consequent is
in A or the antecedent is outside A.

(iv) A biconditional is in Aiff either both com
ponents are in A or both are outside it.

(iv) Anegationis in Aiff the negatumis out-
side A.

(v) An existential sentence is in A iff sone
instance of it is in A.

(vi) A universal sentence is in A iff every in-
stance of it is in A

Proof: I'lIl only prove facts (i) and (v); the rest are simlar.

(1) I'f (o Ow) isin Abut oisn't in A, then, by (b), -~¢ is in
A. But this is inpossible. Since =((¢ Ovy) O -p) is a theorem
(by TO, {(o Ovy), -} is a d-inconsistent, contrary to (a).

* Wiile it was Gddel who first proved a conpl et eness theorem
the way we prove conpl eteness today is to use a sinpler technique
di scovered by Leon Henkin in 1949.
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If (o Oy) isin Abut yisn't in A, then, by (b), -y is in
A. But this contradicts (a), since {(o Ovy), -y} is d-inconsis-
tent.

If ¢ and v are both in A but (¢ Ovy) isn't in A, then, by
(b), (¢ Oy) isin A. But this contradicts (a), since {o, v,
-(¢ Owy)} is d-inconsistent.

(v) It follows by clause (c) that, if an existential sentence is
in A, then sone instance of it is in A. For the converse, sup-
pose that ¢ is in A but (X)¢ isn't in A, Then, by (b), -(IX)e¢
isin A But this contradicts (a), because {9, =(IK)e¢} is d-

i nconsi stent, as the follow ng derivation shows:

1
1

0/ ¢ Pl

(X) o 1, EG
(/¢ » (X)) CP, 1,2
(¢ O~(X)e) TC 3

hONPE

Qur proof of the conpl eteness theorem breaks into two parts:

First Conpl eteness Lemma. If A is a Henkin set,
then there is an interpretati on under which al
and only the nenbers of A are true.

Second Conpl eteness Lemma. Every d-consistent set
is contained within sone Henkin set.

The Henkin set obtained in the Second Conpl eteness Lenmma will not
be a Henkin set for the original |anguage, but a Henkin set for a
| anguage obtained fromthe original |anguage by addi ng sonme new
constants. A nore precise version of the lemma is this:

G ven A, a d-consistent set of sentences in a

| anguage _, there is a | anguage M obtained from _
by adding infinitely many individual constants,
such that in m there is a Henkin set that con-
tains A.

Clearly these two | emmas, taken together, will prove that every
d-consistent set is consistent.
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Proof of First Conpl eteness Lemma: Enunerate the constants in the

| anguage as cop, Ci, C2, C3,....* Define an interpretation 4, as
fol | ows:

| 4| = {natural nunbers 0,1,2,...}
A(ci) =i
AR = {i: Rc; O A}

W want to prove that, for each sentence ¢, ¢ is true under 4
iff ¢ is an elenent of A. This follows inmediately fromthe
f ol | owi ng:

Caim For any natural nunber i and forrmula ¢, I satisfies ¢
under 7 iff ¢*/¢ is an elenment of A.

* Here | amassumng that there are infinitely many constants in
the | anguage. If there are only finitely many constants, the
proof wll be the sane except that the universe of the interpre-
tation will be a finite initial segment of the natural nunbers,
rather than the whole set of natural nunbers. Note that the
Henki n set we construct in the Second Conpl eteness Lemma wi |
contain infinitely many constants.

I am al so assumi ng that the constants of the |anguage can be
arranged in a list co, C1, Cz, C3,.... For certain purely abstract
formal | anguages that are considered in pure mathematics, this
assunption won't be satisfied. The conpl eteness theorens hold
even without this assunption
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Proof: Let X be the set of fornulas ¢ such that, for every nunber
i, i satisfies ¢ under a2 iff ¢"/ is an element of A. To show
that every formulais in X, it wll be enough to show that X
contains the atomc fornulas and that it is closed under
conjunction, disjunction, formng conditionals, formng

bi condi tionals, negation, existential quantification, and

uni versal quantification.

Atomc fornulas are in X If ¢ is an atomc fornula of the form
Rx, we have

i satisfies Rx under 4

iff i O 4R

iff Re; O A
If ¢ is an atomic formula of the formRc;, then ¢*/. is equal to
¢, and we have

I satisfies Rc; under 4
iff Rcj is true under 4
iff Aa(c;) O AR

iff j O AR

iff Rc; O A

iff Rej™ ¢ O A

Y is closed under conjunction: Suppose ¢ and y are in X. W have

i satisfies (¢ O vy) under 4

iff i satisfies ¢ under 42 and i satisfies y under 4
iff ¢/ O A and v/, O A

iff ("¢ Ovy/¢) OA (by Fun Fact (i))

iff (o Ow)*¢ O A

Y is closed under disjunction, formng conditionals, formng
bi conditionals, and negation. Sim |l ar.

Y is closed under existential quantification. Suppose ¢ is in X.
W have:

i satisfies (k)¢ under 4
iff (X))o is true under 42
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iff, for sonme natural nunber j, j satisfies ¢ under 4
iff, for sone natural nunber j, (pX/Cj O A

iff some instance of ([X)p is an el enent of A
iff (K)o is an elenment of A
iff (X)) O A.

Y is closed under universal quantification. Simlar.

Proof of Second Conpl eteness Lemma. We're going to form our
Henkin set by starting out wwth A and form ng |arger and | arger
sets Iy, Iy, I',, I'3,..., making sure that, at each stage, the set
of sentences we construct is d-consistent. A couple of
prelimnaries. First, we add infinitely many individual constants
to the | anguage. Next, we enunerate the sentences of the expanded
| anguage as oo, 061, Oz, ....

Let To = T. Then Iy is d-consistent.
In formng I'y, there are three possibilities:

Case 1. Tp O {oo} is d-consistent and op isn't existential. In
this case, we let I'y = I'p O {o0}.

Case 2. Ip O {oo} is d-consistent, and oo has the form ([X)¢. Pick
a constant that doesn't appear in I'oc O {oo}, and let I'y1 = Tx O
{(X)o, ¢*/¢}. (The reason we added infinitely nany constants was

to make sure we could find a new constant here.). | claimthat I}
is d-consistent. For suppose not. Then there exist yi, v2,..., 7Y
in To such that the sentence —~(yo Ovy: O... Oy O(X)o O ¢"/¢)
is a theoremof logic. But we can extend a derivation fromthe
empty set of =(yo Oys O... Oy O(X)e O ¢*/¢) to a derivation
fromthe enmpty set of —(yo Oy O... Oy O (X)), as follows:
1. ~(vo Oy O... Oy O(X) e O¢")
2 2. (yo Oy O... Oy O ()e) Pl
2 3. =¥ TC 1,2
2 4. (0Ox) -0 uG 3
2 5. ~(X) ¢ QE 4
6. ((yoOviO... Ow O(X)e) - (X)) CP, 2,5
7. 2(yo Uy O... Oy O(X) o) TC, 6
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But this is inpossible, since I'oh O (X)¢} is d-consistent.

Case 3. Io O {on} is d-inconsistent. In this case, we let I'y be Iy
O {-cp}. | claimthat, in this case too, I'1 is d-consistent. W
know that, since I'hv 0O {oo} is d-inconsistent, there exist vy,

Yoo ... , Y« 1n I'p such that the sentence —(ys Oy, O... O v« O op)
is atheoremof logic. If I'; were d-inconsistent, then there
woul d exi st sentences 061, d2, ..., Oomin I'o such that the sentence
-(6, 06, O... O06m O -0p) is atheoremof logic. But then we
could put these two derivations together, followed by a single
application of TCto get a derivation fromthe enpty set of -(y
Ovy,O... Oy OO0, 03, 0... Ob8y. This contradicts the
assunption that I'o is d-consistent.

Thus we see that, in any case, I'; is d-consistent.

We continue this process. W formTI, fromTI; by addi ng
either o1 or -6; and also, if we add o; and o1 i S existential, by
adding an instance of ;. I'> will be d-consistent. W formI3; from
I'; by adding either o, or -6, and also, if we add o, and o2 i s
exi stential, by adding an instance of o,. I's will be d-
consistent. And so on. At the n+lst step, having forned a d-

consistent set Iy, we formTIy: as foll ows:

If I'h O {on} is d-consistent and on isn't
existential, T'hyr = I'n O {on}.

If I'h O {on} is d-consistent and o, has the form
(X)), pick a constant c that doesn't appear in
any of the menbers of I' O {,}, and let I be I'y O

{(D) e, ¢}

If I'h O {on} is d-inconsistent, let T'hyy = T, O
{_|Gn}.

In any event TI'nys Will be d-consistent. The proof is just as
above.

Now |l et T be the union of all the I'hvs. Tw i s a Henkin set. Xl
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We now know that, every d-consistent set is consistent. This
gives us the foll ow ng:

Strong Conpl eteness Theorem If ¢ is a | ogical
consequence of I, then there is a derivation of ¢
whose prem ss set is included in T.

Proof: If ¢ is a logical consequence of I, then I' O {-¢} is
inconsistent. So it's d-inconsistent, which neans that there are
sentences yi, v2,..., yn in I' such that =(y;s Oy, O... Oy, O 70)
is derivable fromthe enpty set. W can extend this derivation,
as follows:

1. —|( Y1 0 Y2 ... d Yn O —|(p)
2 2 1 Pl
3 3 Y2 Pl
n+1 n+l. vyn P
2,3,...,n+l n+2. ¢ TC 1, 2,...,n+1X

Weak Conpl et eness Theorem If ¢ is valid, it's a
t heorem of | ogic.

Proof: If ¢ is valid, it's a |ogical consequence of the enpty
set, so that, by the Strong Conpl eteness Theorem it's derivable
fromthe enpty set. X

Lowenhei m Skol em Theorem * |f a set of sentences T
is consistent, there is a npdel whose universe is
t he natural nunbers in which every nmenber of I'is
true.

Proof: If I''is consistent, it's d-consistent. For each d-

consi stent set of sentences, our construction gives an
interpretation wth universe the set of natural nunbers in which
all nenbers of the set are true. X

* Whereas the Strong Conpl et eness Theorem doesn’'t really
depend upon the countability of the | anguage, the Lowenhei m
Skol em Theor em does.
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Conpact ness Theorem A set of sentences T' is
consistent iff every finite subset of T'is
consi stent.

Proof: The left-to-right direction is trivial, since an
interpretation under which all the nenbers of T are true will be
an interpretation under which all the nenbers of each finite
subset of T are true. To get the right-to-left direction, suppose
that I' is inconsistent. Then I' is d-inconsistent, so that there
exist yi, v2,..., vyn in I' such that the sentence —(ys Oy, O... O
vn) is a theoremof logic. Then {y1, v2,..., v} is a finite, d-

i nconsi stent subset of I So it's a finite, inconsistent subset
of I'. X

Corollary. If ¢ is a |logical consequence of T,
then it is a |logical consequence of sone finite
subset of T.

Proof: If ¢ is a |logical consequence of I, then there is a
derivation of ¢ whose premiss set is a finite subset of I ¢ is a
| ogi cal consequence of this finite subset. X



