Derivations in the Monadi c Predi cate Cal cul us

In the last chapter, we described a procedure for testing
whet her an MPC sentence is valid. Unfortunately, the nethod is
not very practically useful, sinply because it takes too long to
check all the canonical nodels. W shall no | earn another nethod
for showng a valid sentence valid that is nore useful in prac-
tice. If an MPC sentence is valid, this procedure will show what
it isvalid, and it will usually do so fairly efficiently.
However, unlike the earlier nethod, the new nethod won't given us
any way to show an invalid sentence to be invalid. If a sentence
if valid, the nethod will enable us to prove it, but, if we have
been unable to construct a proof of a sentence, we won’t have any
way of know ng whether the reason is because the sentence is
invalid or just because we haven't been clever enough to conme up
with a proof yet. The old nethod was a decision procedure: It
enabl es us to test whether a given sentence is valid. The new
nmethod is only a proof procedure: If a sentence is valid, the
method will enable to show that it is valid, but the nethod won't
provi de us any way of showing that an invalid sentence is in-
val i d.

Qur real reason for learning the new nethod won’t appear
until we turn to the study of the full predicate calculus (as
opposed to the nonadi c predicate cal culus), where we tal k about
rel ati ons anong individuals as well as properties of individuals.
The new net hod generalizes to the full predicate cal culus. The
ol d nmet hod does not.

There are a great nunber of systenms of proof in use. The
particul ar systemwe shall study here was devel oped by Benson
Mat es; see his Elenentary Logic (2nd ed. New York: Oxford Univer-
sity Press, 1972).

A proof or derivation consists of a consecutively nunbered
sequence of sentences. The nunber of a sentence, which is witten
directly toits left, is its line nunber. To the left of the line
nunber for the nth line is a (possibly enpty) sequence of nunbers

< n. These are the prem ss nunbers of the nth line. The sentences
whose |ine nunbers are the prem ss nunbers of the nth Iine
constitute the premss set of the nth line. To the right of the
nth sentence, a rule is cited which justifies our witing the
sentence. Here is an exanple of a derivation; explanations wll
cone |ater:

1. (OX)(X - Hx) Pl
2. (OX)(HX - M) PI
3. G PI
4. (Ga - Ha) us, 1

R WN -
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1,3 5 Ha TC, 3,4
2 6. (Ha - M) us, 2
1,2,3 7. M TC, 5,6
1,2 8. (Ga - M) CP, 3,7
1,2 9 (OX)(X - M) UG 8

Here the premss set of line 1 is {"(Ox)(&x - H)"}; line 1 is
gotten by rule P (what rule Pis will appear presently). The
premss set of line 7 is {"(Ox)(&x - Hx)," "(Ox)(Hx - M),"
"G"}; line 7 is gotten fromlines 5 and 6 by rule TC. The
premss set of line 9 is {"(Ox)(& - Hx)," "(Ox)(Hx - M)"};
line 9 is gotten fromline 8 by rule UG

The rules we shall devel op are intended to guarantee that
each sentence we wite down is a |ogical consequence of its
prem ss set. Thus the derivation above is a denonstration that

"All Geeks are nortal" ["(Ox)(Gx - M)"] is a |logical conse-
guence of "All G eeks are human beings" ["(Ox)(&x - Hx)"] and

"All human beings are nortal" ["(Ox)(Hx - M)"]. (The derivation
is longer than it needed to be.)

The main thing we want to nmake sure of in introducing our
rules of derivation is that each sentence we wite down at each
stage of a derivation is a |ogical consequence of its prem ss
set. If we introduce a new rule, what we have to nmake sure of is
this: If we use the newrule to add a new line to a derivation
that up till now has had the property that each line is a | ogical
consequence of its premss set, the newline will be a |ogica
consequence of its premss set. If all our rules have this
property, we can be confident that any sentence we wite down at
any stage of a derivation will be a | ogical consequence of its
prem ss set.

The first three rules we learn will only involve ideas from
the sentential calculus. Afterward we shall |earn rules involving
the quantifiers.

Prem ss introduction rule (Pl). At any stage of a
derivation, you may wite down a sentence ¢ with
any set that contains ¢ as its prem ss set.

Qovi ously, anything you wite down by rule PI will be a |ogica
consequence of its prem ss set, since ¢ is a |logical consequence
of any set that includes it. One use of rule Pl is sinple to |et
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us wite down the prem sses of our argunment. Ot her, nore techni-
cal uses, wll energe.

Qur next rule incorporates the entire sentential cal culus at
one fell swoop:

Taut ol ogi cal consequence rule (TC). If you have

witten down sentences wvyi, y2,..., y, in a deriva-
tion, and ¢ is a tautol ogi cal consequence of
{wi,v2, ..., wn}, then you may wite down sentence

y, taking the prem ss set to be the union of the
prem ss sets of the yjs. In particular, if ¢ is a
taut ol ogy, we can wite ¢ with the enpty premn ss

set.

For exanple, using "W" for "x went up the hill,"” "a" for
"Jack," "b" for "Jill," and "c" for "Clarissa," here is a sinple
derivation of "Either Jill or Clarissa went up the hill" ["(W O
W)"] from"Either Jack or Jill went up the hill" ["(Wa O W)"]
and "If Jack went up the hill, so did arissa" ["(Wa - W)"]:

1 1. (v OWwW) P
2 2. (W - W) PI
1,2 3. (Wb Ow) TC 1, 2

We can check that line 3 is truly a | ogical consequence of |ines
1 and 2 by applying the search-for-counterexanple nethod, putting
a "1" under the main connective of each prem ss, and a “0” under
t he mai n connective of the concl usion:

(V& O W) (W — W) O(W O W)
1 10 X1 0 000

7X L J A4

The fact that there is a nmechanical procedure for testing
whet her a sentence is a tautol ogical consequence of a set of
sentences is inportant. In order for our derivations to have any
probative value, we have to be able to recogni ze when a sequence
of sentences really is a proof, which neans that we need an
al gorithm for checking when a rule has been properly applied. The
rule "You may wite down a sentence whenever that sentence is a
| ogi cal consequence of its prem ss set” is an unacceptable rule,

j ust because we have no way of recogni zing when the rul e has been
successfully foll owed.
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W want to see that rule TC is |ogical -consequence preserv-
ing, that is, we want to see that, if ¢ is gotten from

V1, W2, ..., ¥y by rule TC and each of the yis is a |ogical conse-
guence of its prem ss set, then ¢ is a | ogical consequence of its
prem ss set. In showing this, we'll make use of the follow ng

three facts:

If ¢ is a tautol ogi cal consequence of I, then ¢ is
a | ogi cal consequence of T.

If vy is a logical consequence of A and Ais a
subset of Q, then y is a |ogical consequence of
Q.

If ¢ is a logical consequence of T' and every nmem
ber of T'is a |ogical consequence of Q, then ¢ is
a | ogi cal consequence of Q.

Let the premi ss set of y; be A. If ¢ is a tautol ogical conse-
guence of the {wi,vy2, ...,vyn}, then ¢ is a | ogical consequence of
{wi,v2,...,yn}. If each yx is a | ogical consequence of Ax, then wyg
is a logical consequence of the union of the Ajs. So ¢ is a

| ogi cal consequence of the union of the Ajs.

TCis an imensely powerful rule, for it incorporates the
entire sentential calculus at one fell swoop. For exanple,
consi der the follow ng argunent:

Ei ther Preston or Quincy is a nmenber of the Logic
Club. If either Quincy or Rudolf is a nenber,
Stuart is not. Unless Stuart is a nenber, Trunbul
is a nenber and Rudolf is not. But Preston is not
a nmenber. Consequently, Quincy and Trunbull are
bot h nmenbers

whi ch we can synbolize as foll ows:

(M O M)

((My O M) - -Ms)
(=M - (M 0O -M))
-Mp

O(My O M)
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The conclusion of this argunment is a tautol ogical consequence of
t he prem sses, so we can derive the conclusion fromthe prems-
ses, as follows:

1 1. (M O M) Pl
2 2. ((My OM) - =Ms) Pl
3 3. (-Ms - (M O-=M)) Pl
4 4. =M Pl
1,2,3,4 5 (Mg OM) TC 1,2, 3, 4

This is a perfectly good derivation, as far as the rul es go,
since the conclusion is a tautol ogi cal consequence of the prem s-
ses. But nost of us aren't good enough at the sentential calculus
to see at a glance that the conclusion is a tautol ogi cal conse-
guence of the prem sses. The rest of us will have to break the
proof down into sinpler parts.

First of all, we notice that the sentence we are trying to
prove is a conjunction; the way to prove a conjunction is to
prove each of the conjuncts, so we want to prove "MJ" and "M."
But notice that lines 1 and 4 already give us "MJ"; so we're half
done. W wite the foll ow ng:

1 1. (Mp O My) PI
2 2. ((My OM) - -Ms) Pl
3 3. (-Ms - (M O -M)) Pl
4 4. -Np PI
1,4 5. My TC, 1, 4

Now we have "Mjy." "My" gives us "(My O M)," which gives us
"-Ms" by prem ss 2:

1 1. (M O M) PI

2 2. ((My OM) - =Ms) PI

3 3. (.M - (M O=-M)) PI

4 4. =N\p PI

1,4 5. My TC 1,4
1,4 6. (Mg O M) TC, 5

1,2,4 7. -M\s TC, 2,6

"aMs," which is the antecedent of |line 3, so we can

=
-
o]
<
(¢]

ve its consequent:

d
1 1. (Mp O My) PI
2 2. ((My OM) - -Ms) Pl
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3 3. (- - (M O-M)) PI

4 4. =M P

1,4 5. My TC 1,4

1,4 6. (Mg O M) TC 5

1,2,4 7. M TC 2,6

1,2,3,4 8. (M 0O -M) TC 3,7

We have a conjunction, so we can derive both its conjuncts. In
general, it's a good idea to do so, because the conjuncts, being
sinpler, are easier to deal with than the conjunction:
1 1. (M U M) P

2 2. (g OM) - =M) P

3 3. (- - (M O-M)) PI

4 4. =M P

1,4 5. My TC 1,4

1,4 6. (Mg O M) TC, 5

1,2,4 7. M TC, 2,6

1,2,3,4 8. (M 0O -M) TC 3,7

1,2,3,4 9. M TC, 8

1,2,3,4 10. -M TC, 8

Now we have "M" as well as "My," which is what we want ed:
1 1. (M O M) P

2 2. ((IMg OM) - =M) P

3 3. ("M - (M O=-M)) PI

4 4. -Mp P

1,4 5. My TC 1,4

1,4 6. (Mg O M) TC 5

1,2,4 7. M TC, 2,6

1,2,3,4 8. (M 0O -M) TC 3,7

1,2,3,4 9. M TC, 8

1,2,3,4 10. -M TC, 8

1,2,3,4 11. (Mg O M) TC, 5, 10

And we are done.

rul es.

Qur

next

Alittle later,
use in devel opi ng these proofs.

rule gives us a nethod for
To prove a conditional,

we'll tal k about some general strategies to

But first, we'll get sone nore

proving a conditional:
assume the antecedent as a prem ss, then
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try to derive the consequent. This will be the central strategy
for alnost all our proofs.

Condi tional proof rule (CP). If you have derived
v With premss set T' 0 {¢}, you may wite (¢ - v)
with prem ss set T.

Rule CP is |ogical-consequence preserving, since, if yis a
| ogi cal consequence of I' OO {¢}, then (¢ - y) is a |ogical conse-
guence of T.

As an exanple, let's derive "(Fa - (Fb - Fc))" from "((Fa

OFb) - Fc)." W want to fill in the blank in this derivation:
1 1. ((Fa O Fb) - Fc) PI
1 (Fa - (Fb - Fc))

The sentence we want to prove is a conditional, so we assune the
antecedent as a premiss and try to derive the consequent:

1 1. ((Fa O Fb) - Fc) PI

2 2. Fa P

1,2 (Fb - Fc)

1 (Fa - (Fb - Fc)) CP, 2,

Once we've derived "(Fb - Fc)" with lines 1 and 2 as prem ss

set, we can use rule CP to derive "(Fa - (Fb - Fc))" with line
1 as prem ss set.

Now agai n the sentence we want to prove is a conditional,
S0, once again, we assune the antecedent and try to derive the
consequent :

1 1. ((Fa O Fb) - Fc) Pl
2 2. Fa Pl
3 3. Fb Pl

1,2,3 Fc
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1,2 (Fb - Fc) CP, 3,
1 (Fa - (Fb - Fc)) CP, 2,

Once we've derived "Fc" wth lines 1, 2, and 3 as prem ss set, we

can use rule CP to derive "(Fb - Fc)" wth lines 1 and 2 as
prem ss set.

W want to get "Fc." Because of line 1, to get "Fc" it wll
be enough to get "(Fa O Fb)." But we can get "(Fa 0O Fb)" because
we have its conjuncts on lines 2 and 3; so we're able to conplete
t he proof:

1 1. ((Fa OFb) - Fc) PI

2 2. Fa Pl

3 3. Fb PI

2,3 4. (Fa O Fb) TC, 2, 3

1,2, 3 5. Fc TC, 1, 4

1,2 6. (Fb - Fc) CP, 3,5

1 7. (Fa - (Fb - Fc)) CP, 2,6

So far, all the rules we've introduced have just used ideas
we' ve taken over fromthe sentential calculus. Now we're going to
| earn some rules that describe the operation of the quantifiers.

Uni versal specification rule (US). If you' ve de-

rived (Ox)¢e, you may derive ¢/ with the sane
prem ss set, for any constant c.

For exanple, we derive "Ms" ("Socrates is nortal™) from"Gs"

("Socrates is a Geek") and "(Ox) (& - M)" ("All Geeks are
nortal"):

1 1. Gs PI
2 2. (OX)(&X - M) Pl

2 3. (Gs - M) Us, 2
1,2 4. Ms TC 1,3

It's clear that rule US is | ogical -consequence preserving,
because ¢*/. is a | ogical consequence of (Ox)e. If (Ox)¢e is true
under 4, every nmenber of ' satisfies ¢ under 4. So, in particu-
lar, A4(c) satisfies ¢ under 4, so that, by the Substitution
Principle, ¢ is true under A.

Uni versal generalization rule (U3. If you' ve
derived ¢/ fromT and if the constant c doesn't
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appear in ¢ or in any of the sentences in I', you
may derive (Ox)e with prem ss set T.

For exanple, we derive "(Ox)(& - M)" ("All Geeks are
nmortal™) from"(Ox)(&x - Hx)" ("All G eeks are human bei ngs")
and "(Ox)(Hx - M)" ("All human beings are nortal"):

1 1. (OX) (X - Hx) P

2 2. (Ox)(HX - M) Pl

3 3. G PI

1 4. (Ga - Ha) us, 1
1,3 5. Ha TC, 3, 4
2 6. (Ha - M) Us, 2
1,2, 3 7. Ma TC, 5, 6
1,2 8. (Ga - M) CP, 3,7
1,2 9. (OX)(&X - M) UG8

Here, line 8 is gotten from"(& - M)," by substituting "a" for
free occurrences of "x," while line nine is gotten fromthe sane
formul a by prefixing the universal quantifier "(Ox)." Since the
constant "a" doesn't appear in the fornmula "(G&x - M)" and it
doesn't appear in the prenmisses of line 8 we can derive line 9
fromline 8 by rule UG

The idea behind rule UGis that, if you have derived ¢*/.
fromTI, where c doesn't appear in T or in ¢, then the reason you
know ¢*/. is true if all the menbers of T are true can't have
anyt hing special to do with the particular individual naned by c,
because you don't know anythi ng about the particul ar individua
named by c; that individual isn't even nentioned in the prem ss
set. Whatever reasons you have for believing that the individua
named by c satisfies ¢ are reasons that would apply just as well
to any other elenment of the universe. So every nenber of the

uni verse satisfies ¢. So (Ox)e is true.

More formally, we show that rule UG is |ogical-consequence
preserving, as follows: Suppose that ¢*/. is a |logical conse-
quence of I' and that the constant c doesn't appear in ¢ or in any
of the nmenbers of I W want to see that (Ox)e is a |ogical
consequence of T.
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Take an interpretation 4 under which all the nenbers of T
are true. W want to see that (Ox)¢ is true under 4. Take a
menber a of |4 . W want to show that a satisfies ¢ under 4.
Since a was chosen arbitrarily, this will tell us that every
menber of | 4] satisfies ¢ under 4, so that (Ox)¢e is true under
A.

Let B be an interpretation which is just like 4 except that
B(c) = a. It follows fromthe Locality Principle that all the
menbers of T are true under ® Hence ¢*/. is true under 3 It
follows by the Substitution Principle that 3(c), which is a,
satisfies ¢ under 8 Using the Locality Principle again, we know
that a satisfies ¢ under 4, which is what we wanted to show

As anot her exanple, let's derive "(0Ox)(Cx O Ax)" ("Everyone
is either a child or an adult”) from"(Ox)(Cx O (M O W)),"
"(OX) (MK - Ax)," and "(Ox) (W - Ax)"; we want to fill in the
bl ank in this:

1 1. (Ox)(Cx O (M O W)) P
2 2. (OX) (MK - AX) PI
3 3. (OXx) (W - AX) PI
1,2, 3 (Ox) (Cx O Ax)

The sentence we're trying to prove is universal. There is a
general strategy for proving universal sentences: To prove
(Ox) e, pick a new constant ¢ that doesn't appear anywhere el se
in the proof, and try to prove ¢/ with the sane prem sses; then
use UG Thus we try to prove "(Cc O Ac)":
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1 1. (Ox)(Cx O (M O W)) Pl
2 2. (OX) (MK - AX) PI
3 3. (OXx) (W - AX) PI
1,2, 3 (Cc O Ac)

1,2, 3 (Ox) (Cx O Ax) UG,

W're now trying to prove sonething about the individual naned by
"c." What we know is a bunch of universal statenents. Fromthose

uni versal statements, we are trying to derive concl usions about

t he individual naned by "c,"” and the obvious way to do this is to
use rule US:

1 1. (Ox)(Cx O (M O W)) Pl
2 2. (OX) (MK - AX) PI

3 3. (OXx) (W - AX) PI

4 4. (Cc O (M OW)) us, 1
5 5. (M - Ac) Us, 2
6 6. (W — Ac) US, 3
1,2, 3 (Cc O Ac)

1,2, 3 (Ox) (Cx O Ax) UG,

Now t he sentence we're trying to prove is a disjunction. W don't
have any general strategy for proving a disjunction, but we do
have a strategy for proving conditionals: assunme the antecedent
and try to prove the consequent. So what we want to do is to

convert the sentence we are trying to prove, "(Cc OAc)" into

t he tautol ogically equivalent conditional "(-Cc - Ac)," then to
assune "-Cc" as a premss and try to derive "Ac":

1 1. (Ox)(Cx O (M O W)) Pl
2 2. (OX) (MK = AX) PI
3 3. (OX) (W - AX) PI
4 4. (Cc O (M OW)) us, 1
5 5. (M - Ac) Us, 2
6 6. (W — Ac) US, 3
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7 7. -Cc

1,2,3,7 Ac

1,2, 3 (Cc O Ac)
1,2, 3 (Ox) (Cx O Ax)

P

CP, 7,
TC,
UG

Lines 4 and 7 together tautologically inply "(M O W)";
one way to see this is torewite line 4 as "(-Cc - (M 0OW))"

and to apply nodus ponens:*

(Ox) (MK - AXx)
(Ox) (WK - Ax)
(Cc O (M OW))
(Nb — AC)

(\M — AC)

-Cc

(M O W)

PNWNPRP ®ON PR
\l
N WNPE

\l

Ac

(-Cc - Ac)
(Cc 0O Ac)
(Ox) (Cx O Ax)

e
NN NN
W www

Lines 8, 5, and 6 tautologica

we want :

(Ox) (MK - Ax)
(Ox) (W - Ax)
(Cc O(M OW))
('Vb — AC)

(W - Ac)

WNE WN P
2N S o

* "Mbdus ponens" is a nedieval

(Ox) (Cx O (M O WK))

(Ox) (Cx O (M O W))

P

P

P

us, 1
us, 2
us, 3
Pl

1C 4,7

CP’ 7’
TC,
UG,

ly inply "Ac," which is what

US,
usS

-
w N R

S,

name for the inference from (o -

y) and ¢ to y. Mddus tollens is the inference from (¢ - y) and

-y to .
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7 7. ~Cc PI
1,7 8. (M O W) TC, 4, 7
1,2,3,7 9. Ac TC, 5, 6, 8
1,2,3 10. (-Cc - Ac) CP, 7,9
1,2, 3 11. (Cc O Ac) TC, 10
1,2, 3 12. (Ox)(Cx O Ax) UG 11

The | ast nove we nmade in joining the two ends of our proof
was an instance of a general strategy to use when one of the

t hings you know is a disjunction. If you have (¢ O y) and you're
trying to prove 0, try to prove (¢ - 0) and (y - 0). Then you
can put the pieces together by rule TC

Whenever you derive a sentence ¢ wwth the premss set T,
you'll know that ¢ is a |ogical consequence of I'. In particular,
if you derive ¢ fromthe enpty set of prem sses, you can concl ude
that ¢ is a |ogical consequence of the enpty set, that is, you
can conclude that ¢ is valid.

As an exanple, let's derive "((0Ox)(Fx O &) « ((0Ox)Fx O

(Ox)Gx))" fromthe enpty set. The way to derive a biconditiona
is to break it up into two conditionals, deriving the two direc-
tions separately, then using TC to put the parts together. So we
want to fill in the blanks in this:

((Ox)(Fx O &x) - ((Ox)Fx O (Ox)&))

(((Ox)Fx O (Ox)&x) - (Ox)(Fx O G&x))
((Ox)(Fx O &X) o« ((Ox)Fx O (Ox)&x)) TC,

To fill in the first blank, we assune the antecedent and try to

derive the
consequent :

1 1. (Ox)(Fx O &) PI
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1 ((Ox) Fx O (Ox) &)
((Ox)(Fx O &) - ((Ox)Fx O (Ox)xx)) CP, 1

(((Ox)Fx O (Ox) &) - (Ox)(Fx O &))
((Ox)(Fx O &) - ((Ox)Fx O (Ox)&x)) TC,

To prove a conjunction, try to prove both conjuncts:

1 1. (Ox)(Fx O &) Pl
1 (Ox) Fx

1 (Ox) &

1 ((Ox) Fx O (Ox) &x) TC

((Ox)(Fx O &) - ((Ox)Fx O (Ox)&x)) CP, 1

(((Ox)Fx O (Ox)&X) - (Ox)(Fx O &))
((Ox)(Fx O &) - ((Ox)Fx O (Ox)&x)) TC,

To prove a universal statenent, prove an instance* of it with a
new constant. W use this strategy to prove both "(0Ox)Fx" and
"(Ox) &":

1 1. (Ox)(Fx O &) PI
1 2. (Fa O Ga) us, 1
1 3. Fa TC, 2

* An instance of an initially quantified sentence is a sentence
you get fromthe given sentence by dropping the initial quanti-
fier and replacing all free occurrences of "x" by a constant.

"Fa" is an instance of "(0Ox)Fx."
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1 4. (0Ox)Fx UG 3
1 5. (Fb O &) us, 1
1 6. Gb TC, 5
1 7. (Ox) & UG 6
1 8. ((Ox)Fx O (0Ox) &) TC 4,7
9. ((Ox)(Fx O &) - ((Ox)Fx O (Ox)G&x)) CP, 1,8
(((Ox)Fx O (Ox) &) - (Ox)(Fx O &))
((Ox) (Fx O &) - ((Ox)Fx O (Ox)G&x)) TC,
To fill in the remaining blank, we assune the antecedent and try

to derive the consequent.

1 1. (Ox)(Fx O &) P

1 2. (Fa O Ga) us, 1

1 3. Fa TC, 2

1 4. (0Ox)Fx UG 3

1 5. (Fb O Gb) us, 1

1 6. @ TC, 5

1 7. (Ox) Gx UG 6

1 8. ((Ox)Fx O (Ox) &) TC, 4,7
9. ((Ox)(Fx 0 &) - ((Ox)Fx O (Ox)&x)) CP, 1,8

10 10. ((Ox)Fx O (0Ox) Gx) Pl

10 (Ox) (Fx O &)

(((Ox)Fx O (Ox)&X) - (Ox)(Fx O &x)) CP, 10,
((Ox)(Fx O &) - ((Ox)Fx O (Ox)&x)) TC,

What we have to work fromis a conjunction, "((0Ox)Fx O (0Ox)G&x)";
we sinplify this by witing its two conjuncts on separate |ines.

VWhat we're trying to prove is a universal sentence, "(0Ox)(Fx O
&)," which we prove by first proving "(Fc O Gc), intending to
apply rule UG

1 1. (Ox)(Fx O &) PI
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1 2. (Fa O &) us, 1
1 3. Fa TC, 2
1 4. (Ox) Fx uG 3
1 5. (Fb O &) us, 1
1 6. Gb TC, 5
1 7. (Ox) & UG 6
1 8. ((Ox)Fx O (0Ox) &) TC 4,7
9. ((x)(Fx O &) - ((Ox)Fx O (Ox)&x)) CP, 1,8
10 10. ((Ox)Fx O (Ox) &) Pl
10 11. (Ox)Fx TC, 10
10 12. (0Ox) & TC, 10
10 13. Fc us, 11
10 14. & us, 12
10 15. (Fc 0O Ce) TC, 13, 14
10 16. (Ox) (Fx O &) UG 15
17. (((Ox)Fx O (Ox)&x) - (Ox)(Fx O &)) CP, 10,16
18. ((Ox)(Fx O &) - ((Ox)Fx O (DOx)&x)) TC 9, 17

As anot her exanple, let's derive "(Fa - (Ox)(& - Fa))"
fromthe enpty set:

1 1. Fa PI

1 2. (& - Fa) TC, 1

1 3. (Ox) (& - Fa) UG, 2
4. (Fa - (Ox)(&x - Fa)) CP, 1,3

Let's derive "((Ox)(FXx - &) - ((Ox)Fx - (Ox)&X))" from
the enpty set:

1 1. (Ox)(Fx - &) P

2 2. (Ox)Fx Pl

1 3. (Fa - &) us, 1

2 4. Fa Us, 2

1,2 5. & TC, 3,4
1,2 6. ([Ox)Gx UG 5

1 7. ((Ox)Fx - (0Ox) &) CP, 2,6

8. ((OX)(FXx » &) - ((Ox)Fx - (Ox)&X)) Ch, 1,7

Renmenber the restriction on rule UG |If you use rule UGto
derive (Ox)¢e from ¢/, the constant ¢ shouldn't appear either in
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¢ or in any nmenbers of the prem ss set of ¢, Oherw se, you'l
get poppycock, like the follow ng bad derivation fromthe enpty

set of "(W - (Ox)W)" ("If Socrates is w se, everyone is
w se"):

1 1. W P
1 2. (Ox) W Bad use of UG 1
3. (W - (0Ox)W) Ch 1,2

We now have all the rules we need for dealing with universa
quantifiers. Let's get sone rules for dealing with existentia
guantifiers:

Quantifier exchange rule (QE)

From =(0Ox) =@, you may infer (X)o with the sanme
prem ss set, and vice versa.

From (0Ox) ~e, you may infer -([X)o wth the sanme
prem ss set, and vice versa.

From =(0Ox) ¢, you may infer (IX)-¢ with the sane
prem ss set, and vice versa.

From (Ox) ¢, you may infer —([X)-¢ wth the sanme
prem ss set, and vice versa.

It's easy to see that rule QE is | ogical -consequence pre-
serving. -(0Ox)-¢ is logically equivalent to (X)e. Simlarly for
t he ot her cl auses.

As an illustration, let's derive "=(X)(M OW)" ("No one
is both a man and a woman") from"(Ox)(Mk - Bx)" ("Al nmen have
beards”) and "-(k)(W 0O Bx)" ("No wonen have beards"):

1 1. (Ox)(MK — Bx) Pl

2 2. -(IX) (W OBx) Pl

2 3. (Ox)~(W OBx) G2
1 4. (Ma - Ba) us, 1
2 5. -(Wa O Ba) US, 3
1,2 ~(Ma O V&)

1,2 (Ox)~(M O W)  US,
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CE,

We've used rule QE to turn negated existentials into universals.

Now the sentence we're trying to prove a negated conjunction.
do we prove a negated conjunction? Turn it

since we know how to prove conditionals.
Wa)" as "(Ma - -Wa)." Wiile we're about

How
into a conditional,

So we rewite "o(Ma O
it, let's rewite "-(Wa

0Ba)" as "(W - -Ba),” on the theory that conditionals are nore

famli ar,
1 1.
2 2.
2 3.
1 4,
2 5.
2 6.
7 7.
1,7 8.
1,2, 7 9.
1,2 10.
1,2 11.
1,2 12.
1,2 13.
As anot

and hence easier to use,

t han negated conjunctions:

(Ox) (MK - Bx) P
-(X) (W O Bx) PI
(Ox) ~(W 0O Bx) &, 2
(Ma - Ba) us, 1
-(Wa O Ba) us, 3
(W& - -Ba) TC, 5
Ma PI
Ba TC 4,7
-WA TC, 6, 8
(M - W) CP, 7,9
=(Ma O W) TC, 10
(Ox) (M O W) US, 11
-(IK) (M O W) QF 12
her exanple, let's derive "(Ik)(Gx O W)" ("Sone
("Socrates is a Geek"), "Ps" ("Soc-

Greeks are wise") from"Gs"

rates is ap
are wse"):

NWWN R
Gk wbhE

Now we'

hi | osopher"),

Gs
Ps

(Ox) (Px - V)
(PS - V\$)
W6

~(Ox) ~(Gx O W)
(x) (G O W)

re stuck,

and "(Ox)(Px - W)" ("Al

so let me give you a general

phi | osophers

P
P

CE,

strategy for

what to do if you get stuck. The nethod is a formalized version
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of reducti o ad absurdum You assune the opposite of what you're
trying to prove, and you show that this assunption | eads to an
absurdity. By "assunme the opposite of what you're trying to
prove," what | nean is this: if you're trying to prove a nega-
tion, assune the negatum as a new prem ss; otherw se, assune the
negati on of what you're trying to prove. By showing that this
assunption "leads to an absurdity,” | nean deriving a sentence
that is truth functionally inconsistent with one of the things
you' ve al ready assuned or derived. Thus, in this case, we assune

"(Ox)-(Gx O W)" and go for an absurdity:

1 1. Gs PI

2 2. Ps P

3 3. (Ox)(Px - W) P

3 4. (Ps - W) us, 3
2,3 5 W TC 2,4
6 6. (Ox)-(G&x O W) P

6 7. (G O W) us, 6

6 8. (G - W) TC, 7
1,6 9. W TC 1, 8
1,2,3 -(Ox) ~(Gx O W)

1,2,3 (X) (& O W) QE,

Now we' ve gotten our absurdity. W' ve derived "-W," but we know
fromline 5 that "W" is true. To conplete the proof, we use rule
CP to derive the conditional whose antecedent is the assunption
we made that was the opposite of what we were trying to prove and
whose consequent is the absurdity we have derived. Then we use
rule TC to conplete the proof:

1 1. Gs PI
2 2. Ps PI

3 3. (OXx)(Px - W) PI

3 4. (Ps - \§) us, 3
2,3 5. W TC, 2, 4
6 6. (Ox)-(C&x O W) PI

6 7. ~(Gs O W) us, 6

6 8. (Gs - -\\8) TC, 7
1,6 9. -\ TC 1,8



MPC Derivations, p. 20

1 10. ((Ox)-(x O W) - -W) CP, 6,9
1,2, 3 11. =(0x)~(&x O W) TC, 5, 10
1,2, 3 12. (IX) (& O W) QE, 11

Such a sinple argunent oughtn't require such a conplicated
derivation. We adopt a new rule that will make such argunents
easier. The newrule is, strictly speaking superfluous, in that
anything that we can prove with the rule we can also prove, in a
nore conplicate fashion, without it. But there's no real harmin
havi ng extra rul es.

Exi stential generalization rule (EG. If you have
witten ¢*/., for any constant c, you may wite
(X))o with the sane prem ss set.

It's easy to see that this newrule is |ogical-consequence
preserving, since (X)¢ is a |ogical consequence of ¢/..

Let's see how this new rul e nakes our previous deduction
easi er:

1 1. Gs P

2 2. Ps P

3 3. (Ox)(Px - W) P

3 4. (Ps - W) us, 3
2,3 5. W TC 2,4
1,2,3 6. (Gs O W) TC 1,5
1,2,3 7. (X)) (& O W) EG 6

W now have a rule for what to do with an universal sentence
up top, anong the things we are assuned to know, nanely, the rule
US. W have a rule telling us what to do when we are trying to
prove a universal sentence, nanely UG W have a rul e about what
to do to prove an existential sentence, EG Wat we still need is
arule that tell us what to do with an existential sentence up
top. The good news is that this is the last of our rules. The bad
news is that it's pretty conplicated.

Exi stential specification (ES). Suppose that you
have derived (X))o with prem ss set A and that you

have derived y with premiss set I' O {¢*/¢}, for
some constant c. Suppose further that the constant
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c does not appear in ¢, in y, or in any nmenber of
I Then you may derive y with premss set A O T.

How we use this conplicated newrule is this: Suppose we are
trying to prove y and one of the things we have up top, anong

the things we are assuned to know, is an existential sentence
(X)e. The way we use the existential sentence is this: W take
an instance ¢*/. of the existential sentence as a new prenss,
where c is a constant that hasn't yet appeared in the proof. Then
we derive y fromthe instance, together wth whatever other

prem sses we have avail able. Once we have done this, we use rule

ES to upgrade our prem ss set, replacing ¢/ in the prem ss set
with the prem ss set of (k).

Here's an exanple: W derive "(IX)(M O Fx)" ("Sone mammal s

fly") from"(X)(Sx OFx)" ("Some squirrels fly") and "(0Ox)(Sx -
MK)" ("AI'l squirrels are mamal s"):

1 1. (X)(Sx O Fx) Pl

2 2. (Ox)(Sx - M) P

3 3. (Sa 0O Fa) Pl

3 4. Sa TC, 3

3 5. Fa TC, 3

2 6. (Sa - M) us, 2
2,3 7. Ma TC 4,6
2,3 8. (Ma 0O Fa) TC 5,7
2,3 9. (X) (M O Fx) EG 8
1,2

10. (IX)(Mk O Fx) ES, 1,3,9

Here we were trying to prove "([X)(M O Fx)," and one of the
prem sses we had available to use was the existential sentence

"(X)(Sx O Fx)." The way we used this existential prem ss was to
take an instance of the existential prem ss as a new prem ss at
line 3. Then, at line 9, we used this new prem ss to prove

"(IX) (M OFx)." At line 10, we used rule ES to upgrade our

prem sses, replacing "(Sa O Fa)" in the prem ss set of "(Ik)(M O
Fx)" with the prem ss set of "(IX)(Sx O Fx)."

We know that sone squirrels fly. Take a flying squirrel
call him"a." Fromthe assunption that a is a flying squirrel, we
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are able to conclude that some mammal s fly. So this concl usion
must already be entailed by "Sone squirrels fly."

Notice that what rule ES permts you to do is nerely to
repeat a sentence you've already witten earlier. Wat's changed

IS your prem ss set.

As anot her exanpl e,
"(Ik) Fx" and " (DOx) &":

(X) Fx
(Ox) Gx
Fa
G

(Fa O Ga)
(IX) (Fx O &)
(IX) (Fx O &)

N W W

NoOoRLN R

We had " ([X)Fx" as a prem ss.

let's derive "(IX)(Fx O G&)" from

Pl

Pl

Pl

us, 2

T1C 3,4
EG 5

ES 1,3,6

W made use of it by taking "Fa" as

a premss, then using rule ES to upgrade the prem ss set of our

concl usi on.

Now let's derive "([X)(Fx O &)" fromthe prem sses " ([k)(AX
OBx)," "(Ox)(Ax - Fx)," and "(0Ox)(Bx - &)":

(IX) (Ax O Bx)
(Ox) (AX - Fx)
(Ox) (Bx - &)

(Aa O Ba)
Aa
Ba

(Aa - Fa)
Fa

(Ba — Ga)
Ga

11. (Fa O Ga)
12. (X) (Fx 0 &)
13. (IX) (Fx O &)

IN
©CoNoORr WDN R

|
.O .

w b~ b

R NN WWDNNBEEEEDWDNPR

We now want to see that

rule ES i s superfluous,

Pl

Pl

Pl

Pl

TC, 4

TC 4

us, 2

TC 5,7
us, 3
TC 6,9
TC, 8, 10
EG 11
ES 1, 4,12

in that

anything that you can derive with the rule you can al so derive
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nore circuitously without it. Since we already know that the
other rules are all |ogical-consequence preserving, this wll
show that rule ES is |ogical -consequence preserving. So suppose
t hat we have a derivation which contains these |ines:

Prem ss set Nunber Sent ence Justification
A i (X) o

0"/ ¢ i 0"/ ¢ Pl

Lo {eYc}iii 1

AOT iv \ ES,i,ii,iil

where c doesn't appear in ¢, in y, or in any nmenber of I W may
replace this derivation with the foll ow ng:

Prem ss set Nunber Sent ence Justification
A i (IX) o

0/ ¢ i 0"/ ¢ P
ro{eYctiii 1

r iv (¢*/¢ - y)CP, 2,3

{ v} v Y PI

r d {-y} Vi =¢*/ ¢ TC,iv, Vv

r o {-vy} Vi i (Ox) =o UG, vi

r o {-y} Viii =(X) ¢ QE, vi

r i X (7y > (X)) CP,v,vViili
AOT X 1 TC i,i X

A different way we m ght have proceed woul d have been to
take US, UG ES, and EG as our axions for the quantifiers, show
t hose axions to be sound, and then obtain QE as a derived rule.
O we could have started with ES, EG and QE, and derived US and
UG

Now t hat we have the rules, let nme tell you sone strategies
for applying the rules. These strategies aren't part of the
rules; they're techniques for using the rules efficiently. To
have a correct derivation, you have to follow the rules, but you
don't have to follow the strategies if you don't want to. The
strategies don't always work, but they usually do.

The basic plan is always to work fromtw ends toward the
m ddl e. Thus, at each stage of a derivation, there will be a set
of sentences you are assuned to know, and there are one or nore
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sentences you are trying to prove. The strategies are techni ques
for breaking up the sentences you are working with into sentences
that are sinpler and therefore, hopefully, easier to work wth.

There are two groups of strategies, one having to do with
sinplifying the sentence you're trying to prove, the other with
sinplifying the sentences you are assuned to know. Here is the
main strategy for sinplifying the sentence you're trying to
prove:

If you're trying to prove a conditional, assunme the antecedent as
a premss and try to derive the consequent. Then apply rule CP.

Here are nore bottomup strategies:

If you're trying to prove a disjunction (¢ O vy), prove the

conditional (-¢ - vy), then apply rule TC. (Cccasionally, you can
sinmply prove one of the disjuncts.)

If you're trying to prove a biconditional (¢ o v), prove the two
conditionals (¢ - y) and (y - ¢), then apply TC

If you're trying to prove a conjunction, prove each of the
conjuncts, then apply rule TC

If you're trying to prove a universal sentence, try to prove an
instance of it the sentence with a new constant. Then apply UG

If you're trying to prove an existential sentence, try to prove
an instance of it. Then apply EG

If you're trying to prove a negated conditional -(¢ - vy), prove
¢ and -y, then apply TC

If you're trying to prove a negated disjunction =-(¢ O vy), prove
-¢ and -y, then apply TC

If you're trying to prove a negated biconditional =(¢ o vy), try
to prove (¢ o -vy), then apply TC

If you're trying to prove negated conjunction, —(¢ Ovy), try to
prove (¢ - -vy), then apply TC
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If you're trying to prove a negated universal sentence -(0x) o,
prove ([X)-o, then apply QE.

If you're trying to prove a negated existential sentence -([IK) o,
prove (0Ox)-¢, then apply QE

If you're trying to prove a negated negation --¢, prove ¢, then
apply TC.

Now we turn to the top-down strategies for sinplifying the
prem sses and sentences you have derived fromthe prem sses. Let
me refer to the prem sses and the things you have derived from
the prem sses as your "assunptions"”; here are the strategies for
sinplifying assunptions:

If one of your assunptions is a conjunction, wite the two
conjuncts on separate lines, using TC

If one of your assunptions is a disjunction (¢ O vy) and you're
trying to prove 0, prove the two conditionals (¢ - 0) and (y -
0), then apply TC. Wenever you apply this strategy, you're sure
townd up with a pretty long proof, so use this strategy only as
a last resort. Sonething to try first is to rewite the disjunc-
tion as a conditional (-¢ - y) (using TC), then to see if you
can apply nodus ponens or nodus tollens.

If one of your assunptions is a conditional (¢ - vy), see if you
can apply nodus ponens or nodus tollens. If not, rewite the

conditional as (- O vy).

If one of your assunptions is a biconditional (¢ o vy), see if
you know how to prove one conponent, in which case you can derive
the other by TC. See if you know how to prove the negation of one
conmponent, in which case you can derive the negation of the
other. Oherwise, rewite the biconditional as ((¢ Ovy) O (-¢e O
ay)), using TC

If one of your assunptions is an existential sentence ([k)e¢, pick
a new constant ¢ and assune ¢*/. as a new prem ss. Once you've
proven what you're trying to prove, use ES to upgrade your

prem ss set, replacing {¢*/¢} by the prenmiss set of ([k)e.
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If one of your assunptions is a universal sentence (0Ox)e¢, deduce
¢*/ . for each constant c that appears in the proof.*

If one of your assunptions is a negated conjunctions -(¢ O vy ),
rewite it as (n¢ O —y), using TC.

If one of your assunptions is a negated disjunction, (¢ O v),
remrite it as (-¢ O -y), using TC.

If one of you assunptions is a negated conditional =-(¢ - v),
rewrite it as (¢ O -y), using TC

If one of your assunptions is a negated biconditional —(¢ o v),
rewite it as (¢ « -y), using TC.

* |t generally only helps to derive ¢*. for constants c that
appear el sewhere in the proof. It usually does no good to instan-
tiate with a brand new constant. The only exceptions that | know
of occur when there haven't been any constants in the proof so

far. An exanple is the derivation fromthe enpty set of ((0Ox)Fx
- (X) Fx):

1 1. (Ox) Fx PI
1 2. Fa us, 1
1 3. (IX) Fx (EQ), 2

4 ((Ox)Fx - (X)Fx) CP, 1,3
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If one of your assunptions is a negated existential sentence
(X))o, rewite it as (0Ox)-e, using QE

If one of your assunptions is a negated universal sentence
a(0Ox)e, rewite it as ([X)-e, using QE

If one of your assunptions is a negated negation --¢p, rewite it
as ¢, using TC

One final bottomup rule:

If all else fails, assune the negation of what you're trying to

prove and try to derive an absurdity. If you're trying to y, use
Pl to assune -wy. |If you are able to prove -, where ¢ is one of

your assunptions, you can use CP to get (-y - -¢), then use TC

to get .

Let's do sone exanples. Let's derive "(IX)(Fx O Hx)" from
{"((X)Fx O(K)&X)," "(Ox)(&x - Hx)"}. We follow the strategy
for using a disjunctive assunption, first proving "((X)Fx -
(X)(Fx OHx))" and "((IX)&X - (X)(Fx O Hx))," then applying
TC.

1 1. ((X)Fx O (X)) X)) Pl
2 2. (Ox)(G&x - Hx) Pl
3 3. (k) Fx Pl
4 4. Fa Pl (for ES)
4 5. (Fa O Ha) TC, 4
4 6. (X)(Fx O Hx) EG 5
3 7. (X) (Fx O Hx) ES, 3,4,6

8. ((X)Fx - (IX)(Fx O Hx)) CP, 3,7
9 9. (k) Gx Pl
10 10. Gb Pl (for ES)
2 11. (G - Hb) us, 2
2,10 12. Hb TC, 10, 11
2,10 13. (Fb O Hb) TC, 12
2,10 14. (IX) (Fx O Hx) EG 13
2.9 15. (IX) (Fx O Hx) ES, 9, 10, 14
2 16. ((X)&x - (X)(Fx O Hx)) CpP, 9, 15
1,2 17. (IX) (Fx O Hx) TC 1, 8, 16
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As anot her exanple, let's derive "(((IX)Ax O (X)Bx) o

(X)) (Ax OBx))" fromthe enpty set. W prove the two directions
separately. W prove the left-to-right direction by proving
"((X)AX - (IX)(Ax OBx))" and "((IX)Bx - (IX)(Ax O Bx))," then
using TC, this is our general strategy for working with disjunc-
tive assunptions. W then prove the right-to-left direction by
converting the disjunction we're trying to prove to a condition-
al :

1 1. ((X)Ax O (IX)Bx) PI

2 2. (IX) Ax PI

3 3. Aa Pl (for ES)

3 4. (Aa O Ba) TC, 3

3 5. (IX) (Ax O Bx) EG 4

2 6. (IX)(Ax O Bx) ES, 2, 3, 5
7. (()AX - (IX)(Ax O Bx)) CP, 2,6

8 8. ([X)Bx PI

9 9. Bb P (for ES)

9 10. (Ab O Bb) TC, 9

9 11. (IX) (Ax O Bx) EG, 10

8 12. (X) (Ax O Bx) ES, 8, 9, 11
13. ((X)Bx) - (IX)(Ax O Bx)) CP, 8, 12

1 14. (X) (Ax O Bx) TC 1,7, 13
15, (((IX)Ax O (IX)Bx) - (IX)(Ax O Bx)) CP, 1, 14

16 16. (IX)(Ax O Bx) PI

17 17. (Ac O Bc) Pl (for ES)

18 18. -([KX) AX PI

18 19. (Ox) -Ax CE, 18

18 20. -Ac us, 19

17 21. (-Ac - Bc) TC, 17

17, 18 22. Bc TC, 20, 21

17, 18 23. (X) Bx EG, 22

16, 18 24. ([X) Bx ES, 16, 17. 23

16 25. (~(XK)AX - (IX)BX) CP, 18, 24

16 26. ((IX)Ax O Bx) TC, 25
27. ((X) (Ax O Bx) - ((IX)Ax O (Ik)Bx)) CP, 16, 26
28. (((X)Ax O (IX)Bx) « (IX)(Ax O Bx)) TC, 15, 27

Now we derive "((IX)Fx - Ga)" from{"(Ox)(Fx - Ga)"}:
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N W

P RPRPRPRP WON R

We now do the converse proof,

{" ((Dx) Fx

P R PRPNDNR

Next
Logi c:

(Ox) (Fx - Ga)
(X) Fx
Fb

(Fb - Ga)
Ga
Ga

((X)Fx - Ga)

Noohkwh R

- @G@)"}:

((XK)Fx > Ga)
Fb

(X) Fx

Ga

(Fb - (&)
(Ox) (Fx - &)

oahkwhE

P

P

Pl (for ES)
us, 1

TC, 3, 4

ES, 2,3,5
CP, 2,6

deriving "(Ox)(Fx - G)" from

P
P

EG 2
1C 1,3
Ch, 2,4
UG 5

we formalize an argunent fromLews Carroll's Synbolic

No one who really appreciates Beethoven fails to keep
silence while the Monlight Sonata is being played.
Qui nea pigs are hopel essly ignorant of nusic.

No one who is hopel essly ignorant of nusic ever keeps
silence while the Monlight Sonata is being pl ayed.
Theref ore, guinea pigs never really appreci ate Beet ho-

ven.

I n synbol s:

We derive
ses, thus

ArWDNBEF

=([X) (Bx O =Sx)
(Ox) (& - 1Xx)
-(K) (Ix O Sx)

O -(Ix)(Gx O Bx)

the transl ated conclusion fromthe translated prem s-
showi ng the English argunent is valid:

=(X) (Bx O =Sx)
(Ox) (&X - Ix)

-(X) (I'x O Sx)

Ga

PwN e

P
P

P
P
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1 5. (Ox)~(Bx O =Sx) QB 1

3 6. (Ox)~-(lx O Sx) QE 3

2 7. (G&a - la) us, 2

1 8. —(Ba O -Sa) Us, 5

3 9. ~(la O Sa) us, 6

2,4 10. la TC 4,7

3 11. (la - =Sa) TC 9
2,3,4 12. -Sa TC, 10, 11
1 13. (Ba - Sa) TC, 8
1,2,3,4 14. -Ba TC, 12, 13
1,2,3 15. (Ga - -Ba) CP, 4,14
1,2,3 16. -(Ga 0O Ba) TC, 15
1,2,3 17. (Ox)-(Gx O Bx) UG 16
1,2,3 18. -([X) (& O Bx) QE, 17

Here is a nore conplicated exanple, again fromLew s
Carroll:

Animal s are always nortally offended themif | fail to
noti ce them

The only aninmals that belong to ne are in that field.
No ani mal can guess a conundrum unl ess it has been
properly trained in a Board-school.

Al'l badgers are aninals.

None of the animals in that field are badgers.

When a animal is nortally offended, it always rushes
about wldly and how s.

| never notice any animals unless it belongs to ne.
No ani mal that has been properly trained in a Board-
school ever rushes about w ldly and how s.

Therefore, no badger can guess a conundrum

I n synbol s:

(Ox) ((Ax O =-Nx) - Ox)

(Ox) ((Ax O M) - Fx)

-(IXK) ((Ax O &) O =Tx)

(Ox) (Bx - Ax)

-(X) ((Ax O Fx) 0O Bx)

(Ox) ((Ax O X)) - (Rx O Hx))
-(IK) ((Ax O Nx) O =-M)
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~(X) ((Ax O Tx) O (Rx O Hx))
0 -(X) (Bx O &)

Now we derive the transl ated conclusion fromthe transl at ed
prem sses:

1 1. (Ox)((Ax O -Nx) - Ox) Pl

2 2. (OxX)((Ax O M) - Fx) Pl

3 3. (X)) ((Ax O ) O -Tx) Pl

4 4. (Ox)(Bx - Ax) Pl

5 5. =(IX) ((Ax O Fx) 0O Bx) Pl

6 6. (Ox)((Ax O X)) - (Rx O Hx)) Pl

7 7. (X)) ((Ax O Nx) O =M) Pl

8 8. -(IX)((Ax O Tx) O(Rx O Hx)) Pl

3 9. (Ox)-((Ax O &) O =Tx) & 3

5 10. (Ox)-((Ax O Fx) 0O Bx) B, 5

7 11. (Ox)-((Ax O Nx) 0O =M) QB 7

8 12. (Ox)-((Ax OTx) O(Rx OHx)) E 8

13 13. Ba Pl

1 14. ((Aa O -Na) - Oa) us, 1

2 15. ((Aa O Ma) - Fa) us, 2

4 16. (Ba - Aa) us, 4

6 17. ((Aa 0 0Ca) - (Ra OHa)) Us, 6

3 18. —~((Aa O Ga) O -Ta) us, 9

5 19. ~((Aa O Fa) O Ba) Us, 10

7 20. —((Aa 0O Na) 0O -Mn) us, 11

8 21. ~((Aa O Ta) 0O (Ra O Ha)) us, 12
4,13 22. Aa TC, 13, 16
5 23. ((Aa O Fa) - -Ba) TC, 19
5,13 24. -(Aa O Fa) TC, 13, 23
5,13 25. (Aa - -Fa) TC, 24
4,5, 13 26. -Fa TC, 22, 24
2,4,5,13 27. -(Aa O M) TC, 15, 26
2,4,5,13 28. (Aa - -Mn) TC, 27
2,4,5,13 29. -Ma TC, 22, 28
7 30. ((Aa ONa) - M) TC, 20
2,4,5,7,13 31. —(Aa O Na) TC, 29, 30
2,4,5,7,13 32. (Aa - -Na) TC, 31
2,4,5,7,13 33. -Na TC, 22, 32
2,4,5,7,13 34. (Aa O -Na) TC, 22, 32
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p.

32

Ca

(Aa O Oa)

(Ra O Ha)

((Aa O Ta)

-(Aa O Ta)

(Aa - -Ta)

-Ta

((Aa O Ga) - Ta)
~(Aa O G)

44, (Aa - -&R)

45. -Ga

46. (Ba - -&A)

47. -(Ba 0O &)

48. (0Ox)-(Bx O &)

49. -(IKk)(Bx O &)

- =(Ra 0 Ha))

TC, 14, 34
TC, 22, 35
TC, 17, 36
TC, 21
TC, 37, 38
TC, 39
TC, 22, 40
TC, 18
TC, 41, 42
TC, 43
TC, 22, 44
CP, 13, 45
TC, 46
UG, 47
QE, 48



