
Derivations in the Monadic Predicate Calculus

In the last chapter, we described a procedure for testing
whether an MPC sentence is valid. Unfortunately, the method is
not very practically useful, simply because it takes too long to
check all the canonical models. We shall no learn another method
for showing a valid sentence valid that is more useful in prac-
tice. If an MPC sentence is valid, this procedure will show what
it is valid, and it will usually do so fairly efficiently.
However, unlike the earlier method, the new method won't given us
any way to show an invalid sentence to be invalid. If a sentence
if valid, the method will enable us to prove it, but, if we have
been unable to construct a proof of a sentence, we won’t have any
way of knowing whether the reason is because the sentence is
invalid or just because we haven't been clever enough to come up
with a proof yet. The old method was a decision procedure: It
enables us to test whether a given sentence is valid. The new
method is only a proof procedure: If a sentence is valid, the
method will enable to show that it is valid, but the method won’t
provide us any way of showing that an invalid sentence is in-
valid.

Our real reason for learning the new method won’t appear
until we turn to the study of the full predicate calculus (as
opposed to the monadic predicate calculus), where we talk about
relations among individuals as well as properties of individuals.
The new method generalizes to the full predicate calculus. The
old method does not.

There are a great number of systems of proof in use. The
particular system we shall study here was developed by Benson
Mates; see his Elementary Logic (2nd ed. New York: Oxford Univer-
sity Press, 1972).

A proof or derivation consists of a consecutively numbered
sequence of sentences. The number of a sentence, which is written
directly to its left, is its line number. To the left of the line
number for the nth line is a (possibly empty) sequence of numbers
≤ n. These are the premiss numbers of the nth line. The sentences
whose line numbers are the premiss numbers of the nth line
constitute the premiss set of the nth line. To the right of the
nth sentence, a rule is cited which justifies our writing the
sentence. Here is an example of a derivation; explanations will
come later:

1 1. (∀ x)(Gx → Hx) PI
2 2. (∀ x)(Hx → Mx) PI
3 3. Ga PI
1 4. (Ga → Ha) US, 1
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1,3 5. Ha TC, 3,4
2 6. (Ha → Ma) US, 2
1,2,3 7. Ma TC, 5,6
1,2 8. (Ga → Ma) CP, 3,7
1,2 9 (∀ x)(Gx → Mx) UG, 8

Here the premiss set of line 1 is {"(∀ x)(Gx → Hx)"}; line 1 is
gotten by rule P (what rule P is will appear presently). The
premiss set of line 7 is {"(∀ x)(Gx → Hx)," "(∀ x)(Hx → Mx),"
"Ga"}; line 7 is gotten from lines 5 and 6 by rule TC. The
premiss set of line 9 is {"(∀ x)(Gx → Hx)," "(∀ x)(Hx → Mx)"};
line 9 is gotten from line 8 by rule UG.

The rules we shall develop are intended to guarantee that
each sentence we write down is a logical consequence of its
premiss set. Thus the derivation above is a demonstration that
"All Greeks are mortal" ["(∀ x)(Gx → Mx)"] is a logical conse-
quence of "All Greeks are human beings" ["(∀ x)(Gx → Hx)"] and
"All human beings are mortal" ["(∀ x)(Hx → Mx)"]. (The derivation
is longer than it needed to be.)

The main thing we want to make sure of in introducing our
rules of derivation is that each sentence we write down at each
stage of a derivation is a logical consequence of its premiss
set. If we introduce a new rule, what we have to make sure of is
this: If we use the new rule to add a new line to a derivation
that up till now has had the property that each line is a logical
consequence of its premiss set, the new line will be a logical
consequence of its premiss set. If all our rules have this
property, we can be confident that any sentence we write down at
any stage of a derivation will be a logical consequence of its
premiss set.

The first three rules we learn will only involve ideas from
the sentential calculus. Afterward we shall learn rules involving
the quantifiers.

Premiss introduction rule (PI). At any stage of a
derivation, you may write down a sentence φ with
any set that contains φ as its premiss set.

Obviously, anything you write down by rule PI will be a logical
consequence of its premiss set, since φ is a logical consequence
of any set that includes it. One use of rule PI is simple to let
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us write down the premisses of our argument. Other, more techni-
cal uses, will emerge.

Our next rule incorporates the entire sentential calculus at
one fell swoop:

Tautological consequence rule (TC). If you have
written down sentences ψ1, ψ2,..., ψn in a deriva-
tion, and φ is a tautological consequence of
{ψ1,ψ2,...,ψn}, then you may write down sentence
ψ, taking the premiss set to be the union of the
premiss sets of the ψis. In particular, if φ is a
tautology, we can write φ with the empty premiss
set.

For example, using "Wx" for "x went up the hill," "a" for
"Jack," "b" for "Jill," and "c" for "Clarissa," here is a simple
derivation of "Either Jill or Clarissa went up the hill" ["(Wb ∨
Wc)"] from "Either Jack or Jill went up the hill" ["(Wa ∨ Wb)"]
and "If Jack went up the hill, so did Clarissa" ["(Wa → Wc)"]:

1 1. (Wa ∨ Wb) PI
2 2. (Wa → Wc) PI
1,2 3. (Wb ∨ Wc) TC, 1, 2

We can check that line 3 is truly a logical consequence of lines
1 and 2 by applying the search-for-counterexample method, putting
a "1" under the main connective of each premiss, and a “0” under
the main connective of the conclusion:

(Wa ∨ Wb) (Wa → Wc) ∴ (Wb ∨ Wc)
1 1 0 X 1 0 0 0 0

The fact that there is a mechanical procedure for testing
whether a sentence is a tautological consequence of a set of
sentences is important. In order for our derivations to have any
probative value, we have to be able to recognize when a sequence
of sentences really is a proof, which means that we need an
algorithm for checking when a rule has been properly applied. The
rule "You may write down a sentence whenever that sentence is a
logical consequence of its premiss set" is an unacceptable rule,
just because we have no way of recognizing when the rule has been
successfully followed.
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We want to see that rule TC is logical-consequence preserv-
ing, that is, we want to see that, if φ is gotten from
ψ1,ψ2,...,ψn by rule TC and each of the ψis is a logical conse-
quence of its premiss set, then φ is a logical consequence of its
premiss set. In showing this, we'll make use of the following
three facts:

If φ is a tautological consequence of Γ, then φ is
a logical consequence of Γ.

If ψ is a logical consequence of ∆ and ∆ is a
subset of Ω, then ψ is a logical consequence of
Ω.

If φ is a logical consequence of Γ and every mem-
ber of Γ is a logical consequence of Ω, then φ is
a logical consequence of Ω.

Let the premiss set of ψi be ∆i. If φ is a tautological conse-
quence of the {ψ1,ψ2,...,ψn}, then φ is a logical consequence of
{ψ1,ψ2,...,ψn}. If each ψk is a logical consequence of ∆k, then ψk
is a logical consequence of the union of the ∆is. So φ is a
logical consequence of the union of the ∆is.

TC is an immensely powerful rule, for it incorporates the
entire sentential calculus at one fell swoop. For example,
consider the following argument:

Either Preston or Quincy is a member of the Logic
Club. If either Quincy or Rudolf is a member,
Stuart is not. Unless Stuart is a member, Trumbull
is a member and Rudolf is not. But Preston is not
a member. Consequently, Quincy and Trumbull are
both members.

which we can symbolize as follows:

(Mp ∨ Mq)
((Mq ∨ Mr) → ¬Ms)
(¬Ms → (Mt ∧ ¬Mr))
¬Mp

∴ (Mq ∧ Mt)
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The conclusion of this argument is a tautological consequence of
the premisses, so we can derive the conclusion from the premis-
ses, as follows:

1 1. (Mp ∨ Mq) PI
2 2. ((Mq ∨ Mr) → ¬Ms) PI
3 3. (¬Ms → (Mt ∧ ¬Mr)) PI
4 4. ¬Mp PI
1,2,3,4 5. (Mq ∧ Mt) TC,1,2,3,4

This is a perfectly good derivation, as far as the rules go,
since the conclusion is a tautological consequence of the premis-
ses. But most of us aren't good enough at the sentential calculus
to see at a glance that the conclusion is a tautological conse-
quence of the premisses. The rest of us will have to break the
proof down into simpler parts.

First of all, we notice that the sentence we are trying to
prove is a conjunction; the way to prove a conjunction is to
prove each of the conjuncts, so we want to prove "Mq" and "Mt."
But notice that lines 1 and 4 already give us "Mq"; so we're half
done. We write the following:

1 1. (Mp ∨ Mq) PI
2 2. ((Mq ∨ Mr) → ¬Ms) PI
3 3. (¬Ms → (Mt ∧ ¬Mr)) PI
4 4. ¬Mp PI
1,4 5. Mq TC,1,4

Now we have "Mq." "Mq" gives us "(Mq ∨ Mr)," which gives us
"¬Ms" by premiss 2:

1 1. (Mp ∨ Mq) PI
2 2. ((Mq ∨ Mr) → ¬Ms) PI
3 3. (¬Ms → (Mt ∧ ¬Mr)) PI
4 4. ¬Mp PI
1,4 5. Mq TC,1,4
1,4 6. (Mq ∨ Mr) TC,5
1,2,4 7. ¬Ms TC,2,6

We have "¬Ms," which is the antecedent of line 3, so we can
derive its consequent:
1 1. (Mp ∨ Mq) PI
2 2. ((Mq ∨ Mr) → ¬Ms) PI
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3 3. (¬Ms → (Mt ∧ ¬Mr)) PI
4 4. ¬Mp PI
1,4 5. Mq TC,1,4
1,4 6. (Mq ∨ Mr) TC,5
1,2,4 7. ¬Ms TC,2,6
1,2,3,4 8. (Mt ∧ ¬Mr) TC,3,7

We have a conjunction, so we can derive both its conjuncts. In
general, it's a good idea to do so, because the conjuncts, being
simpler, are easier to deal with than the conjunction:

1 1. (Mp ∨ Mq) PI
2 2. ((Mq ∨ Mr) → ¬Ms) PI
3 3. (¬Ms → (Mt ∧ ¬Mr)) PI
4 4. ¬Mp PI
1,4 5. Mq TC,1,4
1,4 6. (Mq ∨ Mr) TC,5
1,2,4 7. ¬Ms TC,2,6
1,2,3,4 8. (Mt ∧ ¬Mr) TC,3,7
1,2,3,4 9. Mt TC,8
1,2,3,4 10. ¬Mr TC,8

Now we have "Mt" as well as "Mq," which is what we wanted:

1 1. (Mp ∨ Mq) PI
2 2. ((Mq ∨ Mr) → ¬Ms) PI
3 3. (¬Ms → (Mt ∧ ¬Mr)) PI
4 4. ¬Mp PI
1,4 5. Mq TC,1,4
1,4 6. (Mq ∨ Mr) TC,5
1,2,4 7. ¬Ms TC,2,6
1,2,3,4 8. (Mt ∧ ¬Mr) TC,3,7
1,2,3,4 9. Mt TC,8
1,2,3,4 10. ¬Mr TC,8
1,2,3,4 11. (Mq ∧ Mt) TC,5,10

And we are done.

A little later, we'll talk about some general strategies to
use in developing these proofs. But first, we'll get some more
rules.

Our next rule gives us a method for proving a conditional:
To prove a conditional, assume the antecedent as a premiss, then
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try to derive the consequent. This will be the central strategy
for almost all our proofs.

Conditional proof rule (CP). If you have derived
ψ with premiss set Γ ∪ {φ}, you may write (φ → ψ)
with premiss set Γ.

Rule CP is logical-consequence preserving, since, if ψ is a
logical consequence of Γ ∪ {φ}, then (φ → ψ) is a logical conse-
quence of Γ.

As an example, let's derive "(Fa → (Fb → Fc))" from "((Fa
∧ Fb) → Fc)." We want to fill in the blank in this derivation:

1 1. ((Fa ∧ Fb) → Fc) PI

1 (Fa → (Fb → Fc))

The sentence we want to prove is a conditional, so we assume the
antecedent as a premiss and try to derive the consequent:

1 1. ((Fa ∧ Fb) → Fc) PI
2 2. Fa PI

1,2 (Fb → Fc)
1 (Fa → (Fb → Fc)) CP,2,

Once we've derived "(Fb → Fc)" with lines 1 and 2 as premiss
set, we can use rule CP to derive "(Fa → (Fb → Fc))" with line
1 as premiss set.

Now again the sentence we want to prove is a conditional,
so, once again, we assume the antecedent and try to derive the
consequent:

1 1. ((Fa ∧ Fb) → Fc) PI
2 2. Fa PI
3 3. Fb PI

1,2,3 Fc
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1,2 (Fb → Fc) CP,3,
1 (Fa → (Fb → Fc)) CP,2,

Once we've derived "Fc" with lines 1, 2, and 3 as premiss set, we
can use rule CP to derive "(Fb → Fc)" with lines 1 and 2 as
premiss set.

We want to get "Fc." Because of line 1, to get "Fc" it will
be enough to get "(Fa ∧ Fb)." But we can get "(Fa ∧ Fb)" because
we have its conjuncts on lines 2 and 3; so we're able to complete
the proof:

1 1. ((Fa ∧ Fb) → Fc) PI
2 2. Fa PI
3 3. Fb PI
2,3 4. (Fa ∧ Fb) TC,2,3
1,2,3 5. Fc TC,1,4
1,2 6. (Fb → Fc) CP,3,5
1 7. (Fa → (Fb → Fc)) CP,2,6

So far, all the rules we've introduced have just used ideas
we've taken over from the sentential calculus. Now we're going to
learn some rules that describe the operation of the quantifiers.

Universal specification rule (US). If you've de-
rived (∀ x)φ, you may derive φx/c with the same
premiss set, for any constant c.

For example, we derive "Ms" ("Socrates is mortal") from "Gs"
("Socrates is a Greek") and "(∀ x)(Gx → Mx)" ("All Greeks are
mortal"):

1 1. Gs PI
2 2. (∀ x)(Gx → Mx) PI
2 3. (Gs → Ms) US,2
1,2 4. Ms TC,1,3

It's clear that rule US is logical-consequence preserving,
because φx/c is a logical consequence of (∀ x)φ. If (∀ x)φ is true
under A, every member of ′ satisfies φ under A. So, in particu-
lar, A(c) satisfies φ under A, so that, by the Substitution
Principle, φx/c is true under A.

Universal generalization rule (UG). If you've
derived φx/c from Γ and if the constant c doesn't
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appear in φ or in any of the sentences in Γ, you
may derive (∀ x)φ with premiss set Γ.

For example, we derive "(∀ x)(Gx → Mx)" ("All Greeks are
mortal") from "(∀ x)(Gx → Hx)" ("All Greeks are human beings")
and "(∀ x)(Hx → Mx)" ("All human beings are mortal"):

1 1. (∀ x)(Gx → Hx) PI
2 2. (∀ x)(Hx → Mx) PI
3 3. Ga PI
1 4. (Ga → Ha) US,1
1,3 5. Ha TC,3,4
2 6. (Ha → Ma) US,2
1,2,3 7. Ma TC,5,6
1,2 8. (Ga → Ma) CP,3,7
1,2 9. (∀ x)(Gx → Mx) UG,8

Here, line 8 is gotten from "(Gx → Mx)," by substituting "a" for
free occurrences of "x," while line nine is gotten from the same
formula by prefixing the universal quantifier "(∀ x)." Since the
constant "a" doesn't appear in the formula "(Gx → Mx)" and it
doesn't appear in the premisses of line 8, we can derive line 9
from line 8 by rule UG.

The idea behind rule UG is that, if you have derived φx/c
from Γ, where c doesn't appear in Γ or in φ, then the reason you
know φx/c is true if all the members of Γ are true can't have
anything special to do with the particular individual named by c,
because you don't know anything about the particular individual
named by c; that individual isn't even mentioned in the premiss
set. Whatever reasons you have for believing that the individual
named by c satisfies φ are reasons that would apply just as well
to any other element of the universe. So every member of the
universe satisfies φ. So (∀ x)φ is true.

More formally, we show that rule UG is logical-consequence
preserving, as follows: Suppose that φx/c is a logical conse-
quence of Γ and that the constant c doesn't appear in φ or in any
of the members of Γ. We want to see that (∀ x)φ is a logical
consequence of Γ.
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Take an interpretation A under which all the members of Γ
are true. We want to see that (∀ x)φ is true under A. Take a
member a of |A|. We want to show that a satisfies φ under A.
Since a was chosen arbitrarily, this will tell us that every
member of |A| satisfies φ under A, so that (∀ x)φ is true under
A.

Let B be an interpretation which is just like A except that
B(c) = a. It follows from the Locality Principle that all the
members of Γ are true under B. Hence φx/c is true under B. It
follows by the Substitution Principle that B(c), which is a,
satisfies φ under B. Using the Locality Principle again, we know
that a satisfies φ under A, which is what we wanted to show.

As another example, let's derive "(∀ x)(Cx ∨ Ax)" ("Everyone
is either a child or an adult") from "(∀ x)(Cx ∨ (Mx ∨ Wx)),"
"(∀ x)(Mx → Ax)," and "(∀ x)(Wx → Ax)"; we want to fill in the
blank in this:

1 1. (∀ x)(Cx ∨ (Mx ∨ Wx)) PI
2 2. (∀ x)(Mx → Ax) PI
3 3. (∀ x)(Wx → Ax) PI

1,2,3 (∀ x)(Cx ∨ Ax)

The sentence we're trying to prove is universal. There is a
general strategy for proving universal sentences: To prove
(∀ x)φ, pick a new constant c that doesn't appear anywhere else
in the proof, and try to prove φx/c with the same premisses; then
use UG. Thus we try to prove "(Cc ∨ Ac)":
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1 1. (∀ x)(Cx ∨ (Mx ∨ Wx)) PI
2 2. (∀ x)(Mx → Ax) PI
3 3. (∀ x)(Wx → Ax) PI

1,2,3 (Cc ∨ Ac)
1,2,3 (∀ x)(Cx ∨ Ax) UG,

We're now trying to prove something about the individual named by
"c." What we know is a bunch of universal statements. From those
universal statements, we are trying to derive conclusions about
the individual named by "c," and the obvious way to do this is to
use rule US:

1 1. (∀ x)(Cx ∨ (Mx ∨ Wx)) PI
2 2. (∀ x)(Mx → Ax) PI
3 3. (∀ x)(Wx → Ax) PI
4 4. (Cc ∨ (Mc ∨ Wc)) US,1
5 5. (Mc → Ac) US,2
6 6. (Wc → Ac) US,3

1,2,3 (Cc ∨ Ac)
1,2,3 (∀ x)(Cx ∨ Ax) UG,

Now the sentence we're trying to prove is a disjunction. We don't
have any general strategy for proving a disjunction, but we do
have a strategy for proving conditionals: assume the antecedent
and try to prove the consequent. So what we want to do is to
convert the sentence we are trying to prove, "(Cc ∨ Ac)" into
the tautologically equivalent conditional "(¬Cc → Ac)," then to
assume "¬Cc" as a premiss and try to derive "Ac":

1 1. (∀ x)(Cx ∨ (Mx ∨ Wx)) PI
2 2. (∀ x)(Mx → Ax) PI
3 3. (∀ x)(Wx → Ax) PI
4 4. (Cc ∨ (Mc ∨ Wc)) US,1
5 5. (Mc → Ac) US,2
6 6. (Wc → Ac) US,3
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7 7. ¬Cc PI

1,2,3,7 Ac
1,2,3 (¬Cc → Ac) CP,7,
1,2,3 (Cc ∨ Ac) TC,
1,2,3 (∀ x)(Cx ∨ Ax) UG,

Lines 4 and 7 together tautologically imply "(Mx ∨ Wc)";
one way to see this is to rewrite line 4 as "(¬Cc → (Mc ∨ Wc))"
and to apply modus ponens:*

1 1. (∀ x)(Cx ∨ (Mx ∨ Wx)) PI
2 2. (∀ x)(Mx → Ax) PI
3 3. (∀ x)(Wx → Ax) PI
1 4. (Cc ∨ (Mc ∨ Wc)) US,1
2 5. (Mc → Ac) US,2
3 6. (Wc → Ac) US,3
7 7. ¬Cc PI
1,7 8. (Mc ∨ Wc) TC,4,7

1,2,3,7 Ac
1,2,3 (¬Cc → Ac) CP,7,
1,2,3 (Cc ∨ Ac) TC,
1,2,3 (∀ x)(Cx ∨ Ax) UG,

Lines 8, 5, and 6 tautologically imply "Ac," which is what
we want:

1 1. (∀ x)(Cx ∨ (Mx ∨ Wx)) PI
2 2. (∀ x)(Mx → Ax) PI
3 3. (∀ x)(Wx → Ax) PI
1 4. (Cc ∨ (Mc ∨ Wc)) US,1
2 5. (Mc → Ac) US,2
3 6. (Wc → Ac) US,3

* "Modus ponens" is a medieval name for the inference from (φ →
ψ) and φ to ψ. Modus tollens is the inference from (φ → ψ) and
¬ψ to ¬φ.
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7 7. ¬Cc PI
1,7 8. (Mc ∨ Wc) TC,4,7
1,2,3,7 9. Ac TC,5,6,8
1,2,3 10. (¬Cc → Ac) CP,7,9
1,2,3 11. (Cc ∨ Ac) TC,10
1,2,3 12. (∀ x)(Cx ∨ Ax) UG,11

The last move we made in joining the two ends of our proof
was an instance of a general strategy to use when one of the
things you know is a disjunction. If you have (φ ∨ ψ) and you're
trying to prove θ, try to prove (φ → θ) and (ψ → θ). Then you
can put the pieces together by rule TC.

Whenever you derive a sentence φ with the premiss set Γ,
you'll know that φ is a logical consequence of Γ. In particular,
if you derive φ from the empty set of premisses, you can conclude
that φ is a logical consequence of the empty set, that is, you
can conclude that φ is valid.

As an example, let's derive "((∀ x)(Fx ∧ Gx) ↔ ((∀ x)Fx ∧
(∀ x)Gx))" from the empty set. The way to derive a biconditional
is to break it up into two conditionals, deriving the two direc-
tions separately, then using TC to put the parts together. So we
want to fill in the blanks in this:

((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx))

(((∀ x)Fx ∧ (∀ x)Gx) → (∀ x)(Fx ∧ Gx))
((∀ x)(Fx ∧ Gx) ↔ ((∀ x)Fx ∧ (∀ x)Gx)) TC,

To fill in the first blank, we assume the antecedent and try to
derive the
consequent:

1 1. (∀ x)(Fx ∧ Gx) PI
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1 ((∀ x)Fx ∧ (∀ x)Gx)
((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) CP,1

(((∀ x)Fx ∧ (∀ x)Gx) → (∀ x)(Fx ∧ Gx))
((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) TC,

To prove a conjunction, try to prove both conjuncts:
1 1. (∀ x)(Fx ∧ Gx) PI

1 (∀ x)Fx

1 (∀ x)Gx
1 ((∀ x)Fx ∧ (∀ x)Gx) TC

((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) CP,1

(((∀ x)Fx ∧ (∀ x)Gx) → (∀ x)(Fx ∧ Gx))
((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) TC,

To prove a universal statement, prove an instance* of it with a
new constant. We use this strategy to prove both "(∀ x)Fx" and
"(∀ x)Gx":

1 1. (∀ x)(Fx ∧ Gx) PI
1 2. (Fa ∧ Ga) US,1
1 3. Fa TC,2

* An instance of an initially quantified sentence is a sentence
you get from the given sentence by dropping the initial quanti-
fier and replacing all free occurrences of "x" by a constant.
"Fa" is an instance of "(∀ x)Fx."
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1 4. (∀ x)Fx UG,3
1 5. (Fb ∧ Gb) US,1
1 6. Gb TC,5
1 7. (∀ x)Gx UG,6
1 8. ((∀ x)Fx ∧ (∀ x)Gx) TC,4,7

9. ((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) CP,1,8

(((∀ x)Fx ∧ (∀ x)Gx) → (∀ x)(Fx ∧ Gx))
((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) TC,

To fill in the remaining blank, we assume the antecedent and try
to derive the consequent.

1 1. (∀ x)(Fx ∧ Gx) PI
1 2. (Fa ∧ Ga) US,1
1 3. Fa TC,2
1 4. (∀ x)Fx UG,3
1 5. (Fb ∧ Gb) US,1
1 6. Gb TC,5
1 7. (∀ x)Gx UG,6
1 8. ((∀ x)Fx ∧ (∀ x)Gx) TC,4,7

9. ((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) CP,1,8
10 10. ((∀ x)Fx ∧ (∀ x)Gx) PI

10 (∀ x)(Fx ∧ Gx)
(((∀ x)Fx ∧ (∀ x)Gx) → (∀ x)(Fx ∧ Gx)) CP,10,
((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) TC,

What we have to work from is a conjunction, "((∀ x)Fx ∧ (∀ x)Gx)";
we simplify this by writing its two conjuncts on separate lines.
What we're trying to prove is a universal sentence, "(∀ x)(Fx ∧
Gx)," which we prove by first proving "(Fc ∧ Gc), intending to
apply rule UG:

1 1. (∀ x)(Fx ∧ Gx) PI
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1 2. (Fa ∧ Ga) US,1
1 3. Fa TC,2
1 4. (∀ x)Fx UG,3
1 5. (Fb ∧ Gb) US,1
1 6. Gb TC,5
1 7. (∀ x)Gx UG,6
1 8. ((∀ x)Fx ∧ (∀ x)Gx) TC,4,7

9. ((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) CP,1,8
10 10. ((∀ x)Fx ∧ (∀ x)Gx) PI
10 11. (∀ x)Fx TC,10
10 12. (∀ x)Gx TC,10
10 13. Fc US,11
10 14. Gc US,12
10 15. (Fc ∧ Gc) TC,13,14
10 16. (∀ x)(Fx ∧ Gx) UG,15

17. (((∀ x)Fx ∧ (∀ x)Gx) → (∀ x)(Fx ∧ Gx)) CP,10,16
18. ((∀ x)(Fx ∧ Gx) → ((∀ x)Fx ∧ (∀ x)Gx)) TC,9,17

As another example, let's derive "(Fa → (∀ x)(Gx → Fa))"
from the empty set:

1 1. Fa PI
1 2. (Gb → Fa) TC,1
1 3. (∀ x)(Gx → Fa) UG,2

4. (Fa → (∀ x)(Gx → Fa)) CP,1,3

Let's derive "((∀ x)(Fx → Gx) → ((∀ x)Fx → (∀ x)Gx))" from
the empty set:

1 1. (∀ x)(Fx → Gx) PI
2 2. (∀ x)Fx PI
1 3. (Fa → Ga) US,1
2 4. Fa US,2
1,2 5. Ga TC,3,4
1,2 6. (∀ x)Gx UG,5
1 7. ((∀ x)Fx → (∀ x)Gx) CP,2,6

8. ((∀ x)(Fx → Gx) → ((∀ x)Fx → (∀ x)Gx)) CP,1,7

Remember the restriction on rule UG. If you use rule UG to
derive (∀ x)φ from φx/c, the constant c shouldn't appear either in
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φ or in any members of the premiss set of φx/c. Otherwise, you'll
get poppycock, like the following bad derivation from the empty
set of "(Ws → (∀ x)Wx)" ("If Socrates is wise, everyone is
wise"):

1 1. Ws PI
1 2. (∀ x)Wx Bad use of UG,1

3. (Ws → (∀ x)Wx) CP,1,2

We now have all the rules we need for dealing with universal
quantifiers. Let's get some rules for dealing with existential
quantifiers:

Quantifier exchange rule (QE).
From ¬(∀ x)¬φ, you may infer (∃ x)φ with the same
premiss set, and vice versa.
From (∀ x)¬φ, you may infer ¬(∃ x)φ with the same
premiss set, and vice versa.
From ¬(∀ x)φ, you may infer (∃ x)¬φ with the same
premiss set, and vice versa.
From (∀ x)φ, you may infer ¬(∃ x)¬φ with the same
premiss set, and vice versa.

It's easy to see that rule QE is logical-consequence pre-
serving. ¬(∀ x)¬φ is logically equivalent to (∃ x)φ. Similarly for
the other clauses.

As an illustration, let's derive "¬(∃ x)(Mx ∧ Wx)" ("No one
is both a man and a woman") from "(∀ x)(Mx → Bx)" ("All men have
beards") and "¬(∃ x)(Wx ∧ Bx)" ("No women have beards"):

1 1. (∀ x)(Mx → Bx) PI
2 2. ¬(∃ x)(Wx ∧ Bx) PI
2 3. (∀ x)¬(Wx ∧ Bx) QE,2
1 4. (Ma → Ba) US,1
2 5. ¬(Wa ∧ Ba) US,3

1,2 ¬(Ma ∧ Wa)
1,2 (∀ x)¬(Mx ∧ Wx) US,
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1,2 ¬(∃ x)(Mx ∧ Wx) QE,

We've used rule QE to turn negated existentials into universals.
Now the sentence we're trying to prove a negated conjunction. How
do we prove a negated conjunction? Turn it into a conditional,
since we know how to prove conditionals. So we rewrite "¬(Ma ∧
Wa)" as "(Ma → ¬Wa)." While we're about it, let's rewrite "¬(Wa
∧ Ba)" as "(Wa → ¬Ba),” on the theory that conditionals are more
familiar, and hence easier to use, than negated conjunctions:

1 1. (∀ x)(Mx → Bx) PI
2 2. ¬(∃ x)(Wx ∧ Bx) PI
2 3. (∀ x)¬(Wx ∧ Bx) QE,2
1 4. (Ma → Ba) US,1
2 5. ¬(Wa ∧ Ba) US,3
2 6. (Wa → ¬Ba) TC,5
7 7. Ma PI
1,7 8. Ba TC,4,7
1,2,7 9. ¬Wa TC,6,8
1,2 10. (Ma → ¬Wa) CP,7,9
1,2 11. ¬(Ma ∧ Wa) TC,10
1,2 12. (∀ x)¬(Mx ∧ Wx) US,11
1,2 13. ¬(∃ x)(Mx ∧ Wx) QE,12

As another example, let's derive "(∃ x)(Gx ∧ Wx)" ("Some
Greeks are wise") from "Gs" ("Socrates is a Greek"), "Ps" ("Soc-
rates is a philosopher"), and "(∀ x)(Px → Wx)" ("All philosophers
are wise"):

1 1. Gs PI
2 2. Ps PI
3 3. (∀ x)(Px → Wx) PI
3 4. (Ps → Ws) US,3
2,3 5. Ws TC,2,4

1,2,3 ¬(∀ x)¬(Gx ∧ Wx)
1,2,3 (∃ x)(Gx ∧ Wx) QE,

Now we're stuck, so let me give you a general strategy for
what to do if you get stuck. The method is a formalized version
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of reductio ad absurdum. You assume the opposite of what you're
trying to prove, and you show that this assumption leads to an
absurdity. By "assume the opposite of what you're trying to
prove," what I mean is this: if you're trying to prove a nega-
tion, assume the negatum as a new premiss; otherwise, assume the
negation of what you're trying to prove. By showing that this
assumption "leads to an absurdity," I mean deriving a sentence
that is truth functionally inconsistent with one of the things
you've already assumed or derived. Thus, in this case, we assume
"(∀ x)¬(Gx ∧ Wx)" and go for an absurdity:

1 1. Gs PI
2 2. Ps PI
3 3. (∀ x)(Px → Wx) PI
3 4. (Ps → Ws) US,3
2,3 5. Ws TC,2,4
6 6. (∀ x)¬(Gx ∧ Wx) PI
6 7. ¬(Gs ∧ Ws) US,6
6 8. (Gs → ¬Ws) TC,7
1,6 9. ¬Ws TC,1,8

1,2,3 ¬(∀ x)¬(Gx ∧ Wx)
1,2,3 (∃ x)(Gx ∧ Wx) QE,

Now we've gotten our absurdity. We've derived "¬Ws," but we know
from line 5 that "Ws" is true. To complete the proof, we use rule
CP to derive the conditional whose antecedent is the assumption
we made that was the opposite of what we were trying to prove and
whose consequent is the absurdity we have derived. Then we use
rule TC to complete the proof:

1 1. Gs PI
2 2. Ps PI
3 3. (∀ x)(Px → Wx) PI
3 4. (Ps → Ws) US,3
2,3 5. Ws TC,2,4
6 6. (∀ x)¬(Gx ∧ Wx) PI
6 7. ¬(Gs ∧ Ws) US,6
6 8. (Gs → ¬Ws) TC,7
1,6 9. ¬Ws TC,1,8
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1 10. ((∀ x)¬(Gx ∧ Wx) → ¬Ws) CP,6,9
1,2,3 11. ¬(∀ x)¬(Gx ∧ Wx) TC,5,10
1,2,3 12. (∃ x)(Gx ∧ Wx) QE,11

Such a simple argument oughtn't require such a complicated
derivation. We adopt a new rule that will make such arguments
easier. The new rule is, strictly speaking superfluous, in that
anything that we can prove with the rule we can also prove, in a
more complicate fashion, without it. But there's no real harm in
having extra rules.

Existential generalization rule (EG). If you have
written φx/c, for any constant c, you may write
(∃ x)φ with the same premiss set.

It's easy to see that this new rule is logical-consequence
preserving, since (∃ x)φ is a logical consequence of φx/c.

Let's see how this new rule makes our previous deduction
easier:

1 1. Gs PI
2 2. Ps PI
3 3. (∀ x)(Px → Wx) PI
3 4. (Ps → Ws) US,3
2,3 5. Ws TC,2,4
1,2,3 6. (Gs ∧ Ws) TC,1,5
1,2,3 7. (∃ x)(Gx ∧ Wx) EG,6

We now have a rule for what to do with an universal sentence
up top, among the things we are assumed to know; namely, the rule
US. We have a rule telling us what to do when we are trying to
prove a universal sentence, namely UG. We have a rule about what
to do to prove an existential sentence, EG. What we still need is
a rule that tell us what to do with an existential sentence up
top. The good news is that this is the last of our rules. The bad
news is that it's pretty complicated.

Existential specification (ES). Suppose that you
have derived (∃ x)φ with premiss set ∆ and that you
have derived ψ with premiss set Γ ∪ {φx/c}, for
some constant c. Suppose further that the constant
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c does not appear in φ, in ψ, or in any member of
Γ. Then you may derive ψ with premiss set ∆ ∪ Γ.

How we use this complicated new rule is this: Suppose we are
trying to prove ψ and one of the things we have up top, among
the things we are assumed to know, is an existential sentence
(∃ x)φ. The way we use the existential sentence is this: We take
an instance φx/c of the existential sentence as a new premiss,
where c is a constant that hasn't yet appeared in the proof. Then
we derive ψ from the instance, together with whatever other
premisses we have available. Once we have done this, we use rule
ES to upgrade our premiss set, replacing φx/c in the premiss set
with the premiss set of (∃ x)ψ.

Here's an example: We derive "(∃ x)(Mx ∧ Fx)" ("Some mammals
fly") from "(∃ x)(Sx ∧ Fx)" ("Some squirrels fly") and "(∀ x)(Sx →
Mx)" ("All squirrels are mammals"):

1 1. (∃ x)(Sx ∧ Fx) PI
2 2. (∀ x)(Sx → Mx) PI
3 3. (Sa ∧ Fa) PI
3 4. Sa TC,3
3 5. Fa TC,3
2 6. (Sa → Ma) US,2
2,3 7. Ma TC,4,6
2,3 8. (Ma ∧ Fa) TC,5,7
2,3 9. (∃ x)(Mx ∧ Fx) EG,8
1,2 10. (∃ x)(Mx ∧ Fx) ES,1,3,9

Here we were trying to prove "(∃ x)(Mx ∧ Fx)," and one of the
premisses we had available to use was the existential sentence
"(∃ x)(Sx ∧ Fx)." The way we used this existential premiss was to
take an instance of the existential premiss as a new premiss at
line 3. Then, at line 9, we used this new premiss to prove
"(∃ x)(Mx ∧ Fx)." At line 10, we used rule ES to upgrade our
premisses, replacing "(Sa ∧ Fa)" in the premiss set of "(∃ x)(Mx ∧
Fx)" with the premiss set of "(∃ x)(Sx ∧ Fx)."

We know that some squirrels fly. Take a flying squirrel;
call him "a." From the assumption that a is a flying squirrel, we
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are able to conclude that some mammals fly. So this conclusion
must already be entailed by "Some squirrels fly."

Notice that what rule ES permits you to do is merely to
repeat a sentence you've already written earlier. What's changed
is your premiss set.

As another example, let's derive "(∃ x)(Fx ∧ Gx)" from
"(∃ x)Fx" and "(∀ x)Gx":

1 1. (∃ x)Fx PI
2 2. (∀ x)Gx PI
3 3. Fa PI
2 4. Ga US,2
2,3 5. (Fa ∧ Ga) TC,3,4
2.3 6. (∃ x)(Fx ∧ Gx) EG,5
1,2 7. (∃ x)(Fx ∧ Gx) ES,1,3,6

We had "(∃ x)Fx" as a premiss. We made use of it by taking "Fa" as
a premiss, then using rule ES to upgrade the premiss set of our
conclusion.

Now let's derive "(∃ x)(Fx ∧ Gx)" from the premisses "(∃ x)(Ax
∧ Bx)," "(∀ x)(Ax → Fx)," and "(∀ x)(Bx → Gx)":

1 1. (∃ x)(Ax ∧ Bx) PI
2 2. (∀ x)(Ax → Fx) PI
3 3. (∀ x)(Bx → Gx) PI
4 4. (Aa ∧ Ba) PI
4 5. Aa TC,4
4 6. Ba TC,4
2 7. (Aa → Fa) US,2
2,4 8. Fa TC,5,7
3 9. (Ba → Ga) US,3
3,4 10. Ga TC,6,9
2,3,4 11. (Fa ∧ Ga) TC,8,10
2,3,4 12. (∃ x)(Fx ∧ Gx) EG,11
1,2,3 13. (∃ x)(Fx ∧ Gx) ES,1,4,12

We now want to see that rule ES is superfluous, in that
anything that you can derive with the rule you can also derive
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more circuitously without it. Since we already know that the
other rules are all logical-consequence preserving, this will
show that rule ES is logical-consequence preserving. So suppose
that we have a derivation which contains these lines:

Premiss set Number Sentence Justification
∆ i (∃ x)φ
φx/c ii φx/c PI
Γ ∪ {φx/c} iii ψ
∆ ∪ Γ iv ψ ES,i,ii,iii

where c doesn't appear in φ, in ψ, or in any member of Γ. We may
replace this derivation with the following:

Premiss set Number Sentence Justification
∆ i (∃ x)φ
φx/c ii φx/c PI
Γ ∪ {φx/c} iii ψ
Γ iv (φx/c → ψ)CP,2,3
{¬ψ} v ¬ψ PI
Γ ∪ {¬ψ} vi ¬φx/c TC,iv,v
Γ ∪ {¬ψ} vii (∀ x)¬φ UG,vi
Γ ∪ {¬ψ} viii ¬(∃ x)φ QE,vii
Γ ix (¬ψ → ¬(∃ x)φ) CP,v,viii
∆ ∪ Γ x ψ TC,i,ix

A different way we might have proceed would have been to
take US, UG, ES, and EG as our axioms for the quantifiers, show
those axioms to be sound, and then obtain QE as a derived rule.
Or we could have started with ES, EG, and QE, and derived US and
UG.

Now that we have the rules, let me tell you some strategies
for applying the rules. These strategies aren't part of the
rules; they're techniques for using the rules efficiently. To
have a correct derivation, you have to follow the rules, but you
don't have to follow the strategies if you don't want to. The
strategies don't always work, but they usually do.

The basic plan is always to work from two ends toward the
middle. Thus, at each stage of a derivation, there will be a set
of sentences you are assumed to know, and there are one or more
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sentences you are trying to prove. The strategies are techniques
for breaking up the sentences you are working with into sentences
that are simpler and therefore, hopefully, easier to work with.

There are two groups of strategies, one having to do with
simplifying the sentence you're trying to prove, the other with
simplifying the sentences you are assumed to know. Here is the
main strategy for simplifying the sentence you're trying to
prove:

If you're trying to prove a conditional, assume the antecedent as
a premiss and try to derive the consequent. Then apply rule CP.

Here are more bottom-up strategies:

If you're trying to prove a disjunction (φ ∨ ψ), prove the
conditional (¬φ → ψ), then apply rule TC. (Occasionally, you can
simply prove one of the disjuncts.)

If you're trying to prove a biconditional (φ ↔ ψ), prove the two
conditionals (φ → ψ) and (ψ → φ), then apply TC.

If you're trying to prove a conjunction, prove each of the
conjuncts, then apply rule TC.

If you're trying to prove a universal sentence, try to prove an
instance of it the sentence with a new constant. Then apply UG.

If you're trying to prove an existential sentence, try to prove
an instance of it. Then apply EG.

If you're trying to prove a negated conditional ¬(φ → ψ), prove
φ and ¬ψ, then apply TC.

If you're trying to prove a negated disjunction ¬(φ ∨ ψ), prove
¬φ and ¬ψ, then apply TC.

If you're trying to prove a negated biconditional ¬(φ ↔ ψ), try
to prove (φ ↔ ¬ψ), then apply TC.

If you're trying to prove negated conjunction, ¬(φ ∧ ψ), try to
prove (φ → ¬ψ), then apply TC.
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If you're trying to prove a negated universal sentence ¬(∀ x)φ,
prove (∃ x)¬φ, then apply QE.

If you're trying to prove a negated existential sentence ¬(∃ x)φ,
prove (∀ x)¬φ, then apply QE.

If you're trying to prove a negated negation ¬¬φ, prove φ, then
apply TC.

Now we turn to the top-down strategies for simplifying the
premisses and sentences you have derived from the premisses. Let
me refer to the premisses and the things you have derived from
the premisses as your "assumptions"; here are the strategies for
simplifying assumptions:

If one of your assumptions is a conjunction, write the two
conjuncts on separate lines, using TC.

If one of your assumptions is a disjunction (φ ∨ ψ) and you're
trying to prove θ, prove the two conditionals (φ → θ) and (ψ →
θ), then apply TC. Whenever you apply this strategy, you're sure
to wind up with a pretty long proof, so use this strategy only as
a last resort. Something to try first is to rewrite the disjunc-
tion as a conditional (¬φ → ψ) (using TC), then to see if you
can apply modus ponens or modus tollens.

If one of your assumptions is a conditional (φ → ψ), see if you
can apply modus ponens or modus tollens. If not, rewrite the
conditional as (¬φ ∨ ψ).

If one of your assumptions is a biconditional (φ ↔ ψ), see if
you know how to prove one component, in which case you can derive
the other by TC. See if you know how to prove the negation of one
component, in which case you can derive the negation of the
other. Otherwise, rewrite the biconditional as ((φ ∧ ψ) ∨ (¬φ ∧
¬ψ)), using TC

If one of your assumptions is an existential sentence (∃ x)φ, pick
a new constant c and assume φx/c as a new premiss. Once you've
proven what you're trying to prove, use ES to upgrade your
premiss set, replacing {φx/c} by the premiss set of (∃ x)φ.
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If one of your assumptions is a universal sentence (∀ x)φ, deduce
φx/c for each constant c that appears in the proof.*

If one of your assumptions is a negated conjunctions ¬(φ ∧ ψ_),
rewrite it as (¬φ ∨ ¬ψ), using TC.

If one of your assumptions is a negated disjunction, ¬(φ ∨ ψ),
rewrite it as (¬φ ∧ ¬ψ), using TC.

If one of you assumptions is a negated conditional ¬(φ → ψ),
rewrite it as (φ ∧ ¬ψ), using TC.

If one of your assumptions is a negated biconditional ¬(φ ↔ ψ),
rewrite it as (φ ↔ ¬ψ), using TC.

* It generally only helps to derive φx/c for constants c that
appear elsewhere in the proof. It usually does no good to instan-
tiate with a brand new constant. The only exceptions that I know
of occur when there haven't been any constants in the proof so
far. An example is the derivation from the empty set of ((∀ x)Fx
→ (∃ x)Fx):

1 1. (∀ x)Fx PI
1 2. Fa US,1
1 3. (∃ x)Fx (EG),2

4 ((∀ x)Fx → (∃ x)Fx)CP,1,3
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If one of your assumptions is a negated existential sentence
¬(∃ x)φ, rewrite it as (∀ x)¬φ, using QE.

If one of your assumptions is a negated universal sentence
¬(∀ x)φ, rewrite it as (∃ x)¬φ, using QE.

If one of your assumptions is a negated negation ¬¬φ, rewrite it
as φ, using TC.

One final bottom-up rule:

If all else fails, assume the negation of what you're trying to
prove and try to derive an absurdity. If you're trying to ψ, use
PI to assume ¬ψ. If you are able to prove ¬φ, where φ is one of
your assumptions, you can use CP to get (¬ψ → ¬φ), then use TC
to get ψ.

Let's do some examples. Let's derive "(∃ x)(Fx ∨ Hx)" from
{"((∃ x)Fx ∨ (∃ x)Gx)," "(∀ x)(Gx → Hx)"}. We follow the strategy
for using a disjunctive assumption, first proving "((∃ x)Fx →
(∃ x)(Fx ∨ Hx))" and "((∃ x)Gx → (∃ x)(Fx ∨ Hx))," then applying
TC:

1 1. ((∃ x)Fx ∨ (∃ x)Gx)) PI
2 2. (∀ x)(Gx → Hx) PI
3 3. (∃ x)Fx PI
4 4. Fa PI (for ES)
4 5. (Fa ∨ Ha) TC,4
4 6. (∃ x)(Fx ∨ Hx) EG,5
3 7. (∃ x)(Fx ∨ Hx) ES,3,4,6

8. ((∃ x)Fx → (∃ x)(Fx ∨ Hx)) CP,3,7
9 9. (∃ x)Gx PI
10 10. Gb PI (for ES)
2 11. (Gb → Hb) US,2
2,10 12. Hb TC,10,11
2,10 13. (Fb ∨ Hb) TC,12
2,10 14. (∃ x)(Fx ∨ Hx) EG,13
2.9 15. (∃ x)(Fx ∨ Hx) ES,9,10,14
2 16. ((∃ x)Gx → (∃ x)(Fx ∨ Hx)) CP,9,15
1,2 17. (∃ x)(Fx ∨ Hx) TC,1,8,16
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As another example, let's derive "(((∃ x)Ax ∨ (∃ x)Bx) ↔
(∃ x)(Ax ∨ Bx))" from the empty set. We prove the two directions
separately. We prove the left-to-right direction by proving
"((∃ x)Ax → (∃ x)(Ax ∨ Bx))" and "((∃ x)Bx → (∃ x)(Ax ∨ Bx))," then
using TC; this is our general strategy for working with disjunc-
tive assumptions. We then prove the right-to-left direction by
converting the disjunction we're trying to prove to a condition-
al:

1 1. ((∃ x)Ax ∨ (∃ x)Bx) PI
2 2. (∃ x)Ax PI
3 3. Aa PI (for ES)
3 4. (Aa ∨ Ba) TC,3
3 5. (∃ x)(Ax ∨ Bx) EG,4
2 6. (∃ x)(Ax ∨ Bx) ES,2,3,5

7. ((∃ x)Ax → (∃ x)(Ax ∨ Bx)) CP,2,6
8 8. (∃ x)Bx PI
9 9. Bb P (for ES)
9 10. (Ab ∨ Bb) TC,9
9 11. (∃ x)(Ax ∨ Bx) EG,10
8 12. (∃ x)(Ax ∨ Bx) ES,8,9,11

13. ((∃ x)Bx) → (∃ x)(Ax ∨ Bx)) CP,8,12
1 14. (∃ x)(Ax ∨ Bx) TC,1,7,13

15, (((∃ x)Ax ∨ (∃ x)Bx) → (∃ x)(Ax ∨ Bx)) CP,1,14
16 16. (∃ x)(Ax ∨ Bx) PI
17 17. (Ac ∨ Bc) PI (for ES)
18 18. ¬(∃ x)Ax PI
18 19. (∀ x)¬Ax QE,18
18 20. ¬Ac US,19
17 21. (¬Ac → Bc) TC,17
17,18 22. Bc TC,20,21
17,18 23. (∃ x)Bx EG,22
16,18 24. (∃ x)Bx ES,16,17.23
16 25. (¬(∃ x)Ax → (∃ x)Bx) CP,18,24
16 26. ((∃ x)Ax ∨ Bx) TC,25

27. ((∃ x)(Ax ∨ Bx) → ((∃ x)Ax ∨ (∃ x)Bx)) CP,16,26
28. (((∃ x)Ax ∨ (∃ x)Bx) ↔ (∃ x)(Ax ∨ Bx)) TC,15,27

Now we derive "((∃ x)Fx → Ga)" from {"(∀ x)(Fx → Ga)"}:



MPC Derivations, p. 29

1 1. (∀ x)(Fx → Ga) PI
2 2. (∃ x)Fx PI
3 3. Fb PI (for ES)
1 4. (Fb → Ga) US,1
1,3 5. Ga TC,3,4
1,2 6. Ga ES,2,3,5
1 7. ((∃ x)Fx → Ga) CP,2,6

We now do the converse proof, deriving "(∀ x)(Fx → Ga)" from
{"((∃ x)Fx → Ga)"}:

1 1. ((∃ x)Fx → Ga) PI
2 2. Fb PI
2 3. (∃ x)Fx EG,2
1,2 4. Ga TC,1,3
1 5. (Fb → Ga) CP,2,4
1 6. (∀ x)(Fx → Ga) UG,5

Next we formalize an argument from Lewis Carroll's Symbolic
Logic:

No one who really appreciates Beethoven fails to keep
silence while the Moonlight Sonata is being played.
Guinea pigs are hopelessly ignorant of music.
No one who is hopelessly ignorant of music ever keeps
silence while the Moonlight Sonata is being played.
Therefore, guinea pigs never really appreciate Beetho-
ven.

In symbols:
¬(∃ x)(Bx ∧ ¬Sx)
(∀ x)(Gx → Ix)
¬(∃ x)(Ix ∧ Sx)
∴ ¬(∃ x)(Gx ∧ Bx)

We derive the translated conclusion from the translated premis-
ses, thus showing the English argument is valid:

1 1. ¬(∃ x)(Bx ∧ ¬Sx) PI
2 2. (∀ x)(Gx → Ix) PI
3 3. ¬(∃ x)(Ix ∧ Sx) PI
4 4. Ga PI
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1 5. (∀ x)¬(Bx ∧ ¬Sx) QE,1
3 6. (∀ x)¬(Ix ∧ Sx) QE,3
2 7. (Ga → Ia) US,2
1 8. ¬(Ba ∧ ¬Sa) US,5
3 9. ¬(Ia ∧ Sa) US,6
2,4 10. Ia TC,4,7
3 11. (Ia → ¬Sa) TC,9
2,3,4 12. ¬Sa TC,10,11
1 13. (Ba → Sa) TC,8
1,2,3,4 14. ¬Ba TC,12,13
1,2,3 15. (Ga → ¬Ba) CP,4,14
1,2,3 16. ¬(Ga ∧ Ba) TC,15
1,2,3 17. (∀ x)¬(Gx ∧ Bx) UG,16
1,2,3 18. ¬(∃ x)(Gx ∧ Bx) QE,17

Here is a more complicated example, again from Lewis
Carroll:

Animals are always mortally offended them if I fail to
notice them.
The only animals that belong to me are in that field.
No animal can guess a conundrum unless it has been
properly trained in a Board-school.
All badgers are animals.
None of the animals in that field are badgers.
When a animal is mortally offended, it always rushes
about wildly and howls.
I never notice any animals unless it belongs to me.
No animal that has been properly trained in a Board-
school ever rushes about wildly and howls.
Therefore, no badger can guess a conundrum.

In symbols:

(∀ x)((Ax ∧ ¬Nx) → Ox)
(∀ x)((Ax ∧ Mx) → Fx)
¬(∃ x)((Ax ∧ Gx) ∧ ¬Tx)
(∀ x)(Bx → Ax)
¬(∃ x)((Ax ∧ Fx) ∧ Bx)
(∀ x)((Ax ∧ Ox) → (Rx ∧ Hx))
¬(∃ x)((Ax ∧ Nx) ∧ ¬Mx)
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¬(∃ x)((Ax ∧ Tx) ∧ (Rx ∧ Hx))
∴ ¬(∃ x)(Bx ∧ Gx)

Now we derive the translated conclusion from the translated
premisses:

1 1. (∀ x)((Ax ∧ ¬Nx) → Ox) PI
2 2. (∀ x)((Ax ∧ Mx) → Fx) PI
3 3. ¬(∃ x)((Ax ∧ Gx) ∧ ¬Tx) PI
4 4. (∀ x)(Bx → Ax) PI
5 5. ¬(∃ x)((Ax ∧ Fx) ∧ Bx) PI
6 6. (∀ x)((Ax ∧ Ox) → (Rx ∧ Hx)) PI
7 7. ¬(∃ x)((Ax ∧ Nx) ∧ ¬Mx) PI
8 8. ¬(∃ x)((Ax ∧ Tx) ∧ (Rx ∧ Hx)) PI
3 9. (∀ x)¬((Ax ∧ Gx) ∧ ¬Tx) QE,3
5 10. (∀ x)¬((Ax ∧ Fx) ∧ Bx) QE,5
7 11. (∀ x)¬((Ax ∧ Nx) ∧ ¬Mx) QE,7
8 12. (∀ x)¬((Ax ∧ Tx) ∧ (Rx ∧ Hx)) QE,8
13 13. Ba PI
1 14. ((Aa ∧ ¬Na) → Oa) US,1
2 15. ((Aa ∧ Ma) → Fa) US,2
4 16. (Ba → Aa) US,4
6 17. ((Aa ∧ Oa) → (Ra ∧ Ha)) US,6
3 18. ¬((Aa ∧ Ga) ∧ ¬Ta) US,9
5 19. ¬((Aa ∧ Fa) ∧ Ba) US,10
7 20. ¬((Aa ∧ Na) ∧ ¬Ma) US,11
8 21. ¬((Aa ∧ Ta) ∧ (Ra ∧ Ha)) US,12
4,13 22. Aa TC,13,16
5 23. ((Aa ∧ Fa) → ¬Ba) TC,19
5,13 24. ¬(Aa ∧ Fa) TC,13,23
5,13 25. (Aa → ¬Fa) TC,24
4,5,13 26. ¬Fa TC,22,24
2,4,5,13 27. ¬(Aa ∧ Ma) TC,15,26
2,4,5,13 28. (Aa → ¬Ma) TC,27
2,4,5,13 29. ¬Ma TC,22,28
7 30. ((Aa ∧ Na) → Ma) TC,20
2,4,5,7,13 31. ¬(Aa ∧ Na) TC,29,30
2,4,5,7,13 32. (Aa → ¬Na) TC,31
2,4,5,7,13 33. ¬Na TC,22,32
2,4,5,7,13 34. (Aa ∧ ¬Na) TC,22,32
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1,2,4,5,7,13 35. Oa TC,14,34
1,2,4,5,7,13 36. (Aa ∧ Oa) TC,22,35
1,2,4,5,6,7,13 37. (Ra ∧ Ha) TC,17,36
8 38. ((Aa ∧ Ta) → ¬(Ra ∧ Ha)) TC,21
1,2,4,5,6,7,8,13 39. ¬(Aa ∧ Ta) TC,37,38
1,2,4,5,6,7,8,13 40. (Aa → ¬Ta) TC,39
1,2,4,5,6,7,8,13 41. ¬Ta TC,22,40
3 42. ((Aa ∧ Ga) → Ta) TC,18
1,2,3,4,5,6,7,8,13 43. ¬(Aa ∧ Ga) TC,41,42
1,2,3,4,5,6,7,8,13 44. (Aa → ¬Ga) TC,43
1,2,3,4,5,6,7,8,13 45. ¬Ga TC,22,44
1,2,3,4,5,6,7,8 46. (Ba → ¬Ga) CP,13,45
1,2,3,4,5,6,7,8 47. ¬(Ba ∧ Ga) TC,46
1,2,3,4,5,6,7,8 48. (∀ x)¬(Bx ∧ Gx) UG,47
1,2,3,4,5,6,7,8 49. ¬(∃ x)(Bx ∧ Gx) QE,48


