Subject 24.241. Logic I. Homework due in LEC #15.

- 1. Derive " $((\forall x)(Fx \rightarrow Ga) \leftrightarrow ((\exists x)Fx \rightarrow Ga))$ " from the empty set.
- 2. Derive " $((\exists x)(Fx \rightarrow Ga) \leftrightarrow ((\forall x)Fx \rightarrow Ga))$ " from the empty set.
- 3. Derive " $((\exists x)(Ga \rightarrow Fx) \leftrightarrow (Ga \rightarrow (\exists x)Fx))$ " from the empty set.
- 4. Give a derivation of " $(\neg(\exists x)Fx \leftrightarrow (\forall x)\neg Fx)$ " from the empty set without using the rule (QE). [Note: The idea of this derivation can be generalized to show that rule (QE) is superfluous.]

For the next five problems, let Ω be a set of sentences with these three properties:

- a) Ω is d-consistent, that is, we cannot find sentences $\omega_1, \omega_2, ..., \omega_n$ in Ω such that the sentence $\neg(\omega_1 \land (\omega_2 \land ... \land \omega_n)...)$ is derivable from the empty set.
- b) For any sentence φ , either φ or $\neg \varphi$ is an element of Ω .
- c) For any formula φ , if $(\exists x)\varphi$ is in Ω , then there is a constant *c* such that $\varphi^{X/c}$ is in Ω .
- 5. Show that, for each formula φ , there is a constant *c* such that the conditional $((\exists x)\varphi \rightarrow \varphi^{x/c})$ is

in Ω .

6. Show that, for any sentences φ and ψ , ($\varphi \rightarrow \psi$) is in Ω if and only with either $\psi \in \Omega$ or $\varphi \notin \Omega$.

7. Show that, for any sentences φ and ψ , ($\varphi \leftrightarrow \psi$) is in Ω if and only either both φ and ψ are in Ω

or neither is.

- 8. Show that, for any formula φ , $(\forall x)\varphi$ is in Ω iff, for every constant *c*, $\varphi^{X/}_{c}$ is in Ω .
- 9. Show that, if ϕ is derivable from Ω that is, there is a derivation of ϕ whose premiss set is included in Ω then ϕ is an element of Ω .