Subject 24.241 (Logic I) homework due in LEC #7.

1. Give sentences with the following truth tables:

(a) <u>A B C</u>	(b) <u>A B C</u>	(c) <u>A B C</u>
1 1 1 1	$1 \ 1 \ 1 \ 0$	
$1 \ 1 \ 0 \ 0$	$1 \ 1 \ 0 \ 0$	$1 \ 1 \ 0 \ 0$
$1 \ 0 \ 1 \ 1$	$1 \ 0 \ 1 \ 1$	$1 \ 0 \ 1 \ 0$
$1 \ 0 \ 0 \ 0$	$1 \ 0 \ 0 \ 1$	$1 \ 0 \ 0 \ 1$
0 1 1 1	$0 \ 1 \ 1 \ 0$	0 1 1 1
$0 \ 1 \ 0 \ 0$	$0 \ 1 \ 0 \ 0$	0 1 0 1
$0 \ 0 \ 1 \ 0$	$0 \ 0 \ 1 \ 0$	$0 \ 0 \ 1 \ 1$
$0 \ 0 \ 0 \ 0$	$0 \ 0 \ 0 \ 0$	$0 \ 0 \ 0 \ 0$

2. Give sentences in disjunctive normal form that are logically equivalent to each of the following

sentences:

- (a) $(P \dot{U} (Q \ll R))$
- (b) ((P Ù Q) « R)
- (c) $((P \dot{U} Q) \ll (\neg P \acute{U} \neg Q)$
- 3. A sentence is said to be in *conjunctive normal form* iff it is a conjunction of one or more sentences each of which is a disjunction of one or more atomic sentences and negated atomic sentences. Find a sentence in conjunctive normal form that is logically equivalent to "(P « (Q Ù R))." [Hint: First find a sentence in disjunctive normal form that is logically equivalent to the negation of the given sentence. Then apply de Morgan's laws repeatedly.]
- 4. Which of the following sets of connectives are expressively complete? Explain your answers:
 - (a) $\{"\neg, ""\neg"\}$, where $(\phi \neg \psi)$ is true iff ϕ is true or ψ is false
 - (b) {"¬,""®"}
 - (c) {"NAND"}, where (ϕ NAND ψ) is false iff ϕ and ψ are both true
 - (d) {"NOR"}, where $(\phi \text{ NOR } \psi)$ is true iff neither ϕ nor ψ is true
 - (e) {"XOR"}, where $(\phi \text{ XOR } \psi)$ is true iff ϕ is true or ψ is true but not both.
- 5. (a) Give a tautological substitution instance of " $(P \ll (Q \dot{U} R))$."
 - (b) Give an inconsistent substitution instance of " $(P \ll (Q \dot{U} R))$."
 - (c) Give an indeterminate substitution instance of " $(P \ll (Q \dot{U} R))$."