
Monadic Predicate Calculus

To progress any further, we are going to need an analysis
that goes deeper than looking at how complex sentences are formed
out of simple sentence. We’ll have to look at the internal
structures of the simple sentences.

A good place to begin is the Sophist, where Plato gives an
account of what makes makes the very simplist sentences true or
false. Unlike the typical Platonic dialogue, where Socrates plsys
the dominant role, the principal role is this dialogue is played
by an unnamed stranger Elea. The interlocutor is the boy Theaete-
tus. Theaetetus will do on to distinguish himself as a courageous
leader in battle and also as a geometer. It was Theaetetus who
first discovered the five regular solids — polyhedra all of whose
sides and angles are congruent — namely, the cube, the tetrahe-
dron, the octahedron, the dedecahedron, and the icosahedron. But
I digress. Here’s a quote from Benjamin Jowett’s translation:

Stranger. Then, as I was saying, let us first of
all obtain a conception of language and opinion,
in order that we may have clearer grounds for
determining, whether not-being has any concern
with them, or whether they are both always true,
and neither of them ever false.

Theaetetus. True.

Stranger. Then, now, let us speak of names, as
before we were speaking of ideas and letters; for
that is the direction in which the answer may be
expected.

What they decided about ideas about ideas and about names was
that some fit together and others don’t. For example, you can’t
get a word by forming a string of consonants, but you can get a
word by combining consonants and vowels in the right way.

Theaetetus. And what is the question at issue
about names?

Stranger. The question at issue is whether all
names may be connected with one another, or none,
or only some of them.

Theaetetus. Clearly the last is true.
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Stranger. I understand you to say that words which
have a meaning when in sequence may be connected,
but that words which have no meaning when in se-
quence cannot be connected?

Theaetetus. What are you saying?

Stranger. What I thought that you intended when
you gave your assent; for there are two sorts of
intimation of being which are given by the voice.

Theaetetus. What are they?

Stranger. One of them is called nouns, and the
other verbs.

Theaetetus. Describe them.

Stranger. That which denotes action we call a
verb.

Theaetetus. True.

Stranger. And the other, which is an articulate
mark set on those who do the actions, we call a
noun.

Theaetetus. Quite true.

Stranger. A succession of nouns only is not a
sentence any more than of verbs without nouns.

Theaetetus. I do not understand you.

Stranger. I see that when you gave your assent you
had something else in your mind. But what I in-
tended to say was, that a mere succession of nouns
or of verbs is not discourse.

Theaetetus. What do you mean?

Stranger. I mean that words like "walks," "runs,"
"sleeps," or any other words which denote action,
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however many of them you string together, do not
make discourse.

Theaetetus. How can they?

Stranger. Or, again, when you say "lion," "stag,"
"horse," or any other words which denote agents
— neither in this way of stringing words

together do you attain to discourse; for there is
no expression of action or inaction, or of the
existence of existence or non-existence indicated
by the sounds, until verbs are mingled with nouns;
then the words fit, and the smallest combination
of them forms language, and is the simplest and
least form of discourse.

Theaetetus. Again I ask, What do you mean?

Stranger. When any one says "A man learns," should
you not call this the simplest and least of sen-
tences?

Theaetetus. Yes.

Stranger. Yes, for he now arrives at the point of
giving an intimation about something which is, or
is becoming, or has become, or will be. And he not
only names, but he does something, by connecting
verbs with nouns; and therefore we say that he
discourses, and to this connection of words we
give the name of discourse.

Theaetetus. True.

Stranger. And as there are some things which fit
one another, and other things which do not fit, so
there are some vocal signs which do, and others
which do not, combine and form discourse.

Theaetetus. Quite true.

Stranger. There is another small matter.

Theaetetus. What is it?
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Stranger. A sentence must and cannot help having a
subject.

Theaetetus. True.

Stranger. And must be of a certain quality.

Theaetetus. Certainly.

Stranger. And now let us mind what we are about.

Theaetetus. We must do so.

Stranger. I will repeat a sentence to you in which
a thing and an action are combined, by the help of
a noun and a verb; and you shall tell me of whom
the sentence speaks.

Theaetetus. I will, to the best my power.

Stranger. "Theaetetus sits" — not a very long
sentence.

Theaetetus. Not very.

Stranger. Of whom does the sentence speak, and who
is the subject that is what you have to tell.

Theaetetus. Of me; I am the subject.

Stranger. Or this sentence, again.

Theaetetus. What sentence?

Stranger. "Theaetetus, with whom I am now speak-
ing, is flying."

Theaetetus. That also is a sentence which will be
admitted by every one to speak of me, and to apply
to me.

Stranger. We agreed that every sentence must nec-
essarily have a certain quality.
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Theaetetus. Yes.

Stranger. And what is the quality of each of these
two sentences?

Theaetetus. The one, as I imagine, is false, and
the other true.

Stranger. The true says what is true about you?

Theaetetus. Yes.

Stranger. And the false says what is other than
true?

Theaetetus. Yes.

Stranger. And therefore speaks of things which are
not as if they were?

Theaetetus. True.

Stranger. And say that things are real of you
which are not; for, as we were saying, in regard
to each thing or person, there is much that is and
much that is not.

Theaetetus. Quite true.

Stranger. The second of the two sentences which
related to you was first of all an example of the
shortest form consistent with our definition.

Theaetetus. Yes, this was implied in recent admis-
sion.

Stranger. And, in the second place, it related to
a subject?

Theaetetus. Yes.

Stranger. Who must be you, and can be nobody else?

Theaetetus. Unquestionably.
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Stranger. And it would be no sentence at all if
there were no subject, for, as we proved, a sen-
tence which has no subject is impossible.

Theaetetus. Quite true.

Stranger. When other, then, is asserted of you as
the same, and not-being as being, such a combina-
tion of nouns and verbs is really and truly false
discourse.

Theaetetus. Most true.

In our formal language, individual constants, usually
lowercase letters from the early part of the alphabet, will
play the role of names, and predicates, usually uppercase
letters, will play the role of verb. Thus “t” will denote
Theaetetus, and “S” and “F” will represent the actions of
sitting and flying, respectively. “Theaetetus sits” will be
symbolized “St,” and “Theaetetus flies” will be “Ft.” The
sentence is true just in case the individual named by the
name performs the action designated by the verb.

We want to start with Plato’s account and extend it, as
far as we can, beyond the very simple sentences Plato consi-
ders. The first thing we notice is that simple sentences of
the form

name + copula + adjective

or

name + copula + indefinite article + common noun

like

Theaetetus is brave.

or

Theaetetus is a Greek.

can be readily covered by Plato's account. Thus, we take a
simple sentence to consist of a proper name, such as
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"Theaetetus," and a predicate, such as "sits" or "is brave"
or "is a Greek." The proper name designates an individual,
and the predicate designates a property or action. The
sentence is true just in case the individual has the prop-
erty or performs the action. We’ll symbolize “Theaetetus is
brave” as “Bt,” and we’ll use “Gt” to symbolize “Theaetetus
is a Greek.”

We can combine the simple sentences by means of senten-
tial connectives, so that "Theaetetus is a brave Greek" will
be

(Bt ∧ Gt)

"Theaetetus either sits or flies" will be

(St ∨ Tt)

"Theaetetus sits but he does not fly" is

(St ∧ ¬Ft)

"If Theaetetus is brave, so is Socrates" is

(Bt → Bs)

It is tempting to try to treat "Something flies" as
analogous to "Theaetetus flies." The temptation should be
resisted. One way to see that there is a big difference
between "Theaetetus flies" and "Something flies" is to
observe that "Theaetetus flies" and "Theaetetus is a man"
together imply "Theaetetus is a man who flies," whereas
"Something flies" and "Something is a man" do not imply
"Something is a man who flies."

The correct analysis, due to Frege, is this: Whereas
"Theaetetus flies" and "Theaetetus is a man" are to be
understood as attributing a property (flying; manhood) to an
individual (Theaetetus), "Something flies" is to be under-
stood as attributing a property to a property. Namely "Some-
thing flies" says about the property of flying that it is
instantiated. Similarly, "Something is a man" says about the
property of manhood that it is instantiated. We represent
the property of flying in English by an open sentence "x
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flies," and in the formal language by an open sentence "Fx."
We indicate that something flies in the formal language by
prefixing the existential quantifier "(∃ x)" to the open
sentence "Fx," getting "(∃ x)Fx." "(∃ x)" is read "for some x"
or "there is an x such that," Similarly, the property of
manhood is indicated in English by the open sentence "x is a
man" and in the formal language by the open sentence "Mx."
We indicate that something is a man by prefixing the exis-
tential quantifier to the open sentence "Mx," getting
"(∃ x)Mx." The property of being a man who flies is indicated
in English by the open sentence "x is a man who flies" or "x
is a man and x flies" and in the formal language by the open
sentence "(Mx ∧ Fx)." We indicate that some men fly by

prefixing the existential quantifier to the open sentence
"(Mx ∧ Fx)," getting "(∃ x)(Mx ∧ Fx)"

Similarly, it would be tempting to treat "Everything is
a man" as analogous to "Theaetetus is a man." The resem-
blance between the two is superficial, however, as we can
see from the following example: "Theaetetus is either a man
or a woman" and "It is not the case that Theaetetus is a
woman" together imply "Theaetetus is a man," whereas "Every-
thing is either a man or a woman" and "It is not the case
that everything is a woman" do not imply "Everything is a
man." Whereas "Theaetetus is a man" indicates that a certain
individual (Theaetetus) has a certain property (manhood),
"Everything is a man" attributes a property to a property.
Namely, "Everything is a man" tells us about the property of
manhood that it is possessed by everything. We indicate that
everything is a man by prefixing the universal quantifier
"(∀ x)" (read "for all x" or "for every x") to the open
sentence "Mx," getting "(∀ x)Mx." We indicate that
everything flies by writing "(∀ x)Fx." We indicate that all
men fly by writing "(∀ x)(Mx → Fx)," so that, for every x,
either x is not a man or else x flies.

We can use Venn diagrams to illus-
trate quantified statements. "Everyone
is a man or a woman" ["(∀ x)(Mx ∨ Wx)"]
is indicated by shading Cell 4 in Figure
1, to indicate that there's nothing in
Cell 4. "All men fly" ["(x)(Mx → Fx)"]
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is indicated by shading Cell 2 in Figure
2. "Everything that flies is a man"
["(∀ x)(Fx → Mx)"] is indicated in
Figure 3 by shading Cell 3. "Everything
that flies is either a man or a woman"
["(∀ x)(Fx → (Mx ∨ Wx))"] is indicated
by shading Cell 7 in Figure 4. "Everyone
who is either a man or a woman flies"
["(∀ x)((Mx ∨ Wx) → Fx)"] is indicated
by shading Cells 2, 4, and 6 in Figure
5. For "Everyone who is both a man and a
woman flies" ["(∀ x)((Mx ∧ Wx) → Fx)"]
we shade Cell 2 in Figure 6, while for
"Everyone who flies is both a man and a
woman" ["(∀ x)(Fx → (Mx ∧ Wx))"] we
shade Cells 3, 5, and 7 in Figure 7.
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How about sentences that begin with
an existential quantifier? If we want to
illustrate the sentence "Someone who is
either a man or a woman flies"
["(∃ x)((Mx ∨ Wx) ∧ Fx)"], we want to
indicate that there is something in at
least one of the three Cells 1, 3, and
5. We can do this by drawing a curve
that passes through Cells 1, 3, and 5,
as in Figure 8. You can think of the
curve as like a train track; there is a
locomotive somewhere along the track.

"There are some men who either sit
or fly" ["(∃ x)(Mx ∧ (Sx ∨ Fx))"] is in-
dicated by a curve that passes through
Cells 1, 2, and 3 in Figure 9. "There
are some men who both sit and fly"
["(∃ x)(Mx ∧ (Sx ∧ Fx))"] is indicated by
a curve that is contained entirely with-
in Cell 1, as in Figure 10. "There are
some men who fly, and there are some men
who do not" [((∃ x)(Mx ∧ Fx) ∧ (∃ x)(Mx ∧
¬Fx))"] is indicated in Figure 11 by
having a curve that is contained en-
tirely within Cell 1 and another curve
that is entirely within Cell 2. "There
are some men who sit, some men who fly,
and some men who do neither" ["(((∃ x)(Mx
∧ Sx) ∧ (∃ x)(Mx ∧ Fx) ∧ (∃ x)(Mx ∧ ¬(Sx ∨
Fx)))"] is indicated in Figure 12 by
having a curve that passes through Cells
1 and 2, a second curve that passes
through Cells 1 and 3, and yet another
curve that is contained entirely within
Cell 4.
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Sentences that contain proper names
are indicated the same way, except that
now we label the curves. "Theaetetus is
a man who either sits or flies" ["(Mt ∧
(St ∨ Ft))"] is indicated in Figure 13
by having a curve marked "t" pass
through Cells 1, 2, and 3. Theaetetus is
a locomotive that is located somewhere
along the track. "Theaetetus is a man
who both sits and flies" ["(Mt ∧ (St ∧
Ft))"] is indicated in Figure 14 by a
curve marked "t" contained entirely
within Cell 1. "Rambo, who is a man,
does not fly, but Dumbo, who is not a
man, does fly" ["((Mr ∧ ¬Fr) ∧ (¬Md ∧
Fd))"] is illustrated in Figure 15 by
two curves, one, marked "r," contained
within Cell 2, and the other, marked
"d," contained within Cell 3.

We can use Venn diagrams to show
that certain arguments are valid. For
example, consider this argument:

All terriers are dogs.
All dogs are mammals.
Therefore all terriers are
mammals.

In symbols,

(∀ x)(Tx → Dx)
(∀ x)(Dx → Mx)
∴ (∀ x)(Tx → Mx)

We see whether it is possible to have
the premise true and the conclusion
false. The first premise is indicated in
Figure 16 by shading Cells 3 and 4. The
second premise is indicated by shading
Cells 2 and 6. If the conclusion were
false, there would be something either
in Cell 2 or in Cell 4; we indicate this
by a train track passing through Cells 2
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and 4. But, while the train track would
indicate that there is something either
within Cell 2 or Cell 4, the fact that
Cells 2 and 4 are both shaded indicates
that there is nothing in either of those
cells. So the attempt to diagram a situ-
ation in which the premises are true and
the conclusion false ends up with an
impossibility. So the argument must be
valid.

Another example:

All elephants are mammals.

Some elephants can fly.
Therefore some mammals can
fly.

In symbols,

(∀ x)(Ex → Mx)
(∃ x)(Ex ∧ Fx)
∴ (∃ x)(Mx ∧ Fx).

In Figure 17, we try to diagram a situa-
tion in which the premises are true and
the conclusion false. The first premise
is indicated by shading Cells 3 and 4.
The second premise is indicated by a
train track passing through Cells 1 and
3. To say the conclusion is true is to
say that there is something either in
Cell 1 or in Cell 5. Thus, to indicate
that the conclusion is false, we shade
Cells 1 and 5. But this has the train
track passing entirely through shaded
territory, which is impossible. So the
argument must be valid.

Here is an inference to consider:

Dumbo is an elephant.
Dumbo flies.
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Therefore some elephants fly.
In symbols,

Ed
Fd
∴ (∃ x)(Ex ∧ Fx)

To represent the first premise, we draw
a train track marked "d" through Cells 1
and 2. We indicate the second premise by
crossing out the part of this train
track which lies outside circle "F." To
indicate the falsity of the conclusion,
we shade Cell 1. But this gives us a
train track every part of which is ei-
ther crossed out or shaded, which repre-
sents an impossible situation.

Now consider this inference:

Traveler is a horse.
All horses eat oats.
Therefore Traveler eats oats.

In symbols,

Ht
(∀ x)(Hx → Ox)
∴ Ot.

The first premise is indicated in Figure
19 by a curve marked "t" passing through
Cells 1 and 2, and the second premise is
indicated by shading Cell 2. We indicate
the falsity of the conclusion by cross-
ing out the part of curve "t" which lies
inside circle "O." But this means the
whole curve is either crossed out or
shaded, which is impossible.

As a final example, consider

Everyone is either a man or a
woman.



Monadic Predicate Calculus, p. 14

Not everyone is a man.
Therefore someone is a woman.

In symbols,

(∀ x)(Mx ∨ Wx)
¬(∀ x)Mx
∴ (∃ x)Wx

The first premise is indicated in Figure
19 by shading Cell 4. "(∀ x)Mx" says
that there is nothing in either Cells 3
or Cell 4. "¬(∀ x)Mx" denies this, so it
says that there is something either in
Cell 3 or in Cell 4, a fact we can indi-
cate by drawing a curve passing through
Cells 3 and 4. The conclusion says that
there is someone either in Cell 1 or in
Cell 3. So we can indicate the falsity
of the conclusion by shading Cells 1 and
3. But this has the train track passing
entirely through shaded territory, which
is impossible.

We now turn to a more formal development. A language for the
monadic predicate calculus (MPC) is given by specifying two kinds
of things: individual constants (usually lowercase letters from
the early part of the alphabet), which play the role of proper
names, and predicates (usually uppercase letters), which play the
roles of intransitive verbs, common nouns, and adjectives. An
atomic formula consists either of a predicate followed by an
individual constant or of a predicate followed by the variable
"x." The formulas of the language constitute the smallest class
of expressions which

contains the atomic formulas;
contains (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), and (φ ↔ ψ) when-
ever it contains φ and ψ; and
contain ¬φ, (∀ x)φ, and (∃ x)φ whenever it contains φ.

Unique Readability. A formula is built up from
atomic formulas in a unique way.
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The subformulas of a particular formula are just the formu-
las that are contained within the given formula, where a formula
is counted as a subformula of itself. If an occurrence of the
letter "x" within a particular formula is contained within a
subformula beginning with "(∀ x)" or with "(∃ x)," the occurrence
is said to be bound. Otherwise it is said to be free. A formula
with no free occurrences of "x" is a sentence. Where φ is a
formula and c is a constant, we write φx/c for the sentence that
results from replacing each free occurrence of "x" in φ by "c."

Examples: In "(Fx ∧ (∀ x)(Gx ∧ ¬(∀ x)Jx))," the first occurrence
of "x" is free, and the other four are bound. "(Fx ∧ (∀ x)(Gx ∧
¬(∀ x)Jx))"x/d is the sentence "(Fd ∧ (∀ x)(Gx ∧ ¬(∀ x)Jx))."

In "((∀ x)(Fx ↔ Gx) ∧ ((∃ x)Fx ↔ (Hx ∧ Jc)))," the first
five occurrences of "x" are bound and the remaining occurrence is
free. "((∀ x)(Fx ↔ Gx) ∧ ((∃ x)Fx ↔ (Hx ∧ Jc)))"x/c is "((∀ x)(Fx
↔ Gx) ∧ ((∃ x)Fx ↔ (Hc ∧ Jc)))," which is a sentence.

In "(((∀ x)Fx ↔ Gx) ∧ (∃ x)(Fx ↔ (Hx ∧ Jc)))," only the
third occurrence of "x" is free; the other five are bound.
"(((∀ x)Fx ↔ Gx) ∧ (∃ x)(Fx ↔ (Hx ∧ Jc)))"x/e is the sentence
"(((∀ x)Fx ↔ Gx) ∧ (∃ x)(Fx ↔ (He ∧ Jc)))."

"Fc" and "(∀ x)Fx" are both sentences.

In general, if φ is a formula and c is a constant, φx/c is a
sentence. Also, every formula which begins with either "(∀ x)" or
"(∃ x)" is a sentence.

Definition. An interpretation (of a language of
the MPC)is a function A  defined on {"∀ "} ∪ {indi-
vidual constants of the language} ∪ {predicates
of the language} that meets the following
conditions:

A("∀ "), also written |A|, is a nonempty set,
called the universe of discourse or the do-
main of the interpretation.
If c is a constant, A(c), also written cA, is
an element of |A|.
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If R is a predicate, A(R), also written RA,
is a subset of |A|.

The universe of discourse of a particular discussion con-
sists of the things we are talking about within that discussion.
When I say, sitting at the dinner table with the family, “Every-
body who finishes her Brussel sprouts will get ice cream,” I’m
not promising to reward everyone in the whole world who eats her
Brussel sprouts, just everyone sitting there at the table. For
any formula φ, there will be a set of members of the universe of
A that satisfy φ in A. If this set is nonempty, the sentence
(∃ x)φ will be true in A. If every member of  A satisfies φ in A,
(∀ x)φ will be true in A. If the member cA of  A satisfies φ in A,
then the sentence φx/c will be true in A. It makes no sense to
talk about a sentence of the formal language being true or false
absolutely. A sentence is true or false under an interpretation.
Only a sentence can be either true or false under an intepreta-
tion; a formula with free variables cannot.

Intuitively, we have three fundamental semantic notions,
truth, falsity, and satisfaction. A sentence expresses a thought
that is either true or false, whereas a formula that is not a
sentence represents a property, and the formula is satisfied by
those elements of the universe that have the property. We shall
simplify our treatment by departing from our intuitions a little
bit, applying the notion of satisfaction to all formulas, whether
or not the formulas contain free variables, stipulating that a
true sentence is satisfied by every member of the universe of
discourse, whereas a false sentence is satisfied by nothing.
Specifically, we have the following:

Given an interpretation A,
an atomic formula of the form Rx is satisfied by
the members of A(R);
an atomic formula of the form Rc is satisfied by
every member of the universe if A(c) is an ele-
ment of A(R);
otherwise, Rc is satisfied by nothing;
a formula of the form (φ ∧ ψ) is satisfied by
those members of the universe of discourse which
satisfy both φ and ψ;



Monadic Predicate Calculus, p. 17

a formula of the form (φ ∨ ψ) is satisfied by
those members of the universe of discourse which
satisfy either φ or ψ (or both);
a formula of the form (φ → ψ) is satisfied by
those members of the universe of discourse which
either satisfy ψ or fail to satisfy φ;
a formula of the form (φ ↔ ψ) is satisfied by
those members of the universe of discourse which
satisfy both φ and ψ and also by those members of
the domain which satisfy neither φ nor ψ;
a formula of the form ¬φ is satisfied by those
members of the universe of discourse which fail to
satisfy φ;
if every member of the universe satisfies φ, then
every member of the universe satisfies (∀ x)φ;
if some member of the universe fails to satisfy φ,
nothing satisfies (∀ x)φ;
if some member of the universe satisfies φ, every
member of the universe satisfies (∃ x)φ;
if no member of the universe satisfies φ, no mem-
ber of the universe satisfies (∃ x)φ.

Example. As an example of an interpretation, let's
let

|A| = {animals}
A("b") = Bonzo the chimpanzee
A("c") = Celia the canary
A("r") = Reagan, the former president

A("B") = {animals that bay at the
moon} A("D") = {dogs}

A("F") = {animals that fly}
A("C") = {chipmunks}

Since Celia can fly, A("c") is an element of
A("F"), and so every animal will satisfy "Fc."
A("r") ∉ A("F"), since Reagan can't fly, so noth-
ing will satisfy "Fr." "Bx" will be satisfied by
the animals that bay at the moon and "Dx" will be
satisfied by the dogs. "(Dx ∧ Bx)" will be satis-
fied by the dogs that bay at the moon. "¬Fx" will
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be satisfied by the animals that don't fly. "(Dx
∧ ¬Bx)" will be satisfied by the dogs that don"t
bay at the moon. Since some dogs bay at the moon,
every animal will satisfy "(∃ x)(Dx ∧ Bx)." Since
no dogs fly, nothing will satisfy "(∃ x)(Dx ∧ Fx)."
Nothing satisfies "(∀ x)(Dx → Bx)," since not
every dog bays at the moon. Since Reagan isn't a
chipmunk, nothing satisfies "Cr." So every animal
satisfies "^¬Cr." So every animal satisfies
"(∀ x)¬Cr."⌧

Let's introduce some technical jargon. A formula that begins
with "(∀ x)" is a universal formula. One that begins with "(∃ x)"
is an existential formula. Formulas that begin either with
"(∀ x)" or with "(∃ x)" are said to be initially quantified.
Conjunctions, disjunctions, negations, conditionals, and bicondi-
tionals are referred to as molecular formulas. Every formula
which isn't either atomic or initially quantified is built up
from atomic formulas and from initially quantified by means of
the connectives "∧ ," "∨ ," "¬," "→," and "↔." We refer to those
atomic and initially quantified sentences out of which a given
sentence is built as its basic truth-functional components.

Definition. A sentence which is satisfied by every
member of |′A| under an interpretation A is said
to be true under A. A sentence which is satisfied
by no member of |A| under A is false under A.

Law of Bivalence. Given an interpretation A, ev-
ery sentence is either true under A or false un-
der A.

Proof: Since every sentence is built up from atomic sentences and
from initially quantified sentences by means of the sentential
connectives, it will be enough to show that, given an interpreta-
tion A, every atomic sentence and every initially quantified
sentence is either true or false under A and that every sentence
formed from sentences which are either true or false under A by
means of the sentential connectives is either true of false under

A.

An atomic sentence takes the form "Fc." Such a sentence is
true under A if A(c) ∈ A(F) and false under A if A(c) ∉ A(F). A
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universal sentence (∀ x)φ is true under A if every member of |A|
satisfies φ under A, and it is false under A otherwise. An
existential sentence (∃ x)φ is true under A if at least one member
of |A| satisfies φ under A, and it is false under A otherwise.

A conjunction is true under A if both conjuncts are true
under A, and it is false under A if either conjunct is false
under A. A disjunction is true under A if either disjunct is
true under A, and it is false under A if both disjuncts are
false under A. A negation is true under A if the negatum is
false under A, and it is false under A if the negatum is true
under A. A conditional is true under A if the antecedent is
false under A or the consequent is true under A; if the anteced-
ent is true under A and the consequent if false under A, the
conditional is false under A. A biconditional is true under A if
both components are true under A or both components are false
under A; if one component is true and the other is false, the
biconditional is false under A.⌧

Corollary. For any sentence φ, interpretation A,
and element a of |A|, φ is true under A iff a
satisfies φ under A.

Proof: If φ is true under A, then, by definition of "true," every
element of |A′| satisfies φ under A. So in particular, a
satisfies φ under A. If, on the other hand, φ isn't true under
A, then, by bivalence, φ is false under A, so that, by defini-
tion of "false," nothing satisfies φ under A; so, in particular,
a doesn't satisfy φ under A.⌧

The following definition is taken over directly from the
sentential calculus:

Definition. A normal truth assignment (N.T.A.) is
a function which assigns a number, either 0 or 1,
to each sentence, subject to the following condi-
tions:

A conjunction is assigned 1 iff both conjuncts are
assigned 1.
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A disjunction is assigned 1 iff one or both dis-
juncts are assigned 1.

A negation is assigned 1 iff the negatum is as-
signed 0.

A conditional is assigned 1 iff the antecedent is
assigned 0 or the consequent is assigned 1.

A biconditional is assigned 1 iff both components
are assigned the same value.

Definition. A sentence is tautological iff it is
assigned the value 1 by every N.T.A. A sentence is
valid iff it is true under every N.T.A.

For the sentential calculus, the words "tautological" and
"valid" were different words for the same thing. Now that we've
started on the predicate calculus, we need to distinguish them.
Validity is the notion we're really interested in, but we need
the notion of tautology as a technical notion.

Proposition. Every tautology is valid, but not
vice versa.

Proof: Suppose that θ is a tautology, and take an arbitrary
interpretation A. We get a normal truth assignment by stipulat-
ing that, for any φ,

ℑ (φ) = 1 if φ is true under
= 0 otherwise

So ℑ (θ) = 1. Hence θ is true under A. Since A was arbitrary, this
shows that every tautological formula is valid. On the other
hand, the tautological formula "((∀ x)Fx → Fc)" is not tautologi-
cal.⌧

A tautological sentence is a valid sentence whose validity
is determined by the sentence's truth functional structure. If,
instead, the validity of a sentence depends upon the meaning of
the quantifiers, the sentence won't be tautological.
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We can test whether a sentence is tautological by the method
of truth tables, examining each possible way to assign a truth
value to the sentence's basic truth functional components.
Alternatively, we can test the sentence by the search-for-
counterexample method. For example, to show that "(((∃ x)Fx →
(∀ x)Gx) ∨ (¬Hc → (∃ x)Fx))" is tautological, we have the follow-
ing:

(((∃ x)Fx → (∀ x)Gx) ∨ (¬Hc → (∃ x)Fx))
1 0 0 0 0 X

Definition. A sentence φ is a logical consequence
of a set of sentences Γ iff φ is true under every
interpretation under which all the members of Γ
are true. φ is a tautological consequence of a set
of sentences Γ iff φ is assigned the value 1 by
every N.T.A. which assigns the value 1 to every
member of Γ.

The same reasoning which gave us the last proposition yields the
following:

Proposition. Every tautological consequence of a
set of sentences is a logical consequence, but not
vice versa.

The following definitions and theorems are lifted directly from
the sentential calculus:

Definitions. A sentence is contradictory (or in-
consistent) iff it is false under every interpre-
tation. A sentence is indeterminate iff it is true
under some interpretations and false under others.
A sentence φ implies (or entails) sentence ψ iff
ψ is true under every interpretation under which φ
is true. φ and ψ are logically equivalent iff
they are true under precisely the same interpreta-
tions. An argument is valid iff the conclusion is
true under every interpretation under which the
premises are true. A set of sentences is consis-
tent iff there is some interpretation under which
all its members are true.
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Theorems. A sentence is a valid iff its negation
is contradictory.

A sentence is contradictory iff its negation is
valid.

A sentence is indeterminate iff its negation is
indeterminate.

A conjunction is valid iff both its conjuncts are
valid.

If conjunction is contradictory if (but not neces-
sarily only if) either of its conjuncts is.
A disjunction is valid if (but not only if) either
disjunct is valid.

A disjunction is contradictory iff both disjuncts
are contradictory.

A conditional is contradictory iff its antecedent
is valid and its consequent is a contradiction.

Two sentences φ and ψ are logically equivalent iff
the biconditional (φ ↔ ψ) is valid.

¬(φ ∨ ψ) is logically equivalent to (¬φ ∧ ¬ψ).

¬(φ ∧ ψ) is logically equivalent to (¬φ ∨ ¬ψ).

φ implies ψ iff the conditional (φ → ψ) is valid.

A contradiction implies every sentence.

A valid sentence is implied by every sentence.

Two sentences are logically equivalent iff each
implies the other.

An argument is valid iff the conjunction of the
premises entails the conclusion.
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An argument is valid iff the conditional whose
antecedent is the conjunction of the premises and
whose consequent is the conclusion is valid.

φ is a logical consequence of {γ1,γ2,...,γn} if and
only if the argument with γ1,γ2,...,γn as premises
and with φ as conclusion is valid.

A sentence is a logical consequence of the empty
set iff it's valid.

A sentence is a valid iff it is a logical conse-
quence of every set of sentences.

Each member of a set of sentences is a logical
consequence of that set of sentences.
If every member of ∆ is a logical consequence of
Γ and φ is a logical consequence of ∆, then φ is a
logical consequence of Γ.

If ∆ is a subset of Γ and φ is a logical conse-
quence of ∆, then φ is a logical consequence of Γ.

For any sentence ψ and set of sentences Γ, ψ is a
logical consequence of Γ if and only if Γ and Γ ∪
{ψ} have precisely the same logical consequences.

(φ ∧ ψ) is a logical consequence of Γ iff φ and ψ
are both logical consequences of Γ.

(φ → ψ) is a logical consequence of Γ iff ψ is a
logical consequence of Γ ∪ {φ}.

{γ1,γ2,...,γn} is inconsistent iff (γ1 ∧ (γ2 ∧ ...∧
γn)...) is an inconsistent sentence.

If Γ is an inconsistent set of sentences, then
every sentence is a logical consequence of Γ.

A set of sentences Γ is inconsistent iff (P ∧ ¬P)
is a logical consequence of Γ.
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A set of sentences Γ is inconsistent iff every
sentence is a logical consequence of Γ.

If ∆ is inconsistent and ∆ ⊆ Γ, then Γ is incon-
sistent.

φ is a logical consequence of Γ iff Γ ∪ {¬φ} is
inconsistent.

Substitution Principle. For any interpretation A,
individual constant c, and formula φ, φx/c is true
under A iff A(c) satisfies φ under A.

Proof: I am going to write out this proof in excruciating detail,
just so you'll see what one of these proofs looks like when
written out in utter detail. I promise not to do it again.

Let A be an interpretation and c a constant, and let Σ be
the set of formulas φ such that φx/c is true under A iff A(c)
satisfies φ under A. Clearly {formulas} ⊆ Σ. But also, since
{formulas} is the smallest class of expressions which contains
the atomic formulas and which is closed under conjunction,
disjunction, formation of conditionals, formation of bicondition-
als, negation, universal quantification, and existential quanti-
fication, if we can show that Σ is a class of expressions which
contains the atomic formulas and which is closed under conjunc-
tion, disjunction, formation of conditionals, formation of
biconditionals, negation, universal quantification, and existen-
tial quantification, this will tell us that {formulas} ⊆ Σ. This
will tell us that {formulas} = Σ, which is what we want.

Atomic formulas are in Σ. If φ is an atomic formula, then either
it has the form Fx or it has the form Fd. If φ has the from Fx,
then φx/c is Fc. We have

φx/c is true under A
iff Fc is true under A
iff A(c) ∈ A(F)
iff A(c) satisfies Fx under A.

If φ has the form Fd, then φx/c = φ. We have
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φx/c is true under A
iff φ is true under A
iff A(c) satisfies φ under A [by the corollary to the

principle of bivalence].

Σ is closed under conjunction. Suppose that φ and ψ are both in
Σ. Then (φ′∧′ψ) x/c is equal to (φx/c ∧ ψx/c), and we have:

(φ ∧ ψ)x/c is true under
iff (φx/c ∧ ψx/c) is true under
iff both φx/c and ψx/c is true under
iff A(c) satisfies φ under A and (c) satisfies ψ

under [because φ and ψ are both in Σ]
iff A(c) satisfies (φ ∧ ψ) under A . 

 
So (φ ∧ ψ) is in Σ.

Σ is closed under disjunction. Suppose that φ and ψ are both in
Σ. Then (φ′∨′ψ) x/c is equal to (φx/c ∨ ψx/c), and we have:

(φ ∨ ψ)x/c is true under A
iff (φx/c ∨ ψx/c) is true under A
iff either φx/c or ψx/c is true under A
iff either A(c) satisfies φ under A or A(c) satisfies

ψ under [because φ and ψ are both in Σ]
iff A(c) satisfies (φ ∨ ψ) under A.

So (φ ∨ ψ) is in Σ.

Σ is closed under the formation of conditionals. Suppose that φ
and ψ are both in Σ. Then (φ′→′ψ)x/c is equal to (φx/c → ψx/c),
and we have:

(φ → ψ)x/c is true under A
iff (φx/c → ψx/c) is true under A
iff either φx/c isn't true under A or ψx/c is true under

           A
iff either A(c) doesn't satisfy φ under A or A(c) does

satisfies ψ under A [because φ and ψ are both
in Σ]
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iff A(c) satisfies (φ → ψ) under A.

So (φ → ψ) is in Σ.

Σ is closed under the formation of biconditionals. Suppose that
φ and ψ are both in Σ. Then (φ′↔′ψ)x/c is equal to (φx/c ↔ ψx/c),
and we have:

(φ ↔ ψ)x/c is true under A
iff (φx/c ↔ ψx/c) is true under A
iff φx/c and ψx/c are either both true under A or both

false under A 
iff either A(c) satisfies both φ and ψ under A or A(c)

satisfies neither φ nor ψ under A [because φ and ψ
are both in Σ]
iff A(c) satisfies (φ ↔ ψ) under A.

So (φ ↔ ψ) is in Σ.

Σ is closed under negation. Suppose that φ is in Σ. Then (¬φ)x/c
is equal to ¬(φx/c), and we have:

(¬φ)x/c is true under A
iff ¬(φx/c) is true under A
iff φx/c isn't true under A
iff A(c) doesn't satisfies φ under A

[because φ and ψ are both in Σ]
iff A(c) satisfies ¬φ under A.

So ¬φ is in Σ.

Σ is closed under universal quantification. Suppose φ is in Σ.
((∀ x)φ)x/c is equal to (∀ x)φ, and we have

((∀ x)φ)x/c is true under A
iff (∀ x)φ is true under A
iff A(c) satisfies (∀ x)φ under A [by the corollary to

the principle of bivalence].

So (∀ x)φ is in Σ.
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Σ is closed under existential quantification. Suppose φ is in Σ.
((∃ x)φ)x/c is equal to (∃ x)φ, and we have

((∃ x)φ)x/c is true under A
iff (∃ x)φ is true under A
iff A(c) satisfies (∃ x)φ under A [by the corollary to

the principle of bivalence].

So (∃ x)φ is in Σ.⌧

If our language has just three predicates,
"F," "G," and "H," then any interpretation of the
language divides the universe into 8 cells, num-
bered 1 through 8 in the figure (where some of the
cells may be empty). If two members of the uni-
verse lie in the same cell, they satisfy all the
same formulas. This observation is perfectly gen-
eral:

Indiscernibility Principle. Given an interpreta-
tion A. Any two members of |A| which satisfy pre-
cisely the same atomic formulas under A satisfy
all the same formulas under A.

Proof: Suppose that a and b satisfy precisely the same atomic
formulas under A′. Let Σ be the set of formulas φ such that a
satisfies φ under A iff b satisfies φ under A. We want to see
that Σ is equal to the set of all formulas. To show this, we need
to show that Σ contains the atomic formulas and that it is closed
under conjunction, disjunction, formation of conditionals,
biconditionals, negation, universal quantification, and existen-
tial quantification.

Atomic formulas are in Σ. Given.

Σ is closed under conjunction. Suppose that φ and ψ are both in
Σ. We have

a satisfies (φ ∧ ψ) under A
iff a satisfies both φ and ψ under A
iff b satisfies both φ and ψ under A [because φ and ψ

are both in Σ]
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iff b satisfies (φ ∧ ψ) in Σ.

So (φ ∧ ψ) is in Σ.

Σ is closed under disjunction, formation of conditional, and
formation of biconditionals. Similar.

Σ is closed under universal quantification. Suppose that φ is in
Σ. We have

a satisfies (∀ x)φ under A
iff (∀ x)φ is true under A [by the corollary to biva

lence]
iff b satisfies (∀ x)φ under A [by the corollary to

bivalence again].

So (∀ x)φ is in Σ.

Σ is closed under existential quantification. Similar.⌧

To see whether a sentence is true under an interpretation,
you have to see what the universe of the interpretation is, and
you have to see what values the interpretation assigns to the
constants and predicates that appear within that sentence. That's
all you have to look at. You don't have to look at the values the
interpretation assigns to the constants and predicates that don't
even occur within the sentence. The following theorem makes this
observation precise:

Locality Principle. Let A and B be two interpre-
tations with the same universe of discourse that
assign the same values to all the constants and
predicates that occur in the formula φ. Then pre-
cisely the same individuals satisfy φ under A and
under B.

Proof: Given interpretations A and B with the same universe of
discourse, let Σ = {formulas φ: if A and B assign the same values
to all the constants and predicates that occur in φ, then the
same individuals satisfy φ under A and under B}. We want to show
that Σ is the set of all formulas. To show this, it will be
enough to shoe that Σ contains the atomic formulas and that it is
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closed under conjunction, disjunction, formation of conditionals,
formation of biconditionals, negation, universal quantification,
and existential quantification.

Σ contains the atomic formulas. Let φ be an atomic formula such
that any constant or predicate that appears in φ is assigned the
sa: me value by A and by B. Take a ∈ |A|. Either φ has the form
Fx or else it has the form Fc.

If φ has the form Fx, we have

a satisfies φ under A
iff a ∈ A(F)
iff a ∈ B(F)
iff a satisfies φ under B.

If φ has the form Fc, we have

a satisfies φ under A
iff A(c) ∈ A(F)
iff B(c) ∈ B(F)
iff a satisfies φ under B.

Σ is closed under conjunction. Suppose that φ and ψ are both in
Σ, and take a ∈ |A|. Suppose that any constant or predicate that
occurs in (φ ∧ ψ) is assigned the same value by A and by B. Then
every constant or predicate that occurs in φ is assigned the same
value by A and by B, so that, since φ is in Σ, a satisfies φ
under A iff a satisfies φ under B. Similarly for ψ. Hence

a satisfies (φ ∧ ψ) under A
iff a satisfies both φ and ψ under A
iff a satisfies both φ and ψ under B
iff a satisfies (φ ∧ ψ) under B

Σ is closed under disjunction, formation of conditionals, forma-
tion of biconditionals, negation, universal quantification, and
existential quantification. Similar.⌧
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Let _ be the language whose predicates are "M," "W," and "F"
and whose only individual constant is "t," and let be the
interpretation of _ given by:

|A| = {animals}
A("M") = {mammals}
A("W") = {warm-blooded animals}
A("F"} = {animals that fly}
A("t") = Tarmin the dog

This structure can be represented by a Venn diagram that parti-
tions the universe into eight cells. There are animals in Cell 1,
bats, for instance. Tarmin, among others, is in Cell 2. There
aren't any animals in Cells 3 and 4, because all mammals are
warm-blooded. Canaries are in Cell 5, and penguins in Cell 6. We
have our butterflies in Cell 7 and our banana slugs in Cell 8.
Thus the only empty cells are 3 and 4.

We now want to create a second structure B with the same
structural features as A whose only elements are numbers. To
represent the fact that in A there are animals is Cells 1, 2, 5,
6, 7, and 8, the universe of B will consist of the numbers 1, 2,
5, 6, 7, and 8. Specifically,

|B| = {1,2,5,6,7,8}
B("M") = {1,2}
B("W") = {1,2,5,6}
B("F") = {1,5,7}
B("t") = 2

We set B("t") equal to 2 to represent the fact that Tarmin, who
is A("t"), is in Cell 2. It is not hard to convince ourselves*
that, if a is an animal in the kth cell, then, for any formula φ,
a satisfies φ under A iff k satisfies φ under B. In particular, a
sentence is true under A iff it's true under B.

* A formal proof consists of setting Σ equal to the set of formulas φ such
that, for any animal a, if a is in the kth cell, then a satisfies φ in A iff k
satisfies φ in B . Then show Σ contains the atomic formulas and that it is
closed under conjunction, disjunction, formation of conditionals, formation of
biconditionals, negation, universal quantification, and existential quantifi-
cation.
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The procedure we used here is perfectly general. An
interpretation A of a language with n predicates partitions the
universe of A into 2n cells, which we can number 1 through 2n.
(Some of the cells may be empty.) Form an interpretation B as
follows:

|B| = {numbers k: under A, the kth cell is nonempty}.
B(F) = {numbers k: the kth cell is a nonempty part of   

                           A(F)}, for F a predicate.
B(c) = the number k such that A(c) is in the kth cell,

for c an individual constant

For any element a of |A|, if a is in the kth cell, then, for any
formula φ, a satisfies φ under A iff k satisfies φ under B. In
particular, if φ is a sentence, φ will be true under A iff it's
true under B. Let us call the model B obtained in this way the
canonical model associated with A. Since the universe of the
canonical model is a nonempty subset of {1,2,3,...,2n}, we have
the following:

Theorem. A sentence containing n predicates is
valid iff it is true under every interpretation
whose universe is contained in the set
{1,2,3,...,2n}.

Given a language _ with n predicates and m constants, we can
determine a canonical model of the language by deciding which
elements of {1,2,3,...,2n} are to be elements of the universe of
the model and by deciding which element of the universe of the
model each of the m constants is to denote. Thus the total number
of canonical models for _ will be:

2n

∑
i=1

Corollary. There is an algorithm ─ that is, a
mechanical procedure ─ for testing whether a sen-
tence is valid.

The algorithm just described isn't at all practical, for the
interpretations are far too numerous for it to be feasible to
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examine them all. The theoretical possibility of testing a
sentence φ for validity by examining all the models of φ whose
universe is contained within {1,2,3,...,2n} remains only that, a
theoretical possibility.

In the next chapter, we are going to learn a more practical
method for showing valid sentences valid. 


