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Lesson 10.  the poles of the transfer function. 

10.0 Context 
In lesson 9 we found that a second-order process could be brought to 
instability by reducing the damping coefficient. 
stability in general. ical process, instability may mean unsafe 
conditions, bad quality product, and loss of money. 

10.1 An example, using a badly conceived process 
Consider a tank with pumped output in which the input flow is directly 
proportional to the liquid level in the tank. 
increased inlet flow, and falling level cuts back on the inlet flow: each 
change makes matters worse. 

Fin 

Fout 

The float operates a 
lever that opens the 

valve when the 
level rises, and 
closes it when it 

falls. 

Fin 

Fout 

The float operates a 
lever that opens the 

valve when the 
level rises, and 
closes it when it 

falls. 

Analyzing by material balance: 
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Here, the outlet flow is an arbitrary function of time, and the initial 
condition is some tank level. ng by the inlet flow proportionality 
defines a characteristic time τ. tegrating factor, we obtain 
the solution 

τττ 

τ 
t 

s 

t 

out 

tt 
ehdttFee

k
th +

− 
= ∫ 

− 

0 

)(1)(  (10.1.2) 
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If Fout and hs are in perfect balance, the level will be steady at hs. 
However, the slightest change in Fout will lead to exponential variation in 
the liquid level. ble system, headed inevitably for 
overflow or draining. 

10.2 Define stability 
If we disturb a system, will it return to good operation, or will it get out of 
hand?  This is asking whether the system is stable. e define stability as 
"bounded output for a bounded input". eans that 

• a ramp disturbance is not fair – even stable systems can get into 
trouble if the input keeps rising. 

• an impulse disturbance is fair – although it is briefly infinite, it 
soon passes. 

• a stable system should also handle a step change in input, 
ultimately coming to some new steady state. e must be 
realistic, however.  a system is so sensitive that a small input 
step leads to an unacceptably high, though steady, output, we 
might declare it unstable for practical purposes.) 

• it should also handle a sine input; here the result is in general not 
steady state, because the output may oscillate. hus we 
distinguish between 'steady state' and 'long-term stability'.) 

Stability depends on 
• the system – certainly; we will discuss the characteristics of the 

system that determine stability 
• the type of disturbance – yes, as discussed above. 

possible that a system is stable to some bounded inputs, but not 
others. ple, the first-order integrator (pumped outlet 
tank) is stable to sine disturbances but not to steps. 
credit – we declare such a system unstable. 

• the magnitude of disturbance – maybe. 
represent real systems by LINEAR models. hile the magnitude 
of the disturbance does not influence stability of the linear system, 
a sufficiently large disturbance to the real system may move it to a 
regime of operation that the linear approximation does not 
describe. 

10.3 Develop a criterion for stability of linear systems 
The key is the poles of the LINEAR characteristic equation. 
has a zero or positive real part, the system will be unstable to bounded 
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disturbances. This happens because of the structure of the linear, 
constant-coefficient, ordinary differential equations that we are using – the 
solutions are exponential terms. Here's the general form 

n d n−1 

an 
d
dt n

y 
+ an−1 dt n−1 

y 
+ ⋅ ⋅ ⋅ + a0 y = K1 x1 (t) + K 2 x2 (t) + ⋅ ⋅ ⋅  (10.3.1) 

To obtain the homogeneous solution, we substitute a candidate solution y 
= ert and set the right-hand side to zero. We find that the parameter r is 
constrained to be a root of the characteristic equation 

anr n + an−1r
n−1 + ⋅ ⋅ ⋅ + a0 = 0  (10.3.2) 

These n roots will in general be complex numbers. 

ri =α i + jβ i  (10.3.3) 

The homogeneous solution of (10.3.1) will be a sum of terms, each 
containing a factor eαit. Any term in which αi is positive will grow 
without bound, and thus render the entire solution unstable. Such 
instability results from the very structure of the system itself (i.e., the 
values of the coefficients ai in (10.3.1)), and not from the particular 
disturbances on the right-hand side. 

Notice that (10.1.1) resembles our well-known first-order lag system, but 
differs in a crucial respect: 

τ dy 
+ y = Kx(t)  first-order lag

dt 

−τ dy 
+ y = Kx(t) unstable system from (10.1.1)

dt 

In the first-order lag, the dependent variable opposes change in itself: a 
higher value of y forces a smaller rate of change. The opposite effect is 
seen in (10.1.1), and this mathematical structure leads to the positive root 
of the characteristic equation. 

Considering the homogeneous solution has led us to regard positive real 
parts of roots as unstable. However, we must become even more 
restrictive, as shown by considering the disturbances. Taking the Laplace 
transform of (10.3.1), 
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Equation (10.3.2), the characteristic equation of (10.3.1), is the same as 
the denominator of the transfer functions in (10.3.4). Of course, they both 
represent the left-hand side of the differential equation, and the poles of 
the transfer function are the same as the roots of the characteristic 
equation. They have the same significance for the solution (as they must) 
in that partial fraction expansion of the transfer function in terms of the 
poles leads to exponential terms in the solution when the transform is 
inverted. 

Consider now a transfer function that has a zero pole. 

K1y(s) = 
s(s + b) 

x1(s)  (10.3.5) 

The root -b is a typical stable root, and more denominator terms of the 
form (s+bi) would not change the outcome. Now suppose that x1(t) is a 
step of magnitude A. Then 

K1 A  1 1 1  y(s) = 
s2 (s + b) 

= K1 A 

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Upon taking inverse transforms, 

 t 1 1 −bt  y(t) = K1 A
 b 

− 
b2 + 

b2 e 

 (10.3.7) 

Thus the step disturbance, by repeating the existing zero pole, elicits a 
term that grows steadily with time. The zero pole would give a bounded 
output for a sine disturbance, but its behavior for a persistent disturbance 
of one sign is grounds for declaring it categorically unstable. 

A system is unstable if any root of its characteristic equation (i.e., pole of its transfer function) 
has a real part of zero or greater. 

By the way, the system of (10.3.5) is an example of an integrator process, 
in which the dependent variable has no influence on its time derivatives. 
Its model equation, reasoning backward from (10.3.5), is 

d 2 y 
+ b dy 

= K1 x1 (t)
dt 2 dt 

We saw a first-order integrator in the pumped outlet tank of Lesson 1. 
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10.4 Stability of a recycle structure 
Consider a non-oscillating third-order system in a recycle structure. For 
example, this might be three mixed tanks in series under feedback control, 
in which the controlled variable is compared to a set point and used to 
drive a manipulated input variable, as we discussed in Lesson 1. The 
block diagram for the system is 

-
Kc ( 31+s 

K p 

τ 
r(s) u(s) y(s) 

-
Kc ( 3 1+s 

K p 

τ
r(s) u(s) y(s) 

))

The value of signal y is subtracted from the set point r. The difference, 
which constitutes error, is fed to the controller. The controller operates 
upon the error by a proportional gain to produce a signal u. Input u acts 
upon output y according to the transfer function shown in the block. The 
controller gain Kc is variable; process gain Kp and characteristic time τ are 
fixed. 

We derive the transfer function for the system by block diagram rules. 

K py(s) = 
(τs +1)3 u(s) 

p c= 
K K 

)3 (r(s) − y(s))
(τs +1 

K Kp c  (10.4.1)
(τs +1)3 

r(s)= K K
1 + p c 

(τs +1)3 

K Kp c= 
(τs +1)3 + K pKc 

r(s) 

We emphasize that transfer function (10.4.1) does not describe the third-
order process, but rather that process under feedback control by a 
proportional controller. The transfer function shows how the controlled 
variable y responds to changes in set point r. The poles of (10.4.1) are 
most easily found by numerical methods. In Figure 10-1 we have plotted 
the poles as a function of the value of KpKc, assuming τ = 1. The real part 
of the complex conjugate roots becomes zero at KpKc = 8. 
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Figure 10-1. Poles of transfer function (10.4.1). With gain of zero, the 
repeated root is -1. As gain increases (KpKc = 3, 5, 7, 8, 9) the 
complex conjugate poles approach the imaginary axis with increasing 
imaginary parts. 

We can calculate the step response as we have before by substituting a step for r(s) and inverting 
the transform y(s) in (10.4.1). 

10.5 Stability of systems with dead time 
In Lesson 8 we introduced the dead time. Consider feedback control of 
the FODT process. 

-
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τ 
sp e 
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+1 
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τ
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By the same means as in Section 10.4, we derive the transfer function for 
the system. 

K K e− sθ 
p cy(s) =

τs +1+ K K e−sθ r(s)  (10.5.1) 
p c 

This departs from the polynomial equations we used as a basis for the 
stability criterion! We might salvage that method by approximating the 
exponential term by an infinite polynomial series. We might also develop 
another method – that’s for another lesson. 
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10.6 Stability and control 
Many chemical processes, left alone, are stable. Of course we want to 
maintain the operation at specific conditions, so we add control. As 
indicated in Section 10.4, however, we will find that it is possible, via 
poorly applied control, to produce instability in a process that, without 
control, would be stable. 
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