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Chapter 2. Dynamic system 

2.0 Context 
In this chapter, we define the term 'system' and how it relates to 'process' 
and 'control'. We will also show how a simple dynamic system responds 
to several disturbances. 

2.1 System 
In Chapter 1, we introduced a process - a surge tank with pumped outlet -
that was subject to disturbances in time. We thought of the process as a 
collection of equipment and other material, marked off by a boundary in 
space, communicating with its environment by energy and material 
streams. 
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'Process' is a good notion; another useful notion is that of 'system'. A 
system is some collection of equipment and operations, usually with a 
boundary, communicating with its environment by a set of inputs and 
outputs.  By these definitions, a process is a type of system, but system is 
more abstract and general. For example, the system boundary is often 
tenuous: suppose that our system comprises the equipment in the plant and 
the controller in the central control room, with radio communication 
between the two. A physical boundary would be in two pieces, at least; 
perhaps we should regard this system boundary as partly physical (around 
the chemical process) and partly conceptual (around the controller). 

Furthermore, the inputs and outputs of a system need not be material and 
energy streams, as they are for a process. System inputs are "things that 
cause" and outputs are "things that respond". 

inputs system outputs 

(causes) (responses) 
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To approach the problem of controlling our surge tank process, let’s think 
of it in system terms: the primary output is the liquid level h -- not a 
stream, certainly, but an important response variable of the system. 
Disturbances are of course inputs, and so the stream wi is an input. And 
peculiar as it first seems, the outlet flow wo is also an input, because it 
influences the liquid level, just as does wi. 

The point of all this is to look at a single schematic and know how to view 
it as a process, and as a system. View it as a process (wo as an output) to 
write the material balance and make fluid mechanics calculations. View it 
as a system (wo as an input) to analyze the dynamic behavior implied by 
that material balance and make control calculations. 

2.2 Systems within systems 
We call something a system and identify its inputs and outputs as a first 
step toward understanding, predicting, and influencing its behavior. We 
recognize that our understanding may improve if we determine some of 
the structure within the system boundaries; that is, if we identify some 
component systems. Each of these, of course, would have inputs and 
outputs, too. 

inputs 

system 

1 
2 

outputs 

Considering the relationship of these component systems, we recognize 
the existence of intermediate variables within a system. Neither inputs 
nor outputs of the main system, they connect the component systems. 
Intermediate variables may be useful in understanding and influencing 
overall system behavior. 

When we add a controller to a process, we create a single time-varying 
system; however, it is useful to keep process and controller conceptually 
distinct as component systems. This is because relatively few control 
schemes (relationships between process and controller) suffice for myriad 
process applications. Using the terms we defined in Chapter 1, we 
represent a control scheme called single-loop feedback control in this 
fashion: 
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system 

other inputs 
process 
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controller 

manipulated variable (intermediate 
process 

variables) 

other outputs 

set point controlled 
variable 

Inside the block called "process" is the physical process, whatever it might 
be, and the block is the boundary we would draw if we were doing an 
overall material or energy balance.  HOWEVER, we remember that the 
inputs and outputs for the block are NOT necessarily the same as the 
material and energy streams that cross the process boundary. From among 
the outputs, we may select a controlled variable (VC), and provide a 
suitable sensor to measure it. From the inputs, we choose a manipulated 
variable (VM) and install an appropriate final control element. The 
measurement is fed to the controller, which decides how to adjust VM to 
keep VC at the set point. Other inputs are disturbances that affect VC, and 
so require action by the controller. 

We keep in mind this feedback control scheme, and how it relates the 
controller to the process, when we represent the equipment in schematic 
form, as with the surge tank of Chapter 1. 

wi 

final control element 
(control valve) 

wo 

h 
L 

L = level sensor 
C = calculation or controller 

LC 

We'll have much more to say about feedback control later. For now, it's 
important to think of a chemical process as a dynamic system that 
responds in particular ways to its inputs. We attach other dynamic 
systems (sensor, controller, etc.) to that process in single-loop feedback 
scheme and arrive at a new dynamic system that responds in different 
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ways to the inputs. If we do our job well, it responds in better ways, so to 
justify all the trouble. 

To do our job well, we must understand more about system dynamics --
how systems behave in time. That is, we must be able to describe how 
important output variables react to arbitrary disturbances. 

2.3 Dynamics of a tank, without any control 
From Chapter 1, our process model was 

dhρA 
dt 

= wi − wo h(0) = ho 

1 t (2.3.1) 
h(t) = ho + ρA ∫ (wi (t) − wo (t))dt 

0 

Now mindful of our system concepts, we recognize h(t) as the output and 
wi(t)-wo(t) as the input. Indeed the flow rates are separate inputs, but our 
model of the process indicates that they always influence the output liquid 
level by their difference. For convenience, let us represent this difference 
as x(t). Our model (2.3.1) captures the system dynamics; it tells us how 
the output h(t) responds in time to input disturbances x(t). We now 
integrate (2.3.1) for several specific cases of x(t). 

2.4 Response to rectangular pulse at time td 
Let the tank be operating at steady state, so that the flows are initially 
balanced, and x is zero. Suppose that at time td, extra liquid is injected 
into the feed stream: mass M is added over time interval ∆t before the inlet 
flow returns to normal. We can idealize this as a rectangular pulse. 

x(t) = 0, 0 ≤ t < td 

M


∆t 
, td ≤ t ≤ td + ∆t  (2.4.1) 


0, td + ∆t < t


Inserting the disturbance (2.4.1) into process model (2.3.1), we compute 
the response. 

h(t) = ho , 0 ≤ t < td 

Mho + ρA∆t 
(t − td ), td ≤ t ≤ td + ∆t  (2.4.2) 

Mho + ρA 
, td + ∆t < t 

4 




10.450 Process Dynamics, Operations, and Control 
Lecture Notes 2 

As shown in Figure 2-1, the level never recovers its former value ho; the 
temporary disturbance has had a permanent effect on the output. 

Figure 2-1. The pulse width ∆t has arbitrarily been set equal to the onset time td. 

2.5 Impulse at time td 
If in (2.4.1) we decrease the time interval of fluid injection, we finally 
arrive at an infinite flow rate in an infinitesimal time interval, delivering 
extra mass M to the fluid. Thus we introduce the mathematical delta 
function -- a singularity at time td. Its value is infinite there and zero 
elsewhere. Its integral over all time is 1. It has the dimension of 
reciprocal time, although it’s not clear whether the actual units of a single 
time point are at all significant. 

x(t) = Mδ (t − td ) 
h(t) = ho , 0 ≤ t < td  (2.5.1) 

Mho + ρA 
, td ≤ t 

Again, the level never recovers from the brief disturbance. 
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Figure 2-2. The impulse is shown as a vertical arrow at the time of its action. The input 
flow x(t) has been made non-dimensional by multiplying by td.; however, the sense of the 
plot would be unchanged if this were not done. 

2.6 Step at time td 
The dimensionless unit step function is zero before td and one thereafter. 
We use it to represent a sudden, permanent change in the inlet flow rate. 

x(t) = ∆wu(t − td ) 
h(t) = ho , 0 ≤ t < td  (2.6.1) 

∆who + ρA 
(t − td ), td ≤ t 

The permanent change in the input has caused the output to rise without 
limit. This is certainly reason to consider adding a control system. 
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Figure 2-3. Of course, the model ceases to be applicable when the liquid level reaches 
the top of the tank. 

2.7 Sine 
At time td, the inlet flow begins to oscillate with radian frequency ω. 

x(t) = ∆wsin(ωt −ωtd ) 
∆wh(t) = ho + ρAω

(1− cos(ωt −ωtd ))
 (2.7.1) 

The liquid level oscillates at the frequency of the disturbance. Its response 
is delayed, in that the level reaches its peak some time after the inlet flow 
has peaked. Notice that the amplitude of oscillation decreases as the 
frequency increases. This indicates that the tank cannot follow fast 
changes. 
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Figure 2-4. The onset of disturbance ωtd has arbitrarily been set to 1. 

More detail 
Response to a sine disturbance has two parts – the initial transient, 
and a recurring oscillation. We can recast the response in this form 
by using the sum-of-angles formula to write the cosine as a sine 
that includes a phase angle. 

∆w ∆w  π h(t) = ho + ρAω
+ 
ρAω

sin

ω(t − td ) − 

2 
 (2.7.2) 

Equation (2.7.2) shows that the output lags the input by π/2 
radians, or 90°. The liquid level differs at most from its initial 
value by twice the amplitude. It either exceeds or stays below the 
initial level according to the sign of ∆w; that is, whether the flow 
initially increased or decreased. 

2.8 Typical disturbances 
Knowing how a system responds to disturbances is a prerequisite for 
controller design. We will use the impulse, step, and sine disturbances 
repeatedly to test various dynamic systems. While we can never test our 
control designs against every conceivable disturbance, testing against 
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these standard ideal disturbances will usually tell us what we need to 
know. 
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