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Lesson 4. Dynamic behavior of 'first-order' processes. 

4.0 Context 
System dynamics is an engineering science useful to mechanical, 
electrical, and chemical engineers, as well as others. This is because 
transient behavior, for all the variety of systems in nature and technology, 
can be described by a very few elements. This lesson concerns one of 
those elements. 

4.1 The first order lag: mixed tank 
Before we explain the term "first-order lag", we will work with an 
example of one: consider a tank equipped with a stirrer to mix the inlet 
stream into the contents of the tank. The composition of the liquid in the 
tank is uniform, and it is equal to the composition of the outlet stream. 
The tank is arranged with large overflow; thus the inlet and outlet flows 
are essentially equal at any time, and the volume is constant. This is a 
surge tank for smoothing concentration changes; contrast it with the flow 
surge tank of Lesson 1. 

For simplicity, we will consider the flow to be constant, but the inlet 
concentration may vary with time; we wish to determine the effect on the 
outlet concentration. 

Let's outline the procedure we will be following: 
•	 write material and energy balances and other equations required to 

describe the process 
•	 (for most process control applications) identify a steady state operating 

condition to serve as a reference 
•	 substitute Taylor series approximations about the reference condition 

for nonlinear terms in the model 
•	 solve the model for any required operating parameters at the reference 

condition 
•	 subtract the steady state condition from the model equations to express 

all variables in deviation form 
•	 arrange the equations in standard form, identifying dynamic 

parameters of known significance 
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• solve for the output variables as functions of the inputs 
• introduce particular disturbances and calculate the responses 

First, we write a component material balance on the solute. 

d 
dt 

VCo = FCi (t) − FCo (t) Co (0) = Cs  (4.1.1) 

Because the flow F and volume V are constant, there are no nonlinear 
terms in the equation. We write (4.1.1) at steady state with reference inlet 
concentration Cs. 

dVCo 

dt 
= 0 = FCs − FCos  (4.1.2) 

s 

From (4.1.2) we see that the outlet concentration at the reference condition 
is also Cs. Subtracting (4.1.2) from (4.1.1), we obtain the process model 
in terms of deviation variables, indicated by an asterisk superscript. These 
variables are zero when the process is at the reference condition; nonzero 
values indicate deviation from the reference. 

d 
dt

V (Co (t) − Cs ) = F (Ci (t) − Cs )− F (Co (t) − Cs ) 
(4.1.3)

d * * * * 

dt
VCo = FCi (t) − FCo (t) Co (0) = 0

This is a first-order ODE with constant coefficients. We rearrange it to 
standard form. 

*V dCo * * 

F dt 
+ Co (t) = Ci (t)  (4.1.4) 

In mathematical nomenclature, Ci
* is the forcing function and Co

* the 
*dependent variable. In our system nomenclature, Ci

* is the input and Co 
the output. In standard form, the ratio of tank volume to flow rate clearly 
takes on the significance of a characteristic time, the time constant τ. 

*dCo * * *τ 
dt 

+ Co = Ci (t) Co (0) = 0  (4.1.5) 

The solution (by (3.6.1)) is 
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t 
* e 

−t
τ t

τ *Co (t) = 
τ	 ∫ e Ci (t)dt  (4.1.6) 

0 

Equation (4.1.6) is the process model for the mixing tank, showing how 
the outlet concentration behaves for arbitrary disturbances in the inlet. For 
example, if inlet concentration undergoes a step change ∆C at td, 

Co 
* = ∆C

 
1 − e 

−(t −td 
τ

) 



  (4.1.7) 

As the disturbance is introduced, the outlet concentration begins to 
change; it gradually becomes equal to the inlet concentration. Notice that 
the tangent to the initial response reaches the final value in one time 
constant. 

Fig 4-1.  The ordinate has been normalized by the magnitude of the step 
change, and the abscissa by the time constant. Thus this non-dimensional 
plot is characteristic of all first order lag step responses. The time td at 
which the input occurs has been set for convenience to equal the time 
constant. 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 2 4 6 7 

(t - τ)/τ 

no
rm

al
iz

ed
 in

pu
t a

nd
 o

ut
pu

t 

inlet concentration 

outlet concentration 

1 3 5 

3 




10.450 Process Dynamics, Operations, and Control 
Lecture Notes - 4 

Systems described by (4.1.5), with solution (4.1.6), are called first-order 
lags. "First order" refers to the order of the governing differential 
equation (4.1.5). "Lag" refers to the way in which the output lags behind 
the input. The lag occurs because the system has storage capacity, and 
that capacity takes time to fill or deplete when conditions change. In this 
problem, the system stores the dissolved component. 

First order lags always feature a time constant τ that indicates the speed of 
response, because time is normalized by, or scaled to, the time constant. 
From the properties of the exponential function, we see that the step is 
95% complete when time equal to three time constants has elapsed. If the 
tank time constant is large (large volume, low flow) this time will be large. 
If the time constant is smaller (small volume, large flow) the outlet 
concentration will respond more quickly. This is consistent with intuition 
and experience. 

In addition to speed of response, we are also interested in the degree to 
which a dynamic system amplifies or attenuates the input signal. This is 
often expressed by the steady-state gain, which is the ratio of steady 
output change to input change following a step disturbance. 

* * 

gain = 
Co 

*

(∞) − Co 
*

(0) 
=
∆C 

= 1 (4.1.8)
Ci (∞) − Ci (0) ∆C 

For the mixing tank, the gain is 1, showing that permanent disturbances 
are merely passed through the system. Both time constant and gain are 
independent of the size of the disturbance ∆C. 

4.2 Integrator: pumped outlet tank 
The pumped outlet tank of Lessons 1 and 2 is an example of a first order 
integrator. 

dhρA 
dt 

= wi − wo h(0) = hs  (4.2.1) 

All terms in the equation are linear. We define a steady state reference 
condition in which the liquid level is hs, and the inlet and outlet flows are 
equal to ws. In deviation variables, (4.2.1) becomes 

*dh * * *ρA 
dt 

= wi − wo h (0) = 0  (4.2.2) 

To be strict about placing (4.2.2) in standard form, we should define a gain 
and a time constant. Gain always has dimensions of output/input, or in 
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this case, length divided by mass flow. Hence we multiply (4.2.2) by the 
height of the tank, and divide by ws. 

* 

ρA hT dh 
= 

hT (wi 
* − wo 

*) h*(0) = 0  (4.2.3)
w dt ws s 

Collecting terms, we find 

*dh * * *τ 
dt 

= K (wi − wo ) h (0) = 0  (4.2.4) 

Equation (4.2.4) is separable; its solution is 

* * * th = K (wi − wi )
τ 

(4.2.5) 

and the response to a step change of magnitude ∆w in inlet flow at time td 
is 

h* = K∆w (t − td )  (4.2.6)
τ 

The integrator has no steady state response to a step disturbance, so K 
cannot be viewed as a steady-state gain. The time constant is the 
residence time for a full tank. 
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Fig 4-2. The ordinate has been normalized by the product of the gain and 
step disturbance, and the abscissa by the time constant. The time td at 
which the input occurs has been set for convenience to equal the time 
constant. 

4.3 Summary of disturbance responses 
Initial condition is zero; disturbance is introduced at time td. 

system first order lag first order integrator 
model 
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4.4 Multiple system inputs from multiple inlet streams 
The first order lag equation in Section 4.3 is the mathematical form that 
results from applying material and energy balances to well-mixed 
volumes, as illustrated by the mixing tank in Section 4.1. Of course, a 
tank may have more than one inlet stream. If so, it will usually be added 
to the right-hand side of the equation. In illustration, consider a well-
stirred tank heated by an electric resistance element of output power Q. 

Our previous first-order systems have stored mass; this one stores energy. 
The energy balance is 

d 
dt 
(ρCpV (To − Tref )) = ρCpF (Ti − Tref )− ρCpF (To − Tref )+ Q  (4.4.1) 

where Tref is a reference temperature for computing the enthalpy of the 
flowing stream. Presuming that flow F is constant and the physical 
properties are not a function of temperature, we see that (4.4.1) is a first-
order linear ODE with constant coefficients. The energy balance at steady 
conditions is 

d 
dt 
(ρCpV (Tos − Tref )) = 0 = ρCpF (Tis − Tref )− ρCpF (Tos − Tref )+ Qs  (4.4.2) 

Subtracting (4.4.2) from (4.4.1) and introducing deviation variables 

d 
dt 
(ρCpV (To − Tos )) = ρCpF (Ti − Tis )− ρCpF (To − Tos )+ Q − Qs 

d 
(4.4.3) 

dt 
(ρCpVTo 

* )= ρCpFTi 
* − ρCpFTo 

* + Q*

We rearrange (4.4.3) to standard form and consider the case of initial 
steady state. 
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*V dTo * * 1 * * + To = Ti + ρC F
Q To (0) = 0  (4.4.4)

F dt p 

The time constant for temperature change is the tank residence time, equal 
to the tank volume divided by the volumetric flow rate. We find that the 
outlet temperature response depends on two inputs: the inlet temperature 
and the heater power; either can act as a disturbance to the first-order 
system. The gain for inlet temperature disturbances is unity; thus a step 
change in temperature would ultimately propagate through the tank. The 
gain for power disturbances converts dimensions of power to dimensions 
of temperature. This gain is a function of the flow rate, so that, for 
example, power disturbances have less effect on To when the flow F is 
large. 

Equation (4.4.4) is linear first-order, and can be solved by (3.6.1), just as 
we did in Section 4.1. 

e
−t
τ t t

τ 
 * Q* *To (t) = 

τ ∫ 
0 

e 

 
Ti + ρCpF 

dt  (4.4.5) 

In a linear model, the effect of the disturbances is additive. That is, each 
affects the response independently of the other, and the effects are simply 
added. Consider a step increase in inlet temperature at time τ/2, followed 
at 2τ by a compensating step decrease in heater power. The outlet 
temperature first rises and then falls in response. 
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Figure 4-3 The disturbances to linear equations produce additive responses. 

4.5 Multiple Outlet Streams 
A tank may have multiple outlet streams, as well. In modeling first order 
systems, we often find that these streams depend on the response variable. 
In this case, the effect of additional outlet streams is to alter the time 
constant and gain of the system. For example, suppose that a mixed 
overflow tank is cooled by convective heat transfer to a condensing vapor. 
Thus there are two outlet streams: the enthalpy carried out with the outlet 
flow, and the heat transferred to the cooling coil.  The energy balance is 

d 
dt 
(ρCpV (To − Tref )) = ρCpF (Ti − Tref )− ρCpF (To − Tref )− UA(To − Tc )

 (4.5.1) 

where the overall heat transfer coefficient is U and the coolant condenses 
at temperature Tc. Writing (4.5.1) at steady state and subtracting this 
result from (4.5.1) gives 

d 
dt 
(ρCpVTo 

* )= ρCpFTi 
* − ρCpFTo 

* − UATo 
* + UATc 

*  (4.5.2) 
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*where we have two terms that depend on the response variable To . 
Writing (4.5.2) in standard form gives 

*ρC V dT * ρC F * UA *p o p 

ρC F + UA dt 
+ To = ρC F + UA

Ti + ρC F + UA
Tc (4.5.3) 

p p p 

Because there are two paths out for enthalpy - flow and heat transfer - the 
time constant for temperature change is less than the tank residence time, 
in contrast to (4.4.4). Equation (4.5.3) also features two enthalpy inputs: 
inlet flow and the coolant. In fact, if the coolant temperature Tc exceeds 
Ti, (4.5.3) will describe heating of the tank. Notice that the gain for an 
inlet temperature disturbance is less than unity: because there are two 
paths out, the outlet response will not grow to equal a permanent inlet 
disturbance. Equation (4.5.3) is solved as before, and the response is 
shown in the figure for a gain of 0.5 (that is, UA = ρCpF) and a step 
decrease in Ti at time τ. 
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4.6 Summing up 
First order systems arise from material and energy balances on perfectly 
mixed volumes. The system output or response variable is a measure of 
the storage in the system - for example, liquid level or concentration for 
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mass and temperature for energy. Two parameters, the time constant and 
the gain, characterize the response of the output variable to disturbances. 
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