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Lesson 3. Math review. 

3.0 Context 
In the previous chapters, we solved a differential equation for different 
forcing functions. Here we will review this and other mathematical topics 
that we will need. 

3.1 Quadratic equation 
The roots of 

αs2 + βs +1 = 0 (3.1.1) 

are 

s = 
α ββ 42 − ± − 

2α 
(3.1.2) 

If α is less than zero, the roots s will be real, of opposite sign, and of 
unequal magnitude. For α greater than zero, the roots may be real or 
complex; the real parts will have the same sign. The term under the 
radical, aptly called the discriminant, determines whether the roots are 
complex. 

3.2 complex numbers 
Consider the complex number 

z = a + jb, where j = 1 − , Re(z) = a, Im(z) = b (3.2.1) 

The same number may be written in polar form 

z = z e jϕ , where 2 2 b a z + = and ϕ = tan−1 b  (3.2.2)
a 

The diagram shows the complex plane, in which real numbers are 
confined to the horizontal axis. A complex number appears as a vector 
from the origin. The diagram relates the Cartesian and polar forms of the 
complex number. The phase angle ϕ is measured counterclockwise from 
the positive real axis. 
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bϕ 

22 ba + 

real 

imaginary 

If we let the magnitude |z| equal 1, we obtain Euler's formula relating the 
exponential and trigonometric functions. 

e± jϕ = cosϕ ± j sinϕ 

*Each complex number z has a conjugate z 

z = a + jb = z e jϕ 

z* = a – jb = z * e− jϕ 

The conjugates have the same magnitude. 

* zz = |z|2 =|z*|2 = a2 + b2 

Use the conjugate to eliminate j in the denominator of a ratio. 

c a − jb ca − cb 
= 

a + jb a − jb a2 + b2 + j
a2 + b2 

3.3 Oscillatory behavior 
Suppose a variable y (a liquid level, a temperature, a chemical 
concentration, a flow rate) oscillates regularly in time: 

y(t) = Asin
 
2π 

t 
+ϕ 

 
= Asin(2πft +ϕ) = Asin(ωt +ϕ ) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.3.1)
 p  

where 
A is the amplitude (dimension of y) 
p is the period (dimension of time) 
f is the cyclical frequency (dimension of time-1) 
ω is the radian frequency (dimension of radians time-1) 
ϕ is the phase angle (dimension of radians) 

Inserting 2π into the argument is necessary because we are attempting to 
describe physical behavior (something varying in time) by an abstract 
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math function that doesn't care what our time units are. View ω = 2π/p = 
2πf as the conversion factor between time units and radians. 

The phase angle ϕ represents an advance in the signal y(t) with respect to 
some other signal. That is, if 

x(t) = B sin( )  and y(t) = C sin(ωt +ϕ)  (3.3.2)ωt 

the oscillation y(t) is ahead of that of x(t) at any time t. However, we will 
most often encounter phase lags, so that the phase angle ϕ will have a 
negative value. If ϕ = 0, x(t) and y(t) are said to be in phase. 

Representing an oscillation with a phase angle is quite useful, but on 
occasion it is helpful express the same signal in another fashion. This 
phase angle identity, derived from the trigonometric sum-of-angles 
formula, shows that the signal can be expressed as a combination of sine 
and cosine functions: 

C S 2 2 + sinωt + tan−1  
C 


 = S sinωt + C cosωt  (3.3.3)

  S  

3.4 Arctangent 
The arctangent is a multi-valued function, and thus must be treated 
carefully in calculations. For example, suppose we wish to express the 
complex number -1-j in polar form. From the figure we see that the phase 
angle ϕ should be designated as either 225° (3.927 radians) or -135° (-
2.356 radians). 

ϕ 
real 

imaginary 

However, most calculators and spreadsheets will process (3.2.2) to give 
45° (0.785 radians). 

ϕcalculator = tan−1 − 1
 = tan−1(1) = 45o  (3.4.1)

 − 1 

Calculators and spreadsheets tend to work between -90° and +90°. 
Because we will be considering phase lags, we will instead tend to apply 

3 



10.450 Process Dynamics, Operations, and Control 
Lecture Notes - 3 

the arctangent between -180° and 0°. Hence angles in the upper right 
quadrant should be corrected. 

o oϕ =ϕcalculator − 180 , 0 ≤ϕcalculator ≤ 90  (3.4.2) 

Arctangent Function 
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By the way, the conversion factor between degrees and radians is 

o1801 = 
π radians 

(3.4.3) 

3.5 First-order, linear, variable-coefficient ODE 
We are addressing systems that vary in time, so our independent variable 
is always t. 

a(t) dy 
+ y(t) = Kx(t) y(t0 ) = known  (3.5.1)

dt 

In writing (3.5.1) we have arranged the coefficient functions to isolate the 
dependent variable y(t). By this means, a(t) must have dimensions of 
time t, and K has dimensions of y/x.  We solve this equation by defining 
the integrating factor p(t) 

dt p(t) = exp ∫ a(t)
 (3.5.2) 
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and integrating to find 
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+= ∫  (3.5.3) 

The solution y(t) comprises contributions from the forcing function Kx(t) 
and the initial condition y(t0). 
on the right-hand side) and homogeneous (as if the right-hand side were 
zero) solutions. dynamic systems, we can think of y(t) 
as the response of the system to input disturbances Kx(t) and y(t0). 

3.6 First-order ODE, special case for process control applications 
If a(t) is constant in (3.5.1), we call it the time constant τ. text, 
K is called the gain. agnitude and sign, the gain influences how 
severely y responds to x. es 

( 
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−−− 
+= ∫  (3.6.1) 

or for initial time at zero, 

τττ 

τ 
tt tt 

eydttxee Kty 
−− 

+= ∫ )0()()( 
0 

(3.6.2) 

3.7 First-order ODE, special case for no disturbance (forcing function) 
If K = 0, the system response depends only on the initial conditions. is 
can be obtained from the general solution (3.5.3), of course, but can also 
be obtained by directly integrating equation (3.5.1), which has become 
separable. 

∫−= 
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ta 
dt 

y 
dy 
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ln 
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 (3.7.1) 

3.8 First-order ODE, special case for missing dependent variable 
If the y(t) term is removed (for example, if K and a(t) are both very large), 
another separable equation results. 

Process Dynamics, Operations, and Control 
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Kx(t) dtdy = 
a(t) 

t (3.8.1) 
y = y(0) + K ∫ 

x(t) dt 
0 a(t)

Separable equations are convenient to solve by straightforward function 

integration. The surge tank of Chapters 1 and 2 was described by a 

separable equation of form (3.8.1). 


3.9 First-order ODE, delayed disturbance 

Let the forcing function be delayed; suppose x(t) is a unit step at time td > 

0. Then from (3.5.3) 

K td p(t)(0) dt + ∫ 
t p(t)(1) dt

 
+ 

p(0) y(0)y(t) = 
p(t) 



∫ 
0 a(t) td 

a(t)  p(t)
 (3.9.1)

t 

y(t) = 
p
K 
(t) t 
∫ 
d 

a
p 
(
( 
t
t 
)
) dt + 

p(0 
p 
)
( 
y
t)
(0)

3.10 Second-order, linear, constant-coefficient ODE 

α d 2 y 
+ β dy 

+ y(t) = Kx(t) y(0), dy 
= known  (3.10.1)

dt2 dt dt 0 

The coefficient a2 has the dimension of time squared. The solution to 
(3.10.1) is the sum of two terms: 

y(t) = yh (t) + yp (t)  (3.10.2) 

The homogeneous solution yh, which depends only on the left-hand-side 
of (3.10.1), is itself the sum of two linearly independent exponential 
functions 

yh (t) = C1e
r1t + C2e

r2t  (3.10.3) 

where r1 and r2 are the roots of the characteristic equation of (3.10.1). 

r1,2 = 
α ββ 42 − ± − 

2α 
(3.10.4) 

The value of the discriminant determines three distinct forms of the 
solution. 
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real, unequal roots for r 
−

α 
β

2
t  −

α 
αβ

2
42 t − −

α 
αβ

2
42 t  

yh (t) = e  C1e + C2e  (3.10.5) 
  

In process control, we prefer stable systems, those in which disturbances 
do not grow with time. We observe that (3.10.5) decays if α and β have 
the same sign. 

real, equal roots for r 
− 

yh (t) = e 
t 
2α

β
(C1 + C2t) (3.10.6) 

The solution will decay if α and β have the same sign. 

complex roots for r 
− t 

α 
β

2
 − 

+ 
− C t βαβα 4sin4 2 2  

yh (t) = e 
C1 cos 

2α 2 2α 
t  (3.10.7) 

  

Once again, the solution will decay if α and β have the same sign. The 
coefficient of t in the trigonometric functions is the radian frequency of the 
oscillation. 

The particular solution yp for any disturbance x(t) may be determined by 
the 'method of undetermined coefficients', or the 'method of variation of 
parameters'.  The initial conditions are then applied to the solution y(t) to 
determine coefficients C1 and C2. 

The response of the system (3.10.1) then depends on 
•	 the character of the system itself (through the left-hand-side coefficients, affecting the 

exponential and trigonometric terms in the homogeneous solution) 
• the initial conditions (affecting coefficients C1 and C2 in the homogeneous solution) 
•	 the nature of the disturbance (through the particular solution, as well as C1 and C2, if the 

disturbance is initially non-zero) 

In a later lesson, we will introduce Laplace transforms as an alternative 
method for determining the solution. 

3.11 Representing functions by Taylor series 
We specify some reference value of the independent variable, and 
represent the function in the neighborhood of that reference as a series of 
terms. For a function of one variable: 

f (x) = f (xs ) + df (x − xs ) + O((x − xs )
2 )  (3.11.1)

dx xs 
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For a function of more than one variable: 

f ( x, y,...) = f ( xs , ys ,...) +
∂f ( x − xs )
∂x xs , ys ,...

 (3.11.2) 
+ ∂f ( y − ys ) + ... + O(( x − xs )

2, ( y − ys )
2,...)

∂y xs , ys ,... 

By retaining only linear terms, we obtain a linear approximation. The 
derivatives are evaluated at the reference point. Of course, the 
approximation is exact at the reference, and it is often satisfactory in some 
region about the reference value. As the figure indicates, however, 
extrapolation to x = 0 would be erroneous. 

3.12 Chain rule for differentiation 
d 
ds 

g( f (s)) = 
dg df (3.12.1)
df ds 

The functions g and f are said to be nested. For example, let g be the 
exponential and f the square root. 

Taylor Series Linearization about x = 2 
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d e (= e ss ) 1 s 
−

2 
1

 

ds  2  

The chain rule applies to the special cases of a product 

d df 
ds 

f (s)g(s) = f (s) dg 
+ 

ds 
g(s)

ds 

or a quotient 

dN dD 
d N (s) D(s) 

ds 
− N (s) 

ds= 
ds D(s) D(s)2 

3.13 Must we? 
The math topics collected here will be used during the course. 
review any that seem unfamiliar. 

(3.12.2) 

(3.12.3) 

(3.12.4) 

Please 
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