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Lesson 11. Frequency response of dynamic systems. 

11.0 Context 
We have worked with step, pulse, and sine disturbances. Of course, there 
are many sine disturbances, because the applied frequency may vary. 
Surely the system response should differ for low- and high-frequency 
inputs. In this lesson we will explore the frequency response of dynamic 
systems. 

11.1 Response to sine input 
Recall a first order lag, such as a stirred tank reactor, mixer, or heater. 
The transfer function between inlet and outlet is 

*Co (s) KG(s) = 
Ci 

*(s) 
=

τs +1
 (11.1.1) 

Let's disturb the inlet in a way that remains bounded, as with a step 
disturbance, but prevents approach to a steady state: 

*Ci (t) = Asin(ωt)  (11.1.2) 

If we take the Laplace transform of this inlet disturbance, the transfer 
function gives us 

* *Co (s) = G(s)Ci (s) 
K Aω (11.1.3) 

= 2τs +1 s2 +ω 

From a transform-pair table, we find 

KAωτCo 
*(t) = 

1+ω 2τ 2 e τ
−t 

+ 
1 2 2τω+

K Asin(ωt +φ )
 (11.1.4) 

φ = tan−1(−ωτ ) 

The first term dies out – it represents the system adjusting to the onset of 
the disturbance. The second term is an oscillation – the system's 
continuing response to the prevailing input. It looks like the disturbance 
(11.1.2), except that the inlet amplitude is modified and the response lags 
the input by a phase angle φ (φ will be negative). Both amplitude and 
phase angle depend on properties of the system, parameters in the transfer 
function (11.1.1). 
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11.2 Frequency response 
We began by talking about a sine wave disturbance. We have derived 
(11.1.4), which shows that the long-term response is to multiply the 
amplitude by a factor and delay the signal. Hence, we define the long-
term response in terms of an amplitude ratio (AR) and a phase angle φ. 
We call it a frequency response, because both AR and φ depend on the 
disturbance frequency ω: the system will react differently according to 
how it is shaken. 

AR = 
(11.2.1) 1) (

) (
2 2* 

* 

τω+
= 

K 
tC

tC

i 

o 

φ = tan−1(−ωτ ) 

Consider the mixing tank. Make the inlet concentration vary slowly, so 
slowly that the tank has plenty of time to mix each incremental change in 
concentration and deliver it to the outlet. Then the outlet will follow the 
inlet concentration closely. For small ω, (11.2.1) shows that the amplitude 
ratio is the same as the tank gain K, and the phase angle is zero. The trace 
of the outlet signal lies over that of the inlet. 

Now make the variations faster, so fast that the tank concentration scarcely 
begins to rise before the inlet concentration falls again. Such rapid 
fluctuations at the inlet will never propagate to the outlet, but be lost in the 
'capacitance' of the tank. For sufficiently large ω, (11.2.1) shows that the 
amplitude ratio goes to zero, and the phase angle to -90°. 

If you are responsible for a process that is disturbed by fluctuations in the 
input stream, you might specify a surge tank to damp out those 
fluctuations.  Understanding frequency response will assist you in sizing 
the tank (thereby specifying its time constant τ) to do an effective job on 
the disturbance frequencies of interest. 

11.3 The Bode plot 
Frequency response information is commonly presented on a Bode (bo'-
dee) plot. 
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Bode plot - first order system 
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Because frequency and amplitude may meaningfully vary over several 
orders of magnitude, Bode plots use logarithmic axes. 

Bode plot - first order system 
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AR begins at 1.0 at low frequency and drops off at high frequency with a 
slope of -1. The high frequency region can be extrapolated to AR=1 at the 
'corner frequency' ωc. 

1ω c =
τ

 (11.3.1) 

The phase angle varies asymptotically between 0 and -90°. 
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Bode plot - first order system 
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The Bode plot was once used for calculations in control system design. 
Now computers have replaced that function, but it is still useful as an 
illustrative tool. 

11.4 Calculate frequency response for a system 
In 11.1 we obtained the frequency response by calculating the solution to 
the system equation when disturbed by a sine input. That gave us, in 
addition, the short-term transient response. 

We can get frequency response directly from the Laplace domain transfer 
function if we're willing to replace the transform-pair table with a bit of 
complex variable algebra. First an example, and then the rule… 

The first order transfer function is 

*Co (s) KG(s) = 
Ci 

*(s) 
=

τs +1
 (11.4.1) 

Substitute jω for s in (11.4.1). 

KG( jω) = 
jτω +1

 (11.4.2) 

Multiply by the complex conjugate to remove j from the denominator. 

4 




10.450 Process Dynamics, Operations, and Control 
Lecture Notes - 11 

K 1− jτωG( jω) = 
1+ jτω 1− jτω (11.4.3) 

= K 1− jτω 
21+τ ω 2 

This is a complex number whose real and imaginary parts are 

Re[G( jω)]= 
K 

21+τ ω 2 

(11.4.4) 
Im[G( jω)]= 

− Kτω 
21+τ ω 2 

The complex number can be written in the alternate polar form. The 
amplitude is 

G( jω) = 

= 

2 2 

2 2

2 2 
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(11.4.5) 

= 

and the angle is 

 − Kτω 
 

φ = ∠G( jω) = tan−1 1+τ 2ω 2 
 

 K 
 1+τ 2ω 2 

 (11.4.6) 

= tan−1(−τω) 

You probably saw this coming. When jω is substituted for s in the transfer 
function Eqn (1), the amplitude and angle of the resulting complex number 
are the amplitude ratio and phase angle of the frequency response of the 
transfer function. We demonstrated for first order, but it's true in general. 
To summarize, 
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for x(t) = Asinωt and G(s) = 
y(s) 
x(s) 

y f .r. (t) = AG( jω) sin(ωt +φ ) 

AR = 
y f .r. (t) = G( jω) = [ [+ )( Im)( Re 2 2 ωω jGjG ] ]

(11.4.7) 

A 

φ = ∠G( jω) = tan−1 
Im[G( jω)]

]

 

 Re[G( jω)  

Notice that the mean value of both x and y is zero. This means that we 
have implicitly assumed deviation variables in defining the frequency 
response. 

11.5 Frequency response by combining components 
We can further simplify our task of determining frequency response if the 
transfer function is assembled as a product of known components. 

G(s) = G1 (s)G2 (s)...  (11.5.1) 

After substituting jω for s, the complex numbers can be expressed in polar 
form 

G( jω) = G1( jω)G2 ( jω)... 

= G1( jω) e jφ1 G1( jω) e jφ2 ...  (11.5.2) 

ARe jΦ = G1( jω) G1( jω) ...exp( j∑φi ) 

so that 

AR = ∏ Gi ( jω) Φ = ∑φi (11.5.3) 
i i 

For example, the important case of first-order-plus-dead-time (FOPDT): 

Ke−θs 1G(s) =
τs +1 

= K ⋅ e−θs ⋅
τs +1 

AR = 
(11.5.4) 

= 

φ = ∠G( jω) = 0 + (−θω) + tan−1(−τω) 
1 

1 
1 1) ( 

2 2 

2 2 

ωτ

ωτ
ω

+

+
⋅ ⋅= 

K 

K jG
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The amplitude ratio is unchanged from that of the first order system. 
However the phase delay is greatly increased at high frequencies. The 
plot is for the case in which θ = τ. 

Bode plot - first order plus dead time system 
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Graphical combination of transfer functions is convenient on Bode plots. 
However, this technique is not so commonly used when computers are 
available. 
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