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Lesson 7. Transfer functions and block diagrams 

7.0 Context 
In Lesson 5, we introduced Laplace transforms as a method of solving the 
linearized equations of system dynamics. However, a more important 
reason is that so many of the concepts of dynamics and control theory are 
expressed in the LT language, even if the methods are not required for 
solution. In this lesson we present the transfer function, a concise 
description of a dynamic system that is based on Laplace transforms. We 
also present block diagrams, a convenient way to represent the structure of 
dynamic systems. 

7.1 Dynamics of systems 
Process control deals with systems that change in time. In Lesson 2, we 
asserted that systems are characterized by input disturbances (causes), and 
output responses (effects). 

inputs system outputs 

We have claimed that a variety of physical systems can be satisfactorily 
described by relatively few mathematical models. We have dwelt on the 
first-order lag as a prime example: 

* 

τ dy 
+ y * = Kx*(t) y *(0) = 0  (7.1.1)

dt 

The system model is the ordinary differential equation (7.1.1), relating 
input x* and output y*as they vary in time. In (7.1.1), x*(t) is the 
mathematical forcing function, and y*(t) the dependent variable. After 
taking Laplace transforms, we can relate input and output by an algebraic 
equation: 

* K * y (s) =
τs + 1 

x (s)  (7.1.2) 

The ratio in (7.1.2) contains all the information about the ODE (7.1.1). 
When multiplying x*(s), the transform of disturbance x*(t), the ratio 
converts it into y*(s), the transform of the response y*(t). We call this ratio 
the transfer function. 
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7.2 Transfer functions 
Let's take a larger view of getting transfer functions from differential 
equations: we have a lot more to learn about dynamic systems, but it’s not 
too early to speculate a bit from what we already know. Perhaps systems 
more complicated than our first-order lag may be described by higher-
order equations. If we linearize such equations, and express them in 
deviation variables, they must look like 

n * n−1 * * 

an 
d
dt

y
n + an−1 

d
dt n− 

y 
1 + K + a1 

dy 
+ y * = f (x *)  (7.2.1)

dt 

It’s not outlandish to speculate that a complicated dynamic system might 
depend not only on the disturbance x*, but its rate of change, as well. For 
that matter, it may depend on higher derivatives of x*, leading us to write 
(7.2.1) as 

n * d n−1 y * * d l x * dx* 

an 
d
dt

y
n + an−1 dt n−1 + K + a1 

dy 
+ y * = bl dt l + K + b1 dt 

+ b0 x *(t)
dt 

(7.2.2) 

We have already encountered systems with multiple disturbances in 
Section 4.4. Hence we may expand our speculative model further. 

n * n−1 * * * * 

an 
d
dt

y
n + an−1 

d
dtn− 

y 
1 + K + a1 

dy 
+ y * = bl 

d l x
l 
1 + K + b1 

dx1 + b0 x1
*(t)

dt dt dt 
m * * 

+ cm
d x

m 
2 + K + c1 

dx2 + c0 x2
*(t)

dt dt 
+ K 

(7.2.3) 

As is usual in process control, we presume all initial conditions are zero, 
which describes a system expressed in deviation variables initially at 
steady state.  Taking Laplace transforms of (7.2.3) leads to 

y *(s) = (bl s
l + bl −1s

l −1 + K + b1s + b0 ) x1
*(s)(ansn + an−1s

n−1 + K + a1s + 1) 
+
(cmsm + cm−1s

m−1 + K + c1s + c0 ) x2
*(s)  (7.2.4)(ansn + an−1s

n −1 + K + a1s + 1) 
+ K 

If we set all the (7.2.4) coefficients except b0 and a1 to zero, we recover 
the particular example of (7.1.2). The ratios of polynomials in (7.2.4), like 
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the ratio in (7.1.2), are transfer functions. We will represent a general 
transfer function by G(s). Thus (7.2.4) becomes 

* * * y (s) = G1(s)x1 (s) + G2 (s)x2 (s) + K (7.2.5) 

G1(s) is the transfer function that relates y*(s) to x1
*(s). G2(s) similarly 

relates y*(s) to x2
*(s). Notice that 

•	 The Laplace transforms of the disturbances, when substituted for the 
xi(s) variables, will not change the polynomial nature of the Gi(s) 
terms in (7.2.4). Thus polynomial ratios in the Laplace variable s will 
always result from the linear, constant-coefficient ordinary differential 
equations of process control. 

•	 It is the nature of the linear ODE that the effects of the inputs are 
additive. Each disturbance xi

*(s), when processed through its 
particular transfer function, contributes to the overall response of y*(s). 

•	 As we learned from the partial fraction expansion of Lesson 6, the 
time-domain response will finally be a sum of exponential and 
trigonometric terms. The various time constants, frequencies, and 
phase lags in these terms are determined by the coefficients in the 
transfer functions, and thus the original differential equation. 

The dynamic response calculated from Equation (7.2.5) may be 
complicated indeed, but the essential concept - a dynamic system 
approximated by a linear equation and expressed in terms of transfer 
functions - is no different from what we have already studied in the 
simpler first order system of (7.1.2). 

7.3 Using the transfer function 
A transfer function represents a differential equation. Just as we classify 
differential equations into recognizable types, we will classify transfer 
functions, learn their characteristics, and use them as a concise 
representation of particular behaviors.  For example, the transfer function 
in (7.1.2) represents a first-order lag; it contains the same information as 
the ODE of (7.1.1). 

Given the transfer function for a system, therefore, we can predict some 
features of its behavior without actually calculating its response to 
particular disturbances. Consider these terms: 

order – the highest power of s in the denominator. Equivalent to the order 
of the differential equation describing the system. 
The first-order lag is described by a first-order differential 
equation; its transfer function has a single s in the denominator. 

pole – root of the denominator. In later lessons, we will learn that poles 
with negative real parts result in output signals that decay in time, 
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so that the system will be stable. If there exist poles with 

imaginary parts, the system may oscillate, even without oscillatory 

disturbances. 

The first order system has a pole at -τ-1; this negative, real value 

indicates a stable response with no oscillation. 


zero – root of the numerator. These generally have no influence on 
stability, but can influence the rate and character of the dynamic 
response. 
The first-order system has no zeroes. 

steady state gain – the ratio of long-term output change to input step 
change. The gain is a measure of how sensitive the system is to 
disturbances. If the system is a chemical process, we would like a 
low value of gain, so that disturbances would have little effect on 
the output variable. In a sound system, we would like a large gain, 
so that tiny input signals from the source (tape, vinyl, CD) are 
amplified to audibility. The gain is found by setting s = 0 in the 
transfer function. 

Here we summarize the first-order lag and integrator with respect to these 
properties 

type equation transfer 
function 

poles steady state gain 

lag 
)()( tKxty

dt 
dy 

=+τ 
1+s 

K 
τ 

-τ-1 K 

integrator 
)(tKx

dt 
dy 

=τ 
s 

K 
τ 

0 none; increases 
without bound 

7.4 Transfer function for the stirred reactor 
Let’s combine our knowledge of modeling first-order systems from 
Lesson 4, Laplace transforms from Lessons 5 and 6, and notions of the 
transfer function. In Section 4.1 we modeled a stirred overflow tank 
containing a dissolved substance A. Let’s now assume that A disappears 
by first order chemical reaction. 

rA ≡ 
1 dNA = −kCA (7.4.1)
V dt 

where the negative sign shows that A is consumed in the reaction. The 
component material balance is written assuming that the volumetric flow 
rate F is constant. 

V dCAo = F (CAi − CAo ) −VkCAo CAo (0) = CAs  (7.4.2)
dt 
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There are no nonlinear terms; subtracting the steady state from (7.4.2) 
leaves deviation variables. 

* 

V dCAo = F (CAi 
* − CAo 

*) − VkCAo 
* CAo 

*(0) = 0  (7.4.3)
dt 

Equation (7.4.3) is then put into standard form: 

*V 
F + Vk 

dC
dt

Ao + CAo 
* = 

F + 

F
Vk 

CAi 
* 

(7.4.4)
* 

τ dCAo + CAo 
* = KCAi 

* CAo 
*(0) = 0

dt 

The time constant is smaller than that for the mixing tank in Equation 
(4.1.4) -- in a manner analogous to the multiple outlet streams in Section 
4.5, the combination of outflow and chemical consumption in (7.4.4) 
reduces the time response of the outlet concentration. Similarly the gain is 
less than unity -- a disturbance in inlet concentration is only partly 
transmitted to the outlet stream 

Taking Laplace transforms of (7.4.4) gives 

* K *CAo (s) =
τs + 1 

CAi (s)  (7.4.5) 

Guided by (7.1.2), we identify the transfer function of the mixing tank. 

*K  CAo (s)  (7.4.6)G(s) =
τs +1	 = * 

 CAi (s) 
 

As we remarked in Section 7.2, the transfer function depends only on the 
geometry and operating conditions of the tank itself, not on the 
disturbance. The particular nature of the inlet disturbance CAi

*(s), when 
worked through the transfer function G(s), gives the particular nature of 
the output response CAo

*(s). 

Detail 
In process control, we think of the gain K as a measure of how a 
permanent change in input CAi

* affects the output CAo
* in the long 

term. However, the steady-state performance of the reactor -- that 
is, how well it converts CAis to CAos -- is also indicated by the gain. 
From material balance (7.4.2), written at steady state, we find that 
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the gain depends on the reaction rate constant k and the reactor 
residence time τR. 

CAos F 1 
= 

CAis 

= K = 
F + Vk 1+ kτ R 

(7.4.7) 

Low gain means good conversion of reactant A. 

By placing the equations in standard form, we found that the time 
constant τ depends on the tank volume, the flow, and the reaction 
rate constant. 

Vτ = 
F + Vk 

= 
1+
τ 
k
R 

τ R 

(7.4.8) 

These parameters are important individually, of course, but when 
we are concerned with the dynamic response, it is important to 
identify how they interact to affect the time constant. We see that 
the time constant is related to the reactor residence time τR, which 
we use in designing a stirred reactor to produce a desired outlet 
concentration of reactant. For understanding how that outlet 
concentration varies in time, however, the time constant is more 
significant. Notice that for no reaction, the time constant reduces 
to the residence time. As the reaction rate increases, the time 
constant decreases, indicating that the outlet concentration 
responds more quickly to disturbances 

7.5 Block diagrams

The block diagram is a graphical display of the process model in the 

Laplace domain. It comprises blocks and arrows, and thus resembles 

many other types of flow diagram. In our use with control systems, 

however, the arrows represent signals, variables that change in time, which 

are not necessarily actual flow streams. The block contains the transfer 

function, which may be as simple as a units conversion between x and y, 

or as complicated as a full chemical process. Remember that the transfer 

function incorporates all the dynamic information in the process model. 


x(s) 
G(s) 

y(s) 

This diagram means 

y(s) = G(s)x(s)  (7.5.1) 
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Returning to the mixed reactor in Section 7.4, we can represent the 
dynamic behavior of the reactor by a block diagram that is equivalent to 
Equation (7.4.5): 

CAi 
*(s) CAo 

*(s) 
1+s 

K 
τ 

CAi 
*(s) CAo 

*(s) 
1 +s 

K 
τ

7.6 Block diagram structures 
The real value of block diagrams is to represent the flow of signals among 
multiple blocks. 

The Block Diagram Rules: 
• only one input and output to a block. The figure in Section 7.1 was fine for its purpose, but 

does not qualify as a process control block diagram. 

inputs systemsystem outputs 

•	 two signals may be summed at an explicit summing junction. The 
algebraic sign is indicated at the junction. 

x1(s) 
G1(s) 

+ 

G2(s) 
-

y1(s) 

y2(s) 

x3(s) 
G3(s) 

y3(s) 

x2(s) 

•	 a single signal may feed its value to multiple blocks. This does NOT 
indicate that the signal is split among the blocks. 

x1(s) 
G2(s) 

G3(s) 

x2(s) 

x2(s) 

y1(s) 

y2(s) 

G1(s) 

Block diagrams may be turned into equations by simple algebra. It is 
usually most convenient to start with an output and work backwards by 
substitution. In the summing diagram 

7 




10.450 Process Dynamics, Operations, and Control 
Lecture Notes - 7 

y3(s) = G3(s)x3(s) 
= G3(s)(y1(s) − y2 (s)) 
= G3(s)(G1(s)x1(s) − G2 (s)x2 (s)) (7.6.1) 

= G3(s)G1(s)x1(s) − G3(s)G2 (s)x2 (s) 

In the multiple assignment diagram 

y1(s) = G2 (s)x2 (s) 
= G2 (s)G1(s)x1(s)

 (7.6.2)
y2 (s) = G3(s)x2 (s) 

= G3(s)G1(s)x1(s) 

Similarly, equations may be turned into block diagrams. System (7.6.1) 
has two inputs and thus requires at least 2 blocks. 

x1(s) 
G3(s)G1(s) 

+ 

G3(s) G2(s) 
-

y3(s) 

x2(s) 

System (7.6.2) has two outputs for one input. Input x1 is not split – its full 
value is sent to each of two blocks. 

G2(s)G1(s) 

y1(s) x1(s) 

G3(s)G1(s) 

y2(s) 

This pair of block diagrams is equivalent to the pair from which they were 
derived. 

7.7 Splitting a signal 
The block diagram rules contain a summing junction, but no explicit 
provision for splitting a signal. And yet, chemical processes frequently 
contain junctions at which a flowing stream is divided -- certainly the full 
value of the stream is not fed to each destination!  To represent such splits 
on a block diagram, we feed the input signal into separate blocks. The 
transfer functions in these blocks express the manner in which the flow 
was split. 
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For example, suppose that an inlet flow always divides so that one branch 
receives fraction ε of the flow and a second receives the remainder. Then 
the material balance is 

wi = wo1 + wo2 

= εwi + (1−ε )wi 

(7.7.1) 

and the block diagram is drawn 

wi ε 

1-ε 

ε 

1-ε 

wo1 

wo2 

The gain of each transfer function is less than unity, showing that each 
output signal is diminished from the input value. 

Detail 
In fact, the transfer functions are nothing but gain, which implies 
that the response of the outlet to inlet disturbances is instantaneous. 
Of course, we assumed this in writing the material balance (7.7.1). 
For an incompressible flow, this is a good description. 

The flow junction might behave so that the flow fraction ε depends 
on the magnitude of the inlet flow wi. For a compressible flow, the 
dynamic response of the branches might differ, so that the transfer 
functions would depend on Laplace variable s. The complexity of 
the transfer functions depends on the detail of our modeling; 
however, the principle of splitting a signal on a block diagram is 
the same as in our simple incompressible case (7.7.1). 

7.8 Describing systems 
We began our study of dynamic systems by writing differential equations. 
Then we adopted the Laplace transformation of these equations as an 
equivalent description. Now we have introduced block diagrams as yet 
another description. That does it for descriptions -- we will now apply 
them to increasingly complicated systems. Whatever the means, our 
purpose is to calculate an output response for an input disturbance, as we 
have in many examples of first-order systems. 
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