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ABSTRACT 

This thesis developed a new method to analyze the structural behavior of masonry domes: the 
modified thrust line analysis. This graphical-based method offers several advantages to existing 
methods. It is the first to account for the ability of domes to achieve a range of internal forces, 
gaining potentially an infinite number of equilibrium solutions that could not be derived 
otherwise. This method can also analyze non-conventional axisymmetrical dome geometries that 
are difficult or impossible to analyze with existing methods. 

Abiding by limit state conditions and the principles of the lower bound theorem, the modified 
thrust line method was used to ascertain the theoretical minimum thrust of spherical and pointed 
domes, a parameter that was previously unsolved. Several methods to estimate minimum thrust-
to-weight ratio were provided. For spherical domes, this ratio may be estimated as -0.583α + 
1.123; for pointed domes, the estimated ratio is 0.551δ -1.061δ/α – 0.615α + 1.164, where α and 
δ are the embrace and truncating angles, respectively. From the results, salient relationships 
between minimum thrust and dome geometry were derived, including an inverse relationship 
between the minimum thrust and the thickness-to-radius ratio, angle of embrace, and, for pointed 
domes, the truncation angle of the crown for a constant angle of embrace. 

The capabilities of the modified thrust line method were demonstrated in two masonry dome 
case studies that existing methods could not successfully analyze. The potential of this method to 
predict the ultimate load capacity of masonry domes was also explored. The method over-
predicted the capacity of two small-scale masonry domes loaded to failure by a concentrated 
applied load at the crown; however the small size of the domes compared to real-world domes 
suggested that scale effects may have influenced their behavior. 

Finally, interactive geometry programs of the modified thrust line method and other existing 
graphical analysis methods were created to disseminate these illustrative tools to understanding 
the structural behavior of masonry domes. 

Thesis Supervisor: John A. Ochsendorf 

Title: Assistant Professor of Building Technology 
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Preface 

 
Dome of Farag Ibn Barquq, Cairo, Egypt Photograph courtesy of the Egyptian Council of Antiquities (c. 1970) 

In northeast Cairo, the dome of the Mausoleum of Farag Ibn Barquq has stood over the city for 

the past 600 years—but no one has explained how. Constructed of intricately carved stone 

masonry, the dome spans an astounding 47 ft at its base and has a thickness of less than 15 in. Its 

structural elegance is further accentuated by the 20-ft high cylindrical wall of equal slenderness 

on which the dome sits. The dome has no metal reinforcing despite the insistence of existing 

structural analysis methods that tensile reinforcement is critical to the dome’s stability. Yet the 

dome stands. 

This thesis describes a new method of masonry dome analysis that explains how.
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Chapter 1. Introduction 

A curve rotated about a central axis to form a surface typically used as a roof creates a dome. 

The curve may assume an infinite number of shapes with different geometric parameters, such as 

its span, rise, center(s) of curvature, and radius and direction of curvature. Though it has 

potential application to domes of unconventional geometries, this thesis primarily considers 

domes with one or two centers of curvature, and positive Gaussian curvature1. 

Dome vaults made possible construction beyond the orthogonal or rectilinear roof plan, creating 

high, clear spaces with open floor plans. The first known dome constructions, dating back to 

fourteenth and twelfth centuries B.C., are located in disparate regions around the world in what is 

today Greece, China, Egypt, and India. Often integrated with the natural terrain, these ancient 

structures were constructed from cutout rock, sun-dried mud, or stone, and had funerary or 

utilitarian purposes such as defense, shelter, storage and kilns (Melaragno 1991). 

One of the first known domes, the Treasury of Atreus, Mycenae (c. 1325 B.C.), features corbel 

construction in which masonry courses are dry laid in concentric rings from the base to crown 

with horizontal bed joints and vertical head joints without centering (Fig. 1.1). 

 
Figure 1.1. The corbel dome of the Treasury of Atreus in Mycenae is one of the oldest remaining domes. Left: figure 

from Walling (2006). Right: figure modified from Hanser (2003). 

                                                 
1 Gaussian curvature is the product of the principal curvatures, k1k2, of a surface. A surface with positive Gaussian 

curvature signifies that a tangent plane intersects the surface at only one point, as in the case of a sphere. A surface 
with negative curvature signifies a tangent plane would intersect the surface, as in a saddle curve. 
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Prior to the turn of the first century, bed joints in the concentric rings in trulli, stone structures 

covered with pointed stone domes in southern Italy, began to incline inward with the geometry of 

the curve (Melaragno 1991). As dome construction continued to evolve, techniques such as 

“cohesive” masonry construction, reinforced concrete, double shell, and thin shell construction 

made possible the magnificent domed structures later constructed (Fig. 1.2). 

 
Figure 1.2. Left: Interior of the Pantheon in Rome (120 – 124 A.D.) (photograph by Ruggero Vanni); Right: Exterior 
of Gol Gumbaz, the Tomb of Muhammad Adil Shah, in Bijapur, India (1627 – 1656 A.D.) (photograph from Crave 

Services) 

1.1. Fundamental Structural Behavior 

Dome structures must provide strength, stiffness, and stability (Heyman 1995). They must be 

capable of supporting applied loads and self weight without excessive deflection and unstable 

displacements. Similar to an arch, a dome develops internal meridional forces that transfer loads 

to a support structure at its base. These forces are compressive and increase in magnitude from 

the crown to the base for any dome loaded axisymmetrically by self weight (Fig. 1.3). 
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Figure 1.3. Domes develop internal meridional forces and hoop forces. 

Unlike an arch, a dome can resist out-of-plane bending of the meridians by developing internal 

hoop forces that act in the latitudinal direction as parallel rings. Hoop forces allow ring-by-ring 

construction of a dome without centering, an unfeasible task for an arch. As a result, though an 

arch is unstable without its keystone, a dome with an oculus is perfectly stable, as evidenced by 

the “incomplete” domes around the world, such as the Pantheon in Rome. 

The line of thrust, or funicular polygon, is the path on which internal forces in a structure 

transport external loads to the supports. The funicular polygon represents the line of thrust in 

which internal forces are axial; this may be envisioned as a string loaded with weights 

corresponding to the loads of the structure. For traditional masonry domes, the predominant 

applied load is self weight; thus this thesis primarily considers domes loaded only by gravity 

loads. When inverted, this hanging string model may represent the line of thrust in compression 

for an upright arch or dome structure as Poleni demonstrated in 1748 (Fig. 1.4). 
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Figure 1.4. Poleni illustrated that the line of thrust is a funicular polygon that may be envisioned as an inverted 

string loaded with weights for the dome of St. Peter, Rome (from Heyman 1996). 

At the base of a dome, the support structure must resist the inclined loads from the dome with 

equal and opposite reactions (Fig. 1.5). The support structure typically resists the vertical 

component of the inclined force with ease. However, the dome and support structure must also 

resist the horizontal component, the outward thrust, particularly near the base of the dome where 

total thrust is greatest. External means of resistance may be employed, such as massive support 

structure walls, as used in the Roman Pantheon, or a metal tension ring around the dome’s base. 

 
Figure 1.5. The support structure must resist applied and gravity loads with equal and opposite reactions. 
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Though the methods it describes could be applied to steel or reinforced concrete domes, this 

thesis focuses on new ways to analyze masonry domes, and abides by the classical Heyman 

(1995) limit analysis conditions: 

1. Masonry has no tensile strength. 

2. Masonry has virtually infinite compressive strength compared to the low internal stresses 

that a structure develops relative to the failure strength of masonry. 

3. Sliding failure does not occur. 

The upper bound for masonry is defined by the uniqueness theorem: 

If a line of thrust can be found which represents an equilibrium state for the structure 
under the action of the given external loads, which lies wholly within the masonry, and 
which allows the formation of sufficient hinges to transform the structure into a 
mechanism, then the structure is on the point of collapse; … the value of [the] load factor 
at collapse is unique. (Heyman, 1996, p. 6) 

Local or comprehensive failure of domes may result from the masonry’s inability to resist tensile 

or bending forces that develop due to unanticipated loads on the dome. A typical failure or 

collapse mechanism consists of: first, the formation of radial cracks along its meridians that 

divide the dome into lunes, or pie-shaped arches (Fig. 1.6). 

 
Figure 1.6. The dome may be considered as a radial series of lunes that comprise the dome (from Heyman 1977). 

Second, two hinge circles form in the dome mid-section, with a third hinge circle formation at or 

near the base. The cap of the dome will fall straight down, while the base of the lunes, as defined 

by the radial cracks, will rotate outward (Fig. 1.7). 
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Figure 1.7. Typical collapse mechanism for a dome 

1.2. Literature Review 

In the mid-eighteenth century, Poleni was one of the first recorded to formally analyze domes 

when he used static analysis to assess meridional cracks in the dome of St. Peter’s, Rome. 

Applying Robert Hooke’s discovery that a hanging chain model represents an inverted force line 

of a structure in compression, Poleni correctly concluded that the line of thrust for the dome’s 

load conditions remained within the effective thickness of the structure, rendering the dome as 

safe (Fig. 1.4). However, this lower bound approach was conservative because the hanging chain 

represented forces in only two dimensions: hoop forces in the third dimension would have 

further assured the dome’s stability. 

In 1866, Johann Schwedler presented the membrane theory, which provided the basis for 

preliminary mathematical equations later published by other authors, including Rankine (1904). 

The membrane theory makes four primary assumptions (Billington 1982): 

1. Applied loads are resisted by internal forces within the surface, which has no stiffness against 

bending; therefore internal forces are either pure tension or pure compression. 

2. On a symmetrically and uniformly loaded dome, internal forces act perpendicularly to each 

other in the meridional and latitudinal, or hoop, directions. 

3. Internal forces are coplanar; that is, the membrane has zero thickness. 
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4. The membrane plane is located along the centerline of the dome’s effective thickness; thus 

the lines of thrust must also lie on this median surface. 

The latter two assumptions, which constrain the location of the thrust line to the median radius 

and reduce the dome’s thickness to zero, limit hoop force values to those needed to equilibrate 

meridional forces; as a result, the membrane solutions tend to underestimate the dome’s ability to 

attain stability. In addition, the equations, limited in versatility, are difficult to apply to domes 

with unconventional geometries and conditions. This thesis elaborates further on these 

limitations in later chapters. 

Around the turn of the twentieth century, engineers and architects used graphical analysis 

methods in conjunction with basic equilibrium equations to design and analyze domes. In 1877, 

Eddy published a method of graphical analysis specifically for masonry domes based on the 

funicular polygon, detailed in Section 2.1. Eddy identified that, for a hemispherical dome loaded 

axisymmetrically, the transition between compressive hoop forces near the crown and tensile 

hoop forces near the base occurs at 51°49’ from the axis of rotation. Below the “point where the 

compression vanishes (and) we shall not assume that the bond of the masonry is such that it can 

resist the hoop tensions which is developed,” Eddy limited the thrust line to lie within the middle 

third in order for the “upper part of the dome [to] be then carried by the [lower part] as a series of 

masonry arches standing side by side” (Eddy 1877, pp. 56-57). 

The middle-third rule states that a satisfactory design is obtained when the thrust line lies within 

the middle third of a structure’s effective thickness. Should the thrust line pass outside this 

region, the elastic bending theory assumes that the section will experience tensile forces that may 

separate the masonry voussoirs (Heyman 1982). Though it remains a built-in safety factor in 

masonry construction today, the rule presumes purely linear-elastic behavior of the masonry. In 

actuality, the state of a structure constantly changes due to environmental factors or settlement, 

and thus “the imperfections of the real world … would make it … unlikely that linear elastic 

behavior will actually occur” (Heyman 1982, p. 24). Thus elastic analyses, including one posed 

by Navier in the mid-nineteenth century, are inaccurate in gauging masonry dome behavior. For 

example, the membrane theory, a lower bound method within the framework of limit analysis, 
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makes no assumptions about the elastic properties of the material (Heyman 1995). As a result, 

Eddy’s method is conservative in exploring the theoretical possibilities of masonry domes. 

Wolfe (1921) published a graphical method similar to Schwedler’s membrane theory-based 

graphical method that, like the membrane theory, is conservative due to its constraint of the 

thrust line to the dome’s median radius. Section 2.2 describes this method further. 

Heyman’s limit state assumptions initiated contemporary work in masonry structures using 

plastic methods of analysis that consider a design satisfactory when the thrust line is contained 

anywhere in the entire effective thickness of the structure per the safe theorem: 

If a line of thrust can found which is in equilibrium with the external loads and which lies 
wholly within the masonry, then the structure is safe. …[T]he line of thrust found in 
order to satisfy the safe theorem need not be the actual line of thrust[.] (Heyman, 1996, p. 
6) 

However, in a study of the theoretical minimum thickness of masonry domes, Heyman (1977) 

neglected internal hoop forces to simplify the study, a simplification that later studies also made. 

Heyman derived the minimum thickness-to-radius ratio, t/R, by simplifying the lune analysis to 

two dimensions and assuming no hoop force transfer between individual lunes (Fig. 1.8). By 

assuming the dome acts as a radial series of arches, Heyman eliminated the dome’s ability to 

develop stability with its hoop forces anywhere below the dome cap, which may result in a 

conservative solution. 

 
Figure 1.8. The minimum thickness-to-radius of curvature ratio versus angle of embrace for an unreinforced 

masonry dome structure (Heyman 1995) 
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Oppenheim et al. (1989) also assumed zero hoop stresses in their derivation of a thrust line 

surface for a hemispherical and pointed dome under axisymmetrical loading. The resulting thrust 

line surfaces were not based on the membrane theory, and thus:  

For limit state analysis of masonry shells the admissible membrane force surface should 
be required only to lie within the shell thickness and admit only compressive forces. 
There can be more than one such thrust surface, and these in general will differ from the 
middle surface of the shell. (Oppenheim et al., 1989, pp. 871-872) 

Oppenheim et al. used static equilibrium equations to ascertain the minimum t/R by assuming the 

locations of the three hinge points through which the thrust line passes prior to collapse. Using a 

thickness-to-radius of curvature ratio of 0.05, Oppenheim et al. found a satisfactory thrust 

surface for hemispherical domes but not for pointed domes (Fig. 1.9). 

 
Figure 1.9. Without hoop forces, the thrust line exits the ogival, or pointed, dome section (Oppenheim et al. 1989). 

As a side note, the t/R ratio for the dome of Farag Ibn Barquq, discussed in the opening 

paragraph, is less than 0.05. Oppenheim et al. acknowledged the importance of hoop forces in 

domes, but argued the magnitudes of these forces are very low. Thus, a unified method to 

establish the minimum thickness of masonry domes with any shape remains unknown to date. 
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O’Dwyer (1999) used linear programming and geometric constraints to model a masonry dome 

as a three-dimensional discrete network of forces applied at nodes. However, he limited his 

discussion to the analysis process, and less on new insights arising from his methodology or 

detailed analyses of specific dome case studies. 

D’Ayala (2001) explored the role of friction-induced tensile strength in masonry domes by 

investigating the minimum t/R for a hemispherical dome under self-weight. She assumed tensile 

resistance from friction due to internal forces developed between the faces of the masonry 

voussoirs. Though voussoirs likely develop some friction at their interfaces, the presence of 

masonry cracks limits the reliability of this resistance. This thesis concentrates instead on the 

structural limits of domes with minimal or no reliance on direct or indirect tensile strength. 

The current prevalent method to design and analyze thin-shell and domes structures is numerical 

finite element modeling (FEM) computer software. Though several recent studies have attempted 

to analyze historic masonry structures through FEM, these computer programs tell little more 

than what the basic membrane and bending theories reveal. For example, Robison (1988) 

conducted a study on St. Peter’s dome using FEM that reaffirmed the stability of the dome: 

something Poleni demonstrated through his hanging string model. 

In addition, the input process for these programs, which may assume nonlinear behavior with 

either plastic or elastic behavior, is typically laborious, particularly for nonlinear models. 

Meanwhile the solution is limited in its demonstration of structural behavior, and often includes 

tensile internal forces, which are inapplicable to masonry construction. Linear elastic results say 

nothing about potential collapse states. The results can be difficult to interpret correctly while 

remaining mindful of the associated risks and downfalls of the analysis methods. Too often a 

solution produced from FEM is quickly accepted as the singular solution when the stresses 

predicted by linear elastic FEM do not occur in reality. 

Methods for finding the upper bound limits of masonry domes remain largely unproven. Through 

analytical and computational means, several past authors have attempted to estimate upper bound 

limits of domes by conducting an equilibrium analysis of a structure at incipient collapse. Hodge 

and Lakshmikantham (1963) assumed limit analysis theorems and the applicability of virtual 
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work to predict the theoretical yield-point load of rigid, perfectly plastic, axisymmetrical shallow 

shells; however, their work assumed ductile material behavior that yields in a plastic manner, 

which is not representative of masonry behavior. Livesley (1992) also used linear programming 

to model the collapse mode of three-dimensional masonry structures by examining the sliding, 

twisting and hinging mechanisms of discrete blocks due to foundation movement, but did not 

examine the limits of applied loads on the dome surface itself. 

Save, Massonnet and de Saxce (1997) derived equations through energy balance methods to 

calculate the critical uniformly distributed load over a horizontal projection of a spherical 

reinforced concrete shell. Again, their assumption of ductile material behavior limits the 

equations’ use in analyzing masonry structures. In addition, the authors do not discuss the 

applicability of their method to domes of other shapes, materials and load conditions. 

Anselmi et al. (2005) used numerical programming methods to predict the “load collapse 

multiplier” for masonry structures under limit analysis theorems. They achieved a multiplier for 

an axisymmetrical dome subjected to dead load, but revealed little about upper bound limits of 

domes under applied loads, a more relevant scenario for masonry domes. Typically, masonry 

domes have little problem carrying their own weight if limit state conditions are satisfied. 

1.3. Research Objectives 

Despite the myriad of existing structural analysis methods and theories, the structural behavior of 

masonry domes remains relatively obscure. Masonry domes, particularly those with non-

spherical geometries, lack a versatile and comprehensive analysis method that fully accounts for 

their ability to develop forces in three dimensions, and explains the stability of domes that have 

stood for centuries. Though several studies have explored acceptable dome configurations using 

the thickness-to-radius parameter, the relation between dome geometry and other theoretical 

structural limits, including minimum thrust values and safe limits, has been ignored. 

The research objectives of this thesis are manifold. First, this thesis introduces a new method of 

structural analysis developed for masonry domes that has the potential to analyze most, if not all, 

axisymmetrical dome geometries, including spherical, pointed, and non-conventional geometries. 
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Chapter 2 describes this new approach, called the modified thrust line method, which has bases 

in limit analysis, thrust line analysis, and existing graphical analysis methods. The modified 

thrust line method explores the role of variable internal meridional and hoop forces, in contrast to 

the fixed values calculated by existing methods, in the behavior and theoretical limits of dome 

structures. 

Second, this thesis derives the minimum thrust of a dome, a structural limit of masonry domes 

that is currently unsolved. This thesis establishes general characteristics of structural behavior 

based on geometry by analyzing hundreds of dome geometries with the modified thrust line 

method. These results have numerous applications, such as the minimum thrust of half-dome 

buttresses and the stability of a dome’s support structure. Chapter 3 discusses these results and 

notable applications for spherical dome geometries, and Chapter 4 concentrates on pointed dome 

geometries. Chapter 5 further demonstrates the application of this research by analyzing two 

specific case studies: the Mamluk dome of Farag Ibn Barquq in Cairo, Egypt, and the domes of 

the Pines Calyx in Dover, England. 

Third, this thesis attempts to establish the modified thrust line analysis as a method to predict 

upper bound limits of masonry domes of variable geometry and load conditions. Chapter 6 

discusses the analysis’s potential in the prediction of theoretical upper bound limits for two 

small-scale masonry dome constructions loaded to failure. 

Finally, in conjunction with the above objectives, the author created computer programs, which 

may be accessed worldwide, to conduct the existing and new graphical analysis methods in real-

time. These interactive geometry programs hope to encourage users unfamiliar with the 

structural analysis of curved masonry surfaces to learn the potential of dome vaults. Targeting 

the fields of architecture and historic conservation, these programs are an alternative to the 

complex analysis programs structural engineers primarily use today. To reduce the potential of 

human error in the interactive programs, the author also created spreadsheet programs that 

conduct multiple analyses with the new methodology developed herein. 

To summarize, this work explores the potential of geometry and structural equilibrium to address 

lingering questions on the behavior and capabilities of masonry domes. 
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Chapter 2. Lower Bound Analysis Methods 

This chapter begins by explaining the methodology of existing graphical analysis techniques that 

utilize thrust line principles in masonry dome analysis. The derivation and implementation of 

these methods, particularly those described in Eddy (1877) and Wolfe (1921), formed the bases 

for the new structural analysis procedure for masonry domes. The last section of this chapter 

discusses the assumptions, derivation, and methodology of the modified thrust line method. 

2.1. Graphical Analysis of a Dome as a Series of Lunes with No Hoop Forces 

In 1877 Eddy published New Constructions in Graphical Statics, perhaps the first text in English 

that included a graphical analysis method specifically for masonry domes. Though Eddy 

acknowledged the development of internal hoop forces in regions between the dome’s crown and 

base, his method simplified hoop forces to a single value representing the “greatest horizontal 

thrust which … is possible for any segment of the dome (between the crown and 51°49’ from the 

crown) to exert upon the part below it” (Eddy 1877, p. 56). However, in doing so, Eddy limited 

internal forces to only two dimensions, and essentially analyzed the dome as an arch. In addition, 

Eddy’s use of the term, “greatest horizontal thrust,” is misleading because his method does not 

calculate the maximum thrust possible in a masonry dome, which theoretically could be infinite. 

Rather, Eddy calculated a thrust value that is greatest relative to the particular thrust line derived; 

that is, no other parts of the dome will experience a thrust higher than the value determined in the 

force polygon corresponding to the particular thrust line. Albeit limited, Eddy’s method provided 

early insight on dome stability and thrust, thrust line geometry, and internal meridional forces. 

Due to symmetry, Eddy simplified the analysis to consider only a lune, a representative piece of 

the dome; this simplification is common in dome analysis, including the one developed in this 

thesis. To calculate the weight of the lune, Eddy assumed the lune as a series of cones with bases 

that form the outer surface of the lune and whose heights represent the radius of curvature. If the 

surface is divided into equal areas, then each cone has the same volume and weight. As a result, 

the voussoirs into which Eddy further divided the lunes comprise different arc lengths of the 

dome surface, but have equal weights (Fig. 2.1). 
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Figure 2.1. Graphical analysis construction by Eddy. The final thrust line curve, e1e8, is determined by parallel 

segments radiating from the pole, a, to the final position of the weight line, w1w8 (from Eddy 1877). 

The procedure for conducting the analysis using Eddy’s method is straightforward but 

cumbersome to perform by hand: 

1. Draw the lune section and divide it into n voussoir divisions; to an extent, the higher the n, 

the more accurate the analysis. Locate the centers of gravity, gi, of each voussoir i. 
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2. Assume an initial horizontal distance between pole a, at the intersection of the lune’s median 

radius and vertical axis of revolution, and the weight line w1wn. This distance represents the 

magnitude of the horizontal thrust exerted by the lune. Points wi are collinear with points gi, 

and are parallel to the dome’s axis of rotation. 

3. Draw vertical lines bigi through each voussoir’s center of gravity. 

4. Connect the pole a and the weight line with segments awi. Starting from point fn at the 

exterior middle-third of the section at the base, construct the initial funicular polygon ccn 

with segments parallel to awi between consecutive vertical dividers bigi and bi+1gi+1. 

5. To estimate the ratio by which to scale the initial thrust line curve ccn to lie within the middle 

third of the section “to ensure stability,” construct line fo oriented 51.8° from the horizontal, 

starting at the outer middle-third curve at the dome base (Eddy 1877, p. 57). 

6. Draw points mi at the intersections of the outer middle-third curve and lines bigi. Draw 

horizontal segments mipi, where points pi are on line fo. 

7. Draw points qi at the intersections of a horizontal line through ci and vertical line through pi. 

Connect the points to draw curve qqn and tangent line oqn. 

8. Draw line fj parallel to line oqn through line w1wn. Then draw point i at the intersection of 

line fo and a horizontal line through point j. 

9. Translate the position of the weight line w1wn horizontally until it aligns with point i. 

Construct a new thrust line curve, een, using the revised slopes between the pole a and the 

revised weight line v1vn in a similar manner to the construction of line ccn. Verify this curve 

lies within the middle third of the lune’s section. 

10. Determine the magnitude of the horizontal thrust by multiplying the horizontal distance 

between pole a and the line v1vn by the scale equal to the weight of the lune divided by the 

length of the weight line. 

This method, which was made popular in the early twentieth century by Dunn (1904), was 

employed by some dome designers, such as Rafael Guastavino, Jr. (Huerta 2003). As an exercise 
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in the study of existing graphical analysis methods, the author created a program2 based on 

Eddy’s method using interactive geometry-based computer software3, thus automating the 

method’s painstaking aspects. The program also reduces human error in constructing the 

drawings, permits interactive definition of the dome section, and allows the analyst to move, in 

real-time, the weight line w1wn from the pole a, and see the resulting shape of the thrust line. 

2.2. Graphical Analysis using the Membrane Theory 

In the 1920s, around the time J. W. Geckeler published a simplified form of the membrane 

theory equations, Wolfe (1921) published a graphical method for masonry domes in Graphical 

analysis: A text book on graphic statics (Billington 1982). This method, effectively a graphics-

based version of the membrane theory, was similar to Schwedler’s graphical analysis method 

published 70 years prior. It fixed internal hoop forces to the values needed to equilibrate the 

meridional forces and constrain thrust line to the median surface of the dome’s thickness. What 

was significant about Wolfe’s approach was its development of a zero-hoop force thrust line path 

that deviated from the median surface thrust line when tensile strength in the masonry is 

required. However, this method remains a conservative predictor of dome behavior due to its 

partial constraint of the thrust line to the median radius. 

Like Eddy, Wolfe analyzed the dome as a radial series of lunes; however, Wolfe differentiates 

the internal force values in the lune through force polygons drawn to scale. The lune is 

subdivided into n voussoirs a, b, …, x with equal section areas, where x is the nth letter of the 

alphabet; due to the increasing width of the lune, the weight of each voussoir increases from 

crown to base. Assuming the dome is loaded axisymmetrically by only self weight, each voussoir 

experiences five forces: self weight, compressive meridional forces on its top and bottom faces, 

and coplanar equal and opposite hoop forces on its lateral faces (Fig. 2.2). 

                                                 
2 Program is available for public use at http://masonry.mit.edu. 
3 Cabri II Plus, a graphics-based computer software developed by Cabrilog, is available at www.cabri.com. 
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Figure 2.2. Wolfe’s graphical analysis method for domes (Wolfe 1921). “Fig. 501” is a force polygon for a lune 

constructed of material with tensile capacity, such as metal. “Fig. 502” is a force polygon modified for a lune with 
zero tension capacity. 

The procedure to conduct Wolfe’s analysis follows: 

1. Determine the weight of each voussoir. Assuming the weight acts as a “concentrated force at 

the centroid of each division,” construct the load line of the force polygon with consecutive 

and joined vertical segments AB, BC, … , XX, of lengths scaled proportionally to the voussoir 

weights and oriented downward to match the direction of gravity loads (Wolfe 1921, p. 251). 
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2. On the force polygon, draw a horizontal ray through point A, which represents the zero 

vertical load and unknown horizontal reaction at the crown. 

3. Draw the median radius of curvature through the lune section. 

4. Draw vertical lines through each voussoir’s center of gravity. For an angle of the lune in plan 

less than 15 degrees, the centroids may be approximated to lie on the median surface. 

5. On the force polygon, draw segments parallel to the slope of the median surface between 

consecutive vertical lines through the voussoirs’ centroids. The orientation of these segments 

represents the orientation of the meridional force vectors at the top and bottom faces of the 

voussoirs. 

6. On the force polygon, extend the angled segments from the load line to the horizontal ray 

through A to intersect at points 1, 2, …, n. The horizontal distance between consecutive 

points represents the net horizontal component of the hoop force at each voussoir. 

7. Determine the magnitude of the hoop force by assuming the hoop forces act perpendicularly 

to the meridians. On the dome plan, draw lines perpendicular to the lateral faces of the lune. 

8. On the horizontal ray on the force polygon, draw lines parallel to these lines through points 1, 

2, …, n that intersect at points a’, b’, …, x’. The final hoop force segment should intersect the 

pole, A, rendering the section in equilibrium. 

The length of the vertical load line in the force polygon represents the total weight of the lune. 

The length of the horizontal ray through A represents the total thrust of the lune that must be 

resisted at its base by the material or through external means, such as a continuous metal ring. 

Meridional and hoop force values may be calculated directly from the segment lengths on the 

force polygon using the analyst-defined scale. 

For an axisymmetrical spherical dome loaded only by self-weight, and with an angle of embrace 

greater than 51.8 degrees from the center axis of revolution, this method requires tensile hoop 

forces in the structure to establish equilibrium. For a masonry dome with little or no tension 

resistance, Wolfe’s method may be modified by assuming the structure acts as a compressive cap 
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supported by a series of radial arches, as Eddy attempted to convey in his method. Where the 

analysis predicts tensile hoop forces, which is indicated on the force polygon when succeeding 

angled segments are steeper than their precedents, alternative meridional segments may be drawn 

from the terminal of the horizontal ray to the remaining points on the load line. On the dome 

section, a revised thrust line may be constructed using the slopes of these new segments for the 

lower dome portion. If this revised thrust line exits the dome section, then the analysis concludes 

that the dome must be modified to accommodate the thrust line. Increasing the section thickness 

at the base or installing tensile reinforcement are two plausible modifications. 

Wolfe’s graphical method made some improvements over Eddy’s method by allowing one to 

calculate the progressing internal meridional and hoop forces at each voussoir between the crown 

and base. The piecewise construction of the no-tension thrust line served as an alternative 

solution for masonry dome designs, which early twentieth-century designers utilized (Huerta 

2003). However, while Eddy constrained portions of the thrust line to the middle-third of the 

lune section, Wolfe constrained the initial thrust line location to the median radius. Therefore, his 

method was also conservative in ascertaining the stability of dome geometries. 

As an exercise in understanding this method, the author created a computer program4 to conduct 

this analysis as published by Wolfe, with the interactive geometry software cited previously. The 

program reduces the risk of human error in constructing the analysis, and allows for real-time 

exploration of internal force values and corresponding thrust line results. 

2.3. The Membrane Theory 

At some point in the mid-twentieth century, as architects and structural engineers became distinct 

and disparate professions, engineers began to favor analytical analysis methods over graphical 

methods, and virtually relegated the latter into obscurity. The membrane theory, which served as 

the basis of Wolfe’s method and remains in use today, provides a lower bound, or safe, analysis 

for axisymmetrical thin-shell domes through equilibrium equations. Shells are considered thin if 

their thickness is less than 5% of the local radius of curvature, or t/R < 0.05 (Heyman 1995). 

                                                 
4 Program is available for public use at http://masonry.mit.edu. 
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However, this thesis extends the application of the membrane theory to non-thin shell domes 

with t/R ≥ 0.05 for comparison to results from graphical methods, whose applicability is 

generally independent from thickness. 

Figure 2.3 defines the geometric parameters of a dome used in this thesis. 

 
Figure 2.3. Parameter definitions for a spherical dome 

This theory is based on three main principles (Heyman 1996): 

1. The structure must be permanently in equilibrium and stable for statics to apply, though 

in actuality, the state of the structure may vary. 

2. The material is rigid in compression, and the structure does not behave elastically. 

3. Compatibility equations of deformation are not applied. 

As mentioned before, the membrane theory assumes the dome has zero thickness, and that 

internal stresses only occur on a membrane surface at the median radius, a, of a dome. The 

membrane theory equations are derived by considering equilibrium of either an infinitesimal 

element of the dome or the entire dome structure (Fig. 2.4). Refer to Appendix A for derivation 

of the equations. 
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Figure 2.4. The membrane theory considers equilibrium of an infinitely small particle on the median radius of a 

dome (modified from Heyman 1977). 

Equations 2.1 and 2.2 calculate the internal meridional and hoop stress resultants, Nφ and Nθ, 

respectively, in units of force per length. 

φφ cos1+
−=

awN   (2.1) 

⎥⎦
⎤

⎢⎣
⎡ −
+

= φ
θθ cos

cos1
1awN   (2.2) 

The self-weight of the element, w, is in units of force per area. Shear stresses are negligible due 

to axisymmetrical loading. Negative values indicate compressive forces. 

For pointed domes, the internal meridional and hoop stress resultants are similarly derived and 

are given by Eqs. 2.3 and 2.4, respectively (Billington 1982): 
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( ) ( ) ( )[ ]δδφφδφφδφ
φθ sincoscoscossinsinsin

sin 2 −+−−−−=′
awN  (2.4) 

where δ is the initial, or truncating, angle of the arc of a pointed dome (Fig. 2.5) 

 
Figure 2.5. The truncation angle from the axis of curvature to the pointed crown of the dome is identified as δ. 

For domes of other geometries and load conditions, such as an oculus or a cupola at the crown, 

derivations and formulae are available in Billington (1982). Ordinary differential equations, 

which may be solved analytically or numerically, assess the structural behavior of domes under 

asymmetrical loads, but are not discussed in this thesis (Farshad 1992). 

The membrane theory assumes the dome is supported tangential to the meridians at its base. In 

the real world, most domes are supported vertically, which causes bending forces and small 

displacements at its edge that quickly dissipate upward into the dome. The membrane theory and 

force method of analysis may be used to analyze edge effects at these boundary conditions with 

the bending theory. Because analytical and empirical analyses have shown that the influence of 

edge effects becomes negligible when a φ-distance of 20 degrees is attained from dome base, and 

that the influence of high bending stresses in these localized areas does not greatly impact the 

overall strength of the dome, this thesis does not elaborate on the bending theory and edge 

effects (Rotter 2002; Farshad 1992). 
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2.4. The Modified Thrust Line Method 

With bases in graphical statics and the analysis methods by Eddy and Wolfe, the modified thrust 

line method is a new approach to analyze masonry domes. The method is distinct from existing 

methods in several aspects: 

 Internal forces may assume a range of values in compression and tension, if applicable. 

 The thrust line may occupy the entire effective thickness of the structure from crown to 

base. 

 Domes with any axisymmetrical geometry, including spherical, pointed, and irregular 

curves with positive and negative Gaussian curvature, may be analyzed. 

By varying internal hoop and meridional forces values, this method can identify satisfactory 

thrust line solutions in domes that existing methods cannot find. Again, the membrane theory 

calculates hoop force values by requiring that the theoretical thrust surface at the dome’s median 

radius is in equilibrium, which results in compressive or tensile fixed hoop force values. 

In reality, only the values of the dome’s external loads are known and fixed. Both internal 

meridional and hoop forces can assume a range of values; different combinations of values result 

in different thrust line configurations, many of which deviate from the median surface of a dome. 

Per the lower bound theorem, the structure is safe if one satisfactory equilibrium state is found. 

For a masonry dome evaluated as a series of lunes, if a thrust surface is found that lies within one 

lune, then stability is satisfied for the “original undivided structure” (Heyman 1977, p. 109). 

This method makes several assumptions regarding thrust line and internal force behavior, several 

of which have been discussed. In addition, the method assumes that the thrust line may touch the 

dome surfaces at no more than two hinge locations per lune; additional contact points put the 

structure at incipient collapse. A dome axisymmetrically loaded by self-weight experiences only 

axial forces. Under these conditions, the method also assumes that the slope of the thrust line 

increases in magnitude from the crown to base with no major aberrations in the thrust line 

curvature, which isolated point loads would create. Hoop forces are greatest near the crown 
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where masonry units push against adjacent units to prevent self collapse and inward rotation; 

hoop forces decrease or become zero toward the dome base. Conversely, meridional forces are 

zero at the crown and increase toward the base of the dome. As a result, the initial slope of the 

thrust line is zero at the crown, or
01 ==

=
ii TLTL yy , and

0=iTLx , the start point of the thrust line, lies on 

the dome’s axis of revolution (Fig. 2.6). 

 
Figure 2.6. Parameter definitions for the modified thrust line analysis 

Internal meridional and hoop forces must be within material strength limits; typically this 

requirement is easily met due to low internal stresses in masonry domes relative to material 

crushing strength (Heyman 1995). 
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The modified thrust line program currently exists in two program formats. The first program, 

written in Microsoft Corporation’s Visual Basic for Applications with Excel 6.3, conducts the 

analysis with user input only in defining dome geometry and material properties, and runs 

multiple simulations consecutively. The second program, developed using Cabri II Plus by 

Cabrilog, relies on user interaction to conduct the graphical analysis. The analyst must 

graphically define the dome section and locate a satisfactory thrust line through trial-and-error 

via the user interface. The latter program permits analysis of geometries beyond conventional 

dome shapes, and its visual and interactive nature clearly illustrates the force behavior in domes. 

The Visual Basic program currently analyzes domes only with uniform thickness, although 

custom geometries are entirely plausible with some program modifications. Descriptions of both 

program versions follow. 

The Visual Basic program considers a lune with 0° ≤ θ ≤ 90° divided into n voussoir free bodies 

defined by the cuts along the meridional planes at its lateral faces, and cuts through the dome’s 

center of curvature at angles β and γ (Fig. 2.7). 

 
Figure 2.7. General parameters for lune in section and plan 
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The weight of a section of dome, or individual voussoir i, is: 

( ) ( )[ ]δβγγβρθ sincoscos
3

33

⋅−−−
′−⋅⋅

=
rrwi  (2.5) 

where r = a + t, r’ = a – t, ρ is the material unit weight, and δ is the initial φ-angle from the 

radius of curvature at the crown for a pointed dome (δ = 0 for spherical domes). Thus the length 

of the load line of the force polygon representing the dome’s self weight, is known. 

The weight of the voussoirs is assumed to act at the volume centroid of each voussoir. The 

horizontal distance from the axis of revolution to the centroid of voussoir i is defined by: 
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On the force polygon, horizontal lines intersecting the load line represent the cumulative thrust 

of the dome at voussoir i. These lines also represent the horizontal component of the meridional 

force (Fig. 2.8). The difference between consecutive horizontal segments on the force polygon 

represents the net outward component of the equal and opposite hoop forces, shown in Fig. 2.8 

“Plan View of Lune”. The analyst can modify the lengths of these horizontal segments, or the 

horizontal thrust in each voussoir, to achieve different internal force combinations and, 

subsequently, different thrust lines. 
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Figure 2.8. Parameters relating the internal forces in the lune section with the force polygon. The cumulative force 

polygon on the right consists of individual equilibrium polygons within each voussoir division of the lune. The slope 
of the thrust line is equal to the slope of the meridional force vectors comprising the force polygon. 

Starting at the crown, the force polygon contains individual equilibrium polygons for each 

voussoir composed of vectors representing the meridional force, horizontal thrust, and 

cumulative weight from the crown to voussoir i at φ = γi. From the force polygon, the meridional 

force at voussoir i is (positive force values indicate compression): 

22
iii hWM +=  (2.7) 

where W is the cumulative weight of the lune portion above φ = γi, and h is the total length of the 

horizontal thrust vector defined by the user or the program. Meridional stress is thus defined as: 
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The internal hoop force and hoop stress at φ = γ are defined, respectively, as: 

( )

⎟
⎠
⎞

⎜
⎝
⎛⋅

−
= −

2
sin2

1

θ
ii

i
hh

H  (2.9) 

( )βγ
σ

−
=

at
H

H 2
 (2.10) 

For the first (i = 0) and last (i = n) voussoirs at the crown and base of a spherical dome, Eq. 2.10 

is multiplied by a factor of 2 because the effective section areas, taken between consecutive 

centers of gravity, of these voussoirs are one-half the areas of other voussoirs. For pointed 

domes, the section area of the 0 th voussoir at the pointed crown will slightly differ from the 

denominator of Eq. 2.10 due to an assumption of an angled top face of the voussoir when it is 

actually flush with the dome’s centerline (Fig. 2.5). 

At the base of the dome, the total horizontal thrust of the lune is simply the length of the segment 

hn. The total weight of the lune, Wn, is represented by the total length of the load line. 

With the horizontal or x-coordinates of the thrust line known with Eq. 2.6, only the y-coordinates 

remain unknown. From the force polygon, the y-coordinates are determined as: 
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For 0 ≤ i ≤ n, 
iTLy must lie between the dome’s intrados and extrados at every

icgx : 
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For voussoirs in which ( ) αsintax
icg −> , then: 
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At the base of the dome, the x-coordinate of the final point of the thrust line, ( )
11

,
++ nn TLTL yx , 

assumed to lie on a line drawn from the dome’s center of curvature at an angle φ = α, must meet 

the following criteria: 
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The final point of the thrust line may touch the extrados or intrados provided the thrust line has 

not touched the dome surface at two locations prior. If the thrust line meets all the above criteria, 

then it is a satisfactory solution that establishes equilibrium of the lune and subsequently, 

equilibrium of the masonry dome. 

The graphics-based version of the modified thrust line method, also developed in Cabri II Plus, 

allows real-time computer-based execution of the methods described by Eddy and Wolfe, as well 

as the modified thrust line method. Relying primarily on geometric input from the analyst on the 

graphical user interface, the program graphically outputs the thrust line shape that corresponds to 

the user-defined internal forces. In addition, the program outputs the numerical values of the 

internal forces and horizontal thrust at the base of the dome (Fig. 2.9). 
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Figure 2.9. User interface for the graphics-based modified thrust line method comparing thrust lines determined by 
the membrane theory and the modified thrust line method. Analysis shown for the dome of Farag Ibn Barquq, Cairo 

(Cipriani and Lau 2006) 

This program assumes the masonry dome acts as a rigid body with zero tensile capacity and no 

elastic deformations. Additional assumptions include axisymmetrical load conditions and 

geometry, tangential support structure at the dome’s base, and the presence of a structure to 

counteract the horizontal thrust at its crown, such as the complementing lune. The program 

evaluates a representative lune with θ ≤ 15°, which is further divided into 16 wedge-shaped 

voussoirs. In the graphics-based program of this method, the user can also customize the dome 

geometry by altering the shape of the voussoirs comprising the lune (Fig. 2.10). 
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Figure 2.10. The interactive geometry program of the modified thrust line method can analyze non-conventional 

dome geometries. 

Through geometry and user-input material density, the program determines and applies the 

external loads of each voussoir to its centroid, and constructs the force polygon to a user-defined 

scale. The vertical load line, representing the gravity loads of the structure, changes in length 

with response to changes to section geometry or applied loads in real-time. The resulting 

funicular polygon generates a thrust line that is displayed in the dome section, permitting 

exploration of possible thrust line geometries in the lune. 

The analyst can choose whether to conduct the analysis under arch, or zero-hoop force, behavior, 

membrane theory conditions, or the modified thrust line method. The methods vary in their 

treatment of hoop forces, which may develop between lunes depending on the condition of the 

dome. For example, if the dome has extensive meridional cracks, the analyst will likely choose to 

analyze the dome as a radial series of independent arches. Under arch assumptions, the analyst 

controls the magnitude of the unknown horizontal thrust and starting point of the thrust line. 

Under membrane theory assumptions, the program conducts the analysis using Wolfe’s method 

as described in Section 2.2. The program includes the option to append a no-tension thrust line 

construction to the original thrust line at the median radius of the section. 

The modified thrust line analysis provides the greatest flexibility in defining hoop force values 

and subsequently, controlling the shape of the thrust line. By experimenting with the internal 



 42

force values at each voussoir in the lune, and the start point of the thrust line at the crown at the 

axis of rotation, the analyst can attain thrust line solutions that explore the entire effective 

thickness of the dome, and satisfy static equilibrium conditions. 

2.5. Chapter Summary 

Since the mid-nineteenth century, structural analysis methods for masonry domes have evolved 

from graphical techniques to the membrane theory equations, which remain in use today. While 

they are certainly acceptable, existing analysis methods incorporate conservative assumptions 

that underestimate the ability of the dome to develop internal forces in three directions, and limit 

the location of a thrust line in the dome’s effective thickness. Using existing methods as a 

starting point, the author developed the modified thrust line method, a graphical statics-based 

technique to explore the dome’s structural possibilities. The programmable methodology is 

invaluable in acquiring the general characteristics of dome structural behavior established in the 

next chapter. 
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Chapter 3. Theoretical Results and Applications of the 
Modified Thrust Line Method 

Due to the versatility and flexibility offered by graphical analysis, the modified thrust line 

method is ideal for exploring the relationship between geometry, internal forces, and the stability 

of masonry dome structures. This chapter focuses on identifying the theoretical minimum thrust 

exerted by spherical domes, and its applications to real world questions. As discussed in previous 

chapters, existing analysis methods limit the number of thrust lines solutions in a dome by 

restricting the thrust line to a specific region, or by assuming internal forces as fixed values. In 

addition, the intent of these methods is to attain a single solution to the problem; thus, they tend 

to overlook the potentially infinite number of satisfactory lower bound solutions.  

To abide by limit state assumptions and the characteristics of internal forces discussed in 

previous chapters, the combination of internal forces must meet the following requirements in 

the study of an axisymmetrical dome loaded only by self-weight: 

 For any voussoir i, the cumulative horizontal thrust, hi, is greater than hi-1, where ii φφ ≤−1 .  

 The absolute value of Wi /hi is less than or equal to the absolute value of Wi+1 /hi+1 where 

Wi is the cumulative weight of the dome from the crown to φi. 

The modified thrust line method also assumes that for conventional dome geometries, under 

uniformly distributed loads, the thrust line cannot change from positive to negative Gaussian 

curvature; that is, the thrust line has no “kinks” that would suggest an isolated concentrated load 

on the dome. These requirements limit the acceptable force polygon configurations, internal 

force values, and thrust line shape in the modified thrust line method. 

For a dome loaded by self-weight only, the membrane theory equations calculate that hoop 

forces decrease from maximum compression at the crown to a point of zero hoop force in mid-

span, and increase to maximum tension at the base. In reality, masonry rings in the dome can 

likely assume higher or lower hoop forces than adjacent rings, in order to keep the line of thrust 

within the dome’s thickness. Only the structure knows its true behavior, but, depending on the 

geometry in question, it is likely that the structure can experience oscillating hoop force values. 
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As discussed in Chapter 1, though past studies neglected hoop forces in ascertaining the 

structural limits of masonry domes, hoop forces are invaluable in this study of minimum thrust 

because they comprise thrust lines that otherwise could not be attained. Oppenheim et al. (1989) 

acknowledged the necessity of compressive hoop forces in the dome cap when their thrust 

surface solution for a pointed dome with α = 90°, δ = 20°, and t/R = 0.05 exited the dome 

section. Including hoop forces in the analysis, the modified thrust line program in Cabri 

generated a satisfactory no-tension thrust line for the same section (Fig. 3.1). 

 
Figure 3.1. Right: The modified thrust line finds a satisfactory thrust line for the example discussed by Oppenheim 
et al. (1989). In this example, θ equals 1/a, and the thrust line was permitted within 0.01a of the dome’s extrados. 

3.1. Minimum Thrust Results for Spherical Domes with One Center of Curvature 

Using the modified thrust line method programmed in Microsoft’s Visual Basic for Applications 

in Excel, the author attained minimum horizontal thrust-to-weight ratios for spherical domes with 

different thickness-to-radius of curvature ratios, t/R, and angles of embrace, α. Spherical dome 

geometries have one center of curvature that lies on the vertical axis of revolution. This study 

compares results for domes in which compressive hoop forces can develop between lune 

segments (e.g., an intact dome), and domes in which hoop forces cannot develop (e.g., a dome 

with meridional cracks from crown to base). 

Due to the infinite permutations of geometric parameters that define the shape of a spherical 

dome, this work limited its investigation to domes with the following parameters: 
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 Thickness-to-radius ratios of 0.001, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, and 0.20 

 Angles of embrace between 20 degrees and 90 degrees in intervals of 10 degrees5 

 Lune segments with angles in plan equal to 1, 22.5, and 45 degrees. 

The program assumed a radius of curvature of 33 ft and a material unit weight of 100 pcf; these 

values and units become irrelevant because the ultimate result, the horizontal thrust-to-weight 

ratio, H/W, is dimensionless. Each lune was subdivided into the larger of 30 or α° voussoirs. The 

thrust line resembles more of a smooth curve than a polygon when the number of voussoir 

divisions is large. The author experimented with the number of voussoirs, but changes in H/W 

values were minor at less than 5%. 

Initially the program tested all acceptable combinations of internal force values meeting the 

aforementioned assumptions and limit state conditions when searching for the thrust line with the 

minimum thrust. However, the time to complete one simulation at times exceeded several days, 

which was not favorable for this study of almost 500 different dome geometries. 

To reduce the solution time, the author made assumptions to simplify the algorithm. The 

program assumed the desired thrust line would be closer to the extrados than the intrados at the 

dome crown; for the thrust line’s starting point, the program first tried a distance about a/3000 

below the extrados, and if needed, gradually moved the thrust line toward the intrados in 

increments between a/3000 and a/300. The program allowed the thrust line to approach within 

a/3000 of the extrados in the remainder of the dome, but not touch either surface. The virtually 

zero tolerance of the thrust line to the dome’s surface was chosen to immediately pinpoint the 

thrust line with the minimum thrust. Analyses using different tolerance values and start point 

locations produced differences in the H/W of about 5% or less. 

Figures 3.2 to 3.5 plot the minimum thrust for lunes with θ = 1°, 22.5° and 45°, respectively, and 

assume hoop forces are transferred between lunes. 

                                                 
5 This work does not include minimum thrust results for domes with 0° ≤ α < 20° because of the infrequency of 

these shallow embrace angles in existing dome structures. 
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Figure 3.2. Minimum horizontal thrust for a lune with θ = 1° of a spherical dome with hoop forces 

 
Figure 3.3. Minimum horizontal thrust for a lune with θ = 22.5° of a spherical dome with hoop forces 
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Figure 3.4. Minimum horizontal thrust for a lune with θ = 45° of a spherical dome with hoop forces 

 
Figure 3.5. Minimum horizontal thrust for  t/R = 0.001 for a spherical dome with hoop forces 
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For masonry domes with hoop forces, the following trends from these figures are salient: 

 The minimum thrust is inversely related to t/R and to α. 

 The range of H/W values, regardless of t/R and θ, decreases as α increases. For example, 

for α = 60°, H/W values are within 10% of each other; for α = 90°, the range is 5%. 

 For α ≥ 60°, the relationship between α and H/W is approximately linear. 

 The plan angle of the lune, θ, has little impact on H/W; for a lune with θ = 1°, 22.5°, or 

45°, the minimum thrust values are within 5% for a constant t/R and α. 

 As t/R increases, the range of embrace angles that equate to stable dome geometries 

increases to include deeper and eventually hemispherical domes in which α = 90°. 

 Similar to the membrane theory, the modified thrust line analysis finds satisfactory 

equilibrium solutions for α ≤ 51.8° for all t/R ratios considered in this study. 

 For t/R = 0.001, the method finds a stable, no-tensile thrust line solution up to α = 61°, 

whereas the membrane theory attains a no-tensile solution only up to α = 52°. 

Section 3.2 further discusses the significance of these trends. In all analyses, internal stresses, 

which depend on masonry unit weight, remained well under the crushing stress of masonry. 

Figures 3.6, 3.7, and 3.8 plot the minimum thrust-to-weight ratios for a lune that does not 

develop hoop forces, thus acting as a wedge-shaped arch instead of a dome. 
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Figure 3.6. Minimum horizontal thrust for a lune with θ = 1° that acts as an independent arch 

 
Figure 3.7. Minimum horizontal thrust for a lune with θ = 22.5° that acts as an independent arch 
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Figure 3.8. Minimum horizontal thrust for a lune with θ = 45° that acts as an independent arch 

By excluding hoop forces in the analyses, the modified thrust line program did not find 

satisfactory thrust line solutions for t/R = 0.001 and α > 10°; as a result, a figure for t/R = 0.001 is 

not shown. From Figs. 3.6 to 3.8, two observations are salient: 

 For t/R < 0.05, the analyses did not find satisfactory thrust lines, for all values of α in 

which the previous analyses that incorporated hoop forces did find solutions. For t/R = 

0.05, the program found a solution up to α = 86°. 

 H/W values for the no-hoop force analyses are within a few percent of H/W values for the 

with-hoop forces analyses. Thus, trends for the latter also relevant to this study. 

3.2. Discussion of Results for Domes with One Center of Curvature 

The minimum thrust-to-weight ratios from the modified thrust line analyses revealed several 

trends. 
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Minimum Thrust-to-Weight Ratio, H/W, and the Embrace Angle, α 

The minimum thrust-to-weight ratio is larger for shallow domes, with small α values, than 

deeper domes. Similar to arches, shallow domes thrust more than deeper domes, relative to self 

weight, because the thrust line and the dome’s bottom edge are oriented more horizontally. For a 

hemispherical dome with tensile capacity, the thrust line at the base could be vertical, indicating 

zero thrust, which is what the membrane theory calculates. Under limit analysis conditions, near 

the cap of a dome, the horizontal thrust accumulates with increasing α due to internal forces 

following the dome curvature. As the dome surface becomes more vertical toward the base, the 

increase in thrust becomes negligible, but the masonry lacks tensile capacity to resist the existing 

thrust generated in the upper portion of the dome; simultaneously, the weight of the lune 

continues to increase with α. As a result, H/W is inversely related to α. 

For a lune of a hemispherical dome of sufficient thickness, the modified thrust line method 

estimates the minimum thrust to be about 20% of the lune’s weight, regardless of θ and t/R. 

Minimum Thrust-to-Weight Ratio, H/W, and Thickness-to-Radius Ratio, t/R  

For the geometries studied, the modified thrust line analyses show an inverse relationship 

between t/R and H/W with or without the presence of hoop forces (Figs. 3.2 to 3.8). As the 

thickness of the dome increases, the center of gravity of the entire lune approaches the “toe” of 

the lune, where the intrados and base intersect (Fig. 3.9) (Oppenheim et al. 1989, p. 879). 
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Figure 3.9. As t/R increases, the centroid of the lune approaches the intrados at the base of the dome.  

As the centroid moves closer to the toe, the decrease in the horizontal reaction at the crown to 

prevent overturning of the lune is proportionally lower than the lune’s increase in weight due to 

additional thickness; this horizontal reaction is equal to the H value. Thus H decreases while W 

increases for increasing t/R, generating an inverse relationship discussed below. 

Minimum Thrust-to-Weight Ratio, H/W, and Angle in Plan, θ 

For small t/R ratios, the minimum thrust-to-weight increases slightly with θ. Conceptually, as the 

center of gravity of the thin-shell lune moves closer to the center of the dome due to the 

“spreading” of its base, the horizontal reaction required to prevent inward rotation of the lune 

increases slightly faster than the self-weight of the thin-shell lune. 

For larger t/R ratios, the inverse occurs: the horizontal reaction to prevent inward rotation of the 

lune increases slower than the lune’s self-weight. As t/R increases and the lune becomes 

relatively thick and sturdy, the quarter-dome and, to a lesser extent, eighth-dome gain the ability 

to become freestanding, which negates the need for a counteracting horizontal reaction at the 

crown to develop for stability. 
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Intuitively, increasing θ should increase the horizontal thrust of the dome portion; however this 

increase may not manifest into an increase in the minimum thrust-to-weight ratio. Increasing θ is 

similar to abutting smaller individual lunes together. The contribution of the individual thrusts to 

the net thrust of the combined lune diminishes as the individual lunes fan out to form a half-

dome to the point where the thrust of the complementing lunes at the edges cancel each other. 

Section 3.3 explores this concept further. 

The Impact of Hoop Forces 

This section discusses the significance of including hoop forces in the spherical dome analyses. 

While hoop forces were shown to have negligible impact on the magnitude of H/W, their 

importance is clear a comparison of geometries of lunes with and without hoop forces, for which 

the modified thrust line method found satisfactory thrust lines (Fig. 3.10). 

 
Figure 3.10. The modified thrust line method found that more spherical dome geometries are stable when hoop 

forces contribute to the dome’s stability, than if the dome acted as a series of independent arches. 

As the embrace angle increases in thin shells, the thrust line relies on compressive hoop forces to 

resist the horizontal reaction at the crown, hold the rings of individual masonry units together, 
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and retain the thrust line within the dome’s thickness. At the crown, the horizontal force that the 

lune’s structural counterpart exerts on the lune would tend to collapse the upper dome portion 

because individual masonry units are unable provide resistance without hoop forces as the dome 

curves down (Fig. 3.11). 

 
Figure 3.11. Thrust line comparison for lune with t/R = 0.02 and α = 80°. Left: Without hoop forces, the thrust line 
exits the dome section as it curves downward. Right: With hoop forces, the thrust line remains within the section. 

In very shallow dome geometries, hoop forces become less critical because the curvature of the 

line of thrust approaches a straight line. The horizontal thrust at the crown and base clamp the 

masonry units in place in the lune, similar to a flat arch, thus stabilizing the dome with minimal 

or no hoop forces (Fig. 3.12). 

 
Figure 3.12. In very shallow domes, the line of thrust has low curvature; masonry units are clamped together like a 

shallow arch reducing the necessity of hoop force transfer between lunes. Here, t/R = 0.02 and α = 30°. 

Without hoop forces, the modified thrust line program predicts a minimum t/R ratio of 0.069 for 

a hemispherical dome, which is more conservative than Heyman’s estimate of 0.042 (Fig. 1.8) 

(Heyman 1977). With hoop forces in domes with 60° < α < 80°, the modified thrust line analyses 
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calculated minimum t/R ratios between zero and 0.002 lower than Heyman’s study (Fig. 3.13). 

For a hemispherical dome, the modified thrust line method predicts a minimum t/R of 0.041. 

 
Figure 3.13. The minimum t/R versus the angle of embrace as determined by the modified thrust line method 

superimposed on the solution by Heyman (1995) (complete Heyman solution shown in Fig. 1.8) 

From these small differences, the advantages of analyzing a dome as a dome and not as a series 

of independent lunes are not substantial for spherical domes. Heyman’s analytical analysis was 

accurate under his assumptions, including the negation of hoop forces. His assessment of 

minimum t/R ratios, which were lower than the ratios calculated by the modified thrust line 

analyses without hoop forces, used thrust lines of domes at incipient collapse; however, the 

modified thrust line program’s thrust line solutions were for stable dome geometries. This 

coupled with inherent discrepancies in a graphical analysis caused by the simplification of the 

structure and its loads, versus the precision of an analytical analysis led to the similarity between 

the results. However, the benefit of hoop forces is more evident in the study of pointed dome 

geometries examined in Chapter 4. 

3.3. Applications of the Minimum Thrust in Spherical Domes 

The minimum thrust-to-weight charts have several applications to the analysis and design of 

masonry domes. Clearly, one can use Figs. 3.2 to 3.5 to estimate the minimum horizontal thrust 

at the base, equivalent to the “propping” force required at the crown, that renders a dome or 

dome portion stable (Heyman 1977, p. 114). One may use Figs. 3.6 to 3.8 to estimate this force 

directly for a standalone lune without hoop forces. At the base of the dome, h, the horizontal 

thrust in units of force per length of circumference is given by: 
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( )δαθ sinsin −
=

a
Hh  (3.1) 

Interpolating and Extrapolating the Minimum Thrust 

From the relatively linear relationship between H/W and α for α ≥ 60° shown on Figs. 3.2 to 3.5, 

a simple linear equation may be written to approximate H/W within 20% of the value determined 

by the modified thrust line analysis, as a function of α in radians: 

123.1583.0 +−= α
W
H  for 

3
πα ≥  (3.2) 

Assuming hoop forces occur, an incomplete dome with θ ≤ 180° may be approximated as a 

collection of smaller lunes with plan angle θ’, provided the structure against which the dome 

abuts can resist the compressive hoop forces at its lateral edges (Fig. 3.14). This resistance is 

critical at the crown where the greatest hoop forces are most likely to occur. 

 
Figure 3.14. The support structure must provide a propping force and resist the compressive hoop forces at the 

lateral edges of the dome. 

As stated previously, as θ increases, the lunes’ individual contributions to net thrust diminish at 

the dome’s edges (Fig. 3.15). 
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Figure 3.15. The contribution of thrust of the individual lunes to net thrust diminishes at the dome’s edges. 

For a lune with θ ≤ 90°, the net thrust, Hnet, of an incomplete dome composed of n lunes may be 

estimated from Eqs. 3.3 and 3.4, provided that °≤′ 180θn : 

For n odd: ( )⎥
⎦

⎤
⎢
⎣

⎡ ′⋅⋅+= ∑
=

j

i
net iHH

1
cos21 θ  where j = 
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1−n  (3.3) 

For n even: ( )∑
=

⎥⎦
⎤

⎢⎣
⎡ ′−

⋅=
j

i
net

iHH
1 2

12cos2 θ  where j = 
2
n  (3.4) 

where Hnet is the net minimum thrust of the incomplete dome with θθ ′= n . 

Unlike horizontal thrust, the weight of the incomplete dome composed of n lunes with equal θ’ 

values is directly proportional to n: 

n

nWW θ
θ

θ
=′

=  (3.5) 

The differences in these rates of change for horizontal thrust and weight with respect to θ 

correlate with the inverse relationship between H/W and t/R demonstrated. For example, from 

Fig. 3.16, a lune with θ = 130° will have a net minimum thrust 110 times the minimum thrust of 

a lune with θ = 1°. However the weight of the larger lune will be 130 times the weight of the 

smaller lune, and the H/W of the larger lune will be 110/130 = 0.85 times that of the smaller lune. 

θ' θ' θ'

θ'   θ

θ' θ' θ'θ'

θ'    θ 
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Figure 3.16. The horizontal thrust and weight of a dome consisting of individual lunes changes at different rates. 

Using these coefficients, the author estimated the H/W of a lune with θ = 45° from a lune with θ 

= 1° (Appendix C). For t/R ≥ 0.10, the error between this estimate and Fig. 3.4 was highest at 

about 20% for shallow domes and tapered to less than 5% for α ≥ 60°, a similar range of error 

generated by Eq. 3.2. For t/R < 0.10, the difference between the estimated and actual H/W was 

within 10% for 20° ≤ α ≤ 90°. Thus, extrapolation of the minimum thrust data for lunes with plan 

angles other than those provided in Figs. 3.2 to 3.5 will produce a reasonable approximation of 

H/W for near-complete domes and thin shell domes. 

Estimating the Minimum Thrust through Equilibrium Equations 

To a limited extent, one may use static equilibrium equations to approximate the minimum 

thrust. Assuming a pin support at the mid-point of the lune’s bottom edge, and a vertical roller 

support at the dome’s extrados at the centerline, the minimum horizontal reaction at the crown, 

H, to prevent inward rotation due to self-weight is: 

( )
( ) αδ

α
coscos

sin
ata
xaW

H lunecg

−+

−
=  (3.6) 
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where W is the weight of the lune (Eq. 2.5), xcg lune is the center of gravity of the lune (Eq. 2.6), 

and t is equal to half the dome thickness (Fig. 3.17). 

 
Figure 3.17. The difference between H/W determined from the modified thrust line method and from static 

equilibrium equations 

In general, for domes with α < 40°, the minimum thrust calculated by the modified thrust line 

analysis will be about 5 to 20% lower than that calculated with static equilibrium equations. As 

the embrace angle approaches 90 degrees, the thrust values from the two methods are, for the 

most part, within 5%, a good approximation for a wide range of embrace angles. However, one 

should be cautious in using equilibrium or other equations because they reveal nothing about the 

dome’s stability. For example, the equations produce a thrust value for a dome with t/R = 0.001 

and α = 90° when in reality, this geometry is stable only if the dome can resist tension forces. 

The Half-Dome as a Buttress 

The half-dome is frequently employed as a buttress against vertical bearing walls or at the base 

of a larger dome, such as the configuration at the Hagia Sophia. “The half-dome in fact can stand 

freely, and will also be stable when subjected to the out-of-balance horizontal force from the 
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lunes” (Heyman 1995, p. 43). This can be envisioned conceptually with Eq. 2.6, which locates 

the centroid of a half-dome at approximately half the span between the centerline and the 

intrados of the dome base. Thus either a distributed vertical reaction along the base at 

cgxx ≤≤0 , or a propping force, H, at the crown can prevent overturning of the dome (Fig. 3.18). 

The author estimated H/W of a half-dome using Fig. 3.4 and Eq. 3.4 where n = 4 (Fig. 3.19). 

 
Figure 3.18. The half-dome is a stable structure due to horizontal and/or vertical reactions that resist its overturning. 

 
Figure 3.19. The minimum thrust for a half-dome as estimated by the modified thrust line analysis 
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For a half-dome with α = 90°, H/W is between 0.12 and 0.18, which is comparable to Heyman’s 

study of estimated thrust as domeWH ⋅= 068.0 , where Wdome is the weight of a complete 

hemispherical dome or W⋅2 , where W is the weight of the half-dome (Heyman 1977). 

The author analyzed the minimum thrust of a half-dome as a structure composed of four lunes, 

each with θ = 45°, instead of a single lune with θ = 180°. In general, for θ > 45°, the modified 

thrust line estimate will provide a conservative minimum thrust value because the stability of the 

wide lune likely relies on a thrust surface than a single thrust line. 

Stability of the Support Structure 

The H/W ratio also provides insight to the stability of the support structure under the dome. The 

inverse of the ratio, equivalent to the slope of the steepest satisfactory thrust line at the dome-

support structure interface, may be used to calculate the height at which the thrust line exits the 

structure’s walls, assuming the walls have no tensile resistance or reinforcement (Fig. 3.20). 

 
Figure 3.20. Parameters to locate the exit point of the thrust line in the support structure under the dome 
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The modified thrust line method assumes a tangential support at the dome’s base. Two additional 

loads contribute to the weight of the “voussoir” representing the support structure, which may 

affect the slope of the thrust line as it enters the support structure: 

1. The weight of the dome base not included in the original analysis if the dome terminates 

parallel to the horizontal (delineated as a triangle wedge in Fig. 3.20). This may be 

negligible relative to the weight of the entire structure. 

2. The weight of the support structure with length ( )δαθ sinsin −a , and thickness between 

ni
x , the intrados of the dome at its base, and 

nex , the extrados at its base. 

The x-coordinate6 of the initial point of the segment of the thrust line entering the support 

structure is given by Eq. 3.6 where 
180
παβ −=  and αγ = , in radians. The y-coordinate of the 

thrust line with respect to the median height of the dome is: 

( )αδ coscos −⋅= akyTL  (3.7) 

where k is given in Table 3.1 for a lune of θ = 1°. 

For example, for a spherical dome with t/R = 0.04, α = 60°, a = 25 ft, the median height of the 

dome is ( ) ( ) fta 5.1260cos0cos25coscos =°−°=− αδ . The estimated distance to the last point 

of the thrust line in the dome with respect to the median height of the dome at the crown is, from 

Eq. 3.7: ( ) ftyTL 56.1260cos0cos25005.1 =°−°⋅= . This point of the thrust line is slightly lower 

than the midpoint of the sloped bottom edge of the dome. 

                                                 
6 Assuming the thicknesses of the support structure and dome base are equal. Otherwise, the thrust line with a slope 

of ( ) 1−
−

W
H   enters the support wall and changes slope only after xTL > xcg wall to ( ) 1−

+
−

wallWW
H . 
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Table 3.1. Values of k, the vertical distance between the median height of the dome and last point of the thrust line 
segment in the dome, divided by the median height for a spherical lune with a = 33 ft and θ = 1°. Values in 
parentheses are the maximum stable embrace angle to be used in lieu of the angle shown in the first column. 

Angle of 
Embrace 

(deg.)
0.001 0.01 0.02 0.03 0.04 0.05 0.10 0.15 0.20

20 0.971 1.041 1.127 1.228 1.237 1.239 1.221 1.188 1.142
30 0.969 1.001 1.047 1.095 1.093 1.094 1.086 1.073 1.055
40 0.977 0.997 1.030 1.033 1.033 1.033 1.030 1.022 1.013
50 0.982 1.001 1.013 1.012 1.012 1.012 1.010 1.007 1.001
60 0.985 1.002 1.005 1.005 1.005 1.004 1.003 1.001 0.998
70 (62) 0.984 0.992 1.001 1.001 1.001 1.001 1.001 1.000 0.998
80 (75) 0.973 0.964 0.992 1.000 1.000 1.000 0.999 0.999
90 (81) 0.956 (85) 0.943 (88) 0.931 0.926 1.000 1.000 1.000

Thickness-to-Radius Ratio

 

The thrust line exits the support wall at yexit, the vertical distance with respect to the crown: 

( ) TLTLwallext
lune

walllune
exit yxx

cW
WW

y +−
⋅

+
−= .  (3.8) 

where Wlune is the weight of the dome lune of θ = 1°, c is the minimum thrust-to-weight ratio, 

H/W, given in Figs. 3.2 and 3.5, Wwall is the weight of the support wall portion described above, 

and ( )TLwallext xx −.  is the distance between the exterior face of the support wall and the center of 

gravity of the lowest voussoir in the lune. A case study in Chapter 5 demonstrates this procedure 

to check the stability of the support structure. 

Internal Force Comparison to the Membrane Theory 

The membrane theory remains a common method with which to analyze the structural behavior 

of thin-shell masonry domes. However, the membrane theory equations cannot specify only non-

tensile internal hoop force solutions; therefore, its solutions do not meet limit state conditions for 

domes with embrace angles greater than 52 degrees (Eqs. 2.1 and 2.2). However, internal hoop 

forces determined with the modified thrust line method may be limited to either compressive or 

zero, the latter signifying hoop forces are not required in the corresponding regions to stabilize 

the dome. Figure 3.21 plots the φ-angle at which the modified thrust line analysis predicts zero 

hoop forces from that point in the dome down to its base for a lune of θ = 1° and t/R ≤ 0.05 under 

uniform axisymmetrical load conditions. 
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Figure 3.21. Hoop forces are not necessary between the modified thrust line curves and the “Phi = Alpha” line. The 

“Membrane Theory” curve marks only the transition point between compressive and tensile hoop forces. 

In theory, a spherical dome with meridional cracks anywhere between the modified thrust line 

curves and the “Phi = Alpha” line shown in Fig. 3.21 will be stable. For instance, a dome with 

t/R = 0.03 and α = 42° with continuous meridional cracks from the base up to φ = 10° would 

theoretically be stable. For domes in which t/R > 0.05, hoop forces are not required in the 

stability of the dome. Thus if the structure is reasonably intact, that is, with no missing voussoirs 

or substantial material deterioration, et cetera, then it is stable even with meridional cracks from 

crown to base. 

In contrast, the “Membrane Theory” curve marks only the transition point at where hoop forces 

switch from compressive to tensile; hoop forces are necessary on both sides of this curve. Under 

the membrane theory, any meridional cracks, which preclude the development of hoop forces, 

render the dome as unstable. Thus, for domes with t/R ≤ 0.05, the modified thrust line analyses 

provide insight on the impact of meridional cracks on the stability of spherical masonry domes, 

while the membrane theory provides no such information. 
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3.4. Chapter Summary 

This chapter discussed the minimum thrust values of spherical masonry domes and their 

applications in structural behavior. The chapter also summarized and explained salient 

relationships between minimum thrust and dome geometry, as well as methods to estimate the 

minimum thrust for all spherical domes loaded only by self-weight, the dominant load that 

masonry domes carry. In addition, this chapter discussed a method to assess the stability of the 

support structure under the dome, and the impact of meridional cracks to the stability of spherical 

masonry domes. The next chapter will address these issues for an equally important and common 

dome geometry: pointed domes. 
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Chapter 4. The Modified Thrust Line Analysis and Pointed Domes 

This chapter discusses the use of the modified thrust line method for pointed dome geometries to 

attain minimum thrust values, patterns of structural behavior, and structural limits that have not 

been solved before. Pointed domes considered here are formed by rotating two curves with the 

same radius of curvature about a vertical axis offset symmetrically from two centers of curvature 

by a horizontal distance, δsina , where δ is the angle that truncates the dome curve at the crown 

(Fig. 4.1). 

 
Figure 4.1. Comparison of dome sections with different truncation angles, δ, and equal radii of curvature 

This study makes similar assumptions to those outlined in the spherical dome study: Meridional 

forces increase from the crown to the base of the dome, while hoop forces are generally highest 

in compression in the crown and lower in magnitude toward the base. Hoop force values may 

fluctuate between increasing and decreasing in adjacent dome rings. Finally, the slope of the 

thrust line always increases in magnitude, or becomes steeper, from crown to base if the dome 

experiences only uniform axisymmetrical loads. 

As stated in Chapter 2, the weight and centroid of the voussoirs calculated by Eqs. 2.5 and 2.6 

will slightly deviate from actual values depending on the “sharpness” of the crown (Fig. 2.5). 

4.1. Minimum Thrust Results for Pointed Domes with Two Centers of Curvature 

The maximum δ value evaluated in the spreadsheet program of the modified thrust line method 

was ⎟
⎠
⎞

⎜
⎝
⎛ −= −

R
t1sin 1

maxδ , to satisfy the criteria that taa −≤δsin . The program analyzed domes 

with the following parameters: 
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 Thickness-to-radius ratios of 0.05, 0.08, 0.10, 0.15, and 0.20 

 Angles of embrace of 30, 45, 60, 80, 85, and 90 degrees 

 Truncating angles at the crown, δ, from 0 to 5α/6 in increments of δmax/6 degrees 

 Lune segments with angles in plan of 1, 22.5, and 45 degrees. 

The author limited the analyses to these parameters to study based on common geometries of 

existing pointed domes. The program assumed a radius of curvature of 33 ft and a material unit 

weight of 100 pcf, but, similar to the spherical dome study, the magnitude and units are factored 

out in the final result: the minimum horizontal thrust-to-weight ratio, H/W. The program 

subdivided each lune into the larger of 30 or ( )δα − ° voussoirs, and assumed the domes were 

axisymmetrically loaded by self-weight only. The modified thrust line program searched for the 

thrust line producing the minimum thrust by assuming it would be closer to the dome extrados at 

the crown, and then progressing toward the intrados in increments of a/3000 until it found a 

satisfactory solution. The program kept the thrust line at least a/3000 away from the extrados of 

the dome. 

The author experimented with different numbers of voussoir divisions and thrust line tolerances 

to the dome’s extrados, and also conducted simulations in which the program initially tested 

thrust lines in closer proximity to the dome’s intrados. In a limited number of cases, this strategy 

produced a lower H/W ratio by a few percent at most; however, the thrust line originating closer 

to the extrados produced a lower H/W ratio for the majority of the cases analyzed. 

The plots of the minimum thrust values for pointed domes show different fixed values and 

variables than the charts for the spherical dome results. In Figs. 4.2 to 4.10, the embrace angle, α, 

and angle in plan, θ, are constant while the thickness-to-radius ratio, t/R, and truncating or initial 

angle at crown, δ, vary. Due to large number of parameter combinations tested, only the 

summary charts for only the analyses using embrace angles of 30, 80 and 90 degrees are 

included in the main text of this thesis. Appendix D contains the summary charts for the 

minimum thrust-to-weight ratios for all pointed dome geometries analyzed in this study. 
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Figures 4.2 to 4.4 plot the minimum thrust-to-weight ratios versus δ for a pointed dome lune with 

θ = 1°. Figures 4.5 to 4.7 plot the minimum thrust-to-weight ratios versus δ for a pointed dome 

lune with θ = 22.5°. Figures 4.8 to 4.10 plot the minimum thrust-to-weight ratios versus δ for a 

pointed dome lune with θ = 45°. These figures combine the analyses that included and neglected 

hoop forces between lunes because H/W results were or nearly were equal. The without-hoop 

force analyses are later shown separately to highlight the role of hoop forces in the stability of 

pointed domes. 

 
Figure 4.2. Minimum horizontal thrust for a pointed dome with θ = 1° and α = 30°. The curves for the with- and 

without-hoop force analyses coincide due to the similarity of the results. 
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Figure 4.3. Minimum horizontal thrust for a pointed dome with θ = 1° and α = 80°. The curves for the with- and 

without-hoop force analyses coincide due to the similarity of the results. The bump in the t/R = 0.05 curve is 
exaggerated due to the large scale of the y-axis. 

 
Figure 4.4. Minimum horizontal thrust for a pointed dome with θ = 1° and α = 90°. The curves for the with- and 

without-hoop force analyses coincide due to the similarity of the results. 
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Figure 4.5. Minimum horizontal thrust for a pointed dome with θ = 22.5° and α = 30°. The curves for the with- and 

without-hoop force analyses coincide due to the similarity of the results. 

 
Figure 4.6. Minimum horizontal thrust for a pointed dome with θ = 22.5° and α = 80°. The curves for the with- and 

without-hoop force analyses coincide due to the similarity of the results. 
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Figure 4.7. Minimum horizontal thrust for a pointed dome with θ = 22.5° and α = 90°. The curves for the with- and 

without-hoop force analyses coincide due to the similarity of the results. 

 
Figure 4.8. Minimum horizontal thrust for a pointed dome with θ = 45° and α = 30°. The curves for the with- and 

without-hoop force analyses coincide due to the similarity of the results. 
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Figure 4.9. Minimum horizontal thrust for a pointed dome with θ = 45° and α = 80°. The curves for the with- and 

without-hoop force analyses coincide due to the similarity of the results. 

 
Figure 4.10. Minimum horizontal thrust for a pointed dome with θ = 45° and α = 90°. The curves for the with- and 

without-hoop force analyses coincide due to the similarity of the results. 
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From the above figures, the following salient trends regarding the minimum thrust-to-weight 

ratio to pointed dome geometries are evident: 

 The minimum thrust is inversely related to t/R and to α. 

 In general, H/W and δ are linearly and inversely related. H/W decreases as δ approaches 

α; in other words, as the dome becomes steeper and the arc length between the crown and 

the base of the dome decreases, H/W decreases. 

 For larger α values, the effect of t/R on the minimum thrust decreases. For example, for a 

dome with α = 30°, H/W for t/R = 0.05 is about 30% lower than for t/R = 0.20; for α ≥ 80 

degrees, H/W ratios between any t/R values are within 5%. 

 The angle in plan, θ, has little impact on H/W. Minimum thrust values are within 5% for a 

constant t/R, δ, and α, and θ values of 1, 22.5, and 45 degrees. 

 The inclusion of hoop forces in the analyses has no effect on the values of H/W; Figs. 4.2 

through 4.10 plot both the with- and without-hoop force results, but their similarities 

preclude their distinction. However, incorporating hoop forces significantly increases the 

range of stable geometries for pointed domes with t/R ≤ 0.08. 

For all analyses, the internal stress values, which depend on masonry unit weight, are below the 

crushing stress for masonry. 

4.2. Discussion of Results for Pointed Domes with Two Centers of Curvature 

The minimum horizontal thrust-to-weight ratios from the modified thrust line method reveal 

several trends in the behavior of pointed dome structures. 

Minimum Thrust-to-Weight Ratio, H/W, and the Embrace Angle, α 

For a constant δ, as α increases, the thrust-to-weight ratio of a pointed dome decreases. Thrust 

developed in the upper portion of the dome, due to transfer of the masonry self-weight to the 

supports hoop forces, or the propping reaction force at the crown, is not resisted in the masonry. 

Descending from the crown to the base, the rate at which thrust increases gradually declines as 
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the dome curve becomes more vertical. While increasing the embrace angle adds little additional 

thrust to the dome, the weight of the dome does increase proportionally, resulting in a lower H/W 

ratio as α approaches 90 degrees. 

Minimum Thrust-to-Weight Ratio, H/W, and the Truncating Angle, δ 

For constant α, the minimum thrust is inversely related to δ. The thrust develops mostly in areas 

of near-horizontal orientation, such as the cap of a spherical dome, where masonry units must 

push against each other to resist inward rotation. For small values of δ, indicating a near-

spherical dome, the thrust generated in the dome is large. As δ approaches α, and the pointed 

dome becomes steeper, the centroid of the lune approaches the toe of the lune, reducing the 

tendency of the voussoirs and the dome to overturn. As the arc length between the crown and the 

base decreases and the dome becomes steeper, the force path on which the dome’s loads transfer 

to the supports becomes nearly vertical, resulting in small thrust values. 

Minimum Thrust-to-Weight Ratio, H/W, and Thickness-to-Radius Ratio, t/R  

For constant α and δ, the inverse relationship between t/R and H/W is similar to that for spherical 

domes discussed in Chapter 3. For larger t/R ratios, the centroid of the lune is closer to the toe 

about which the lune would rotate, and the propping force or thrust to counteract this moment 

decreases, while the weight of the lune increases. For shallow domes, the range of H/W ratios 

with respect to t/R is slightly larger than the range of values for deeper domes, but this is mostly 

due to the relationship between H/W and α discussed before. 

Minimum Thrust-to-Weight Ratio, H/W, and Angle in Plan, θ 

With all other parameters constant, in general, changing θ has little effect on H/W. Increasing the 

θ value of the lune will slightly decrease H/W by less than 5%; conceptually, though the weight 

of the lune increases proportionally with θ, the horizontal thrust increases at an equal or slightly 

slower rate due to the “fanning” out of the lunes around the axis of revolution. The low H/W 

ratios for domes with large embrace angles manifest in the reduced difference in H/W with 

respect to θ. 
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The Impact of Hoop Forces 

For the dome geometries studied, the presence or absence of hoop forces has little impact on the 

H/W ratio as long as the modified thrust line method finds a satisfactory thrust line. With the 

exception of extremely steep domes where δ is within 20 degrees of α, compressive hoop forces 

are required in the dome cap for stability of thin pointed domes with t/R = 0.05 or 0.08. 

As mentioned briefly above, the lune of a pointed dome with t/R < 0.8 that does not develop 

hoop forces has less potential to fail than a spherical dome for several reasons. Conceptually as 

the dome becomes steeper, the force path to the support structure becomes nearly vertical, 

reducing the need for hoop forces. For constant t/R, θ, and α, the centroid of a pointed dome lune 

is closer to its toe than the centroid of a spherical dome lune; depending on δ and α, the 

difference may be quite significant. As a result, the lunes of a pointed dome stand more readily 

as a radial series of independent arches. To illustrate, for a spherical dome of t/R = 0.08 and α = 

90°, the modified thrust line analysis estimates that its minimum thrust is 85% greater than the 

thrust for a pointed dome with δ = 13°, and about 3000% greater than when δ = 52° (Fig. 4.11). 

 
Figure 4.11. For a constant t/R and θ, H/W decreases as δ approaches α and the pointed dome becomes steeper. 
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Subsequently, the presence of hoop forces has little impact on the minimum thrust value because 

the lunes are able to resist the relatively small thrust at the dome crown without hoop forces. 

Similar to spherical domes, hoop forces are significant in increasing the range of stable dome 

geometries. Figures 4.12 and 4.13 show the limited δ-values for which the modified thrust line 

method found satisfactory thrust lines if hoop forces do not develop in domes with t/R = 0.05 and 

t/R = 0.08, respectively. 

 
Figure 4.12. Minimum horizontal thrust for a pointed dome with t/R = 0.05 without hoop force transfer between 

lunes. Gaps in the curves indicate that the modified thrust line program could not find a satisfactory thrust line for 
the corresponding δ values. 
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Figure 4.13. Minimum horizontal thrust for a pointed dome with t/R = 0.08 without hoop force transfer between 

lunes. Gaps in the curves indicate that the modified thrust line program could not find a satisfactory thrust line for 
the corresponding δ values. 

Thus, hoop forces are imperative in the stability of many pointed dome geometries with t/R ≤ 

0.08 and 45° < α ≤ 90°; this latter range includes the embrace angles for many existing 

structures. If the dome cannot develop hoop forces, perhaps due to meridional cracks from crown 

to base, then the propping force at the centerline is insufficient to maintain the stability of the 

individual lunes. Near the crown of the dome, the masonry units need compressive hoop forces 

to prevent failure. Interestingly, in spherical domes with the same t/R ratios, hoop forces are not 

required for stability. The near-horizontal orientation of the voussoirs in the cap of a spherical 

dome enables the thrust line to remain within its effective thickness. 

4.3. Applications of the Minimum Thrust-to-Weight Ratio in Pointed Domes 

Applications of the minimum thrust-to-weight ratio for pointed dome geometries parallel the 

applications for spherical domes. One may calculate the minimum thrust required for dome 

stability from Figs. 4.2 to 4.10. The similarity between the analyses including and excluding 

hoop forces results in interchangeable use of the charts; again, one must be mindful of the 
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increased range of stable geometries when hoop forces develop in the dome. However, should 

the existing structure in question be standing, then stability is obviously not in question. If the 

dome exhibits increasing meridional cracks, then the question of stability is imperative. 

Equation 3.1 calculates the horizontal thrust at the base of the dome in units of force per length 

of circumference. 

Interpolating and Extrapolating the Minimum Thrust 

For θ ≤ 45°, the relatively linear relationship between δ and H/W naturally leads to an 

expression, derived  from a series of linear regression equations, to estimate H/W as a function 

of δ and α, in radians: 

164.1615.0061.1551.0 +−−= α
α
δδ

W
H  for δ < α (4.1) 

The minimum thrust of a dome portion with different values of θ may be estimated from Eqs. 3.3 

and 3.4, although the change in thrust with respect to θ is minimal for the geometries studied. For 

1° ≤ θ ≤ 45°, one may also interpolate between Figs. 4.2 and 4.10. Again, this study of minimum 

thrust is theoretical and dependent on the material and geometry assumptions stated in this and 

previous chapters. The accuracy of the results for different parameters is unknown. 

To illustrate the different methods to estimate H/W, the author applied the methods to the dome 

of Farag Ibn Barquq. The dome’s parameters are: t/R = 0.44, α = 83°, and δ = 10°. From Eq. 4.1, 

the estimated H/W ratio is: 

24.0164.1449.1615.0
449.1
175.0061.1175.0551.0 =+⋅−⋅−⋅=

W
H  

Interpolating for α = 83° and θ = 15° in Figs. 4.3, 4.4, 4.6, and 4.7, the author estimated H/W as 

0.25. Chapter 5 compares these estimated ratios with the ratio attained in the specific case study 

of the dome of Farag Ibn Barquq. 
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Estimating the Minimum Thrust through Equilibrium Equations 

Similar to spherical domes, one can use static equilibrium equations to approximate the 

minimum thrust of pointed domes. Assuming a pin support at the midpoint of the lune’s bottom 

edge, and a vertical roller support at the extrados at the crown against the dome’s centerline, the 

minimum horizontal reaction, H, may be estimated with Eq. 3.6. However, while this equation 

may provide a good estimate of minimum thrust, it and other equations alone reveal nothing 

about the dome’s stability. 

The Half-Dome as a Buttress 

Fig. 4.14 shows the minimum thrust for a half-pointed dome structure calculated with the same 

methodology as that for spherical half-domes. As δ approaches α, assumed as 90 degrees, H/W 

decreases rapidly. Thus, the minimum thrust-to-weight ratio of a pointed half-dome structure will 

always be lower than the ratio of a spherical half-dome structure. 

 
Figure 4.14. Minimum thrust of a pointed dome buttress with α = 90° 
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Stability of the Support Structure 

The minimum thrust-to-weight ratio may be used to determine if and where the thrust line exits 

the support structure under the dome, assuming no tensile resistance in either structure. Eq. 2.6 

provides the x-coordinate of the first point of thrust line segment entering the support structure, 

where
180
παβ −=  and αγ = , in radians. Eq. 3.7 locates the y-coordinate of the thrust line with 

respect to the median height of the dome (Fig. 3.20), where k-values for a lune with θ = 1° and α 

= 90°, are listed in Table 4.1. Eq. 3.8 estimates the vertical distance, with respect to the median 

dome height, at which the thrust line exits the support wall. Chapter 5 illustrates this technique. 

Table 4.1. Values of k, the vertical distance from the median rise of the dome to the final thrust line point in the 
dome, divided by the median height of the dome for a pointed dome lune with θ = 1° and α = 90° 

 Thickness-to-Radius Ratio 

Initial Angle at 
Crown (deg.) 0.05 0.08 0.10 0.15 0.20 

70 0.91 0.94 0.99 0.98 0.99 
56 1.00 0.98 0.99 1.00 1.00 
42 1.00 0.99 1.00 1.00 1.00 
28 1.00 1.00 1.00 1.00 1.00 
14 0.99 1.00 1.00 1.00 1.00 
0 0.93 1.00 1.00 1.00 1.00 

 

Internal Force Comparison to the Membrane Theory 

The internal hoop force values provide insight to the stability of a pointed masonry dome with 

meridional cracks. For a lune with θ = 22.5° and t/R = 0.05 under axisymmetrical self-weight 

loads only, the author compared the φ-locations at where hoop forces become zero from the 

modified thrust line analyses, to the locations of the transition point between compressive and 

tensile hoop forces predicted by the membrane theory equations (Fig. 4.15). 

The modified thrust line method predicts that compressive hoop forces are not required for many 

locations of φ < α. In other words, meridional cracks may occur in these regions on the dome 

surface without compromising stability, barring severe material degradation or other significant 

structural defects. The membrane theory equations provide information only on whether hoop 

forces are tensile or compressive hoop forces. 
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Figure 4.15. A pointed dome with meridional cracks between the curves and a horizontal line through φ = α is 

theoretically stable. Unless noted otherwise, curves are from the modified thrust line analyses. The “Membrane 
Theory” curve marks only the transition point between compressive and tensile hoop forces. 

4.4. Comparison between Results for Spherical and Pointed Domes 

The minimum thrust-to-weight ratio results reveal several similarities and differences between 

the structural behaviors of spherical and pointed domes. As the angle of embrace of either dome 

type increases, the minimum thrust-to-weight ratio decreases. For hemispherical domes, H/W 

tapers to approximately 0.20 to 0.25; for pointed domes with an embrace angle of 90 degrees, 

H/W tapers to between 0.25 and theoretically zero for truncation angles between 0 to 90 degrees, 

respectively. With all other geometric parameters equal, the pointed dome will have a lower 

minimum thrust-to-weight ratio than the spherical dome. 

For both dome types, the minimum thrust-to-weight ratio is inversely related to the thickness-to-

radius ratio. For a given t/R, the range in H/W values narrows as the embrace angle increases, 

and the domes become deeper. As an example, for a spherical dome with α = 30°, H/W is 0.95 

for t/R = 0.05, and 0.65 for t/R = 0.20. For a pointed dome with α = 30°, H/W varies between 

0.86 and 0.56 for the previous t/R ratios, respectively, and for δ = 5°. However, when α = 80°, 

the range in H/W values decreases to 0.02 for spherical domes, and 0.03 for pointed domes. 



 82

The relationship between H/W and α is relatively linear for spherical and pointed domes. The 

plan angle of a lune under study has a minimal impact on the value of H/W for both dome types. 

From the geometries studied, the range of stable geometries increases when hoop forces develop 

between lunes; the presence of hoop forces is more significant in pointed domes than in spherical 

domes. If t/R is or exceeds 0.05, and possibly lower, spherical domes with an embrace angle 

between 0 and 90 degrees are theoretically stable. However, several pointed dome geometries 

with t/R = 0.05, and even 0.08, are unstable without hoop forces (Figs. 4.12 and 4.13). As a 

result, when analyzing pointed domes with relatively low t/R, one must be mindful that hoop 

force development may be crucial for stability. 

The regions in which meridional cracks may develop without detriment to the dome’s stability 

correlate with the greater dependence on hoop forces of pointed domes with the small t/R ratios 

(Figs. 3.21 and 4.15). For spherical domes with embrace angles less than 85 degrees, meridional 

cracks can occur anywhere between the base and crown of the dome surface; even hemispherical 

domes can experience cracks in most of their surfaces, with complete integrity required only in 

the cap. However, cracks are permissible in only limited regions of the surface of pointed domes 

before they negatively impact the structural stability. 

4.5. Chapter Summary 

This chapter discussed the minimum thrust values of masonry domes with pointed geometries 

and their relevant applications to structural behavior. By including hoop forces in analyses for 

pointed domes, the modified thrust line method finds satisfactory thrust line solutions that satisfy 

limit state conditions that could not be achieved with the membrane theory or existing analysis 

methods evaluated in this thesis. The author demonstrated that while the presence or absence of 

hoop forces in pointed domes does not significantly change the value of the minimum thrust, 

hoop forces are critical in the stability of many pointed dome geometries with thickness-to-radius 

ratios equal to or less than 0.08. The chapter concluded by comparing structural insights revealed 

from the spherical and pointed dome analyses. The next chapter will demonstrate the use of the 

modified thrust line method in specific thin-shell spherical and pointed masonry dome case 

studies. 
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Chapter 5. Case Studies 

This section discusses the application of the modified thrust line method to existing thin-shell 

masonry domes for which current analysis methods cannot satisfactorily explain their stability, 

or would be overly complex to use. The author analyzed two case studies with unconventional 

and structurally daring geometries: first, a pointed dome constructed in the period of Mamluk 

rule (1250-1517 A.D.) in Cairo, Egypt; and second, a spherical thin-shell dome in Dover, 

England, in which the author participated in both design validation and to a lesser extent, 

construction. Both case studies compare results to results using two other analysis methods: one 

that assumes no hoop force development, or arch behavior, in the domes, and one that assumes 

membrane theory conditions. 

5.1. Dome of Farag Ibn Barquq, Cairo, Egypt 

In Cairo, Egypt, during a period of profuse construction from 1250 to 1517 A.D., workers built 

an estimated 400 brick and stone masonry domes on the mausoleums of sultans and emirs 

(Cipriani 2005). More than 200 pointed masonry domes continue to stand 500 to 750 years after 

their construction (Cipriani and Lau 2006). These intricately decorated and expeditiously erected 

Mamluk domes represent some of the most daring structures in the world. To this day, the 

stability of some of these domes remains unclear. Though Creswell (1959) and Kessler (1976) 

have documented the dimensions of the domes, no written sources or drawings describing the 

design or construction processes of the Mamluk complexes are known to exist (Cipriani 2005). 

The progression of the structural geometries and decorative carving from earlier to later domes 

suggests an accruement of structural design knowledge through experience. For example, brick 

domes, which appeared early in the Mamluk period, are typically between 13 and 23 ft in 

diameter and between 13 and 25 ft in height, while stone masonry domes, built later the in 

period, are between 26 and 33 ft in diameter and between 25 and 36 ft in height (Cipriani 2005). 

Also, the typical thickness of the domes decreases from between 1.3 and 1.6 ft for brick domes to 

between 1.0 and 1.4 ft for stone domes (Ibid.). This study focuses on one exception to these size 

generalizations: the dome on Mausoleum of Sultan Farag Ibn Barquq, one of the most 

structurally daring domes that stands today. 
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Geometry and Features 

The Mausoleum of Sultan Farag Ibn Barquq was constructed between approximately 1398 and 

1411 (Fig. 5.1). 

 
Figure 5.1. Dimensions in meters of the dome and drum and mausoleum of Farag Ibn Barquq (from Cipriani 2005) 
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Table 5.1 lists the approximate geometric parameters of the complex’s thin stone masonry dome. 

Table 5.1. Geometric Parameters for the Dome of Farag Ibn Barquq 

Median radius of curvature, a (ft): 27
Rise from springing (ft): 32

Span at base (ft): 47
Thickness, t (ft): 1.2

Thickness-to-Radius: 0.045
Angle at crown (deg.): 10  

The dome is a single-shell construction for 25° < φ < 83°; above φ = 25°, the shell splits into a 

double-shell construction to the pointed crown. Stone rubble fills the space between the shells, 

and a hollow lead pinnacle extends above the pointed crown. While this adds some surcharge to 

the crown, it was assumed negligible compared to the weight of the solid stone voussoirs. 

In recent restoration work, preservationists have not found evidence of metal tension 

reinforcement, such as a continuous hoop ring, in the dome itself. Cipriani (2005) observed 

various dovetail cuts in deconstructed masonry voussoirs that may have permitted wood inserts 

to temporarily hold the masonry together until the rings were completed. The presence of tensile 

reinforcement in the drum, the cylindrical support wall under the dome, remains unknown. To be 

conservative, the author assumed that the dome and drum lack any means of tensile 

reinforcement in the subsequent structural analyses. 

Structural Analyses 

The author investigated the stability of the dome of Farag Ibn Barquq using three different 

methods: traditional thrust line analysis assuming zero hoop forces or arch conditions, the 

membrane theory, and the modified thrust line analysis. The study analyzed the dome as a lune 

with θ = 15° under uniform axisymmetrically loads only, and an assumed material unit weight of 

the stone of 150 pcf. 

Zero Hoop Forces 

This traditional thrust line analysis method is incorporated in the program created in Cabri II, 

and assumes that the dome acts as a radial series of independent lunes that do not transfer hoop 

forces between adjacent lunes, but do thrust against their complementing lune. This method has 
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two unknown variables: the horizontal thrust at the crown and base of each lune, and the initial 

eccentricity, or starting point, of the thrust line at the crown. The shape of the thrust line depends 

on the fixed length of the load line and, more importantly, the unknown length of the horizontal 

segment on the force polygon representing the thrust. Without hoop forces development between 

lunes, the analysis did not find a satisfactory thrust line that fit completely within the section 

(Fig. 5.2). 

 
Figure 5.2. The thrust line does not fit within thickness of the dome of Farag Ibn Barquq without hoop forces. 

Because the thrust line exits the dome section, the dome of Farag Ibn Barquq would not stand 

without hoop forces development. In this sense, it is a more daring dome than other well-known 

domes such as St. Peter’s in Rome, or St. Paul’s in London, in which it is possible to demonstrate 

that these domes would stand as a series of independent arches. 
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Membrane Theory 

The membrane theory equations for pointed domes, given in Section 2.3, assume the line of 

thrust acts at the median surface of the dome; thus, the thrust line will always lie within the dome 

section. However, internal forces required to constrain the thrust line to this location may not 

satisfy limit state assumptions. The internal meridional and hoop forces in the dome of Farag Ibn 

Barquq as determined by the membrane theory (Eqs. 2.3 and 2.4) are shown in Fig. 5.3. 

 
Figure 5.3. Internal stresses in the dome of Farag Ibn Barquq per the membrane theory. Hoop forces become tensile 

at φ = 58° from the dome’s center axis of revolution. 

The membrane theory equations calculate tensile hoop forces for 58° < φ < 83°, and a horizontal 

thrust at the base of the lune of 8.4% of its weight. At the base of the dome, tensile hoop stresses 

of about 7% of the material unit weight are required to prevent dome instability. Existing cracks 

in the dome, albeit minor, preclude tensile hoop forces of any magnitude from developing. 

Therefore, the membrane theory does not explain the stability of the dome. 

Using the interactive geometry software program based on Wolfe’s graphical analysis method to 

meet limit analysis (Section 2.2), the author appended an alternative no-tensile force thrust line 



 88

to the thrust line at the median surface in the base of the dome. This combined thrust line nearly 

fits within the dome section, but still exits the dome just prior to the dome’s transition to the 

drum (Fig. 5.4). This solution would be satisfactory if the base of the dome was thickened to 

accommodate the thrust line; however architectural drawings do not indicate this. 

 
Figure 5.4. The thrust line generated by the graphical membrane theory method exits the dome section at the base of 
the dome at the transition to the support wall. Note: On the plan view of the dome, the tensile hoop forces shown do 

not actually exist because the alternative thrust line construction nullifies hoop forces at the base of the dome. 
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Modified Thrust Line 

The two previous analyses failed to explain the stability of the dome of Farag Ibn Barquq. 

However, both the interactive geometry and numerical spreadsheet-based modified thrust line 

analysis programs found satisfactory thrust lines that remained within the structure’s section to 

varying degrees (Figs. 5.5 and 5.6).  

 
Figure 5.5. The modified thrust line method finds a satisfactory thrust line for the dome of Farag Ibn Barquq. The 

solution requires compressive hoop forces to develop in the dome cap. 
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Figure 5.6. The thrust line generated by the numerical modified thrust-line program satisfies equilibrium and limit 

state conditions (here, the thrust line is allowed to approach a minimum of 0.01a to the dome’s surfaces). 

The thrust line generated by the Visual Basic spreadsheet program divided the lune into 90 

voussoirs, significantly higher than the 16 divisions the interactive geometry program used in its 

analysis. This, coupled with the former program’s ability to specify exact tolerances to the lune’s 

surfaces, resulted in a smoother thrust line curve that enters the support structure under the dome 

with a steeper slope. 

The internal forces associated with both thrust line solutions are only compressive (Fig. 5.7). 
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Figure 5.7. From the modified thrust line analysis, one possible combination of internal forces that satisfy 

equilibrium of the dome of Farag Ibn Barquq 

The thrust line solution shown in Fig. 5.6 estimates each lune in the dome experiences an 

outward thrust equal to 24% its weight, which coincides exactly with the H/W prediction made 

with the linear regression equation, and closely to the prediction made by interpolating from the 

charts in Chapter 4. From Eq. 3.1, assuming a unit weight of the stone masonry of 150 pcf, the 

thrust at the base of the dome is: 
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where Wlune is calculated from Eq. 2.5. 

Though this solution demonstrates that the dome is capable of standing on its own, the stability 

of the drum under the dome remains unexplained. In the most favorable conditions, the thrust 

line shown in Fig. 5.5 exits the masonry in the supporting drum, which suggests that the 
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supporting structure is insufficient. With the procedure described from Section 3.3 and the thrust 

line in Fig. 5.6, the exit location of the thrust line in the drum may be calculated: 

( ) ( ) lbstheightaW wallwallwall 2136015.2010sin83sin150
180
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πδαθρ
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Substituting these values into Eq. 3.8: 
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where 21.8 ft is the x-coordinate of the center of gravity of the voussoir at the base of the dome, 

and 23.9 ft is the vertical distance between the median rise of the dome and the y-coordinate of 

the thrust line at x = 21.8 ft. The modified thrust line method predicts the thrust line exits the 

drum 16.4 ft below the base of the dome, or 4.1 ft above the base of the 20.5 ft high drum. Since 

the dome stands today, the structure must have the means to resist the horizontal thrust 

transferred into the drum. The combined gravity loads of the dome and wall at the point in the 

wall where the thrust line exits is: 
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The horizontal thrust of 905 lbs/ft is about 13% of the gravity load of the dome and drum 

portion. If an indirect tensile capability develops from friction between the stones, and the 

friction coefficient for the stone masonry is equal to or greater than 0.13, then friction might 

resist the thrust as a series of stone tension rings acting in the drum. A typical conservative 

estimate of the friction coefficient for stone is 0.5, suggesting that such tension forces could 

develop. However, this would require the drum to be completely intact and without vertical 

cracks or window openings that would preclude the development of stone tension rings. Given 
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that Cairo is a region of significant seismicity, it is unlikely that the drum stands only because of 

friction. Such frictional forces could easily be reduced in a moderate earthquake, yet the dome 

has stood for many centuries. It is possible that tension rings of iron or wood remain hidden in 

the fabric of the stone drum, though this is an area for future research. 

By deriving a satisfactory thrust line within the dome and most of its support drum, the modified 

thrust line method demonstrated how the dome of Farag Ibn Barquq stands. 

5.2. The Domes of Pines Calyx™, Dover, England 

The Pines Calyx™, a sustainable event and conference center in Dover, England, was the 

product of numerous design, engineering and construction collaborations that included St. 

Margaret Bay’s Trust7, Cameron Taylor Engineers, and the Massachusetts Institute of 

Technology. The author had the privilege of participating in the design validation of the two 

domes of the Pines Calyx, constructed in 2005 and 2006. The upper and lower domes are 

spherical shallow domes constructed of thin clay masonry tiles similar to that used in traditional 

Spanish timbrel vaulting, which is also known as Guastavino or Catalan vaulting. A reinforced 

concrete ring beams resists the outward thrust at the base of each dome, so that the orientation of 

the thrust line in the domes becomes a vertical gravity load vector, which is transferred easily to 

the vertical support structure under the domes. 

Geometry and Features 

Table 5.2 summarizes the geometric parameters of the masonry domes of the Pines Calyx: 

Table 5.2. Geometric parameters for the upper and lower domes of the Pines Calyx 

Upper Lower
Median radius of curvature, a (ft): 43 43
Maximum rise from springing (ft): 4.3 4.3

Span of the dome (ft): 38 38
Thickness, t (ft): 0.33 0.33

Thickness-to-Radius: 0.0076 0.0076
Angle at oculus opening (deg.): 4 5

Angle of embrace (deg.): 26 26  

                                                 
7 Information on the Pines Calyx is available at www.baytrust.org.uk/html/pines_calyx.html. Additional information 

and press coverage is available in Parker (2005) and “UK Sees” (2005). 
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Though the thickness-to-radius ratio of the domes is smaller than that of the Mamluk dome case 

study, the shallow embrace angle and tension ring beams would suggest that membrane theory 

assumptions lead to a satisfactory solution. 

However, a number of architectural features on the domes complicate the structural analysis. 

Each dome has a circular oculus at its crown that tapers into a “basal sun tube”. Both domes are 

incomplete: the upper dome surface has a lens-shaped cutout while the lower dome intersects the 

cylindrical support wall of the upper dome (Fig. 5.8). A parapet wall traces the lens-shaped 

cutout, applying a concentrated line load on the upper dome edge. Finally, preliminary design 

loads included an asymmetrical live load case on the domes. 

 
Figure 5.8. Plan and elevation views of the double domes of the Pines Calyx, Dover, England (from Ochsendorf et 

al. 2005, and courtesy of Michael Ramage) 

Structural Analyses 

The study relied on a combination of the membrane theory analysis, to evaluate the domes under 

axisymmetrical load conditions assuming no cutouts other than the oculi, and the modified thrust 



 95

line analysis to evaluate the domes’ structural stability under asymmetrical live loads8. The latter 

method was vital in the study because the membrane theory is invalid under asymmetrical load 

conditions due to the introduction of shear and bending internal forces in the membrane plane. 

The author used the following factored loads in the structural analyses (Table 5.3): 

Table 5.3. Factored loads for the upper and lower domes of the Pines Calyx 

Uniform Load for Upper and Lower Dome kN/m2 Load 
Factor

Factored Ld 
(kN/m2)

Self-weight: dead load of three layers of tile and mortar 2.4 1.4 3.3
Combined dead load: self weight and overburden 8.9 1.4 12.4
Live load 4.9 1.6 7.8
Combined dead load and live load 13.8 20.3

Concentrated Load at Oculus kN/m Load 
Factor

Factored Load 
(kN/m)

Line load at Upper Dome oculus: 1.8 1.4 2.6
Line load at Lower Dome oculus: 2.5 1.4 3.5

 

Membrane Theory 

Under axisymmetrical factored loads, the membrane theory equations calculate only compressive 

stresses in the domes, with a maximum stress of approximately 350 psi (2.41 N/mm2), less than 

6% of the crushing strength of the tile (Ochsendorf et al. 2005) (Figs. 5.9 & 5.10). 

 
Figure 5.9. Internal meridional and hoop stress resultants in units of kN/m for the upper dome of the Pines Calyx 

(Ochsendorf et al. 2005) 

                                                 
8 Comprehensive structural analyses for the Pines Calyx domes are available in the report “The Calyx Domes: 

Structural Design and Analysis” (Ochsendorf et al. 2005). 
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Figure 5.10. Internal stresses calculated from the membrane theory for the upper dome of the Pines Calyx. Stress 

values for the lower dome are similar. 

The horizontal thrust at the bases of both domes is about 188% of the vertical gravity loads on 

the domes. The high percentage is due to the shallow geometries of the domes. 

Modified Thrust Line 

Using the interactive geometry software, Cabri II, the author created a program based on the 

modified thrust line analysis to address the most challenging aspect of the Pines Calyx structural 

analysis: the axisymmetrical dead loads and asymmetrical live load case9. Few existing analysis 

methods contend with asymmetrical loading in domes. The program, based on the modified 

thrust line method determined a satisfactory thrust line under the most extreme asymmetrical 

loading case: maximum live load on one-half of the dome, and zero live load on the other half. 

The lune profile used in the program consisted of two complementary wedges that span the full 

dome diameter, and are separated at the crown by the oculus. To simulate the asymmetrical load 

condition, the program used different surcharge values on each lune half. Two force polygons, 

                                                 
9 Live load conditions on the Pines Calyx have since been withdrawn due to numerous factors that accompanied the 

permitting of pedestrian traffic on the domes’ surfaces. 
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representing the respective loads on both halves of the lune, were combined to generate the final 

thrust line (Fig. 5.11). 

 
Figure 5.11. The graphics-based modified thrust line theory solution for an asymmetrical load case. The thrust line is 

satisfactory in both halves of the wedge-shaped lune, assumed to span the full diameter of the dome. 

The horizontal thrust for the half-lune supporting live and dead loads is 195% of its gravity 

loads. The lune’s counterpart, which supports only dead loads, has a thrust of only 111% its 

gravity loads. Not surprisingly, the half dome supporting the higher load thrusts more than its 

counterpart. 

Under asymmetrical loading, it was not possible to attain a satisfactory thrust line without hoop 

forces. 
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By deriving satisfactory lower bound solutions using the membrane theory and the modified 

thrust line method, which also met material strength limits, the author and this work contributed 

to the validation of the design of the Pines Calyx domes (Fig. 5.12). 

 
Figure 5.12. The interior of the lower dome of the Pines Calyx near the end of its construction (photograph courtesy 

of Michael Ramage) 

5.3. Chapter Summary 

The modified thrust line theory proved valuable in the analysis of two masonry domes whose 

unconventional and daring geometries could not be satisfactorily explained with existing analysis 

methods. The modified thrust line method’s versatility in analyzing domes with various 

geometry, material, and load parameters, provides a significant advantage over existing analysis 

methods, which would require time-consuming modifications to analyze custom dome 

parameters, without assurance that much useful information will be revealed in their solutions. 

The numerous methods by which to estimate the minimum thrust-to-weight ratio listed in 

Chapters 3 and 4 proved accurate for the pointed dome of Farag Ibn Barquq. 
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Chapter 6. Upper Bound Limits 

The previous chapters discussed lower bound applications of the modified thrust line method, 

and existing lower bound analysis methods such as the membrane theory. The upper bound or 

critical load capacity of masonry structures is difficult to quantify for numerous reasons, 

including variability in material composition and construction. In the past century, several 

authors have attempted to predict the plastic limits of domes, but these methods remain largely 

unproven, untested, and most importantly, not applicable to masonry construction. This chapter 

examines the potential use of the modified thrust line method to predict upper bound limits in the 

case of two experiments in which two small-scale masonry dome were loaded to failure by a 

concentrated load at the crown (Fig. 6.1). 

 
Figure 6.1. Load configuration for the AAC domes (figure courtesy of Michael Ramage) 

6.1. Theoretical Limits and the Modified Thrust Line Method 

Following limit state conditions, the modified thrust line method assumes a dome is unstable if a 

thrust line cannot fit within its effective thickness. The upper bound limit is the maximum load 

capacity of the structure prior to failure; any additional load causes the thrust line to exit the 

dome’s thickness and create a collapse mechanism. The unique value of this load limit is found 

in accordance with the upper bound theorem (Heyman 1995). Due to the large self-weight of 
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masonry and the relatively low live loads, it is uncommon for masonry domes to be overloaded 

to the point of collapse although some instances of historical collapses have occurred (Fig. 6.2). 

 
Figure 6.2. The steel-supported masonry dome of St. James Cathedral, Seattle, collapsed in 1916 after a snowstorm; 

figure from St. James Cathedral (2006). 

The author used the upper bound principles to explore the potential of the modified thrust line 

method to predict the upper bound limits of two small-scale thin shell masonry domes that were 

loaded to collapse by a concentrated load at the crown10. Using the interactive geometry 

program, the author increased the surcharge loads on a representative lune section until a 

satisfactory thrust line was no longer found. 

Dome Geometry 

The masonry domes were constructed of mid-grade TruStone aerated autoclaved concrete (AAC) 

TS 3 tiles supplied by TruStone America11, and United States Gypsum Company12 (USG 1997) 

Hydrocal White Gypsum Cement. TruStone’s published unit weight for the AAC tile is 37 pcf 

(TruStone America 2005). Assuming 40:100 parts water:gypsum in weight, the author calculated 

                                                 
10 The construction and load test of the first AAC dome was in collaboration with the research of Michael Ramage 

(2005), a fellow architecture graduate student at MIT. 
11 TruStone America, a manufacturer of aerated autoclaved concrete, is currently located in Providence, RI. More 

information is available at www.truestoneamerica.com. 
12 Information on the United States Gypsum Company and its products is available at www.usg.com. 
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the dry unit weight of the gypsum mortar as 94 pcf (USG 1997). The author estimated the dome 

composition as 85% AAC tiles and 15% mortar, resulting in a monolithic unit weight of 46 pcf. 

The domes consisted of a single layer of 1.25 in. thick tiles cut no larger than 4 x 8 in. They were 

constructed without centering, and with building techniques and methods similar to those used 

for timbrel vault structures. Table 6.1 lists the design geometries of the two domes. 

Table 6.1. Design geometries of the AAC domes 

Dome 1 Dome 2
Angle of Embrace (deg.) 45.0 60
Med. Radius of Curvature (ft) 5.0 4.1
Thickness (in.)
Thickness-to-radius ratio 0.021 0.025
Height (ft) 1.5 2.1
Median Span (ft)
Deviation of As-Built Dome from Design Radius 
of Curvature (in.) +/- 1.0 +/- 2.0

Deviation of As-Built Dome from Design Radius 
of Curvature as % of Design Radius +/- 1.7% +/- 4.1%

1.25

7.0

 

One steel tension ring, fabricated with an inside diameter of 86.8 in. (7.2 ft), was used to resist 

the outward thrust at the base of both domes. The author documented the as-built geometries of 

the domes. The design and as-built dome sections were used to approximate their deviation from 

the design radius of curvature (Table 6.1, Figs. 6.3 and 6.4). 

 
Figure 6.3. Comparison of design and as-built geometry of Dome 1 (dimensions shown in inches) 
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Figure 6.4. Comparison of design and as-built geometry of Dome 2 (dimensions shown in inches) 

Critical Load Predictions 

The author predicted the upper bound limits of the domes as a function of direct tensile strength 

using three different analysis methods: the membrane theory, plastic limit (Save et al. 1997), and 

the modified thrust line. The predicted failure loads shown in Figs. 6.5 and 6.6 include the 

concentrated applied load, surcharge weight of a cylindrical plaster load pad on the dome crown, 

and the load test equipment. The plaster load pad was cast to distribute the point load at the 

crown, applied by a single load cell, that would cause a punching failure. At the base, the tiles 

were encased in a gypsum mortar bed in the steel tension ring angle. 

 
Figure 6.5. Predictions for total critical load, including applied and surcharge loads, for Dome 1 as a function of 

material tensile strength 
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Figure 6.6. Predictions for total critical load, including applied and surcharge loads, for Dome 2 as a function of 

material tensile strength 

Interestingly, all three methods predicted the domes would not stand even under only the 

concentrated load of the plaster load pad without tensile capacity in the masonry. For the 

membrane theory and modified thrust line analyses, the author assumed the applied point load 

was uniformly distributed on the surface area of the load pad. The plastic method of analysis by 

Save et al. (1997) predicts the critical uniform load distributed over the horizontal projected area 

of the spherical reinforced concrete dome. Given that the domes discussed here have little 

ductility and are loaded with a point load rather than a uniform distributed load, this method is 

not directly applicable, but was included in the study for comparison. In addition, to attain a 

value from this method, one must select a φ-value of the topmost hinge circle of the collapse 

mechanism. After conducting the load tests, the author retroactively used the φ-value from the 

data to obtain the values shown in Figs. 6.5 and 6.6. Without prior knowledge on where the 

hinge circle occurs, as in the case of any existing stable domes, this method would be difficult to 

apply to masonry structures, thus further decreasing the potential of the this method to predicting 

the ultimate load capacity of masonry domes. 



 104

In the modified thrust line method, the thrust line’s ability to deviate from the dome’s median 

radius induces bending in the structure due to the moment generated by axial forces at an 

eccentric distance away from the section’s neutral axis (Fig. 6.7). 

 
Figure 6.7. The eccentricity of the thrust line location with respect to the neutral axis of the dome section may 

produce tensile stresses due to bending in the structure, and create a hinge. 

At one extreme, the superposition of compressive stresses due to bending and axial meridional 

forces can cause localized crushing in the thrust line path. At the other extreme, the tensile 

stresses due to bending forces may cause the masonry to move apart and form a hinge in the 

structure away from the thrust line path. As a result, the modified thrust line analysis will tend to 

overestimate the critical load because it does not account for the contribution of bending forces 

to the failure of a dome. Instead, the analysis currently assumes that the structure has not already 

failed in bending where the thrust line is in close proximity to the extrados or intrados, and that 

the structure will experience local crushing and form hinge lines. 

The author conducted two additional analyses with the modified thrust line method whose 

predictions are discussed later in this chapter. The first incorporates the middle-third rule, which 

assumes the thrust line remains within the middle-third of the dome section. The second analysis 

assumes the thrust line cannot deviate beyond an eccentric distance from the neutral axis of the 

dome section that is determined by the modulus of rupture of the masonry. Though this work has 

discussed the middle-third rule’s inapplicability to a brittle, nonlinear-elastic material, scale 

effects increase the masonry’s reliance on its tensile properties for stability. 

σ 
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Scale Effects 

The small size of the experimental dome structures relative to the sizes of actual dome structures 

introduces scale effects into the challenge of predicting upper bound limits. As a result, the 

tensile strength of the masonry in the AAC domes has a greater role in resisting the applied loads 

than if the domes were full size. If a proportionally-sized load pad and applied load was placed 

on dome ten times greater than the test domes, the larger dome will have greater opportunity to 

develop internal compressive forces in its volume to resist the load, due to Galileo’s square-cube 

law13, and rely less on tensile strength, an unreliable factor in masonry structures. 

6.2. Material Strength Properties 

Though limit state analysis assumes infinite compression strength and zero tensile strength, in 

reality, the AAC masonry construction has a finite crushing limit and tensile capacity, which are 

significant in predicting upper bound limits. These material properties limit the magnitudes of 

the internal forces in the dome, which translate to geometric limits in the force polygons in the 

modified thrust line method (Fig. 6.8). 

 
Figure 6.8. Material strength properties limit internal force values, which translate into vector lengths in the force 

polygon for the modified thrust line method. 

                                                 
13 Galileo’s square-cube law states: “When an object undergoes a proportional increase in size, its new volume is 

proportional to the cube of the multiplier and its new surface area is proportional to the square of the multiplier” 
(Wikipedia 2006). 



 106

The author determined the average compressive and tensile strengths of the AAC/gypsum mortar 

masonry by conducting material load tests in compression, bending and direct tension. The cure 

time of the gypsum mortar ranged from about two weeks to two months. On average, samples 

that cured for a shorter duration had a higher modulus of rupture, although the range of strengths 

for all samples was similar regardless of mortar cure time. The relatively large standard 

deviations for all the material tests reinforce the notion that masonry construction is not 

homogeneous, but heterogeneous in composition, such as the gypsum mortar proportions, and 

construction technique. Detailed testing procedures and results may be found in Appendix E. 

Table 6.2 summarizes the material strength properties of the masonry. 

Table 6.2. Average strengths of AAC tile masonry (standard deviation in parentheses) 

Bonded AAC 
and Hydrocal AAC Tile Only

Compressive Strength (psi) 336 (41) 396 (35)
Flexural Tensile Strength (psi) 50 (20) 63 (16)
Direct Tensile Strength (psi) 23 (11) 52 (14)  

TruStone’s published compressive strength for non-bonded AAC is 600 psi (TruStone 2005). 

USG’s published dry compressive strength for the gypsum mortar is about 6700 psi, assuming 

40:100 parts water to gypsum (USG 1997). From the load tests, the average crushing strength of 

the assembly of these two materials was about 340 psi, 44% lower than the published values for 

the AAC alone. 

On average, the bonded AAC tiles had a lower modulus of rupture than the AAC tile alone. 

Therefore, failure due to bending stresses in the structure, which manifests into cracks in the 

hoop direction, is more likely to occur at the joint-to-tile interface than through the masonry tile. 

The author did not find literature on the tensile capacities of the AAC tile or gypsum mortar by 

the manufacturers. 

The average tensile strength of 23 psi for the bonded specimens is lower than the average 

strength of the AAC tile alone. During the material tests, failure in the bonded samples occurred 

at the mortar-to-tile interface, but not through the mortar. Because the average tensile strength is 

lower than the modulus of rupture, a dome structure constructed of AAC tiles and gypsum 

mortar will likely first fail in areas that experience direct tension, such as in the hoop direction, 
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which results in radial cracks that divide the dome into independent lunes. The dome will then 

fail in bending and form hinge circles around the dome. 

6.3. Load Tests 

In addition to the point load applied by the load cell, the domes carried the surcharge weight of 

the plaster load pad and load test equipment. The plaster consistency was approximately 70:100 

parts water to gypsum mortar for a unit weight of 66 pcf. For Dome 1, the total surcharge weight 

of the plaster load pad and steel equipment was 54 lbs. For Dome 2, the total surcharge weight 

was 74 lbs. These surcharge loads are included in the load values plotted in Figures 6.5 and 6.6. 

Two linear variable differential transformers (LVDTs), placed approximately 180 degrees apart 

on the top surface of the load pads on the crowns of the domes, monitored their downward 

displacement with the applied load. 

Dome 1 

Overall, the load-displacement relationship of Dome 1 demonstrated the brittle behavior of the 

AAC masonry in which the dome experienced small plastic deformations before abrupt failure 

(Fig. 6.9)14. 

                                                 
14 The gradual decrease in total load supported coupled with the gradual increase of displacement shown in Figure 

6.9 result from the mechanics the load cell; the loss of contact between the dome and the load cell, as the dome 
displaced downward, reduce the applied load exerted by the load cell, and allows for the dome to stabilize. If the 
ultimate load on the dome remained constant, as in most real-life live loads, the dome’s failure would be abrupt, 
as expected for brittle materials. 
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Figure 6.9. Total applied and surcharge load on the crown versus displacement for Dome 1 

The load-displacement relationship was linear until the total applied load reached about 920 lbs 

with an average displacement of 0.04 in., at which the dome developed hairline cracks in the 

meridional direction. Dome 1 was not unloaded to permit potential recovery of deformation. The 

dome supported a maximum load of 950 lbs with a displacement of about 0.06 in., at which point 

additional displacement caused a drop in the applied load on the dome. The dome briefly had a 

plastic response in which the total supported load vacillated between 800 and 900 lbs with 

increasing displacement. The dome experienced minimal creep at about 800 lbs with a change in 

displacement of 0.03 in. At this point, overt meridional cracks appeared due to the added 

displacement, and the displacement of the crown increased while the total load the dome could 

support steadily decreased. When the crown had displaced about 0.25 in., the total supported 

load briefly hovered at 560 lbs, after which visible hinge circles appeared (Fig. 6.10). 
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Figure 6.10. Dome I: Cracks in the hoop direction, or hinge circles, created the collapse mechanism after 

displacement exceeded 0.5 in. 

On average, the dome deformed about 0.85 in. total before collapsing relatively symmetrically. 

Individual lunes formed three hinges before failing: the middle hinge which formed on the 

intrados occurred approximately at φ = 23°; the upper hinge at the extrados appeared to occur at 

φ = 12° from the photograph documentation; the final hinge circle occurred near the base of the 

dome at φ = 41°. 

Dome 2 

For the load test of Dome 2, the overall load-displacement relationship demonstrated the brittle 

behavior of the masonry in which the dome experienced small plastic deformations before abrupt 

failure (Fig. 6.11). 
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Figure 6.11. Total applied and surcharge load at the crown versus displacement for Dome 2 

The initial load-displacement relationship was linear elastic until the first significant meridional 

crack occurred at a total load of 1170 lbs with an average deformation of 0.023 in. The dome 

experienced some minor creep before it was unloaded to only the weight of the existing 

surcharge of the load pad and test equipment. As the load was removed, the dome recovered only 

0.01 in. in displacement, affirming the masonry’s brittle behavior and associated plastic 

deformations. As the load was reapplied, the displacement again was linear elastic and parallel to 

the initial linear-elastic curve. 

The dome recovered to surpass its initial load to a total ultimate load of 1205 lbs. As the 

supported load vacillated between 1050 and 1200 lbs, the dome had a semi-plastic and semi-

elastic response in which additional load gradually increased displacement, but intermediate 

recovery after additional cracking and displacement was linear elastic. The dome again reached 

its ultimate load with a displacement of about 0.075 in. The impact of the dome’s as-built 

asymmetrical construction became evident, when one-half of the dome exhibited significant 

meridional cracks while the other half had no overt meridional cracks. 
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Visible hinge circles appeared on the cracked half of the dome when the average displacement 

reached 0.1 in. and total supported load was 900 lbs. Meridional and hoop cracks and crown 

displacement continued to increase while the total load that the dome supported decreased. At an 

average total displacement of 0.25 in., and an applied load of 575 lbs, a continuous hinge circle 

formed on one half of the dome. After this half displaced 0.96 in., it collapsed (Fig. 6.12). The 

other half of the dome remained standing. 

 
Figure 6.12. Half of Dome 2 collapsed when total displacement of the crown reached almost 1 in. 

The asymmetrical response likely resulted from significant asymmetrical construction 

aberrations from the design geometry. On the failed half, the individual lunes formed three 

hinges prior to failure: the middle hinge on the intrados occurred at approximately φ = 40°; the 

upper hinge appeared at approximately φ = 15°; a third hinge circle at approximately φ = 57°, 

near the base of the dome. 

Load Tests Comparison 

Dome 2 supported a maximum load at the crown that was 27% greater than the load supported 

by Dome 1. This may seem contradictory based on the membrane theory principle that a dome 



 112

with zero tensile capacity will fail under self-weight if α > 51.8°. However, from Chapter 3, 

under a uniform axisymmetrical load, such as self-weight, and limit state conditions, the 

modified thrust line method demonstrated that the minimum thrust-to-weight ratio actually 

decreases as α and t/R increases for spherical dome geometries. As a result, loads in Dome 2 can 

be transferred in a more vertical path to its support than in Dome 1 (Fig. 6.13). 

 
Figure 6.13. The thrust line of the dome with a larger embrace angle can assume a more vertical orientation at the 

base.  

A concentrated load at the crown requires nearby masonry voussoirs to develop large 

compressive hoop forces to resist failure in shear and inward rotation, and thus further increases 

the thrust-to-weight ratio: the thrust line moves closer to the extrados. The larger dome 

construction with a greater number of rings will have more opportunity to develop compressive 

and tensile hoop forces that work together to resist the applied load. To summarize, Dome 2 was 

larger than Dome 1 in terms of surface area and volume, and had a slightly greater t/R ratio that 

worked to its advantage. 

Review of Load Predictions 

Figures 6.14 and 6.15, modified from the previous Figs. 6.5 and 6.6, plot the results of the load 

tests with the prediction lines from other analysis methods discussed below. 
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Figure 6.14. Comparison of predicted and actual total load results for AAC Dome 1 

 
Figure 6.15. Comparison of predicted and actual total load results for AAC Dome 2 
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Predictions from Initial Analysis Methods 

From the initial three prediction methods, assuming a governing strength of 23 psi in direct 

tension for the AAC/gypsum mortar bonded samples, the plastic limit analysis and the membrane 

theory predictions were about equal in accuracy. For Dome 1, the plastic limit analysis method 

predicted a failure load of 800 lbs versus 950 lbs (16% difference); for Dome 2, this method 

predicted a failure load of 800 lbs versus 1200 lbs (33% difference). However, the usefulness of 

this method to predict the critical load of any masonry dome remains uncertain because the 

propriety of this method to construction materials and load conditions other than what was 

assumed in its derivation is not discussed by the authors. 

The derivation of the membrane theory allows an analyst to evaluate the specific load case of a 

concentrated load at the crown in accordance with the experiment. For Dome 1, the membrane 

theory calculated that internal tensile hoop forces exceed 23 psi when the total concentrated load 

applied on the crown is 660 lbs. This is about 30% lower than the actual collapse load of 950 lbs. 

For Dome 2, the membrane theory calculated the critical concentrated load as 935 lbs, which is 

about 22% lower than the actual collapse load of 1200 lbs. Construction aberrations play a 

significant role in the ultimate strength of the domes, as particularly visible in Dome 2, where 

one half of the dome was virtually unaffected by the load test and the collapse of its counterpart. 

Assuming the limiting strength of the domes is due to direct tension only, and that the thrust line 

can occupy the entire thickness of the dome, the modified thrust line method overestimated the 

load capacities of the domes: for Dome 1, the prediction was about 232% greater than the actual 

failure load; for Dome 2, the prediction was about 230% greater. These large overestimations 

may result from the heterogeneous composition of the masonry: Due to the wide range of 

strength values from the material tests, one could argue that the lowest, instead of the average, 

strength values will govern the failure of the structure. In this case, the error of reduces to 

approximately 100% for both domes. 

Predictions from Additional Analysis Methods 

The author explored three potential adjustments to the modified thrust line method based on 

different material behavior assumptions due to larger role of scale effects in these tests. The first 
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examined the role of eccentricity. In general, for masonry structures, the thrust line can occur 

anywhere within the thickness of the dome to no detriment other than potential local crushing. 

Due to scale effects, the bending stresses generated by the eccentricity of the thrust line from the 

median dome surface influenced the failure of these domes. The curves, “Modified Thrust Line: 

Eccentricity,” on Figs. 6.14 and 6.15 permitted the thrust line to deviate only a distance, e, from 

the median radius where e is: 
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and t is equal to one-half the dome’s thickness, and σr is the average modulus of rupture shown 

in Table 6.2. Assuming the direct tensile strength of the domes as 23 psi and the average σr of 50 

psi, this analysis still overestimated the critical loads of Domes 1 and 2 by 153% and 149%, 

respectively, which suggests the material’s reaction was affected by elasticity. 

The “Modified Thrust Line: Middle Third” curves further decreased the maximum distance 

between the thrust line and median radius to 1/6 the effective thickness on either side of the 

median surface. This analysis assumes the masonry behaved perfectly linear-elastically. This 

analysis overestimated the critical loads of Domes 1 and 2 by 79% and 45%, respectively; hence 

the masonry acts somewhere between a brittle, no-tension material and a linear-elastic material. 

Finally, aberrations in the as-built geometry from the design geometry will affect the structure’s 

load capacity, as the asymmetrical collapse of Dome 2 demonstrated. If construction was perfect, 

the domes would likely support more load due to reduced internal shear and bending stresses 

from asymmetry. The author conducted an additional modified thrust line analysis using the 

middle-third rule and assuming that the most deformed section of the dome, where notable 

failure first occurred in both the load tests, will govern the load capacity (Figs. 6.14 and 6.15). 

The “Modified Thrust Line: Middle Third, As-Built Section” curves underestimated the critical 

load of Dome 1 by 23% and overestimated the critical load of Dome 2 by 25%. Though on 

average, this method produced the lowest difference from the actual critical loads, it is subject to 

minor interpretation errors due to inherent limits of the graphics-based output. 
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Figure 6.16. The modified thrust line method was applied to the section with the greatest aberration from the design 

geometry under a total load at the crown of approximately 750 lbs and a direct tensile strength of 25 psi. 

 
Figure 6.17. The modified thrust line method was applied to the section with the greatest aberration from the design 

geometry under a total load at the crown of approximately 1650 lbs and a direct tensile strength of 25 psi. 

6.4. Chapter Summary 

Based on the two empirical dome case studies, the modified thrust line method currently well 

overestimates the upper bound limit of masonry domes while the membrane theory and plastic 

limit analyses slightly underestimate the limit. Factors such as masonry composition, 

construction, and material and geometry discrepancies, influence the upper bound limits of any 

structure. The author demonstrated the versatility of the modified thrust line method to account 

for such factors. The small-scale of the two domes subjects the load tests to scale effects, which 

increases the roles of tensile and flexural strengths in resisting applied loads than in real-size 

masonry domes. Further study is required to fully understand these considerations when applying 

the modified thrust line method as an upper bound analysis. 
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Chapter 7. Conclusions 

Previous studies in the structural behavior of masonry domes had limited success in evaluating 

the three-dimensional capabilities and the structural limits of domes. In general, these studies, as 

well as existing structural analysis methods for masonry domes, reduced the role of internal hoop 

forces in the stability and capacities of domes. In addition, existing analytical methods fix the 

values of internal forces, thus limiting the analysis to find only one solution when potentially 

infinite solutions exist. 

This thesis introduced the modified thrust line analysis as a new graphical method to analyze the 

equilibrium of masonry domes. This versatile method, which allows internal meridional and 

hoop forces to attain a range of values, can be applied to domes with conventional or non-

conventional axisymmetrical geometries, the latter of which are often too complex to analyze 

with existing graphical, analytical, or numerical analysis methods. 

The flexibility offered by graphical analysis led to solutions for the minimum thrust of domes, a 

previously unknown structural parameter. By combining different internal force values, the 

author identified the theoretical thrust lines that correspond to the minimum thrust of spherical 

and pointed domes. From the results, many insights into the structural behavior of masonry 

domes became apparent. 

First, geometry is significant to the minimum thrust-to-weight ratio of spherical and pointed 

domes. The minimum thrust-to-weight ratio is inversely related to the thickness-to-radius ratio. 

For two domes with all other geometric parameters equal, the thrust of the thicker dome will be a 

lower percentage of its weight than the thinner dome. The minimum thrust-to-weight ratio is also 

inversely related to the embrace angle of the dome. A dome with an embrace angle near or equal 

to 90 degrees will have a lower minimum thrust-to-weight ratio than a shallow dome. 

With all other geometric parameters equal, a pointed dome will have a lower minimum thrust-to-

weight ratio than a spherical dome. The minimum thrust of a hemispherical dome portion, equal 

to or smaller than one-eighth of the complete dome, is approximately 20 to 25% of its weight, 

regardless of t/R. For pointed domes with an embrace angle of 90 degrees, as the truncation angle 
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increases from 0 to 90 degrees, increasing the dome’s steepness, the minimum thrust-to-weight 

ratio decreases from between 20% and 25% to zero. 

Several methods were described to estimate the minimum thrust-to-weight ratio. One can 

interpolate the ratio from the plots included in the main body and appendices of this thesis. For 

spherical domes with embrace angles greater than π/3 in radians, the minimum thrust-to-weight 

ratio may also be approximated by 123.1583.0 +−= α
W
H , where α is the embrace angle in 

radians. For pointed domes, this equation is 164.1615.0061.1551.0 +−−= α
α
δδ

W
H , where 

δ, the truncation angle in radians, is less than α. Basic static equilibrium equations may also be 

used. However, equation-based estimates reveal nothing about the stability of the domes. 

The Mamluk dome case study demonstrated these methods produce accurate and precise 

estimates. Thus, one who estimates the minimum thrust-to-weight ratio rather than conducting 

the modified thrust line analysis will likely achieve a reasonable result. 

Hoop forces are critical in the stability of spherical dome geometries with thickness-to-radius 

ratios less than 0.05, and embrace angles greater than 22 degrees when t/R = 0.01; when t/R 

increases to 0.04, hoop forces are critical when embrace angles exceed 50 degrees. Without hoop 

forces, the modified thrust line analyses did not achieve satisfactory thrust line solutions for 

these dome geometries.  

Hoop forces are critical in the stability of several pointed dome geometries with thickness-to-

radius ratios less than or equal to 0.08, which is higher than the ratio for spherical domes. As a 

result, when using equations to estimate the minimum thrust of thin-shell pointed domes, one 

must be mindful that hoop forces may be critical to the overall stability of the dome. 

From the internal force values corresponding to the thrust lines producing the minimum thrust, 

the modified thrust line method identified regions in which the presence of meridional cracks in 

a dome’s surface does not impact the dome’s stability. For t/R = 0.05, spherical domes may 

exhibit meridional cracks higher in its surface than pointed domes. 
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By neglecting hoop forces, previous studies derived minimum thicknesses of masonry domes 

that were similar to values derived in this thesis. However, previous studies typically determined 

these limits by assuming the dome conditions at incipient collapse, while this study derived these 

values under stable equilibrium states. In this study, hoop forces were critical in that they 

increase the range of stable dome geometries, and provide insight to their role in dome stability, 

as in the discussion of meridional cracks in the dome. 

This thesis also discussed applications of the minimum thrust in the stability of half-dome 

buttresses. For a hemispherical half-dome structure, the minimum thrust-to-weight ratio lies 

between 0.18 and 0.12 for thickness-to-radius ratios between 0.05 and 0.20, respectively. This is 

comparable to Heyman’s estimated thrust-to-weight of the complete dome ratio of 0.068 

(Heyman 1977). For a pointed half-dome structure with an embrace angle of 90 degrees, the 

minimum thrust-to-weight ratio is inversely related to the truncation angle. For δ = 0°, the ratio 

ranges from 0.17 to 0.12 for t/R between 0.05 and 0.20, respectively, to zero for δ = α. 

The modified thrust line method provides insight to the stability of the support structure under a 

dome. The case study of the support structure under the dome of Farag Ibn Barquq demonstrated 

how minimum thrust-to-weight ratios inform the geometry of thrust line in the support structure. 

In its current state, the modified thrust line method overestimates the critical load capacity of 

masonry domes based on empirical tests conducted on two small-scale domes. Scale effects, due 

to the domes’ small sizes, likely increased the masonry’s reliance on tensile strength, which is an 

unreliable material property for masonry. Due to the flexibility proffered by modified thrust line 

theory, the author also made upper bound predictions by applying the middle-third rule, and 

evaluating the as-built geometry of the domes. These modifications brought the estimates to 

within 25% of the actual failure loads of both domes. In conclusion, upper bound analyses have 

many complexities unique to the different load conditions and construction materials. The 

modified thrust line method currently does not account for all possible factors. 
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7.1. Future Work 

This thesis is only the starting point for the modified thrust line method, or any other new 

analysis method for masonry dome structures. The ability of internal forces to vary in magnitude 

presents many new potential equilibrium states for masonry domes. The range of values in which 

meridional and hoop forces can attain, and corresponding thrust line shapes, should be validated 

in additional empirical tests, perhaps involving dry-constructed domes and adaptable support 

conditions. With the basic methodology already programmed, one may naturally extend the 

modified thrust line program to analyze domes with varying thickness, surcharge loads, 

asymmetrical loads and geometry, voussoir divisions, and thrust line tolerances to dome 

surfaces. In addition, one should incorporate checks on limits to equilibrium due to the ability or 

inability of friction in the masonry to prevent sliding failure of the voussoirs. 

The stability of the support structure of Farag Ibn Barquq remains unanswered. One may 

continue this investigation by verifying the surcharge loads at the crown, the material weights of 

the dome and drum masonry, and the impacts on thrust line geometry. Additional field work may 

be conducted to confirm or refute the presence of tensile reinforcement in the drum. 

Finally, one may continue to study the potential of the modified thrust line method in predicting 

upper bound limits of masonry domes. Future considerations may include the relation between 

bending and direct tensile force development in the dome, the behavior of real-scale masonry 

domes, among other factors. A great deal of work remains in applying this new method to 

existing masonry domes to gain an improved understanding of their relative stability. 

7.2. Thesis Summary 

In this thesis, the author introduced the modified thrust line analysis as a method by which to 

assess the equilibrium of masonry domes. This method was used to identify the minimum thrusts 

of spherical and pointed dome geometries, which have many relevant applications in design, 

analysis, and preservation. Using interactive geometry software, the author also automated 

graphical analysis methods to output solutions in real-time, expediting the traditionally laborious 

process. These methods have the potential to unveil a wide range of information on the structural 

abilities of masonry domes. 
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Parameter Definitions 

a, a Median radius of curvature 

C Constant 

c Minimum horizontal thrust-to-weight ratio, H/W 

e Eccentricity, or the distance between the thrust line path and the neutral axis or 
median radius of the dome 

H Horizontal thrust, in units of force 

Hi Hoop force resultant at voussoir i, in units of force 

Hnet, Htotal Total horizontal thrust of the dome, or lune, at the base and at the crown 

H/W Minimum thrust-to-weight ratio for the lune or dome portion under study 

h Horizontal thrust, in units of force per length 

hi In force polygon, cumulative thrust in voussoir i, in units of force 

heightwall Height of the support wall between the extrados and intrados of the dome 

i Counting variable in series 

j Counting variable in series 

k Ratio of the median rise of a dome to the vertical distance to the final thrust line 
point in the dome 

Mi Meridional force resultant at voussoir i, in units of force 

MOR Modulus of rupture 

Nφ, φN  Internal meridional stress resultant, in units of force per length 

Nθ, θN  Internal hoop force resultant, in units of force per length 

n Final counting variable or total number of objects in a series 
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n.a. Neutral axis 

r The radius of curvature of the dome’s extrados: the sum of the median radius of 
curvature and half the effective thickness of the dome 

r’ The radius of curvature of the dome’s intrados: the difference between the median 
radius of curvature and half the effective thickness of the dome 

t One-half the effective thickness of a dome section 

twall Thickness of the support structure wall under the dome 

t/R Ratio of the total effective thickness to the radius of curvature 

W, Wn, Wθ Total weight of the lune under study, which is equal to the cumulative weight 
from crown to voussoir n, or the sum of the weights of smaller lunes comprising 
the lune 

Wdome Weight of the dome under study, with a plan angle of 360 degrees 

Wwall Weight of the wall segment with a plan angle equal to θ of the dome portion 
under study 

Wi Cumulative weight of lune from crown to voussoir i 

w, wi Self-weight, in units of force per area in context of membrane theory; otherwise, 
self-weight of an individual component in units of force 

x Coordinate with reference to the orientation of the x-axis; with reference to force 
polygon, the nth letter of the alphabet where n is the total number of voussoirs  

icgcg xx ,  Horizontal distance between the center of curvature and the center of gravity of a 
lune or a voussoir i 

lunecgx  Horizontal distance between the center of curvature and the center of gravity of a 
lune 

iee xx ,  Horizontal distance between a reference origin and a point on the extrados, which 
may align with the centroid of voussoir i  

wallextx .  Horizontal distance between a reference origin and the exterior face of a support 
structure 
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iii xx ,  Horizontal distance between a reference origin and a point on the intrados, which 
may align with the centroid of voussoir i 

iTLTL xx ,  Horizontal coordinate of the thrust line relative to a reference origin for voussoir i, 
or the ith x-coordinate of the thrust line 

y Coordinate with reference to the orientation of the y-axis 

yexit Vertical coordinate of the thrust line relative to a reference origin at where a thrust 
line exits a support structure under a dome 

iTLTL yy ,  Vertical coordinate of the thrust line relative to a reference origin for voussoir i, 
or the ith y-coordinate of the thrust line 

α Angle of embrace, or the maximum φ from the dome’s centerline to bottom edge 

β Angle from the dome’s centerline to the top face of a voussoir 

γ,γ  Angle from the dome’s centerline to the bottom face of a voussoir 

δ Angle from the dome’s centerline at which the arc of a pointed dome begins 

δmax Maximum angle from the dome’s centerline at which the arc of a pointed dome 
begins 

ρ Material unit weight in units of force per volume 

σH Hoop stress 

σM Meridional stress 

σr Flexural tensile stress or average modulus of radius 

σtensile Tensile stress 

φ,φ , iφ  Angle with respect to the dome’s centerline or vertical axis of rotation 

θ Angle of a dome portion or lune viewed in plan 

θ’ Angle in plan of an individual lune comprising a larger lune or dome 
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Appendix A. The Membrane Theory 

The membrane theory equations are derived by considering equilibrium of either an infinitesimal 

element of the dome, or equilibrium of the entire dome structure. Using the former approach, 

consider an element in an axisymmetrical loaded spherical dome that is defined by two adjacent 

hoop rings and two adjacent meridians (Fig. A.1) (Heyman 1977). 

 
Figure A.1. The membrane theory considers equilibrium of an infinitely small particle located on the median radius 

of a dome (modified from Heyman 1977). 

The meridional force resultant, Nφ, and the radius in plan, φsina , increase with respect to φ by a 

value of φθ
φ φ ddrN

d
d . Hoop forces are coplanar and perpendicular to the element’s edges. 

Resolving forces into normal and tangential components with respect to the element, equilibrium 

equations may be written for the element (Heyman 1977): 

In the tangential direction: 

( ) φφθφθφφθ
φ θφ sincos dadrwddaNddrN

d
d

−=−  

Substitute φsina  for r:  
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( ) φφφ
φ θφ

2sincossin awNN
d
d

−=−  (A.1.) 

In the normal direction: 

( ) φφθφθφφθ φφ cossin dadrwddaNddrN −=+   

Substitute φsina  for r: 

φθφ cosawNN −=+   (A.2.) 

In the θ direction, an identity is obtained due to the axisymmetrical geometry. Using Eqs. A.1 

and A.2 to solve for Nφ: 

( )
φ
φ

φ 2sin
cos CawN +

−=  

When φ = 0°, the constant of integration must equal -1 for Nφ to remain finite. Thus, the 

meridional stress resultant is found by: 

φφ cos1+
−=

awN   (A.3.) 

From Eq. A.2, the hoop stress resultant, Nθ, is found by: 

⎥⎦
⎤

⎢⎣
⎡ −
+

= φ
θθ cos

cos1
1awN   (A.4.) 

A similar procedure may be used to derive the membrane theory equations for pointed domes 

(Billington 1982). 
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Appendix B. Modified Thrust Line Method for Spherical Domes 

This appendix contains the program the author wrote and used to conduct the theoretical analyses 

for spherical domes. The program was written for Visual Basic for Application with Excel, 

version 6.3, by Microsoft Corporation. The author wrote a similar program for the analysis of 

pointed domes. 



 

Option Explicit 
 
Private Sub cmdButtonActivate_Click() 
 
    Dim i As Integer                              'i is the trial number from 1 to 30 
     
    For i = 1 To 30 
        If (i = 1 Or i = 11 Or i = 21) Then              'User must input initial row of parameters 
            Call SetUpInitialParameters(i) 
        Else 
            Call ChangeParameters(i) 
        End If 
        Cells(SHROW + i, "A") = i              'List trial number 
        Call AddAnalysisSheet(i) 
        FormatCellsHeadings                 'Alignment and headings in place 
        Call NumberVousColumn(i) 
        DomeDefine 
        Call AddChartSheet(i)         'Plot coordinates of the dome extrados and intrados -- add thrust 
line later 
        DetermineYLimits 
        Call CalcWeight(i) 
        Call StartThrustLine(i) 
        Call CalcInternalForces(i) 
    Next i 
 
End Sub 
 
Private Sub cmdButtonReset_Click() 
'Erase analyses and clear parameter data 
     
    Dim i As Integer 
    Dim data As Range 
     
    For i = 1 To 30 
        Sheets("Analysis" & i).Delete 
        Charts("Section" & i).Delete 
        Sheets("IntForces" & i).Delete 
    Next i 
     
    Set data = Sheets("Summary").Range("A6:N100") 
    data.ClearContents 



 

     
End Sub 
 
Private Sub cmdButtonSummary_Click() 
 
    Dim SHROW As Integer 
    Dim tRValue As Single 
     
    SHROW = 5 
    tRValue = Range("D6").Value 
     
    Sheets("Summary").Select 
    Cells(SHROW + 1, "A").Select 
    Selection.EntireRow.Insert 
    Selection.EntireRow.Interior.ColorIndex = 35 
    Selection.EntireRow.Interior.Pattern = xlSolid 
    Cells(SHROW + 1, "E").FormulaR1C1 = "0" 
    Cells(SHROW + 1, "K").FormulaR1C1 = "0" 
    Cells(SHROW + 1, "I").FormulaR1C1 = "0" 
    Cells(SHROW + 1, "L").FormulaR1C1 = "0" 
    Cells(SHROW + 12, "A").Select 
    Selection.EntireRow.Insert 
    Cells(SHROW + 23, "A").Select 
    Selection.EntireRow.Insert 
    Cells(SHROW + 1, "A").Select 
    Selection.EntireRow.Copy 
    Cells(SHROW + 12, "A").Select 
    ActiveSheet.Paste 
    Cells(SHROW + 23, "A").Select 
    ActiveSheet.Paste 
    Application.CutCopyMode = False 
    Charts.Add 
    With ActiveChart 
        .ChartType = xlXYScatterSmooth 
        .SeriesCollection.NewSeries 
        .SeriesCollection(1).Name = "=""Theta = 1 deg.; Zero Hoop Forces""" 
        .SeriesCollection(1).XValues = "=Summary!R6C5:R16C5" 
        .SeriesCollection(1).Values = "=Summary!R6C9:R16C9" 
        .SeriesCollection.NewSeries 
        .SeriesCollection(2).Name = "=""Theta = 22.5 deg.; Zero Hoop Forces""" 
        .SeriesCollection(2).XValues = "=Summary!R17C5:R27C5" 



 

        .SeriesCollection(2).Values = "=Summary!R17C9:R27C9" 
        .SeriesCollection.NewSeries 
        .SeriesCollection(3).Name = "=""Theta = 45 deg.; Zero Hoop Forces""" 
        .SeriesCollection(3).XValues = "=Summary!R28C5:R38C5" 
        .SeriesCollection(3).Values = "=Summary!R28C9:R38C9" 
        .SeriesCollection.NewSeries 
        .SeriesCollection(4).Name = "=""Theta = 1 deg.; With Hoop Forces""" 
        .SeriesCollection(4).XValues = "=Summary!R6C5:R16C5" 
        .SeriesCollection(4).Values = "=Summary!R6C11:R16C11" 
        .SeriesCollection.NewSeries 
        .SeriesCollection(5).Name = "=""Theta = 22.5 deg.; With Hoop Forces""" 
        .SeriesCollection(5).XValues = "=Summary!R17C5:R27C5" 
        .SeriesCollection(5).Values = "=Summary!R17C11:R27C11" 
        .SeriesCollection(6).Name = "=""Theta = 45 deg.; With Hoop Forces""" 
        .SeriesCollection(6).XValues = "=Summary!R28C5:R38C5" 
        .SeriesCollection(6).Values = "=Summary!R28C11:R38C11" 
        .Location Where:=xlLocationAsNewSheet, Name:="Summary Chart" 
    End With 
    With ActiveChart 
        .HasTitle = True 
        .ChartTitle.Characters.Text = "Minimum Horizontal Thrust for t/R = " & tRValue 
        .Axes(xlCategory, xlPrimary).HasTitle = True 
        .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Angle of Embrace (degrees)" 
        .Axes(xlValue, xlPrimary).HasTitle = True 
        .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Horizontal Thrust/Weight per Lune" 
        .HasLegend = True 
        .Legend.Select 
        With Selection 
            .Position = xlBottom 
            .Border.LineStyle = xlNone 
            .Width = 750 
            .Left = 50 
        End With 
        .Axes(xlCategory).Select 
        With Selection 
            .MinorTickMark = xlOutside 
            .MinimumScale = 0 
            .MaximumScale = 90 
            .MinorUnit = 5 
            .MajorUnitIsAuto = True 
        End With 



 

    End With 
    ActiveChart.PlotArea.Select 
    Selection.Interior.ColorIndex = xlNone 
    ActiveChart.SeriesCollection(4).Select 
    With Selection 
        .Border.ColorIndex = 43 
        .MarkerForegroundColorIndex = 43 
        .MarkerStyle = xlX 
        .Smooth = True 
        .MarkerSize = 5 
    End With 
    ActiveChart.SeriesCollection(3).Select 
    With Selection 
        .Border.ColorIndex = 45 
        .MarkerBackgroundColorIndex = 45 
        .MarkerForegroundColorIndex = 45 
        .MarkerStyle = xlTriangle 
        .Smooth = True 
        .MarkerSize = 5 
    End With 
 
End Sub 
 
Option Explicit 
 
Public a As Single          'median radius of curvature in ft 
Public t As Single          'half of the thickness in ft 
Public tR As Single         'The thickness to radius of curvature ratio 
Public alpha As Single      'Angle of embrace between 0 and 90 degrees 
Public rho As Single        'material unit weight in lbs/ft^3 
Public theta As Single      'Included angle in plan so arc length of base included = 1 ft 
Public maxCS As Single      'Maximum compression stress in units of psi 
Public numVous As Integer   'Number of voussoirs equal to alpha in degrees 
Public vousAngle As Single  'The number of radians per voussoir division of the dome section 
Public vousPhi() As Single  'The value of phi in radians for the bottom face of each voussoir i 
Public r As Single          'The radius to the extrados: r = a + t 
Public rPrime As Single     'The radius to the intrados: r = a - t 
Private theta1, theta2 As Single        'Three values of theta in plan will be analyzed 
Private theta3 As Single        'Theta values in degrees 
  
Const PI = 3.141593 



 

Public SHROW, AHROW As Integer     'The number of rows by which to offset worksheet "Summary" 
                                   'The number of rows by which to offset worksheets "Analysis#" and 
"IntForces#" 
Public moveStartTolerance As Single     'The increment by which to increase the start point of the thrust 
line 
Public initTLTolerance As Single        'The closest distance (ft) to which the thrust line can approach 
the extrados _ 
                                            can increase or decrease 
 
Public Sub SetUpInitialParameters(initTrial As Integer) 
'Augment so that 30 trials are run with varying theta from theta = 1, 22.5 and 45 degrees 
     
    Dim i As Integer 
    Dim initAlpha As Single     'Let the first alpha value = 5 deg. 
    initAlpha = 5               'Arbitrary 
     
    'Set the theta in plan values (in degrees); arbitrarily assigned 
    theta1 = 1 
    theta2 = 22.5 
    theta3 = 45 
     
    'Set up the header rows 
    SHROW = 5 
    AHROW = 8 
     
    Sheets("Summary").Select 
    rho = Range("B4").Value 
    maxCS = (Range("D4").Value) * 144    'Convert psi into psf 
    a = Range("B6").Value 
    tR = Range("D6").Value 
    t = a * tR / 2 
    Range("C6").Value = 2 * t 
    r = a + t 
    rPrime = a - t 
     
    moveStartTolerance = Range("F4").Value                  'Set the increment by which the start point 
moves 
    initTLTolerance = Range("H4").Value                     'Set initial thrust line tolerance 
 
    Cells(SHROW + initTrial, "E").Value = initAlpha  'For trials 1, 11 and 21, alpha will be 5 degrees 
    alpha = Application.WorksheetFunction.Radians(Cells(SHROW + initTrial, "E").Value) 



 

     
    Select Case initTrial 
        Case Is = 1 
            Cells(SHROW + initTrial, "F").Value = theta1 
        Case Is = 11 
            Cells(SHROW + initTrial, "F").Value = theta2 
        Case Is = 21 
            Cells(SHROW + initTrial, "F").Value = theta3 
    End Select 
     
    theta = Application.WorksheetFunction.Radians(Cells(SHROW + initTrial, "F").Value) 
     
    'Fill in the a, thickness, and tR values for rows 11 and 21 
    If (initTrial <> 1) Then 
        For i = 2 To 4 
            Cells(SHROW + initTrial, i).Value = Cells(SHROW + 1, i).Value 
        Next i 
    End If 
     
End Sub 
 
Public Sub ChangeParameters(trial As Integer) 
'Need to write procedure to increment parameter in question 
'Work with varying alpha and theta 
 
    Dim alpInc1 As Integer 
    Dim alpinc2 As Integer 
     
    alpInc1 = 5                 'increment alpha either 5 degrees 
    alpinc2 = 10                'increment alpha by 10 degree intervals 
 
    Sheets("Summary").Select 
    Cells(SHROW + trial, "B").Value = Cells(SHROW + 1, "B").Value       'the radius of curvature will not 
change from a 
    Cells(SHROW + trial, "C").Value = Cells(SHROW + 1, "C").Value       'the thickness of the dome will not 
change from 2t 
    r = a + t                                                           'outer and inner radii do not 
change 
    rPrime = a - t 
    Cells(SHROW + trial, "D").Value = 2 * t / a                         'the thickness to radius ratio 
     



 

    'Vary the alpha value in degrees 
    If (trial = 2 Or trial = 12 Or trial = 22) Then 
        Cells(SHROW + trial, "E").FormulaR1C1 = ("=R[-1]C+" & alpInc1) 
    Else 
        Cells(SHROW + trial, "E").FormulaR1C1 = ("=R[-1]C+" & alpinc2) 
    End If 
     
    alpha = Application.WorksheetFunction.Radians(Cells(SHROW + trial, "E").Value)  'reset the alpha 
variable 
     
    'Vary theta 
    Select Case trial 
        Case Is < 11 
            Cells(SHROW + trial, "F").Value = theta1 
        Case 11 To 20 
            Cells(SHROW + trial, "F").Value = theta2 
        Case Is > 21 
            Cells(SHROW + trial, "F").Value = theta3 
    End Select 
     
    theta = Application.WorksheetFunction.Radians(Cells(SHROW + trial, "F").Value) 
 
End Sub 
 
Public Sub AddAnalysisSheet(trial As Integer) 
    
    Sheets("Summary").Select 
    Sheets.Add 
    With ActiveSheet 
        .Move After:=Sheets("Summary") 
        .Name = "Analysis" & trial 
        .Move After:=Sheets("Summary")       'Worksheets class does not include Chart sheets 
        .Select 
    End With 
     
End Sub 
 
Public Sub FormatCellsHeadings() 
    Cells.HorizontalAlignment = xlCenter 
    Cells.VerticalAlignment = xlCenter 
    Range("A1").Value = "Modified Thrust Line Analysis for Masonry Domes" 



 

    Range("A2").Value = "Radius of Curvature (ft):" 
    Range("A3").Value = "Angle of Embrace (deg.):" 
    Range("A4").Value = "Thickness (ft):" 
    Range("A5").Value = "Material Unit Weight (lbs/ft^3):" 
    Range("A6").Value = "Theta (deg.):" 
    Range("D2").Value = "Max. Stress (psi):" 
    Range("D3").Value = "Thrust Line Tol. (ft):" 
    Range("A1:E7").Font.Bold = True 
    Range("A1").HorizontalAlignment = xlLeft 
    With Range("A2:A6, D2:D6") 
        .Columns.AutoFit 
        .HorizontalAlignment = xlRight 
    End With 
    Range("A7").Value = "Phi(degrees)" 
    Range("B7").Value = "X extrados (ft)" 
    Range("C7").Value = "Y extrados (ft)" 
    Range("D7").Value = "X intrados (ft)" 
    Range("E7").Value = "Y intrados (ft)" 
    Range("F7").Value = "X CG & TL (ft)" 
    Range("G7").Value = "Y CgE (ft)" 
    Range("H7").Value = "Y TL (ft)" 
    Range(" I7").Value = "Y CgI (ft)" 
    Range("J7").Value = "Horiz. Dist HT(lbs)" 
    With Range("B7:J7") 
        .WrapText = True 
        .ColumnWidth = "10" 
        .Font.Bold = True 
    End With 
    Range("B2:B6").NumberFormat = "0.0" 
    Cells(AHROW, 1).Select 
    ActiveWindow.FreezePanes = True 
     
End Sub 
 
Public Sub ListParameters(trial As Integer) 
'List parameters in individual "Analysis" spreadsheets 
 
    Sheets("Analysis" & trial).Select 
    Range("B2").Value = a 
    Range("B3").Value = Application.WorksheetFunction.Degrees(alpha) 
    Range("B4").Value = t * 2 



 

    Range("B5").Value = rho 
    Range("B6").Value = Application.WorksheetFunction.Degrees(theta) 
    Range("E2").Value = maxCS / 144     'Convert psf to psi 
    Range("E3").Value = tLTolerance 
     
End Sub 
 
Public Sub NumberVousColumn(trial As Integer) 
'Determine the array size for the number of voussoirs and subsequent parameters. 
'Establish vousPhi values, the phi value in radians of the bottom face of each voussoir 
 
    Dim i As Integer 
    Dim tempAlphaDeg As Integer 
 
'For processing time's sake, limit the max. number of voussoirs to 30; _ 
numVous can be, and should be, INCREASED for greater accuracy 
     
    tempAlphaDeg = Round(Application.WorksheetFunction.Degrees(alpha)) 
    numVous = Application.WorksheetFunction.Max(30, tempAlphaDeg) 
     
    ReDim vousPhi(numVous) 
    vousAngle = alpha / numVous     'Calculate vousAngle: the number of radians per voussoir 
     
    For i = 0 To numVous 
        vousPhi(i) = i * vousAngle 
        Cells(i + AHROW, "A").Value = Application.WorksheetFunction.Degrees(vousPhi(i)) 
    Next 
     
    Range("A" & AHROW & ":A" & (AHROW + numVous)).NumberFormat = "0.0" 
     
End Sub 
 
Public Sub AddIntForceSheet(trial As Integer) 
    Worksheets.Add 
    With ActiveSheet 
        .Move After:=Sheets("Analysis" & trial) 
        .Name = "IntForces" & trial 
        Cells.HorizontalAlignment = xlCenter 
        Cells.VerticalAlignment = xlCenter 
        Range("A1:A7").Font.Bold = True 
        Range("A1").HorizontalAlignment = xlLeft 



 

        Range("A1").Value = "Modified Thrust Line Analysis for Masonry Domes (continued)" 
        Range("A3").Value = "Weight of One Lune (lbs):" 
        Range("A4").Value = "Total Weight of Dome (ft):" 
        Range("A3:A4").ColumnWidth = 24 
        Range("C4").Value = "should equal" 
        Range("A7").Value = "Phi (degrees)" 
        Range("B7").Value = "Meridional Force (lbs)" 
        Range("C7").Value = "Hoop Force (lbs)" 
        Range("D7").Value = "Meridional Stress (psi)" 
        Range("E7").Value = "Hoop Stress (psi)" 
        With Range("B7:F7") 
            .Font.Bold = True 
            .WrapText = True 
            .ColumnWidth = 12 
        End With 
        Range("A" & AHROW & ":E" & numVous + AHROW).NumberFormat = "0.0" 
    End With 
         
End Sub 
 
Option Explicit 
Const PI = 3.141593 
Public beta As Single                       'The upper bound phi angle defining the voussoir 
Public gamma As Single                      'The lower bound phi angle defining the voussoir 
Public xE() As Single, yE() As Single       'Determine the coordinates of the dome extrados 
Public xI() As Single, yI() As Single       'Determine the coordinates of the dome intrados 
Public xCg() As Single                      'Determine the x-coordinate of the center of gravity; y-
coordinate not needed 
Public w() As Single                        'Determine the cumulative weights of voussoirs 
Public phiCgE() As Single, phiCgI() As Single   'The phi angle on the extrados/intrados with the xCg(i) 
coordinate 
Public yCgE() As Single, yCgI() As Single       'The y-coordinates on the extrados/intrados with the xCg(i) 
coordinate 
Public xCGLune As Single                    'The x-coordinate center of gravity of one lune 
Public hMax() As Single                     'The max. horiz. component of force on the force polygon for 
each voussoir 
    
Public Sub DomeDefine() 
    Dim i As Integer 
    Dim vousWt As Single                    'Wt of individual voussoir to be added to growing weight 
    Dim phi As Single                       'Average phi angle to send to functions GetMaxHDist 



 

    Dim tempH As Single                     'the previous value of maximum horizontal distance 
    Dim tempPhi0 As Single                  'the angle of the oculus, as applicable; for now, set equal to 
zero 
    ReDim xE(numVous), yE(numVous)          'Redimension arrays to the number of included degrees 
    ReDim xI(numVous), yI(numVous) 
    ReDim xCg(numVous), w(numVous)          'w is the cumulative weight along each voussoir 
    ReDim hMax(numVous)                     'hMax is the total horizontal distance on the force polygon 
'Locate the coordinates defining the dome center of gravity, wt. of ea. voussoir, and _ 
 call a function to get maximum horizontal distance 
    For i = 0 To numVous 
        Call DefineExtraIntra(i)    'Locate the coordinates defining the dome extrados and intrados 
        If i <> 0 Then 
            beta = vousPhi(i) - vousAngle               'beta is the upper phi-angle from the centerline 
            gamma = vousPhi(i)                          'gamma is the lower phi-angle from the dome 
centerline 
            phi = (beta + gamma) / 2                    'average of beta and gamma in radians 
            xCg(i) = (3 / 16) * (r ^ 4 - rPrime ^ 4) / (r ^ 3 - rPrime ^ 3) * (2 * gamma - Sin(2 * gamma) - 
2 * beta + _ 
                        Sin(2 * beta)) / (Cos(beta) - Cos(gamma)) * Sin(theta / 2) / (theta / 2) 
            vousWt = (Cos(beta) - Cos(gamma)) * rho * (r ^ 3 - rPrime ^ 3) / 3 * theta 
            w(i) = w(i - 1) + vousWt 
            If i = 1 Then 
                tempH = 0 
            Else 
                tempH = hMax(i - 1) 
            End If 
            hMax(i) = GetMaxHDistance(w(i), phi, tempH) 
             
        End If 
    Next 
     
    tempPhi0 = 0 
    xCGLune = (3 / 16) * (r ^ 4 - rPrime ^ 4) / (r ^ 3 - rPrime ^ 3) * (2 * alpha - Sin(2 * alpha) - 2 * 
tempPhi0 + _ 
                        Sin(2 * tempPhi0)) / (Cos(tempPhi0) - Cos(alpha)) * Sin(theta / 2) / (theta / 2) 
 
End Sub 
 
Public Sub DefineExtraIntra(i As Integer) 
'Define the extrados and intrados coordinates of the dome section 
        xE(i) = (a + t) * Sin(vousPhi(i)) 



 

        Cells(i + AHROW, "B").Value = xE(i) 
        yE(i) = (a + t) * Cos(vousPhi(i)) 
        Cells(i + AHROW, "C").Value = yE(i) 
        xI(i) = (a - t) * Sin(vousPhi(i)) 
        Cells(i + AHROW, "D").Value = xI(i) 
        yI(i) = (a - t) * Cos(vousPhi(i)) 
        Cells(i + AHROW, "E").Value = yI(i) 
End Sub 
      
Public Function GetMaxHDistance(ByVal tempWt As Single, phi As Single, tempH As Single) As Single 
'Determine the maximum horizontal distance (hoop compression) and meridional force to set limits based on 
material strength 
'This function is in a loop, so values are constantly replaced 
'Material stresses are in general very low, and will not be approached in the solution; perhaps this 
function is unnecessary 
 
    Dim htMaxMerid As Single    'the max. horizontal thrust distance determined by meridional stress 
    Dim htMaxHoop As Single     'the max. horizontal thrust distance determined by hoop stress 
    Dim mM As Single            'the maximum meridional force in units of lbs 
    Dim mH As Single            'the maximum hoop force in units of lbs 
    Dim maxHTDist As Single     'the maximum horizontal distance on the force polygon 
     
    mM = maxCS * a * theta * Sin(phi) * 2 * t    'compression stress times the voussoir area in section 
taken through center _ 
                                                    of curvature of dome; theta varies with phi 
    htMaxMerid = (mM ^ 2 - tempWt ^ 2) ^ 0.5     'the max horizontal thrust distance based on meridional 
stress _ 
                                                 this function assumes that max merid will be > tempWt 
based on material limits 
    mH = maxCS * 2 * t * a * vousAngle          'compression stress times the voussoir area in section 
where dPhi = alpha/numV 
    htMaxHoop = 2 * Sin(theta / 2) * mH + tempH  'the max horiz. thrust dist. based on hoop stress added to 
previous hMax value 
     
    If htMaxMerid < htMaxHoop Then              'Use the more conservative value of horizontal distance on 
force polygon 
        maxHTDist = htMaxMerid 
    Else 
        maxHTDist = htMaxHoop 
    End If 
     



 

    GetMaxHDistance = maxHTDist 
     
End Function 
 
Public Sub DetermineYLimits() 
'Determine the max/min y of the thrust line coordinates at x = xCg(i) 
    Dim i As Integer 
    ReDim yCgE(numVous), yCgI(numVous) 
    ReDim phiCgE(numVous), phiCgI(numVous) 
     
    'For i = zero on the dome centerline, yCge and yCgi are on the dome's extrados/intrados 
    yCgE(0) = a + t 
    yCgI(0) = a - t 
     
    For i = 1 To numVous 
        If (xCg(i) <= (a - t) * Sin(alpha)) Then 
            phiCgE(i) = Application.WorksheetFunction.Asin(xCg(i) / (a + t))    'find the phi at x = xCg 
and y on intra/extrados 
            phiCgI(i) = Application.WorksheetFunction.Asin(xCg(i) / (a - t)) 
            yCgE(i) = (a + t) * Cos(phiCgE(i))                                  'find the y-coordinate 
limits 
            yCgI(i) = (a - t) * Cos(phiCgI(i)) 
        Else                                                                    'for more complete domes 
where xCg passes the base of the dome 
            phiCgE(i) = Application.WorksheetFunction.Asin(xCg(i) / (a + t))    'find the phi at x = xCg 
and y on intra/extrados 
            yCgE(i) = (a + t) * Cos(phiCgE(i))                                  'find the y-coordinate 
upper limit 
            phiCgI(i) = alpha 
            yCgI(i) = xCg(i) / Tan(phiCgI(i)) 
        End If 
    Next 
 
End Sub 
 
Option Explicit 
    Public tLTolerance As Single                    'Dynamic thrust line tolerance to dome surfaces 
    Public xTL() As Single, yTL() As Single         'Thrust line coordinates 
    Public m() As Single                            'Slope of thrust line segment and meridional segment on 
forcePolygon 



 

    Public hT() As Long, hNet() As Single           'hT = Dynamic horiz. distance on force polygon 
representing cumul. _ 
                                                    horizontal thrust hNet = difference between hT(i) and 
ht(i-1) 
    Public finalCheck As Boolean                    'Final yTLValues are satisfied; all checks are 
satisfied 
    Const PI = 3.141593 
 
Public Sub StartThrustLine(trial As Integer)                'Draw the thrust line with calls to various 
values 
    Dim i As Integer                                        'i is the voussoir level 
    ReDim xTL(numVous + 1), yTL(numVous + 1) 
    ReDim m(numVous) 
    ReDim hT(numVous), hNet(numVous) 
     
    Sheets("Analysis" & trial).Select 
     
    i = 1 
    Call StartPoint(i) 
    ListKnownCoordinates                    'List known coordinates: extrados, intrados, xCenterGravity, 
yCgE and yCgI 
        
    For i = 1 To numVous 
        xTL(i) = xCg(i)                     'X-coordinates of line of thrust will always coincide with 
centers of gravity 
    Next i 
     
    Call DetermineHTLimits(yTL(0)) 
     
     
'if the previous two zero hoop analyses for alpha > 5 deg. did not find a solution, then jump to next theta 
iteration 
 
    If (trial <> 1 And trial <> 2 And trial <> 11 And trial <> 12 And trial <> 21 And trial <> 22) Then 
        If (Sheets("Summary").Cells(trial + SHROW - 2, "I").Value <> "" And _ 
            Sheets("Summary").Cells(trial + SHROW - 1, "I").Value <> "") Then 
            Call ZeroHoopEstimate(yTL(0), trial)     'Establish a minimum ht(numVous) based on assumption 
of zero hoop forces 
        ElseIf (Sheets("Summary").Cells(trial + SHROW - 2, "I").Value <> "" And _ 
            Sheets("Summary").Cells(trial + SHROW - 1, "I").Value = "") Then 



 

            Call ZeroHoopEstimate(yTL(0), trial)     'Establish a minimum ht(numVous) based on assumption 
of zero hoop forces 
        End If 
    Else 
        Call ZeroHoopEstimate(yTL(0), trial)     'Establish a minimum ht(numVous) based on assumption of 
zero hoop forces 
    End If 
 
'Begin analysis with hoop forces 
    i = 1 
    tLTolerance = initTLTolerance                                      'Set initial thrust line tolerance 
     
'if the previous two hoop analyses for alpha > 5 deg. did not find a solution, then jump to next theta 
iteration 
 
    Do 
        Call ListParameters(trial)                          'List dome parameters in Analysis sheet 
        Call StartPoint(i)                    'Reset the StartPoint from the ZeroHoopEstimate function 
        If (trial <> 1 And trial <> 2 And trial <> 11 And trial <> 12 And trial <> 21 And trial <> 22) Then 
            If (Sheets("Summary").Cells(trial + SHROW - 2, "K").Value <> "" And _ 
                Sheets("Summary").Cells(trial + SHROW - 1, "K").Value <> "") Then 
                Call DrawThrustLine(yTL(0), trial)      'Determine the rest of the points based on known 
yTL(0) and yTL(1) 
            ElseIf (Sheets("Summary").Cells(trial + SHROW - 2, "K").Value <> "" And _ 
                Sheets("Summary").Cells(trial + SHROW - 1, "K").Value = "") Then 
                Call DrawThrustLine(yTL(0), trial)      'Determine the rest of the points based on known 
yTL(0) and yTL(1) 
            End If 
        Else 
            Call DrawThrustLine(yTL(0), trial)      'Determine the rest of the points based on known yTL(0) 
and yTL(1) 
        End If 
         
        If (finalCheck = False) Then 
            tLTolerance = tLTolerance + 0.01 
        End If 
         
    Loop Until (finalCheck = True Or tLTolerance > tR) 
       
    If (finalCheck = False) Then 
        Sheets("Summary").Select 



 

        Cells(trial + SHROW, "J").Value = "No Sol'n" 
        Exit Sub 
    End If 
     
End Sub 
 
Public Sub StartPoint(i As Integer) 
'Determine the start point of the thrust line. Initially start just under the extrados at the crown 
'Reset StartPoint after ZeroHoopEstimate procedure has run 
 
    Dim startTolerance As Single        'How far away from the extrados should the initial pt. of the 
thrust line begin? 
     
    startTolerance = 0.01               'Can reduce or increase; arbitrary 
     
    xTL(0) = 0                  'Initial coordinate of thrust line - will always be 0 for complete dome 
    yTL(0) = a + t              'Initial coordinate of thrust line at extrados - will vary a-t < yTL < a+t 
 
    m(i - 1) = 0            'For no applied loads, zero slope from centerline to xCg(1), yTL(1) 
    yTL(i) = yTL(i - 1)     'yTL(1) and yTL(0) will always be equal 
         
    If (yTL(i) >= yCgE(i) Or yTL(i) <= yCgI(i)) Then        'if the start point lies outside the dome 
section 
        yTL(i - 1) = yCgE(i) - startTolerance     'yTL(0) must be lowered to less than the limiting y-value 
of yCge(1) 
    End If 
 
End Sub 
 
Public Sub DrawThrustLine(initTLPt As Single, trial As Integer) 
'Starting from the first voussoir, begin iterating values of hT(level) from zero to htMax(level), which 
will depend on _ 
what ht(value) limits the thrust line from exceeding the extrados, or other constraints per routine 
EstHTLimits 
'initPt sent in from Sub StartPoint or MoveStartPoint 
     
    Dim nLevel As Integer               'The current level from 0 to numVous 
    Dim hTMax As Long                   'The maximum ht value given a certain level 
    Dim i As Long                       'The range of possible integer htValues for ht(1): 1st pt on thrust 
line 
                                             



 

    yTL(1) = initTLPt                   'Set yTL(1) equal to yTL(0), the initial pt of the thrust line 
            
    For nLevel = 1 To numVous 
        hTMax = EstHTLimit(nLevel) 
        finalCheck = False                      'Reset the finalCheck value 
        Call RemainderForcePoly(nLevel, hT(nLevel - 1), hTMax, trial) 
            'nLevel is the current level; ht(nLevel-1) is the starting point of the next ht()) 
        If finalCheck = True Then 
            Call ListHTValues(trial) 
            Sheets("Summary").Cells(trial + SHROW, "J").Value = hT(numVous) 
            'List HT/Wt. ratio in summary sheet if finalCheck = true 
            Sheets("Summary").Cells(trial + SHROW, "K").Value = hT(numVous) / w(numVous) 
            Sheets("Summary").Cells(trial + SHROW, "L").FormulaR1C1 = "=MIN(RC[-3],RC[-1])" 
            Call ListTLCoordinates(trial)               'List thrustline coordinates 
            Call PlotThrustLine(trial)                  'Plot thrust line 
            Exit Sub                                    'This stops the MoveStartPoint function from being 
called 
        End If 
         
    'if the final thrust line point exceeds the extrados or the thrust line is complete without finalCheck 
= true, _ 
     and the initial point of the thrust line can still be lowered then move the start point 
        If ((xTL(numVous + 1) > xE(numVous) Or nLevel = numVous) And initTLPt - moveStartTolerance >= a - 
t) Then 
            Call MoveStartPoint(initTLPt) 
            Call DrawThrustLine(yTL(0), trial) 
            If (finalCheck = True) Then 
                Exit Sub 
            End If 
        ElseIf (initTLPt - moveStartTolerance < a - t) Then 
            Exit Sub 
        End If 
    Next nLevel 
     
End Sub 
 
Public Sub RemainderForcePoly(level As Integer, hTPrev As Long, hTMax As Long, trial As Integer) 
'Recursive function to find the remaining values of hT(i) between ht(1) and ht(numVous) 
 
    Dim hTStart As Long                 'The min. ht value for voussoir level 1 -- the max. of jMinD or 
htPrev+1 (equal to 0) 



 

    Dim i As Long                       'The range of htValues for each level - integers for NOW - maybe 
change into DO loop 
    Dim j As Integer                    'The number of voussoir levels 
 
    If (level = 1) Then 
        hTStart = Application.WorksheetFunction.Max(jMinD, hTPrev + 1) 
    Else 
        hTStart = hTPrev + 1 
    End If 
     
    For i = hTStart To hTMax                'Increase as integers FOR NOW 
        hT(level) = i 
        For j = (level + 1) To numVous      'Increase as integers FOR NOW 
            hT(j) = i 
        Next j 
'Call ListHTValues(trial) 
        CheckYTLValues                      'all ht values from levels from 1 to numVous are full, run 
checks 
'Call ListTLCoordinates(trial) 
        If (finalCheck = True) Then 
            Exit Sub 
        End If 
     
        If (level < numVous) Then 
            'If the thrust line will exceed the extrados if this ht(level) continues to increase, then move 
to next hTvalue 
            If (yTL(level + 1) + tLTolerance >= yCgE(level + 1)) Then 'And xTL(numVous + 1) < xI(numVous)) 
                Exit For 
            End If 
        End If 
         
        If (xTL(numVous + 1) > xE(numVous)) Then      'If the final thrust line point exceeds extrados, 
then move start point 
            Exit For 
        End If 
         
    Next i 
 
End Sub 
 
Option Explicit 



 

 
Public Function EstHTLimit(ByVal n As Integer) As Long 
'Establish the maximum horizontal distance on the thrust line for each n level; n is always greater than 0 
'For this program version, remove constraint tempHT2 based on hNet such that hoop forces can jump back and 
forth 
 
    Dim tempHT1 As Single               'based on force polygon slope at previous n level 
    'Dim tempHT2 As Single               'based on hNet of previous n level 
    Dim tempHT3 As Single               'based on compression strengths at prev. n level; due to small area 
for init. vous. _ 
                                         ASSUME that crushing does not occur per limit state assumptions, 
and because _ 
                                         internal stresses do not approach material limits 
    'Only voussoir 1 is unlimited by previous horiz. distance values 
    If (n = 1) Then 
        EstHTLimit = jMax 
    Else 
        hNet(n - 1) = hT(n - 1) - hT(n - 2) 'Establish hNet of previous ht values 
        tempHT1 = w(n) / w(n - 1) * hT(n - 1) 
        'tempHT2 = hT(n - 1) + hNet(n - 1) 
        'tempHT3 = hMax(n)                  'TEMPORARILY DISABLE THIS CHECK 
        EstHTLimit = Int(Application.WorksheetFunction.Min(tempHT1)) ', tempHT2))  'Establish limit as min. 
of 2 options 
    End If 
 
End Function 
               
Public Sub CheckYTLValues() 
'All hT(levels) are filled and meet hTConstraints; w(levels) are known; _ 
 hNet(levels) are known: need to check yThrust Line values 
 
    Dim i As Integer                                        'the voussoir level 
    Dim checkYTL As Boolean                                 'Check thrust line points against dome 
intrados/extrados 
     
    checkYTL = False 
     
    For i = 1 To numVous 
        m(i) = -w(i) / hT(i)                                'the slopes on the force polygon; m(i) 
establishes the location _ 
                                                                of yTL(i+1) 



 

        'The initial point, yTL(1) is known; find other points for v.levels 2 to numVous 
        If (i > 1) Then 
            yTL(i) = m(i - 1) * (xTL(i) - xTL(i - 1)) + yTL(i - 1) 'almost completed y-array except for 
v.Level = numVous + 1 
        End If 
    Next i 
     
    For i = 1 To numVous 
        If (yTL(i) < yCgE(i) And yTL(i) > yCgI(i)) Then 
            checkYTL = True 
        Else 
            checkYTL = False 
            Exit For 
        End If 
    Next i 
     
   Call TLFinalPoint(numVous + 1, checkYTL) 
     
End Sub 
 
Public Sub TLFinalPoint(finalI As Integer, checkPrevious As Boolean) 
'TL points from 0 to numVous are known. Check the final point TL(numVous + 1) 
'Extend the thrust line to the base of the dome 
 
    xTL(finalI) = (yTL(numVous) - m(numVous) * xTL(numVous)) / (1 / Tan(alpha) - m(numVous)) 'Solve for x-
coordinate 
     
    'Redefine yTL(finalI), which must satisfy criteria 
    yTL(finalI) = xTL(finalI) / Tan(alpha) 
 
'MsgBox ("m(numVous)=" & m(numVous) & "; xtl(" & finalI & ")=" & xTL(finalI)) 
'check that final point is within dome; if all yTL values satisfy conditions for voussoir = 1 to numVous+1 
then 
    If (checkPrevious = True And xTL(finalI) >= xI(numVous) And xTL(finalI) <= xE(numVous)) Then 
        finalCheck = True 
    Else 
        finalCheck = False 
    End If 
 
End Sub 
        



 

Public Sub MoveStartPoint(prevYTL As Single) 
     
    If (prevYTL - moveStartTolerance >= a - t) Then                  'if yTL(0) is greater than y = a, then 
move down by 0.1 ft 
        yTL(0) = prevYTL - moveStartTolerance                          'decrease yTL(0) by 0.1 
    End If 
'MsgBox ("MoveStartPoint; yTL(0) =" & yTL(0)) 
 
End Sub 
 
Option Explicit 
Public jMinA As Long, jMax As Long              'The min. and max. HTdistance for level(numVous) for arch 
analysis 
Public jMinD As Long                            'The min. HTdistance for level(numVous) for dome analysis 
 
 
Public Sub DetermineHTLimits(initTLPt) 
'Determine the initial minimum and maximum estimated values of horizontal thrust for Zero Hoop Force case 
 
    jMinA = Int(MinHTNumVous(initTLPt))      'Estimate the min. horizontal thrust distance possible based 
fitting yTL(2) in dome 
 
    jMax = Int(MaxHTnumVous)                'Estimate the max. horiz. thrust assuming TL starts at (0, a) 
based on equil. 
 
End Sub 
 
Public Function MinHTNumVous(ByVal firstYTL As Single) As Single 
'Estimate the min. horizontal thrust distance possible based fitting yTL(2) in dome and knowing yTL(1) and 
yCgI(2) 
'Used only in zeroHoopForce estimates 
     
    Dim maxSlope1 As Single 
    Dim tempHTMin1 As Single 
    Dim tempHTMin2 As Single 
     
    maxSlope1 = Abs((yCgI(2) - firstYTL) / (xTL(2) - xTL(1)))            'This is a negative slope! 
    tempHTMin1 = w(1) / maxSlope1 
 
'Estimate the min. horizontal distance of ht(numVous) assuming the horizontal thrust is applied at (0, 
yTL(0)), _ 



 

solving for zero moment about a pin support at the base, and dividing value by an arbitrary value to reduce 
the range _ 
of possible values for ZERO HOOP FORCE analysis 
 
    Dim arbValue As Integer 
    arbValue = 4 
 
    tempHTMin2 = Abs((w(numVous) * (a * Sin(alpha) - xCGLune) / (firstYTL - a * Cos(alpha))) / arbValue) 
 
'Let the minimum value at which the zero hoop force condition begins equal to the maximum of the two 
estimated minimums 
    MinHTNumVous = Application.WorksheetFunction.Max(tempHTMin1, tempHTMin2, 1) 
 
'Set the min. value at which with hoop force analysis begins by using thrust line slope estimates 
    If (tempHTMin1 >= 1) Then 
        jMinD = Int(tempHTMin1) 
    Else 
        jMinD = 1 
    End If 
 
End Function 
 
Public Function MaxHTnumVous() As Single 
'Determine maximum estimated horiz. thrust based on equilibrium assuming HT acts at rPrime (0, a-t) 
     
    Dim tempMax As Single 
     
    'Max. thrust = moments about support; assume pin connection 
    tempMax = Abs(w(numVous) * (a * Sin(alpha) - xCGLune) / ((a - t) - a * Cos(alpha))) 
    MaxHTnumVous = Application.WorksheetFunction.Max(tempMax, 1) 
     
End Function 
 
Public Sub ZeroHoopEstimate(initTLPt As Single, trial As Integer) 
'Establish a more accurate estimate for a min. value of hT(numVous) - the horizontal thrust - by running a 
test _ 
 for zero hoop force conditions first. 
 
    Dim i As Integer            'The voussoir level from 1 to numVous 
    Dim j As Long               'The value of hT for all voussoirs from 1 to numVous 



 

    Dim zeroHoopMin As Long     'The min. HT value as determined by assuming zero hoop forces - Integer FOR 
NOW 
    Dim zHoopCheck As Boolean   'To expedite zeroHoop estimate, use Boolean to determine whether any pt. _ 
                                    on the thrust line exceeds the extrados; if true, move start pt. 
    finalCheck = False 
    yTL(1) = initTLPt           'set the initial value of yTL based on the initial start point 
     
    'Fill the hT array with the same value (assumes zero hoop forces). 
    For j = jMinA To jMax 
        For i = 1 To numVous 
            hT(i) = j 
        Next i 
        CheckYTLValues                              'The ht array is full 
'Call ListHTValues(trial) 
        If (finalCheck = True) Then 
            zeroHoopMin = j 
            Sheets("Summary").Cells(trial + SHROW, "H").Value = zeroHoopMin 
            Sheets("Summary").Cells(trial + SHROW, "I").Value = zeroHoopMin / w(numVous) 
            Exit For 
        End If 
        zHoopCheck = True 
     'If any pt. of the thrust line exceeds extrados, then move start point; increasing the ht value beyond 
will not fit _ 
     the thrust line into the section for the case of zero hoop forces 
        For i = 1 To (numVous - 1) 
            If (yTL(i + 1) >= yCgE(i + 1)) Then 
                zHoopCheck = False 
                Exit For 
            End If 
        Next i 
        If (zHoopCheck = False) Then 
            Exit For 
        End If 
    Next j 
     
    'If a solution has not been found using zero hoop assumptions, move the start point by 0.1 and redo the 
loop. 
 
    If (finalCheck = False And initTLPt - moveStartTolerance >= a - t) Then 
        Call MoveStartPoint(initTLPt) 
        Call ZeroHoopEstimate(yTL(0), trial) 



 

    ElseIf (finalCheck = False And initTLPt - moveStartTolerance < a - t) Then         'No solution 
assuming zero hoop forces 
        Sheets("Summary").Cells(trial + SHROW, "H").Value = "No Sol'n" 
    End If 
     
End Sub 
 
Option Explicit 
Public merid() As Single                        'An array to store the meridional forces 
Public hoop() As Single                         'An array to store the calculated internal hoop forces 
Public mStress() As Single                      'Check on meridional stresses do not exceed max. 
compressive stress 
Public hStress() As Single                      'Check on hoop stresses do not exceed max. hoop stress 
Public wtLune As Single                         'The total weight of the lune in question 
Public tWeight As Single                        'The total weight of the dome in question - use as a check 
Public checkTWt As Single                       'Numerical calc. of total dome weight 
Const PI = 3.141593 
 
Public Sub CalcWeight(trial As Integer) 
'Serves as a check on dome weight 
 
    Charts("Section" & trial).Select 
     
    Call AddIntForceSheet(trial) 
     
    Dim tempPhi0 As Single                          'The angle of the oculus opening at the crown; equals 
zero for now 
     
    Sheets("IntForces" & trial).Select 
     
    wtLune = w(numVous) 
    tWeight = wtLune * (2 * PI / theta)             'Total weight of dome, theta in radians 
    tempPhi0 = 0 
    checkTWt = (2 * PI) * rho * (r ^ 3 - rPrime ^ 3) / 3 * (Cos(tempPhi0) - Cos(alpha)) 
    Range("B3").Value = wtLune 
    Range("B4").Value = tWeight 
    Range("D4").Value = checkTWt 
    Range("B3, B4, D4").NumberFormat = "0" 
    Range("B3:D4").ColumnWidth = "15" 
     
    Sheets("Summary").Select 



 

    Cells(SHROW + trial, "G").Value = w(numVous) 
 
 
End Sub 
 
Public Sub CalcInternalForces(trial As Integer) 
'Calculate the internal meridional and hoop forces after all checks have been made for the dome 
'w(i) should remain the same throughout the program 
'Parameters that are finalized are hT(i) distances 
 
    ReDim merid(numVous), hoop(numVous) 
    ReDim mStress(numVous), hStress(numVous) 
    Dim i As Integer                                    'The voussoir level 
     
    'Do not calculate internal forces if a hoop force thrust line solution is not found 
    If (finalCheck <> True) Then 
        Exit Sub 
    End If 
     
    Sheets("IntForces" & trial).Select 
     
    For i = 0 To numVous 
        If (i <> 0) Then 
            merid(i) = (w(i) ^ 2 + hT(i) ^ 2) ^ 0.5         'On force polygon, merid. force is the 
hypotenus of legs w(i) and ht(i) 
                                                            'Meridional force at values of phi degrees = 
integer 
            mStress(i) = merid(i) / (a * Sin(vousPhi(i)) * theta * 2 * t) / 144 
                                                            'Meridional force / plan area, covert to psi 
            hNet(i) = hT(i) - hT(i - 1)                     'Calculate net horiz. force by subtracting 
accruing hT(i) distances 
            hoop(i) = hNet(i) / (2 * Sin(theta / 2))        'Calculate the hoop resultant 
            hStress(i) = hoop(i) / (2 * t * a * vousAngle) / 144   'hoop resultant force / section area 
converted to psi 
        ElseIf (i = 0 Or i = numVous) Then                  'At phi = alpha, hoop force area is 1/2 trib. 
section area; recalculate 
            hNet(i) = hT(numVous)                           'At phi=0, the horiz. thrust is equal to the 
total distance of hT 
            hoop(i) = hNet(i) / (2 * Sin(theta / 2))        'Calculate the hoop resultant 
            hStress(i) = hoop(i) / (0.5 * 2 * t * a * vousAngle) / 144 'hoop resultant force / 1/2 trib. 
section area 



 

        End If 
         
        Cells(i + AHROW, "A").Value = Application.WorksheetFunction.Degrees(vousPhi(i)) 
        Cells(i + AHROW, "B").Value = merid(i) 
        Cells(i + AHROW, "C").Value = hoop(i) 
        Cells(i + AHROW, "D").Value = mStress(i) 
        Cells(i + AHROW, "E").Value = hStress(i) 
    Next i 
         
End Sub 
    Option Explicit 
 
Public Sub AddChartSheet(trial As Integer) 
'Draw the extrados and intrados of the dome 
    Dim xERange As String, yERange As String 
    Dim xIRange As String, yIRange As String 
    Dim alphaDeg As Integer, thetaDeg As Integer 
     
    xERange = "R8C2:R" & (numVous + AHROW) & "C2" 
    yERange = "R8C3:R" & (numVous + AHROW) & "C3" 
    xIRange = "R8C4:R" & (numVous + AHROW) & "C4" 
    yIRange = "R8C5:R" & (numVous + AHROW) & "C5" 
    
    Sheets("Summary").Select 
    alphaDeg = Cells(trial + SHROW, "E").Value 
    thetaDeg = Cells(trial + SHROW, "F").Value 
    Sheets("Analysis" & trial).Select 
    Charts.Add 
    With ActiveChart 
        .Move After:=Sheets("Analysis" & trial) 
        .Name = "Section" & trial 
        .ChartType = xlXYScatterSmoothNoMarkers 
        .SeriesCollection.NewSeries 
        .SeriesCollection.NewSeries 
        .SeriesCollection(1).XValues = "=Analysis" & trial & "!" & xERange 
        .SeriesCollection(1).Values = "=Analysis" & trial & "!" & yERange 
        .SeriesCollection(1).Name = "=""Extrados""" 
        .SeriesCollection(2).XValues = "=Analysis" & trial & "!" & xIRange 
        .SeriesCollection(2).Values = "=Analysis" & trial & "!" & yIRange 
        .SeriesCollection(2).Name = "=""Intrados""" 
        .Location Where:=xlLocationAsNewSheet 



 

        .PlotArea.Select 
            Selection.Width = 460 
            Selection.Width = 460 
        .HasLegend = True 
        .Legend.Position = xlRight 
        .Legend.Border.LineStyle = xlNone 
        .HasTitle = True 
        .ChartTitle.Characters.Text = "Thrust Line for t/R =" & tR & ", Alpha = " & alphaDeg & " deg., and 
Theta = " & thetaDeg & " deg." 
        .Axes(xlCategory, xlPrimary).HasTitle = True 
        .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Distance (ft)" 
        .Axes(xlValue, xlPrimary).HasTitle = True 
        .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Height (ft)" 
        With ActiveChart.Axes(xlCategory) 
            .TickLabels.NumberFormat = "0.0" 
            .MinimumScale = 0 
            .MaximumScale = a + t + 2 
        End With 
        With ActiveChart.Axes(xlValue) 
            .TickLabels.NumberFormat = "0.0" 
            .MinimumScale = 0 
            .MaximumScale = a + t + 2 
        End With 
    End With 
     
End Sub 
 
Public Sub ListKnownCoordinates() 
'The proper worksheet should already be selected. 
 
    Dim i As Integer 
 
    For i = 0 To numVous 
        Cells(i + AHROW, "F").Value = xCg(i) 
        Cells(i + AHROW, "G").Value = yCgE(i) 
        Cells(i + AHROW, "I").Value = yCgI(i) 
    Next 
     
    Range("B" & AHROW & ":I" & (numVous + AHROW + 1)).NumberFormat = "0.000" 
End Sub 
 



 

Public Sub ListHTValues(trial As Integer) 
'For progress checking, list HT in-progress values 
 
    Dim i As Integer 
         
    For i = 0 To numVous 
        Sheets("Analysis" & trial).Cells(i + AHROW, "J").Value = hT(i) 
    Next 
     
End Sub 
 
Public Sub ListTLCoordinates(trial As Integer) 
'Input x- and y-values of thrust line into excel chart 
Dim i As Integer 
         
    Worksheets("Analysis" & trial).Select 
    For i = 0 To numVous 
        Cells(i + AHROW, "H").Value = yTL(i) 
    Next 
     
    'Plot the final base point of the thrust line 
    Cells(1 + numVous + AHROW, "F").Value = xTL(numVous + 1) 
    Cells(1 + numVous + AHROW, "H").Value = yTL(numVous + 1) 
 
'PlotThrustLine 
 
End Sub 
 
Public Sub PlotThrustLine(trial As Integer) 
'Plot the thrust line coordinates 
Dim xCGRange As String, yTLRange As String 
     
    xCGRange = "R8C6:R" & (numVous + AHROW) & "C6" 
    yTLRange = "R8C7:R" & (numVous + AHROW) & "C7" 
 
Charts("Section" & trial).Select 
    With ActiveChart 
        '.SeriesCollection.NewSeries 
        '.SeriesCollection.NewSeries 
        '.SeriesCollection.NewSeries 
         



 

        .SeriesCollection(3).XValues = "=Analysis" & trial & "!R8C6:R" & (1 + numVous + AHROW) & "C6"   
'include last point of thrust line 
        .SeriesCollection(3).Values = "=Analysis" & trial & "!R8C8:R" & (1 + numVous + AHROW) & "C8" 
        .SeriesCollection(3).Name = "=""Thrust Line""" 
         
        '.SeriesCollection(4).XValues = "=Analysis" & trial & "!R8C6:R" & (numVous + AHROW) & "C6" 
        '.SeriesCollection(4).Values = "=Analysis" & trial & "!R8C7:R" & (numVous + AHROW) & "C7" 
        '.SeriesCollection(4).Name = "=""CgExtrados""" 
         
        '.SeriesCollection(5).XValues = "=Analysis" & trial & "!R8C6:R" & (numVous + AHROW) & "C6" 
        '.SeriesCollection(5).Values = "=Analysis" & trial & "!R8C9:R" & (numVous + AHROW) & "C9" 
        '.SeriesCollection(5).Name = "=""CgIntrados""" 
         
        .Legend.Left = 484 
        .Legend.Top = 220 
        .Legend.Width = 110 
    End With 
 
End Sub 
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Appendix C. Estimate of Minimum Thrust for Spherical Domes 

Using the coefficients determined by equations 3.3 and 3.3, the author estimated the minimum 

thrust for a lune with θ = 45° from the thrust results for a lune with θ’ = 1° (Fig. A.2). From Fig. 

3.16, the multiplier coefficient for a lune comprised of n = 45 lunes with θ’= 1° is 43.9. Thus, the 

change in H divided by the change in weight is 43.9/45 = 0.975. The estimated minimum thrust-

to-weight ratio is the product of 0.975 and the H/W values shown in Fig. 3.2. The difference 

between the estimates and the values shown in Fig. 3.4, and divided by the latter, results in the 

error in predicting the minimum horizontal thrust using smaller lunes to estimate a larger lune. 

 
Figure A.2. The percent difference between the minimum thrust-to-weight ratio calculated by the modified thrust 

line program for θ = 45°, and the ratio estimated by 45 lunes with θ = 1° 
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Appendix D. Minimum Thrust-to-Weight Ratio for Pointed Domes with Two Centers of 
Curvature 

This appendix contains the summary charts for all pointed dome geometries that the author 

investigated using the modified thrust line method, and assuming that hoop forces can oscillate 

between increasing and decreasing from the crown to base of the dome. 

Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.05; Theta in Plan = 1 degrees
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Figure A.3. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.05, and θ = 1° 
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Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.08; Theta in Plan = 1 degrees
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Figure A.4. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.08, and θ = 1° 

Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.1; Theta in Plan = 1 degrees
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Figure A.5. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.10, and θ = 1° 
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Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.15; Theta in Plan = 1 degrees
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Figure A.6. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.15, and θ = 1° 

Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.2; Theta in Plan = 1 degrees
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Figure A.7. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.20, and θ = 1° 
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Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.05; Theta in Plan = 22.5 degrees
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Figure A.8. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.05, and θ = 22.5° 

Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.1; Theta in Plan = 22.5 degrees
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Figure A.9. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.10, and θ = 22.5° 
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Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.15; Theta in Plan = 22.5 degrees
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Figure A.10. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.15, and θ = 22.5° 

Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.2; Theta in Plan = 22.5 degrees
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Figure A.11. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.20, and θ = 22.5° 
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Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.05; Theta in Plan = 45 degrees
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Figure A.12. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.05, and θ = 45° 

Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.08; Theta in Plan = 45 degrees
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Figure A.13. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.08, and θ = 45° 
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Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.1; Theta in Plan = 45 degrees
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Figure A.14. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.10, and θ = 45° 

Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.15; Theta in Plan = 45 degrees
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Figure A.15. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.15, and θ = 45° 
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Horizontal Thrust to Weight Ratios for Pointed Domes of Varying Angles of Embrace
t/R = 0.2; Theta in Plan = 45 degrees

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

Initial Angle at Crown (degrees)

H
or

iz
on

ta
l T

hr
us

t /
 W

ei
gh

t

Alpha = 90 deg.; Zero Hoop Forces Alpha = 85 deg; Zero Hoop Forces Alpha = 90 deg.; With Hoop Forces Alpha = 85 deg.; With Hoop Forces

Alpha = 80 deg.; Zero Hoop Forces Alpha = 60 deg.; Zero Hoop Forces Alpha = 80 deg.; With Hoop Forces Alpha = 60 deg.; With Hoop Forces

Alpha = 45 deg.; Zero Hoop Forces Alpha = 30 deg.; Zero Hoop Forces Alpha = 45 deg.; With Hoop Forces Alpha = 30 deg.; With Hoop Forces  
Figure A.16. The minimum horizontal-thrust-to-weight ratio for pointed domes with t/R = 0.20, and θ = 45° 
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Material Tests of AAC Tile and USG Hydrocal Gypsum Mortar 

Compressive Strength 

The author tested two bonded samples and three non-bonded specimens in compression (Table 

A.1). The author modified the testing procedure from ASTM C67, “Sampling and Testing Brick 

and Structural Clay Tile,” to reflect the difference in specimen material and geometry (Fig. A.17) 

(ASTM 2005). The bonded samples consisted of two 4 x 4 x 8 AAC blocks with a ¼ ± ⅛ in. 

gypsum mortar joint. The non-bonded samples were one 4 x 4 x 8 AAC block. Table A.1 

summarizes the compressive test results. 

 
Figure A.17. Left: Schematic compression test shown for non-bonded AAC block. Right: Bonded AAC tile-and-

mortar sample loaded to failure in compression 

Table A.1. Summary of Compression Test Results for Aerated Autoclaved Concrete Domes 

W (in.) L (in.) Specimen App. Load 
(lbs)

Ult. Stress 
(psi) Specimen App. Load 

(lbs)
Ult. Stress 

(psi)

4 4 D10 ╪ G10 5711 357
4 4 D11 4921 308 G11 6809 426
4 4 D12 5844 365 G12 6500 406

336 396

Cross-Section Dimensions Wet AAC face No Bond

Average (psi): Average (psi):  

╪ The specimen's top and bottom faces were too unparallel to safely perform the compression test. The sample was 
not tested. 
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Flexural Strength 

The author tested twelve AAC wet face/gypsum mortar bonded samples and five non-bonded 

AAC block samples by four-point loading to determine the average flexural strength, or modulus 

of rupture (Table A.2). The author modified the test procedure was modified from ASTM C67, 

“Sampling and Testing Brick and Structural Clay Tile” (ASTM 2005). Due to the precut tile 

dimensions and variations in the tile or mortar dimensions, the four applied loads were not 

located at the third-points of the specimen, but instead, centered about the mortar joint (Figs. 

A.18 and A.19). The bonded specimens were constructed from two 6 x 12 tiles, 1, 2 and 4 in. 

thick, and a ¼ ± ⅛ in. gypsum mortar joint; the non-bonded samples consisted of one 6 x 24 

block, 1, 2 and 4 in. thick. Table A.2 summarizes the flexural test results. 

 
Figure A.18. Schematic of flexural test set up with 6 x 24 x 2 in. bonded specimen shown (roughly to scale) 

 
Figure A.19. Photograph of flexural test for bonded AAC/gypsum mortar specimen 
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Table A.2. Summary of Flexural Test Results for Aerated Autoclaved Concrete Domes 

W (in.) H (in.)
6 1 D1 17.1 60 G1 ╪
6 1 D2 9.2 32 G2 24.4 85
6 1 D3 20.2 71 G3 19.1 67
6 2 D4 ╪ G4 63.3 55
6 2 D5 37.3 33 G5 74.9 66
6 2 D6 53.8 47 G6 49.4 43
6 4 D7 146.1 32
6 4 D8 176.4 39
6 4 D9 187.4 41

44 63

Cross-Section Dimensions
Specimen Total Load 

(lbs) MOR (psi)

Average (psi): Average (psi):

USG Hydrocal on Wet AAC face No Bond

Specimen Total Load 
(lbs) MOR (psi)

╪ The sample was broken prior to testing. The sample was not tested. 

Direct Tensile Strength 

The relationship between the flexural bond strength and tensile bond strength of masonry is not 

well known (Ameida, et al. 2002); therefore to ascertain the tensile strength of the AAC tile 

masonry, the author conducted direct tension tests on six15 bonded wet face/gypsum mortar AAC 

tile specimens and three non-bonded AAC tile specimens. The test procedure was modeled on a 

direct tensile bond strength test methods for a brick couplet outlined by Ameida (Ibid.) (Fig. 

A.20). Five bonded specimens consisted of two 4 x 4 x 1.25 in. tiles mortared together; the final 

specimen used two 4 x 8 x 1.25 in. tiles. The non-bonded samples consisted of one 4 x 4 x 1.25 

in. tiles. Table A.3 summarizes the direct tensile test results. 

                                                 
15 The author conducted two additional direct tensile tests on bonded specimens, but did not monitor movement of 

the specimens during epoxy curing. When the epoxy contracted during cure, specimens were inadvertently loaded 
in tension and subsequently failed when additional load was applied during testing. These results are not included. 
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Figure A.20. Left: Direct tension test set-up with two 4 x 4 x 1.25 AAC tiles bonded by a gypsum mortar joint. 

Right: To minimize unintentional bending forces during testing, the specimens were lowered into an epoxy bed on 
the lower steel plate in the testing machine. 

Table A.3. Summary of Direct Tension Test Results for Aerated Autoclaved Concrete Domes 

Specimen Tile Dimension 
(in.)

Load Rate 
(in./min)

Ult. Tensile 
Load (lbs)

Tensile Stress 
(psi)

1 4x4x1.25 0.5 67 13
2 4x4x1.25 0.1 195 39
3 4x4x1.25 0.1 115 23
4 4x4x1.25 0.1 74 15
5 4x4x1.25 0.1 74 15
6 4x8x1.25 0.1 158 32

23
7 4x4x1.25 0.1 315 63
8 4x4x1.25 0.1 285 57
9 4x4x1.25 0.1 185 37

52
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