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Abstract 

The kinematic scaling behavior of quasielastic scattering is investigated using existing 
inclusive scattering data on 12C, w a ,  4 8 ~ a ,  S 6 ~ e ,  and *08pb from the Centre d'~tudes 
Nuclbaires de Saclay, and &ca from the Bates Linear Accelerator Center. The cross sections 
are re-analyzed using the effective momentum approximation to correct for Coulomb 
distortion effects. Rosenbluth separations are performed for momentum transfers from 300 
to 550 MeV/c. The scaling of the separated longitudinal and transverse response functions 
is studied for three scaling variables: y; a model-independent variable derived from the plane 
wave impulse approximation, Y; derived from the relativistic Fenni gas model, and Y'; a 
variation on Y that incorporates a realistic separation energy. 

The Saclay data exhibit a longitudinal-transverse scale breaking; the longitudinal and 
transverse responses do not scale to the same function. The Bates longitudinal and transverse 
responses for w a  do scale to the same function in accordance with theory. 

The discrepancy between the Bates and Saclay data for %a is examined in detail. 
The integrated longitudinal response functions are compared to Fermi gas predictions for all 
of the nuclei. 

The similarities and differences between the three scaling variables are also examined. 
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1 Introduction 

This thesis will investigate the kinematic scaling behavior of inclusive quasielastic 

electron scattering for a wide range of nuclei. Existing data on 12C, 4 0 ~ a ,  4 8 ~ a ,  5 6 ~ e ,  and 

208~b obtained from the Centre dl~tudes NucMaires de Saclay, and * ~ a  from the Bates Linear 

Accelerator Center are analyzed in this study. 

This thesis is organized into three chapters. This first chapter provides a brief review 

of electron scattering theory necessary for the discussion of scaling. The second chapter 

covers the data analysis, while the last chapter presents the results and discusses what 

conclusions can be drawn. 

1.1 Electron Scattering 

The electron has proven to be a useful tool in the investigation of nuclear structure 

and interactions and has several clear advantages over other probes. The electromagnetic 

interaction of the electron with the nucleus is well understood in the framework of quantum 

electrodynamics. Hadronic probes, such as protons and pions, interact with the nucleus via 

the not-so-well-understood strong force. The incident hadron may have a profound impact 

on the nuclear system under study, an effect that can not be easily separated. Unlike 

hadronic probes, the electron interacts weakly with the nucleus, with the coupling of the 

electromagnetic interaction being on the order of the fine structure constant a = 11137. The 

electron creates a minimal disturbance of the initial state of the nucleus, an effect that can 

often be adequately handled with first-order perturbation theory (Born Approximation). The 

electron, however, is somewhat limited in the investigation of nuclear structure. Being an 

electromagnetic probe, the electron is only sensitive to the charge, current, and magnetization 

densities of the nucleus. Hadronic probes, on the other hand, are a direct link to the nuclear 

force and are thus better suited for studying the subtleties of nuclear interactions. 
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Since electrons are point particles, they provide excellent spatial resolution, the scale 

of which is inversely proportional to the momentum transfer to the nucleus. For medium 

energy electron accelerators such as Bates and Saclay, where the incident electron energies 

are below 1 GeV, the resolution is on the sub-femtometer scale, a regime that is ideally suited 

for the study of nucleon distributions in nuclei. Other leptonic probes, such as the neutrino 

family, are impractical from an experimental standpoint due to the extremely small weak- 

interaction cross sections involved (mfemtobarn). 

The electron has advantages over the photon as an electromagnetic probe. The virtual 

photon exchanged between the electron current and the nuclear vertex in ~JI (e,e') reaction 

has more information to offer than a real photon. In the (e,e') reaction the momentum 

transfer (3-momentum), q, and the energy loss, a ,  can be varied independently according to 

the following kinematic constraint: q2 - WZ > 0. The real photon is restricted to the case 

where q2 = WZ. With the virtual photon a great deal of the (q,a) plane can be mapped out, 

providing more information about the densities and distributions of the nucleus. The real 

photon is necessarily transverse, whereas the virtual photon can be either transverse (spin-flip 

of the electron) or longitudinal (non-spin-flip). 

The interpretation of electron scattering experiments is complicated by unwanted 

energy losses suffered by the electron. These are largely due to the small rest mass of the 

electron, which allows it to radiate readily during the time spent in the electromagnetic fields 

of the target nuclei. The radiative processes and the methods of correcting for them are 

discussed in Section 2.1. Another problem arises when we consider large nuclei where the 

Coulomb field of the nucleus is strong enough to distort appreciably the incoming (and 

outgoing) electron so that it can no longer be treated as a plane wave. Corrections for these 

distortions are discussed in Section 1.4. 

A schematic view of the (e,e') cross section as a function of energy loss at constant 

momentum transfer is shown in Figure 1.1. The cross section has been divided into several 

regions of energy loss (labelled I-V), each containing its own distinct phenomena. 

Region I (0 - 40 MeV) corresponds to conventional nuclear spectroscopy. The first 

peak is due to elastic scattering fiom the ground state. This is followed by a number of sharp 
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peaks that correspond to the low-lying excited states of the nucleus (few-particle shell 

transitions as well as collective vibrational and rotational modes). These peaks are followed 

by the giant multipole resonances, the most prominent of which is the isovector giant dipole. 

This resonance is about 6 MeV in width and its location is well described in terms of the 

number of nucleons; o = ~SA-''~.  The excitation involves the promotion of nucleons up one 

major shell. It can also be interpreted in the Goldhaber-Teller model as protons and neutrons 

collectively oscillating out of phase. 

Energy Loss 

Figure 1.1: (e, e') spectrum. 

Region 11 (40 - 200 MeV) contains the quasielastic peak. This structure corresponds 

to single nucleon knockout. The centroid of the peak is approximately located where one 

would expect elastic scattering from a single free nucleon, o = q2/2~nw1mn. The observed 

peak is actually shifted to higher energy loss due to binding effects in the nucleus. The broad 

width (about 50 MeV) is indicative of the distribution of initial nucleon momenta. The 

behavior of various nuclei in this region is the focus of this thesis. The quasielastic region 

is discussed further in Section 1.2. 
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Region 111, termed the "dip" region, is the valley between the quasielastic and A 

peaks. The strength of the cross section in this region can not be solely attributed to the 

overlap of the two peaks. Meson exchange currents and pion electroproduction begin to 

make a significant contribution in this region. However, calculations that include these 

processes have yet to describe satisfactorily the total strength. 

In region IV, where the energies involved exceed 300 MeV, a nucleon can be excited 

to form a A(l232)-particle, the first nucleon resonance. One of the quarks in the nucleon 

flips its spin so that they are all aligned, forming a spin-312 particle. Since this occurs in the 

I = 1 reaction channel with both spin and isospin 312, it is also known as the P3,-resonance. 

The cross section exhibits a peak similar to the quasielastic peak, corresponding to the 

excitation of a quasi-fiee nucleon. 

Region V has been labelled "deep inelastic", although this term has in the past 

included the quasielastic and A peaks. It is used here to encompass the higher nucleon 

resonances and scattering off of the nucleon constituents. This region is inaccessible to 

medium energy electron accelerators such as Bates and Saclay, which were not designed to 

provide the > 1 GeV electron beams needed to probe this deeply. 

1.1.1 (e,e') in Plane Wave Born Approximation 

In an inclusive (e,e') experiment the scattered electron is the only detected particle. 

The electron thus provides three kinematic parameters for the reconstruction of the collision: 

the initial and final momenta of the electron, and the angle through which it has been 

scattered. A space-time diagram of the interaction in the single-photon-exchange 

approximation is shown in Figure 1.2. The incident electron of momentum k exchanges a 

virtual photon y of Cmomentum q, with the target nucleus N. The electron scatters through 

and angle 8 with a final momentum k' and is detected in a spectrometer. The residual 

nucleus N' recoils (recoil angle greatly exaggerated in figure) and nuclear fragments X (most 

likely just a single nucleon) are cast off undetected. Since only the emerging electron is 

measured, the final nuclear state must be inferred from the lost energy and momentum. 
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Figure 1*2: Electron scattering in the single-photon-exchange approximation. Space 
and time are the ordinate and abscissa respectively. 

In Plane Wave Born Approximation (PWBA) the incident and scattered electrons are 

approximated by plane waves. For the case of an unpolarized electron beam, the doubly- 

differential cross section can be written in the following form; 

where a,,, is the Mott cross section for scattering from a point elementary charge, 
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The preceding equations use the following definitions and conventions: 

8 = c = l  

a = fine structure constant 

Z = proton number of target nucleus 

N = neutron number of target nucleus 

A = nucleon number of target nucleus = Z + N 

9 = laboratory scattering angle 

C2 = solid angle 

o = energy loss of scattered electron 

Ei = incident electron energy 

Ef = scattered electron energy = Ei - o 

q = 3-momentum transfer 

q, = Cmomentum transfer 

q2 = 3-momentum squared = Q2 + d 
Q2 = - q: = 4EiEf sin2(8/2) 

RL(q,o) = longitudinal response function 

RT(q,o) = transverse response function 

1.1.2 Rosenbluth Separation 

The response functions RL(q,o) and RT(q,~) in Equation 1.1 (known as the Rosenbluth 

equation) contain all the information on the structure of charge and current distributions in 

the nucleus. Since the longitudinal and transverse responses are functions of q and o only, 

one can select the kinematic conditions such that q and o (and thus Q) are fixed while 

changing the scattering angle 6 to vary the polarization of the virtual photons. By taking 

measurements over a range of incident electron energies at a combination of backward and 

forward scattering angles one is able to separate the two response functions. The transverse 

response dominates at the backward angles due to the tan2(W2) dependence. In order to 

obtain an accurate measurement of the longitudinal response one must also look at 
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Laboratory Scattering Angle = 30 deg Laboratory Scattering Angle = 45 deg 
1000 loo0 

Laboratory Scattering Angle = 60 deg 

j j j  : .  . 
/ / / 

Laboratory Scattering Angle = 120 deg 

. . . . . 

Laboratory Scattering Angle = 90 deg 

Laboratory Scattering Angle = 140 deg 

0 100 200 300 400 500 600 700 800 900 loo0 0 100 200 300 400 500 600 700 800 900 lo00 
Energy Loss (MeV) Energy Loss (MeV) 

Figure 1.3: Kinematic plots in the q - o plane for scattering angles of 30, 45, 60, 90, 120 
and 140 degrees. The solid curves represent constant bombarding energies and are labelled 
in MeV; the solid line (q=o) is the real photon line; the dotted curves indicate the centroids 
of the quasielastic and A-resonance peaks respectively. 
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sufficiently forward angles such that the longitudinal contribution to the cross section 

becomes comparable to that of the transverse. Forward angle scattering, however, poses some 

experimental challenges. To obtain data at a given momentum transfer requires a larger 

incident electron energy as the scattering angle is reduced, as can be seen in the kinematic 

diagrams in Figure 1.3. For large momentum transfers ( > 500 MeVlc) the bombarding 

energy required may push the limits of an accelerator such as Bates or Saclay. For this 

reason, the minimum scattering angle for an experiment is often dictated by the maximum 

electron energy that is attainable by the accelerator. 

It is important to note that the Rosenbluth separation is only valid for PWBA. The 

experimental cross sections must undergo several corrections before they can be separated. 

Kinematic corrections (recoil, center-of-mass, etc.) and the correction for the finite 

electromagnetic size of the nucleon (by the nucleon form factor) are fairly trivial. 

Corrections for radiative processes are much more complex and have a profound effect on 

the cross sections but are thought to be well understood. The effect of Coulomb distortions 

on the separated response functions is not trivial, and the proper method of correcting for 

these distortions has been the subject of recent debate. 

1.2 Quasielastic Scattering 

The location of the quasielastic peak occurs roughly where one would expect to see 

elastic electron-proton scattering. The nucleon is no longer a ftee particle, as in the elastic 

case. It is now initially in a bound state with an initial momentum. It is the momentum 

distribution of the nucleons in the nucleus that gives rise to the broadening of the peak. To 

interpret the features of the quasielastic peak one must choose a nuclear model. One need 

not resort to complex shell model calculations to reproduce the general features of the peak. 

A much simpler model which contains some of the essential elements of the physics and 

treats the relativistic kinematics exactly is the non-interacting Fermi gas model. 
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1.2 Fermi Gas Model 

In the Fermi gas model the nucleus is considered a collection of confined non- 

interacting fermions. The nucleon wave functions are approximated by plane waves that 

satisfy the periodic boundary conditions imposed by the confinement volume. The gas of 

fermions is taken to be at absolute zero temperature, i.e. degenerate, so that all the available 

low-lying single-particle states are filled. The Pauli exclusion principle allows only four 

nucleons to occupy each momentum level (imposed by the spin and isospin degrees of 

freedom). The highest level filled to capacity, the Fermi momentum kF, is characteristic of 

the nucleus and is approximately 260 MeVlc for infinite nuclear matter. In the zero- 

temperature approximation the momentum density distribution for the ground state is 

described by a @-function; unity for all values of momentum below the F e d  surface and 

zero for all values above, 

1 for k < k, 
q(k) = @(k,- k) = { 0 for k > k, 

The condition that a scattered nucleon not be in the nucleus is characterized by the converse 

distribution, 

1 for lk+ql > k, 
n,(Ik+q,) = I - = ( 0 for lk+ql < k, 

This simple model of the nucleus can be used to calculate the quasielastic electron 

scattering cross section. If the nuclear scattering is treated as the incoherent superposition 

of scatterings from all of the individual nucleons in the nucleus, the nuclear current operator 

can be broken down into an incoherent sum of one-nucleon current operators 3,. The nuclear 

matrix element can then be written as 

wpv = C '(E-E'-a)  'd(k,k+q) JV(hk+q)  ni(k) q ( l k + q l )  
initial final 

(1.5) 
state state 
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where E and E' are the initial and final energies of the nucleus and qi and 11, are the 

momentum distributions from the preceding equations. The solution to Equation 1.5 is found 

by changing the sums over states to integrals over nucleon momenta. The calculation has 

been performed by J.W. Van Orden [Van Orden781 using fully relativistic kinematics. The 

electron-nucleus interaction was calculated using dipole form factors for the nucleon charge 

and magnetization distributions. The binding energy of the nucleon was included in the 

calculation via an additional parameter, the average binding energy z. The resulting 

longitudinal and transverse response functions are: 
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where 

and i = proton or neutron. The structure factors W,, and W, depend on the choice of nucleon 

form factors. The relativistic Fenni gas code of Van Orden was modified to use Galster 

nucleon form factors [Galster71]. In the Galster parametrization the nucleon form factors 

take the following form: 

where pp and pN are the proton and neutron magnetic moments. GEp is calculated with the 

dipole-fit, and li, = 5.6 corresponds to the use of Feshbach-Lomon wave functions 

[Lomon67] in the calculation of G,. The Feshbach-Lomon wave functions produced the best 

fit to the experimental data for GEN [Galster71]. 

Calculated response functions for 12C are shown in Figure 1.4. These calculations 

used a F e d  momentum of 225 MeV/c and no effective binding energy. For momentum 

transfers less than twice the F e d  momentum one can easily see the effect of Pauli blocking. 
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Fermi Gas Model: Transverse Response F e d  Gas Model: Longitudjnal Response 

Figure 1.4: Relativistic F e d  gas calculation for 12c. kp = 225 MeV/c, = 0 MeV. 

At these lower momentum transfers there is insufficient momentum for some initial nucleons 

to be promoted to an unoccupied state above the Fermi level. The response functions are 

therefore reduced on the low o side of the peak. The w dependence in this blocked region 

is linear. For momentum transfers greater than 2k, the o dependence is roughly parabolic, 

with the width of the peak proportional to kp. The maximum of the peak can be shifted 

toward the higher energy losses observed experimentally with the addition of an effective 

binding energy E at the expense of the loss of exact covariance of the theory. 

Despite its oversimplified view of the nucleus, the Fermi gas model has had great 

success in describing the total response of experimental data with the adjustment of just two 

parameters, k, and E. This can be attributed to the fact that the model is based on the 

strongest correlation between fermions, the Pauli principle. A more realistic model would 

have to include two-body correlations, a less idealistic initial nucleon occupation distribution, 

and final-state interactions. Calculations using more realistic nuclear models [Donnelly70, 

Kawazoe75,Jin92] reproduce the peak position well without the use of an ad hoc binding 

energy. All of the models, including the simple Fenni gas, show reasonable agreement on 

the total integrated longitudinal response. This indicates that the concept of a Coulomb sum 

rule, while not entirely model independent, may indeed be a useful tool. 
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1.2.2 Coulomb Sum Rule 

The Coulomb sum rule (CSR) was first considered as a means of studying two-body 

correlations. It has recently been used in the limit of high momentum transfer as a check 

on the total strength of the separated longitudinal response from inclusive electron scattering 

experiments. The classical, non-relativistic CSR goes to a simple, model-independent limit 

when large momentum transfers are considered. The results of a simple derivation of the 

classical CSR [Donnelly89] are presented here. 

The Coulomb sum function C(q) is defined as the integral of the longitudinal response 

over all inelastic energy transfers, 

It is assumed that the matrix elements contain no explicit dependence on a, and therefore the 

energy integral over the 6-function can be trivially evaluated. The completeness of the final 

states is used to go from line two to line three in the above equation. The final step requires 

one to use an explicit coordinate-space form for the Fourier transformed fust-quantized 

charge operator, 

A 

p (q) = 6,  /eiq" 6 (x  - XJ d , where gi = 1(1+ 4)) (1.11) 
i = l  2 

is the charge operator for the ith nucleon, and xi is the position of the ith nucleon. The final 

expression in Equation 1.10 contains three terms. The first term is the ground-state 

expectation value of the charge operator for the nucleons and is therefore simply 2. The 
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second term, f,(q), the double Fourier transform of the two-body density of protons in the 

ground state, contains the correlation effects. The last term is the square of the ground-state 

expectation value of the charge density, where F,(q) is the elastic charge form factor. In the 

limit of large q the last two terms go to zero and one is left with just the nuclear charge 2. 

It is assumed that this asymptotic limit is attained for q > 2kF where the effect of two-nucleon 

correlations is expected to be negligible. 

The derivation assumes that the nucleons are point-like. To account for the finite 

electromagnetic size of the nucleon, the longitudinal response is divided by the square of the 

appropriate free nucleon form factor before the integration over energy transfer is performed. 

One can then divide out the nuclear charge to form a dimensionless quantity, the longitudinal 

structure function 

lim SL(q) = 1 , 
'I-O0 

which reaches unity in the asymptotic limit. The effective charge form factor takes the 

following form; 

where GEp and G ,  are the Galster electric form factors of Equation 1.9. This definition of 

the effective form factor includes a factor (encased in large brackets) that attempts to correct 

the Coulomb sum for relativistic effects [deForest84]. 

It is important to note that the CSR requires knowledge of the longitudinal response 

over an infinite range of energy loss. With electron scattering one can only sample the 

response for o < (q - 6), where 6 is a limit imposed by the radiative tail. Time-like 4- 

momentum transfers ( o  > q) are completely inaccessible with electron scattering and therefore 
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one must assume that the longitudinal response is negligible in this regime. 

A non-relativistic treatment is clearly inadequate for quasielastic scattering. 

Relativistic Coulomb sum rules [DoDang86,Donnelly89], however, necessitate the inclusion 

of model dependencies. One resorts to approximate sum rules that integrate the response over 

a finite range of energy transfer (space-like 4-momenta) and depend on a nuclear model, such 

as the relativistic Fermi gas. 

Experiments at Saclay on targets of 12c [Barreau81], mCa, 4 8 ~ a ,  '6Fe [Meziani84], and 

m 8 ~ b  [Zghiche93] have shown significant reductions in the longitudinal strength at high 

momentum transfers. The data exhibit a trend of decreasing longitudinal strength with 

increasing nuclear mass. At a momentum transfer of 550 MeV/c (> 2kF) the following 

reductions (relative to the relativistic Fermi gas) were observed: 13 f 12% for 12c, 43 & 12% 

for 4 0 ~ a ,  35 rt 5% for 4 8 ~ a ,  24 f 23% for '6~e,  and 53 f 13% for m8~b .  Experiments at Bates 

have given contradictory results. Data on 40Ca [Deady83,Yates93] show no more than 20% 

reduction, and 2 3 8 ~  [Blatchley86] data show essentially full strength. There is a clear 

discrepancy between the data sets that can only be resolved with further study. A 

comprehensive study of quasielastic scattering has been planned for the Bates facility that will 

address this issue [Williamson94]. The Saclay results have spawned numerous theories for 

the explanation of the missing longitudinal strength. 

1.2.3 "Missing" Longitudinal Strength 

If the longitudinal strength is indeed suppressed by as much as a factor of two relative 

to the Fermi gas model then some of the basic assumptions of conventional nuclear physics 

must be reconsidered. A significant amount of activity in the theoretical community over the 

last decade and a half has been devoted to attempts to reconcile the discrepancy between 

theory and experiment. Some of the more popular theories are summarized in this section. 

One model hypothesizes a swelling of the nucleon when it is contained in dense 

nuclear matter [Celenza85]. Celenza uses a soliton bag model for the nucleon, and the 

nucleons interact via meson (a,z,,p,o) exchange. The presence of the other nucleons in the 
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nuclear medium modifies the a and w fields, resulting in an increased nucleon radius. The 

model predicts a swelling of nucleon size that increases with nuclear density, reaching a 20% 

enlargement for '08pb. Such a modification to the nucleon form factor will result in a 

quenching of the longitudinal response that is consistent with experiment, however, it also 

results in a suppression of the transverse response that is not seen. Exclusive (e,e'p) 

experiments have placed an upper bound of a few percent on nucleon expansion, and y- 

scaling analysis of 3 ~ e  and 5 6 ~ e  has drawn similar conclusions [Sick85]. The data were 

shown to obey y-scaling using the conventional nucleon size, but for increases of the nucleon 

radius greater than -6% the data exhibited scale-breaking. This upper limit on nucleon 

expansion is far less than the 15 - 20% required to restore the longitudinal response, so it 

does not appear that swelling nucleons are a plausible solution to the missing longitudinal 

strength problem. 

Many-body correlations have been considered as a mechanism for longitudinal 

suppression. Their effect at high momentum transfer ( > 500 MeVIc, where the suppression 

is most pronounced), however, is still considered to be negligible. Long-range correlations 

due to collective excitations of the nucleus improve the agreement at q = 300 MeVIc 

[Cavinato84], but the contribution is insignificant at q = 550 MeVIc. Effects due to short 

range and tensor correlations are difficult to estimate reliably for finite nuclei. Calculations 

based on effective interactions predict only small effects. Correlation studies for nuclear 

matter using realistic nucleon-nucleon interactions have shown a reduction of the amplitude 

of the longitudinal peak due to a shift of the strength to higher excitation energies, beyond 

those which are measured experimentally [Celenza91]. While the agreement is good for 

intermediate momentum transfers, the model is unable to account for a substantial amount 

of the missing strength at q = 550 MeVIc. 

1.3 Kinematic Scaling 

The inclusive electron cross section depends in general on two independent variables, 

q and a. Under certain kinematic conditions this dependence may be combined into a single 
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variable, which in turn depends on q and o (i.e. new variable is x(q,o)). The cross section 

is then a product of an elementary electron-nucleon cross section and a scaling function (F(x)) 

whose only explicit dependence is on the new variable. The scaling variable is usually 

derived by making assumptions about the interaction and the nuclear structure in the limit of 

large momentum transfer. How well the experimental data scale in the kinematic limit tests 

the validity of these assumptions. If the data indeed scale, the scaling function contains 

interesting information about the momentum distribution of the nucleons in the nucleus. 

Scaling in electron scattering was first observed in the deep-inelastic region. In the 

limit of large momentum transfer, the structure functions were shown to depend on a single 

variable, x = Q ~ I ~ M ~ C O  (known as the Bjorken x). This x-scaling behavior is interpreted as 

a signature that the electron is scattering from the elementary quark constituents. In these 

high-energy experiments the electron wavelength is so short that the scattering is primarily 

from the individual quarks. The variable x can be interpreted physically as the Eraction of 

the nucleon momentum carried by the struck quark. These results prompted the search for 

other scaling variables applicable to lower momentum transfers that correspond to scattering 

from hadrons in nuclei rather than quarks in the nucleon. Scaling in the quasielastic region 

has been termed y-scaling. 

13.1. y - Scaling 

The y in y-scaling refers to an entire class of similar scaling variables that are useful 

for investigating the quasielastic region. A summary of these variables that discusses the 

relations among them can be found in a paper by Day, McCarthy, Donnelly, and Sick 

[Daygo]. The pioneering work in y-scaling was done by G.B. West [West75]. West derived 

a y-scaling variable assuming a non-relativistic Hamiltonian and neglecting final-state 

interactions. This non-relativistic y turns out to be the component of the struck nucleon 

momentum k along the momentum transfer q, 
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The quasielastic peak should therefore be centered about y = 0 since this corresponds to 

elastic scattering from nucleons that are effectively at rest. The peak is actually shifted to 

higher y due to the effective binding energy. The y variable is often expressed in 

dimensionless form by dividing by the Fermi momentum. 

An evaluation of the dot product in Equation 1.14 using relativistic kinematics 

produces an additional &2q term. This can be conveniently factored into the equation, 

effectively replacing the 3-momentum squared with the 4-momentum squared, 

The approximation ignores the perpendicular component of k and the binding energy. The 

y, of Equation 1.15 is simply an analog of the non-relativistic y of West, and is by no means 

a rigorous attempt at incorporating special relativity. A fully relativistic derivation of  y- 

scaling is complicated by the explicit energy dependence which occurs in the electron-nucleus 

cross section as a result of the Lorentz transformation of the single-nucleon current. This is 

further complicated by the off-mass-shell extrapolation of the single nucleon current if one 

considers a system of interacting nucleons. 

A derivation of y-scaling in the plane wave impulse approximation that accounts for 

the initial nucleon being off-shell was introduced by Day et a1 [Daygo]. In the PWIA it is 

assumed that the knocked-out nucleon has no interaction with the residual nucleus. The 

derivation does not consider excitation of the nucleon or interactions of the virtual photon 

with anything other than the single nucleon. Thus neglecting any contributions due to final- 

state interactions or non-nucleonic processes, the differential cross section for quasielastic 

scattering can be expressed as 
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where 

MA is the mass of the nucleus, MA-, is the ground-state mass of the residual nucleus, M*,, 

is the mass of the residual nucleus including internal excitation energy, i = proton or neutron, 

and k is the initial momentum of the nucleon. K is a kinematic factor whose form depends 

on certain assumptions made about energy and momentum conservation (becomes E'lq in 

Equation 1.24 below). Eei is the relativistic off-shell cross section. The spectral function 

S(k,E) is the combined probability of finding a nucleon of momentum k and energy E in the 

nucleus. It has been assumed that the spectral function is isospin independent. The scaling 
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variable y in Equation 1.19 can be shown to reduce to y, in the ultra-relativistic limit as q+-. 

In order to extract the scaling function F(q,y), one must introduce aprescription for 

calculating the relativistic off-shell cross section. The cc 1 prescription of deForest 

[deForest83] is adopted here. This yields the following for the elementary electron-nucleon 

cross section; 

where 

and # is the momentum of the ejected nucleon. To calculate this single-nucleon cross section 

it is necessary to choose specific kinematics. Day et a1 have found that the use of the special 
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kinematics k = -y, 8= 0 (gis  a measure of the excitation of the recoiling nucleus) results in 

an error to F(q,y) that is typically about 3%. This approximation leads to the following 

relationship between the experimental cross section and y-scaling function; 

F(q,y) is extracted from the experimentally measured cross sections by dividing them by the 

quantity encased in brackets in Equation 1.24. The resulting function can be plotted versus 

y for constant values of momentum transfer. If the curves of constant q approach a universal 

scaling function FCy) in the limit of large q, then the data are said to scale. 

The approach to scaling with increasing q can be easily understood from Equations 

1.17 - 1.19. The upper limit Y in Equation 1.17 grows rapidly with q. Since realistic spectral 

functions are steeply peaked in momentum, the integration can be carried out to infinity for 

large q. The other integration limit, gM, becomes independent of q for large q. All 

dependence on q vanishes and thus one can conclude that F(q,y)+Fw as q+=. 

13.2 Y - Scaling 

Alberico et a1 have studied scaling within the context of the non-interacting relativistic 

Fermi gas, thereby avoiding the question of off-shell effects while maintaining all the 

kinematical effects of relativity IAlberico881. The scaling variable of Alberico et al, Y, is 

designed to provide exact scaling for a relativistic Fermi gas at momentum transfers greater 

than twice the Fermi momentum. 

Scaling is typically considered only a valid concept in the limit of large momentum 

transfer where binding and final-state interaction effects become negligible. To the extent 

that the nucleus is described by the relativistic F e d  gas, Y-scaling should be valid for all 

momentum transfers such that q z 2kF. This dimensionless scaling variable, 
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where 

maps the relativistic Fermi gas response to a universal parabola symmetric about Y = 0 (the 

quasielastic peak) which goes to zero when Y = f 1. The corresponding generalized scaling 

function 

3 4 P  - kF S ( Y ; 3  - $1 - y2)$l - y2)[?] , where 7, = - , (1.26) 
' 7 ~  *N 

depends on the single kinematic variable Y, and also contains explicit dependence on the 

Fermi momentum. The factor 3cF/q2 has been chosen so that the cross section reduces to 

the single-nucleon cross section in the limit of vanishing Fermi momentum and the scaling 

function obeys a particular sum rule; the energy transfer integral of the scaling function from 

zero to infinity goes to one (+ 0(qF2)) in the limit of high momentum transfer. If one wishes 

to have a scaling function that is universal for all nuclei, the explicit dependence on the Fermi 

momentum (encased in brackets in Equation 1.26) must be removed from the above definition 

and absorbed into the single-nucleon cross section. The resulting superscaling function 
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retains a constant factor of 3/4 to normalize the function to unit area. The function contains 

implicit dependence on the Fermi momentum through Y that is relatively weak. 

1.3.3 Y' - Scaling 

The relativistic Fermi gas model has proven to be extremely useful in simplifying 

calculations. The model is simple in form, yet it embodies enough of the essential physics 

to provide meaningful results. It has, however, at least one severe flaw; it predicts a negative 

separation energy (E, - -30 MeV). Therefore, according to the Fermi gas model, all nuclei 

are unstable (our existence proves otherwise). 

Donnelly has incorporated a realistic separation energy, via the parameter E,, into a 

scaling derivation (which relies on the simple Fermi gas spectral function) at the cost of a 

weak violation of Lorentz covariance [private communication]. The results are identical in 

form to those of the previous section; 

where 
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This new scaling variable is essentially Y(q,d), where o' = o - (TF + Ed. The energy loss 

is thus offset by the separation energy and the Fermi kinetic energy. This change constrains 

the nucleons to be off-shell. 

Preliminary studies indicate that the corresponding scaling function, S(Y'), can be 

extracted from the data using the same factorization as for S(Y) with negligible error. 

13.4 Scaling of Separated Response Functions 

It is clear from Equations 1.20 and 1.24 that the longitudinal and transverse parts of 

the cross section can be y-scaled separately, and the scaling functions so obtained should be 

identical. There are obvious reasons, discussed later in this section, why these two functions 

should differ at large y (and hence large a). 

One can apply the Y-scaling concepts of the previous section to the individual 

longitudinal and transverse parts of the cross section. Equation 1.1 can be rewritten in the 

following form: 

where 

is the longitudinal polarization of the virtual photon and varies between zero and one. The 

response functions as defined above can be written in terms of the scaling function of 

Equation 1.27 with the kinematic factors isolated: 
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The C's contain the kinematics and are only weakly dependent on the properties of the 

nucleus [Alberico88]. The scaling functions S, and ST are the same for a relativistic Fermi 

gas. 

For experimental data, one can only expect to see agreement between the longitudinal 

and transverse scaling functions for -1 S Y S 0. At higher Y (above the quasielastic peak) 

there is enough excitation energy for other processes to contribute to the transverse response. 

Meson exchange currents are predominately transverse and are not expected to scale since 

the kinematics of the process are quite different. Rather than a one-body operator, the 

scattering involves two-body operators with the momentum transfer now shared among the 

two nucleons exchanging the meson. For the same energy transfer the two different reaction 

mechanisms sample different momentum transfers, and therefore can not be expected to scale 

together. The A cross section should not be expected to scale since it is an inelastic process 

and the elastic nucleon form factors used in the scaling process are not applicable. 

1.4 Coulomb Distortions 

The Coulomb field of the target nucleus distorts the incoming and outgoing electron 

so that it is no longer a simple plane wave. The distortion of the electron requires corrections 

that are of the order Za = 21137. For few-nucleon systems this may be negligible, but for 

intermediate to heavy nuclei the effect is clearly evident. When the scattering is considered 

in Distorted Wave Born Approximation (DWBA) the cross section is far more complicated 

than the PWBA result of Equation 1.1. The DWBA cross section contains interference terms 

of the transverse and longitudinal responses due to the effective spreading of the scattering 

angle. One must therefore develop an approximate method for transforming the experimental 

(distorted) cross sections into effective plane wave cross sections so they can be separated 

by the simple Rosenbluth prescription (linear regression of Equation 1.1). 
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It is difficult to assess how well a given method corrects for the distortions. The 

linearity of the Rosenbluth fit has been shown not to be a valid indicator of PWBA [Co187]. 

Separations made on DWBA calculations by Co' and Heisenberg show an apparent rotation 

of the line, with non-linearities that are undetectable within experimental uncertainties. To 

test properly a correction method one must compare cross sections calculated using the 

inverse correction (i.e. distorting PWBA) with DWBA calculated cross sections. Reliable 

DWBA calculations are numerically massive for the heavy nuclei that need to be considered. 

Since they require dedicated time at supercomputer facilities they are impractical at present 

as a means of providing correction factors for all of the data. Full DWBA calculations have 

been performed by the Ohio University group [Jin92] using a relativistic Hartree shell model. 

Their calculation uses relativistic Hartree bound-state wave functions for the nucleons and the 

same bound-state nucleon potential for the knocked-out nucleons. The orthogonality of initial 

and final states is therefore guaranteed, current conservation is satisfied, and thus the 

calculation is gauge invariant. The group is currently working on an approximate version of 

their code that will compute the DWBA cross sections in much less time (practical for use 

on standard computer workstations) and maintain reasonable accuracy. These calculations 

could then be used to provide correction factors for nuclei of high Z, where the assumptions 

of other correction methods are invalid. The effective momentum approximation (EMA), 

discussed in the next section, has been shown to be an accurate distortion correction method 

for intermediate nuclei (A - 50) [Traini88,Jin92]. An attempt at an analytic DWBA approach 

to Coulomb distortion corrections for heavy nuclei has been made by Traini et a1 [Traini88], 

where correction terms up to order (ZCX)~ have been retained. This method has been used to 

correct data on 2 0 8 ~ b  [Zghiche93]. However, the accuracy of this method has been called into 

question by Wright and Onley [private communication] on the basis that the approximation 

used in [Trainit381 is not valid for the higher partial waves necessary to describe the scattering 

from a heavy nucleus. 
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1.4. 1 Effective Momentum Approximation 

The Coulomb field in the EMA effectively changes the incoming and outgoing 

momenta of the electron. The effective momentum of the incoming electron at the center of 

the nucleus, pp, is related to the incoming momentum at infinity, pi, by 

where %, is the rms nuclear charge radius. Similarly, the effective momentum of the 

outgoing electron, p,eff, is related to the outgoing momentum at infinity, p,, by 

The effective 4-momentum transfer squared is given by 

and the effective 3-momentum transfer squared is given by 

Equations 1.3 1 - 1.34 are applied to the data to reduce them to effective PWBA. The 

Coulomb field also acts like a lens, focusing the incoming electrons, thereby increasing the 

flux seen by the nucleus. To correct for this, the electron flux must be renormalized by a 

factor (pcff I pi)*, 
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The observed cross sections must therefore be divided by the factor (p{ff I pi)2 to recover the 

plane wave cross sections. The corrected cross sections are thus reduced relative to the 

observed cross sections. 

These corrections have been shown by Jin et a2 [Jin92] to be quite adequate for mass 

A s 50, but are not expected to be accurate for heavy nuclei. 



2 Data Analysis 

This chapter will detail the analysis of the quasielastic data. All of the data presented 

herein have been previously analyzed and published. However, it was felt that it would be 

useful to re-analyze all the existing data using the same analysis codes. This insures 

consistency and also provides a cross check on the accuracy of the analysis codes presently 

in use at MIT. 

The first section reviews the history of the quasielastic cross sections used in this 

study. A brief discussion of radiative corrections is provided so that one can see how the 

"raw" cross sections have been processed to obtain the data sets that constitute the starting 

point of this study. The sections following survey the methods and algorithms behind the 

FORTRAN codes that take the cross sections at constant incident electron energy and 

constant scattering angle and construct scaled response functions for the separated 

longitudinal and transverse responses at constant momentum transfer. 

2.1 Experimental Quasielastic Cross Sections 

The experimental cross sections are complicated by unwanted energy losses suffered 

by the electron. Due to its small rest mass, the electron readily radiates while in the 

electromagnetic fields of the atoms and nuclei. The single-photon-exchange interaction 

depicted in Figure 1.2 is strictly impossible from an experimental viewpoint since the electron 

will emit an infinite number of photons during the scattering (with the total energy loss 

remaining finite) [Bloch37]. The cross section for the single-photon-exchange reaction can 

be extracted from the data, however, by relating the probabilities of the various radiative 

reactions to it. 
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Figure 2.1: Radiative corrections to electron scattering. The first four diagrams are 
internal effects; vertex renormalization, virtual e--e+ pair production (vacuum 
polarization), and real photon emission in the field of the scattering nucleus. The last 
two diagrams are external bremsstrahlung; real photon emission before and after the main 
scattering in the field of a secondary scattering center. 
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2.11 Radiative Corrections 

The main radiative processes are illustrated in Figure 2.1. The first four diagrams are 

internal effects since the radiation is emitted in the field of the main scattering nucleus. The 

specific processes are, from left to right, the electron vertex renormalization, virtual e'-e* pair 

production (vacuum polarization), and real photon emission, or bremsstrahlung, before and 

after scattering. The first two diagrams are of order a2 since they involve two EM vertices, 

whereas the second two are of order a since they involve only one vertex. There are 

corresponding diagrams where radiation is emitted from the target. These corrections are 

typically quite small (-1%) due to the much larger mass of the nucleus. The last two 

diagrams are external bremsstrahlung before and after scattering, where the photon has been 

emitted in the field of a nucleus that is not responsible for the main scattering. Another 

external effect is Landau straggling (ionization) due to M~ller scattering of the incident 

electron with atomic electrons in the target [Landau44]. 

Internal effects involve one scatterer, whereas external effects have two scattering 

centers. The strength of internal effects depends on the number of nuclei the electron 

encounters in the target, and therefore depends linearly on the target thickness. External 

effects involve two scattering centers, and thus their strength depends on the square of the 

target thickness. For this reason, internal and external effects are often referred to as t and 

? effects. The importance of the ? effects can be minimized by the use of thin targets. 

Targets used in these experiments are typically -100 mg/cm2, which is less than 2% of a 

radiation length for a nucleus as large as 2 3 8 ~  (0.2% for 12c). Under these conditions the 

effects contribute only a few percent to the correction. 

Radiative corrections to the Bates experimental data are performed according to the 

formulas derived in plane wave Born approximation by Mo and Tsai [Mo69,Tsai71]. The 

correction procedure, outlined below, is divided into two steps. First, the elastic radiative tail 

is calculated for each spectrum. Then, after the tails are subtracted, the spectra at each 

scattering angle must undergo an "unfolding" procedure for the inelastic corrections. 

The elastic tail dominates the experimental cross section at large a. The cross section 
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is enhanced by electrons that scatter elastically after suffering a large energy loss (external 

or internal). It is important that the tail be calculated accurately since its sharp rise at large 

o effectively creates a cut-off point. Due to the uncertainty of the tail calculation at large 

a ,  all data points for which the tail is larger than the corrected cross section are discarded. 

The formulas for the calculation of the elastic tail require an integration over the emission 

angle of the unobserved photon. Without a general closed-form solution, one has, in the past, 

been forced to resort to numerical integration. To simplify this calculation the peaking 

approximation was typically used, which exploits the fact that the emitted radiation is strongly 

peaked in the directions of the incident and scattered electron. However, the peaking of the 

photon angular distribution is not very strong for large radiative losses. 

The current method of calculating the radiative tail is that of Maximon and 

Williamson [Maximon83]. They found that the full plane-wave integrals could be evaluated 

analytically if the elastic cross sections could be expressed as a polynomial function of 

incident energy. The integral is divided into an arbitrary number of energy intervals in which 

cubic splines are fit to the elastic cross sections. Each interval is evaluated analytically, 

thereby calculating in a piecewise fashion. This method is more accurate than the previous 

one and reduces computation time by orders of magnitude. The elastic form factors required 

are calculated using phase-shift analysis codes in which the static nuclear charge is usually 

represented by a 2- or 3-parameter F e d  distribution. 

After the elastic tail has been subtracted, the contributions from the tails of all the 

inelastic excitations must be considered. The calculation can be carried out in the peaking 

approximation since the strength of the inelastic tails, unlike the elastic, is small at large 

energy loss (where the peaking approximation is inaccurate). The formula used is that of 

Miller [Miller7 11. The formula contains integrals over the non-radiative cross sections. But 

this is the quantity that one is looking to extract from the experimental data. The radiative 

effects are thus "folded" into the experimental cross sections. One must therefore perform 

an iterative "unfolding" procedure to disentangle these radiative effects. The experimental 

(radiative) cross sections are used as an estimate of the non-radiative cross sections as a 

zeroth order approximation. The data are corrected in this approximation and then re- 
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radiated. The re-radiated spectrum is subtracted from the original data to obtain correction 

factors to the unfolded spectrum. The procedure is repeated until a convergence criteria is 

met. A convergence of better than 1% is easily attained in just four iterations. These 

corrections enhance the cross sections at low o and deplete the high o end of the spectrum, 

effectively shifting the centroid of the quasielastic peak to slightly lower energy loss. 

The Bates data were available in the form of differential cross sections with no 

radiative corrections. The above procedures were carried out on these data, and the statistical 

and systematic errors were propagated independently. Unfortunately, the Saclay data were 

not available without radiative corrections. The statistical and systematic errors had been 

added in quadrature before the radiative unfolding, making it impossible to propagate the two 

types of errors separately. It is likely that the dominant errors were systematic, and it was 

therefore assumed in the analysis that the entire error was systematic. 

All the radiatively corrected spectra at constant energy and scattering angle were 

parabolically smoothed to facilitate further interpolation (Section 2.2). The code SMOOTH 

divides the energy loss range of each spectrum into 128 evenly spaced abscissa. A parabolic 

fit to the data is used to find the cross sections at the new energy losses. 

2.1.2 Bates Data 

The %a data set from the Bates Linear Accelerator is a compilation from two 

separate experiments. The first experiment [Deadyg 11 used bombarding energies from 100 

to 375 MeV to study scattering at 90' and 140°. Although, in principle, separations of the 

longitudinal and transverse responses can be performed with only two angles, the results are 

highly sensitive to any systematic errors, such as those arising from normalization 

uncertainties. For more than two angles the problem is over-determined, thus providing a 

check on the linearity of the Rosenbluth separation. If the datum at a particular angle 

deviates consistently from the line, this could be interpreted as a possible normalization 

problem. Data at only two angles do not provide this additional consistency check. Also, 

data at 90° and 140" are dominated by the transverse response over a large part of the 
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kinematic range and therefore provide inadequate i n f o d o n  about the longitudinal response 

by themselves. This fact is reflected in the considerably larger errors attached to the 

longitudinal responses so obtained. 

The second experiment on y a  [Yates92] was designed to take advantage of the 

higher energy capability of the Bates recirculated linac. The higher bombarding energy (up 

to 841 MeV) allowed momentum transfers up to 600 MeVIc to be obtained at a forward 

scattering angle of 45.5". These 45.5" data were combined with the previous data at 90' and 

140" to obtain more reliable Rosenbluth separations. The results show little or no suppression 

of the longitudinal strength, in contrast with the data from Saclay which indicate a 

reduction of up to 45% relative to the Fermi gas. This discrepancy is illustrated in a paper 

by Yates et a1 [Yates93]. 

Electron scattering data on 2 3 8 ~  from Bates were obtained for incident energies from 

100 to 690 MeV at five scattering angles: 60°, 90°, 134.5", 140°, and 160" [Blatchley84]. 

Previous analysis of this data, using a phase shift approximation for calculating the Coulomb 

distortion effect, indicated essentially no suppression of the longitudinal response at a 

momentum transfer of 500 MeVIc [Blatchley86]. It must be noted, however, that in 

Blatchley's analysis the Coulomb corrections were credited with restoring the linearity of the 

Rosenbluth fit. It has been shown in subsequent studies [Cot87,Traini88] that Coulomb 

effects have only a small influence on the linearity of the separation. The non-linearity as 

a result of Coulomb effects should be undetectable within the statistical error of the 

experimental points. Re-analysis of these data have not yet reproduced the results reported 

by Blatchley, and this is the subject of ongoing investigation. For this reason, the 2 3 8 ~  results 

are not included in the present study. 

2.13 Saclay Data 

Quasielastic cross sections from the Centre d'~tudes Nucleaires de Saclay were 

obtained for 12c (courtesy of P. Barreau [private communication]), 4 0 ~ a ,  " ~ a ,  5 6 ~ e ,  and 208~b 

(courtesy of J. Morgenstem [private communication]). The cross sections had all been 
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previously corrected for radiative effects. As explained in Section 2.1, each datum has a 

single error associated with it that is a combination of statistical and systematic uncertainties. 

In the 12c experiment at Saclay, data were obtained at bombarding energies from 120 

to 680 MeV at scattering angles of 36O, 60°, 90°, and 145O [Barreau83]. This data set allows 

Rosenbluth separations at momentum transfers up to 600 MeVlc to be performed. Silica 

aerogel cerenkov detectors that were sensitive to pions of momenta greater than 400 MeVIc 

were used for some of the data runs at the backward angles. In addition to its low pion 

threshold, this type of cerenkov detector suffers from high background counting rates due to 

electrons produced from ambient gamma rays. These detectors were replaced with a gas 

cerenkov detector filled with freon-114 (raising the pion threshold to 2.7 GeVIc) for the 

forward angle data and for all data with bombarding energy greater than 480 MeV. 

Using the same detector system as Barreau et a1 [Barreau83], a quasielastic study of 

three nuclei; 4 0 ~ a ,  4 8 ~ a ,  and 5 6 ~ e ,  was conducted at Saclay by Meziani et a1 [Meziani84]. 

Data were collected at incident energies from 120 to 695 MeV at scattering angles of 60°, 

90°, and 140°. Separations were performed at momentum transfers up to 550 MeVlc. A 

trend of decreasing longitudinal strength with increasing momentum transfer was reported for 

all three nuclei. Suppressions of 30% for %a and 20% for " ~ a  and 5 6 ~ e  were reported at 

a momentum transfer of 550 MeVIc (more than twice the Fermi momentum). 

The Saclay trend was further supported by recent data on '08pb [Zghiche94]. The 

experiment used bombarding energies from 140 to 645 MeV at scattering angles of 3S0, 60°, 

7S0, 90°, and 143'. Separations were performed at momentum transfers up to 550 MeVlc. 

A quenching of the longitudinal response of -50% was reported at the highest momentum 

transfer. In addition to the trend of decreasing longitudinal strength with increasing 

momentum transfer, the Saclay data now indicate a similar trend with increasing atomic mass. 

2.2 Total Responses at Constant 3-Momenta 

Constructing spectra at constant momentum transfer and scattering angle requires one 

to interpolate between spectra of constant incident energy at the given angle. The radiatively 
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corrected spectra at constant incident energy (each spectrum containing 128 equally spaced 

energy loss points after being processed by SMOOTH) provided the input for the 

interpolation code QVECQE95. Linear interpolations were performed along lines of constant 

y, (of Equation 1.15) to construct spectra at constant 3-momenta with an energy loss spacing 

of 5 MeV. No extrapolation of the data was allowed. 

Using y, as an interpolation parameter increases the smoothness of the interpolations 

by linking similar features of the spectra. While this is particularly true in the region of the 

quasielastic peak, one may argue that a y-scaling variable is not the proper choice for regions 

where non-scaling processes begin to dominate. It is perhaps not the best choice, but has 

proven to be an adequate one since it is still effective in minimizing the variation between 

spectra. Studies were conducted using constant missing mass and various scaling variables 

as interpolation parameters. The differences between the results were insignificant. 

Tests using higher order interpolation were also conducted. Cubic interpolation tended 

to accentuate peculiarities in the cross sections, thereby creating structures in the interpolated 

response that were too highly defined to have been resolved by the experiment. Linear 

interpolation seemed to smooth out all of the difficult areas encountered by the cubic routine. 

With the exception of the aforementioned anomalies, the agreement between the linear and 

cubic routines was quite good. One would expect linear interpolation to be appropriate since 

the data are on a fine grid to begin with (provided the SMOOTH code has been used) and 

an interpolation parameter Cy,) has been used to help align the data. 

Total response functions were extracted up to the maximum momentum transfer 

allowed by each data set, typically in increments of 50 MeV/c. In some cases the momenta 

were chosen to coincide with those of previous work so as to provide a direct comparison. 

Coulomb distortion effects were handled at this stage according to the EMA prescription 

outlined in Section 1.4.1, including the flux renormalization of Equation 1.35. The statistical 

and systematic errors were propagated separately since they are fundamentally different 

quantities. The statistical error is a well understood mathematical construct, while the 

systematic error is instrumental in nature and does not necessarily obey Poisson statistics. 

It is therefore important that they be handled separately. If simply added in quadrature the 
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appropriate method of propagation becomes ambiguous. In QVECQE95 the statistical error 

of the response was determined by interpolation of the variance (square of the standard 

deviation), and the systematic error by a simple interpolation of the extents of the error bars. 

2.3 Rosenbluth Separations 

The extraction of the transverse and longitudinal response functions from the total 

response at constant 3-momentum transfer was performed by the code ROSENBLUTH. For 

each (q,o) pair at which the separation is to be evaluated, the code scans all of the candidate 

files (output from QVECQE95) to find all of the angles that match the criteria. If two or 

more scattering angles contain the (q,w) pair then the separation can be performed. For the 

case of only two angles, RL and RT are uniquely determined by Equation 1.1. For more than 

two angles, a linear least-squares fit is carried out to separate the response functions. If the 

total responses are plotted versus [ ~ ~ / 2 q ~  + tan2(8/2)], the slope of the fitted line gives the 

transverse response and the intercept with the ordinate axis determines the longitudinal 

response (RL = [q2/~2]2xintercept). 

For the Bates data, where the statistical and systematic errors have remained separate 

throughout the analysis, the data points were weighted by their statistical error in the least- 

squares fitting routine. For the Saclay data, which do not have a normally distributed error, 

an unweighted fit was performed to determine the response functions; i.e. an equal standard 

deviation was assumed for all data points in the fit. In both cases, the fitting routine was 

called with systematic error weighting (under the tenuous assumption that it is normally 

distributed) for the sole purpose of propagating the systematic error. 

2.4 Scaled Responses 

The conversion of the response function data to the y-scaling function of Equation 

1.17 and to the superscaling function of Equation 1.27 was carried out by the code SCALE. 
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For a given data file at constant momentum transfer, each (o,R(q,o)) point was simply 

converted to (y(q,o),F(q,y)) according to Equations 1.19 - 1.24 and to (Y(q,o),S(Y)) and 

(Y'(q,o),S(Y')) according to Equations 1.25 - 1.30. The kinematic factors (C's) of Equation 

1.30 for the total, longitudinal, and transverse responses can be found in equations 15, 35a, 

and 35b of Alberico et a1 [Alberico88]. The nucleon fom factors required for these 

kinematic factors were calculated by the Galster formulation [Galster71]. 



3 Results and Conclusions 

The results of this study will be presented in this chapter. The results of the 

Rosenbluth separations will be shown only for 4 0 ~ a ,  where the comparison between the Bates 

and Saclay data is of particular interest. The scaling of the separated response functions will 

be shown for all the nuclei in this study for all three scaling variables. An interpretation of 

the scaling results will follow, as well as a discussion of the relationships between the scaling 

variables. 

3.1 Results 

The separated response functions obtained in this study are consistent with previously 

published results and therefore need not be reproduced here. The two 40Ca data sets, 

however, exhibit a clear discrepancy that warrants a detailed examination. The next three 

sections will take a closer look at the similarities and differences between the Bates and 

Saclay data. This will be followed by the presentation of the y-, Y-, and Y'-scaling results. 

3.1.1 Total Response Functions 

The Bates and Saclay experiments on w a  each took quasielastic data at three 

scattering angles. Two angles, 90" and 140°, are common to both data sets. The two differ 

in their choice of forward scattering angle; 45.5" for Bates and 60" for Saclay. The backward 

angles provide the only direct check on the consistency of the two data sets. The response 

functions at constant momentum transfers of 370,410,450, and 500 MeVIc at 90" and 140" 

are shown in Figure 3.1 for the Bates and Saclay data. The error bars indicate the systematic 

error for the Bates data. For the Saclay data, the error bars represent the single error that has 

been treated as systematic throughout the analysis (see Section 2.1.3). The data are compared 
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Total Response Functions at Constant Momentum Transfer for 4 0 ~ a  
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Figure 3.1: 4 0 ~ a  total response functions at q = 370, 410, 450, and 500 MeVIc for 
scattering angles of 90" and 140". Bates and Saclay data are compared with predictions 
based on the relativistic Fermi gas model (dotted lines) and the relativistic Hartree shell 
model (solid lines). 
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to the relativistic Fermi gas model and the relativistic Hartree shell model of Jin et a1 [Jin92]. 

The Fermi gas peaks have been arbitrarily shifted 20 MeV to account for binding effects. 

The agreement with the Hartree model is quite good, especially at the higher momentum 

transfers. There seems to be little disagreement between the Bates and Saclay data at these 

backward angles, with the possible exception of the 140" data at 450 MeVlc where the Bates 

data are as much as 10% lower than Saclay at the top of the quasielastic peak. Rosenbluth 

separations performed on the Bates and Saclay data for just these two angles would produce 

similar results. However, these backward angle data are dominated by the transverse 

response, and therefore can not by themselves accurately determine the longitudinal response. 

Any substantial discrepancy between the Bates and Saclay separated response functions must 

be due largely to differences in the forward angle data. 

3.12 Separated Response Functions 

The separated response functions at constant momentum transfers of 300, 330, 370, 

410, 450, and 500 MeV/c for the Bates and Saclay data are shown in Figures 3.2 

(longitudinal) and 3.3 (transverse). The Saclay longitudinal responses are 30 - 40% less than 

the Bates results at the quasielastic peak, with the possible exception of q = 500 MeV/c 

where the agreement is considerably better. Unfortunately, the Bates data at the backward 

angles do not allow separations to be made over the entire quasielastic peak at a momentum 

transfer this high, and thus no definitive conclusion can be drawn. The Bates longitudinal 

responses are in remarkably good agreement with the Hartree shell model calculations. The 

transverse responses also agree well with theory at the higher momentum transfers but show 

significant reductions (-30%) at q = 300 and 330 MeV/c. The Bates transverse responses are 

-15% less than the Saclay results at the quasielastic peak. As with the longitudinal case, this 

discrepancy appears to diminish at q = 500 MeVlc, but again a definitive conclusion cannot 

be drawn since the Bates data allow only a partial response to be extracted. 
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Transverse Response Functions at Constant Momentum Transfer for %a 
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Figure 3.3: %a transverse response functions at q = 370,410,450, and 500 MeVIc. Bates 
and Saclay data are compared with predictions based on the relativistic F e d  gas model 
(dotted lines) and the relativistic Hartree shell model (solid lines). 
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3.1.3 Longitudinal Sums 

To illustrate the missing longitudinal strength problem, the longitudinal response 

functions obtained in this study were integrated (out to the largest energy loss that contained 

meaningful information) and compaied to predictions based on the relativistic F e d  gas. To 

maintain covariance the Fermi gas calculations did not include a binding energy. The top 

graph in Figure 3.4 re-emphasizes the discrepancy between the Bates and Saclay 4 0 ~ a  data 

seen in Figure 3.2. The Bates data show full strength compared to the Fermi gas at low 

momentum transfer and no more than a 20% reduction at q = 450 MeVIc. The Saclay data 

show a 30 - 50% reduction. 

The longitudinal sums for all of the Saclay data are shown in the bottom graph in 

Figure 3.4. The 208~b data shown were corrected according to the effective momentum 

approximation. The data show similar reductions of approximately 30% on average. The 12c 

data are an exception, showing essentially full strength for q S 400 MeVIc. 

It should be emphasized that the experimental longitudinal sums represent lower limits 

for these quantities. For energy losses significantly greater than the quasielastic peak the total 

response is dominated by the A-resonance and two-body interactions, which are 

overwhelmingly transverse in nature. In this kinematic region the longitudinal contribution 

is only a small fraction of the total response. Due to the nature of the Rosenbluth separation, 

an accurate determination of the longitudinal response becomes impossible (even with an 

accurately measured total response). Above a certain value of energy loss the error begins 

to exceed the value of the data. Extending the sum into this region would simply increase 

the error of the sum without contributing significantly to its strength. 

As a result of these experimental limitations, it is always possible that the 

experimental longitudinal sums would not include strength that was distributed over large 

energy losses. This strength could be due, for example, to high momentum components 

arising from short range correlations. This is an inherent limitation to the Rosenbluth 

separation method which will always result in an experimental sum that represents a lower 

limit to the true sum. 
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Figure 3.4: Integrated longitudinal strengths relative to relativistic Fermi gas predictions. 
Top graph compares the Bates and Saclay data for 40Ca. Bottom graph contains all Saclay 
data. 
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3.1.4 y - Scaling 

The y-scaled separated response functions (see Section 1.3.1) are shown in Figures 3.5 

- 3.1 1 in order of increasing nuclear mass. The key indicates the value of momentum 

transfer. F(q,y) has been multiplied and y has been divided by the Fermi momentum to make 

them dimensionless quantities so they can be directly compared with the Y and Y' results. 

The separation energies used are for the removal of a proton. While this is only strictly 

correct for the longitudinal calculation, it is an adequate approximation for the transverse 

since the proton and neutron separation energies do not differ significantly for the nuclei in 

this study. A weighted average of the two separation energies was tested and did not produce 

a significant difference. 

The longitudinal responses scale well for all the nuclei. For the transverse responses 

one can see how the curves at constant momentum transfer are converging to a single 

function at high q. For y > 0, the transverse response begins to deviate fiom scaling due to 

the increased importance of non-scaling processes such as real pion production, meson 

exchange, and A-excitation. The peaks are fairly well centered about y = 0, with the 

exception of '08pb which is shifted to positive y. The inclusion of the neutron separation 

energy in the transverse calculation would only increase this shift to positive y since it would 

reduce the effective separation energy by 5%. 

For the Saclay data the longitudinal and transverse responses scale to quite different 

functions. In all of the Saclay nuclei one finds that FTO is -75% larger than FLb) at the 

peak. This L-T scale breaking is not seen in the Bates data for 4 0 ~ a .  The scaling of the 2 M ~ b  

data are shown for two Coulomb correction methods; the effective momentum approximation 

in Figure 3.10 and the method of Traini [Trainis81 in Figure 3.1 1. The Traini corrected data 

scale better than the EMA for the transverse case but not as well for the longitudinal. The 

L-T scale breaking, however, is even more pronounced for the Traini data (F&) = 2.F,w). 
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Figure 3.5: y-scaling of 12c separated response functions. Saclay data. Parameters used in 
calculation: E, = 15.96 MeV, k, = 225 MeV/c. 
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40 Ca y-scaling of Bates data 
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Figure 3.6: y-scaling of 4 0 ~ a  separated response functions. Bates data. Parameters used in 
calculation: E, = 8.33 MeV, k, = 240 MeVIc. 
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40 Ca y-scaling of Saclay data 

Figure 3.7: y-scaling of 4 0 ~ a  separated response functions. Saclay data. Parameters used 
in calculation: E, = 8.33 MeV, k, = 240 MeVIc. 
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48 Ca y-scaling of Saclay data 

Figure 3.8: y-scaling of 48Ca separated response functions. Saclay data. Parameters used 
in calculation: E, = 15.74 MeV, k, = 240 MeV/c. 
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56 Fe y-scaling of Saclay data 

Figure 3.9: y-scaling of 5 6 ~ e  separated response functions. Saclay data. Parameters used 
in calculation: E, = 10.18 MeV, k, = 240 MeV/c. 
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208 Pb y-scaling of Saclay data 
1 .o 

Figure 3.10: y-scaling of 2 0 8 ~ b  separated response functions. Saclay data analyzed in the 
effective momentum approximation. Parameters used in calculation: E, = 8.01 MeV, k, = 
260 MeVIc. 
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208 Pb y-scaling of Traini Corrected Saclay data 

Figure 3.11: y-scaling of 208~b separated response functions. Saclay data analyzed with the 
Coulomb correction method of Traini. Parameters used in calculation: E, = 8.01 MeV, k, 
= 260 MeV/c. 
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3.1.5 Y - Scaling 

The Y-scaled separated response functions (see Section 1.3.2) are shown in Figures 

3.12 - 3.18. The dotted curve is the parabolic function to which this scaling variable has 

been designed to map the relativistic Fermi gas response. The peaks of the data all lie to the 

right of Y = 0 since no binding effects are incorporated into this scaling formalism. While 

the shape of S(Y) is quite different from Fb), their values at the quasielastic peak are almost 

identical. The same L-T scale breaking behavior seen in the y-scaling of the Saclay data is 

also observed in the Y-scaling. 

3.1.6 Y' - Scaling 

The Y'-scaled separated response functions (see Section 1.3.3) are shown in Figures 

3.19 - 3.25. The calculation used the same separation energies as those in the y-scaling 

analysis. The S(Y') curves are better centered about the origin than S(Y) due to the inclusion 

of the separation energy. There appears to be an overcompensation in the shift of the peak 

for the lighter nuclei. The peak shift also has an important momentum transfer dependence 

that moves the lower q data toward lower values of Y'. This drastically improves the scaling 

of the transverse response for negative Y', while maintaining the scaling of the longitudinal 

response. 
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Figure 3.12: Y-scaling of 12C separated response functions. Saclay data. k, = 225 MeV/c. 
Relativistic Fermi gas response is the dotted parabola. 
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40 Ca Q-scaling of Bates data 

Figure 3.13: Y-scaling of v a  separated response functions. Bates data. kF = 240 MeV/c. 
Relativistic Fermi gas response is the dotted parabola. 
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40 Ca q-scaling of Saclay data 

Figure 3.14: Y-scaling of 4 0 ~ a  separated response functions. Saclay data. k, = 240 MeV/c. 
Relativistic F e d  gas response is the dotted parabola. 
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48 Ca Q-scaling of Saclay data 

Figure 3.15: Y-scaling of 4 8 ~ a  separated response functions. Saclay data. k, = 240 MeV/c. 
Relativistic Fermi gas response is the dotted parabola. 
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56 Fe iP-scaling of Saclay data 
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Figure 3.16: Y-scaling of 5 6 ~ e  separated response functions. Saclay data. k, = 240 MeVIc. 
Relativistic Fermi gas response is the dotted parabola. 
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208 Pb *-scaling of Saclay data 
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Figure 3.17: Y-scaling of Z08~b separated response functions. Saclay data analyzed in the 
effective momentum approximation. kF = 260 MeV/c. Relativistic F e d  gas response is the 
dotted parabola. 
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208 Pb Q-scaling of Traini Corrected Saclay data 
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Figure 3.18: Y-scaling of 2 0 8 ~ b  separated response functions. Saclay data analyzed with the 
Coulomb correction method of Traini. k, = 260 MeV/c. Relativistic F e d  gas response is 
the dotted parabola. 
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lP' -scaling of Bates data 

Figure 3.20: Y'-scaling of 40Ca separated response functions. Bates data. Parameters used 
in calculation: E, = 8.33 MeV, k, = 240 MeVIc. 
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40 Ca XI!' -scaling of Saclay data 

Figure 3.21: Y'-scaling of v a  separated response functions. Saclay data. Parameters used 
in calculation: E, = 8.33 MeV, k, = 240 MeV/c. 
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48 Ca Q' -scaling of Saclay data 

Figure 3.22: Y'-scaling of 4 8 ~ a  separated response functions. Saclay data. Parameters used 
in calculation: E, = 15.74 MeV, kF = 240 MeV/c. 
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56 Fe Q!' -scaling of Saclay data 

Figure 3.23: Y'-scaling of '6Fe separated response functions. Saclay data. Parameters used 
in calculation: E, = 10.18 MeV, kF = 240 MeV/c. 
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208 Pb Q' -scaling of Saclay data 
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Figure 3.24: Y'-scaling of 2 0 8 ~ b  separated response functions. Saclay data analyzed in the 
effective momentum approximation. Parameters used in calculation: E, = 8.01 MeV, kF = 
260 MeVIc. 
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208 Pb Q' -scaling of Traini Corrected Saclay data 
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Figure 3.25: Y'-scaling of m 8 ~ b  separated response functions. Saclay data analyzed with 
the Coulomb correction method of Traini. Parameters used in calculation: E, = 8.01 MeV, 
k, = 260 MeV/c. 
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q' -scaling of Fermi Gas Response 

Figure 3.26: Y'-scaling of the relativistic Fermi gas response. Fermi gas calculations made 
for Y a .  

3.1.7 Scaling of Fermi Gas Response 

The Y variable is designed to map the relativistic F e d  gas response to a universal 

parabola centered about Y = 0 for q > 2& (the non-Pauli-blocked regime). The Fermi gas 

response can therefore serve as a reference for comparing the scaling variables. Longitudinal 

and transverse Fermi gas response functions were calculated for 4 0 ~ a  and scaled in the same 

manner as the experimental responses. A separation energy of zero was used in the scaling 

process since a binding energy was not included in the Fermi gas calculation. 

The Y'-scaling analysis of the Fermi gas response is shown in Figure 3.26. A single 

response is shown since the longitudinal and transverse responses scale to the same function, 

as is the case with Y. The peaks are offset to negative Y' due to the Fermi kinetic energy 

TF in Equation 1.28. The peak position has a dependence on the momentum transfer that 
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y-scaling of Fermi Gas Response 
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- 300 MeVlc 
..-... 330 MeVIc 
---. 370 MeVlc 
..a. 4 10 MeVlc -- 450 MeVlc 
.-.. 500 MeVlc -- 550 MeVIc 

Figure 3.27: y-scaling of the relativistic Fermi gas response. F e d  gas calculation made 
for 40Ca. 
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shifts the lower q curves to more negative Yf. Departures from scaling are seen for the q < 

2kF curves in the Pauli-blocked region. 

The y-scaling analysis of the F e d  gas response is shown in Figure 3.27. The 

longitudinal and transverse response functions scale to approximately the same function. The 

peak heights lie between 0.75 and 0.8, in good agreement with the 0.75 of the S(Y) scaling 

function. There is also a slight shift in peak position depending on the momentum transfer. 

In contrast with S(Y) and S(Yf), the scaling function F O  is asymmetric with a large tail out 

to negative y. The scaled response functions at q = 500 and 550 MeV/c (where Pauli 

blocking is not a factor) begin to show scale breaking behavior at large negative y. 

The cross sections calculated from the relativistic Ferrni gas include the effects of 

Pauli blocking. These effects are not included in the definitions of the y- and Y'-scaling 

variables. This results in a significant departure from scaling at negative values of y and Yf 

for response functions corresponding to q < 2kF. It is amusing to note that a qualitatively 

similar effect is seen in the y- and Yf-scaled experimental responses, especially in the 

transverse responses. While possibly suggestive, it is not clear if this effect is in any way 

related to Pauli blocking. 

3.2 Summary and Conclusions 

The results of this analysis can be summarized as follows: 

I. The separated quasielastic longitudinal and transverse response functions for the nuclei 

in this study exhibit a strong tendency toward a scaling behavior. 

11. The longitudinal and transverse scaling functions obtained from the Saclay data are 

not equal, in contradiction with theory. The Bates w a  data do not exhibit this L-T 

scale breaking. This further illustrates the differences between the Bates and Saclay 

40Ca data sets. 

III. The scaling variables investigated in this study indicate that kinematic scaling is a 

valid and useful concept even at fairly modest values of momentum transfer. 
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The relationships between the scaling variables deserve further study. A great deal 

can be learned from discovering what elements these different treatments have in common. 

It is not merely coincidence that the y- and Y-scaling results give approximately the same 

magnitudes. The factors used to divide the response functions to extract F(y) and S(Y) are 

actually quite similar despite their notably different forms. It can be shown that the leading 

order term is identical for the two factors, and happens to be proportional to the square of 

the effective charge form factor (Equation 1.13) from the Coulomb sum rule. The corrections 

to this leading order term are typically only -3% [Domefly, private communication]. It 

seems quite remarkable that these completely different approaches yield results that are in 

such good agreement. This seems to indicate that, for the momentum transfers being 

considered, the off-shell nature of the nucleon is not of great importance. What is perhaps 

more significant is the fully relativistic treatment of the kinematics and dynamics of the 

problem that both scaling derivations embody. 

In closing, I would like to stress the need for a new generation of thorough 

quasielastic scattering experiments to definitively establish the existence or non-existence of 

longitudinal suppression. Data should be taken for at least four scattering angles, two of 

which should be forward where the longitudinal contribution to the cross section is at least 

comparable to, if not greater than, the transverse. The experiments should be designed to 

allow separations for momentum transfers up to three times the Fermi momentum. Until 

there exists a coherent and consistent data set for quasielastic scattering from a wide range 

of nuclear masses over a wide range of kinematic conditions the question of longitudinal 

suppression will remain one of the most perplexing problems in nuclear physics. 
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