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Triple junctions and low angle boundaries

By

Vinay Rodrigues

Abstract
Certain properties, such as cracking or corrosion, can occur mainly along grain boundaries.
Certain types of boundaries may be more beneficial for material properties. The way that the
boundaries are connected in a material can determine how boundaries will affect properties, for
instance, whether or not crack resistant boundaries will arrest the growth of a crack. Boundaries
in a polycrystalline material connect together at triple junctions. In this paper, we examine how
the distribution of low angle boundaries at triple junctions varies with the texture of a material.

Thesis Advisor: Christopher Schuh



1 Introduction

Intergranular and transgranular phenomena in polycrystalline materials have been
modeled by using percolation theory, treating the network of boundaries between different
crystal grains as either strong or weak links. Different schemes to determine what constitutes a
'strong' link between grains have been proposed, such as low angle boundaries, CSL boundaries,
or ability to transmit dislocations. Most models using standard percolation theory assume a
random distribution of weak and strong links. However, it has been shown that the distribution
of so called weak and strong boundaries is not necessarily random, and at triple junctions, where
3 boundaries come together, there are some constraints on the composition of the boundaries.
The constraints at junctions change the distributions of triple junctions, which in turn changes
how problems must be modeled using percolation theory.

There are four types of triple junctions that can occur in a material, as shown in Figure 1.
These junctions have between zero and three low angle boundaries.

Jo JI

J2 J3

Figure 1. Types of triple junctions. Dark lines are 'strong' boundaries, light lines are 'weak' boundaries

The relative fractions of these junctions in the material can affect properties that percolate
through the material along grain boundaries, as the triple junctions are the basic unit that
connects grain boundaries together.

Grain boundaries with low misorientation angles are one type of boundary which are
sometimes considered a 'strong' boundary. Low angle boundaries are sometimes thought to
resist cracking or corrosion in materials. The distribution of orientations of the grains of a
material, known as the texture, has been shown to influence the probabilities of types of
boundaries that can occur in a material, and the distribution of the triple junctions [ 1 ]. In this
paper, a method to solve for the distribution of triple junctions based off of two textures will be
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developed. The first texture will be for a fiber texture, where orientations are defined by rotating
about one axis from a reference orientation. In this paper, the distribution of triple junctions has
been solved for this case using a different method. The second texture examined will be for a
general texture, in which grains can have arbitrary orientations in three dimensions.

2 Local Transition Probabilities
In solving for the fiber texture, Frary et al. defined something called local transition

probabilities to solve for the triple junctions [1]. These probabilities were defined as YI, the
probability of examining a boundary in a triple junction that has not yet been examined, and
finding a low angle boundary after examining y boundaries in the triple junction and having had
x of them be low angle boundaries.

To determine the probability of having a low angle grain boundary depending on which
boundaries of the junctions have already been examined, the problem is set up examining the
boundaries one at a time. First, look at the boundary
determine if it is a high angle or low angle boundary.
B and C, and then finally between A and C. The pos!
are given in table

AB

BC

AC

Jo

H

H

H

J,
/3

H

H

L

'1

H

L

H

Ji

L

H

H

J2

3

H

L

L

J2

3

L

H

L

between grain A and grain B, and
Next, look at the boundary between grains

sibilities for high or low angle boundaries

J2

3

L

L

H

J3

L

L

L

Table 1. Different ways that high and low angle boundaries can be distributed at a triple junction

The first column in the table is the only way that the boundaries can be chosen to have a
Jo boundary (all high angle). The next three columns are the three ways that boundaries can be
picked to form a J1 boundary. Because the choice of what the grains were named and therefore
which boundary was labeled AB, BC, or AC was arbitrary, these three columns have an equal
probability of occurring. Their probabilities must sum to J1, hence each column has a probability
of J / 3. Similarly, the next three columns occur with a probability of J2 / 3, while the last
column represents J3.

The probability of picking one low angle boundary without having looked at any other
boundaries can be seen from the first row of the table. Any column is initially possible, and to
pick a low angle boundary we must be in column 4, 6, 7, or 8. The probabilities of these
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columns added together gives the initial probability p of finding a low angle boundary in the
material, or:

= J 2J2 (2.1)
3 3

To find 1i, we know we have looked at the first row and found a low angle boundary, so
we are only looking in the space of columns 4, 6, 7, and 8. Out of these columns, only 7 and 8
have a low angle boundary for the second boundary. Pill is equal to the probability of finding a
low angle boundary given that you already have found one boundary, or in other words the
probability of being in column 7 or 8 divided the probability that you were in column 4, 6, 7, or
8.

IH =(J +J3) /(J- J + J 3) (2.2)
3 3 3

ro is columns 3 and 5 divided by columns 1, 2, 3, and 5.

IJ = (Lk L) /(Lk + J) (2.3)
- 3 3 3 3

rl 2 is column 8 divided by columns 7 and 8.

Hl2 =J3/(2 +J3 ) (2.4)
3

rI is columns 5 and 6 divided by columns 3, 4, 5, and 6.

2J 2J 2J.5)-I2 =(=)/(= -) (2.5)
3 3 3

2
And finally, IHo is column 2 divided by columns 1 and 2.

l =(1) /(J4ot) (2.6)
3 3

These transition probabilities set up a system of equations for the junction probabilities.
In combination with the fact that the junction probabilities need to add up to 1,

J0 +J +J2 + J3 =1 (2.7)
only three of the transition probabilities would need to be solved in order to determine the
junction probabilities.

3 The effect of texture on triple junction distributions
Two types of textures are examined here, a fiber texture and a general texture. In both

cases, we define the texture by picking some reference orientation, and letting grains take a
random orientation by rotating up to some amount +max. In the case of the fiber texture, grains
are only allowed to rotate about one axis away from the reference orientation, while for the
general texture, grains are allowed to rotate about any axis. For each case, a boundary is called a
low angle boundary if the misorientation angle between the two grains forming the boundary is
less than some low angle boundary limit, OLAB.

3.1 Fiber texture
The first step to find the junction probabilities for the case of fiber texture is to solve for
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the probability of a low angle boundary between any two
the construction shown in Figure 2 is examined.

" max

0
NB

-+ max 0

grains, p. In order to accomplish this,

, max

A

Figure 2. A representation of orientations for pairs of grains in fiber texture. The area inside of the dashed
lines contains the points for which the grains share a low angle boundary.

The horizontal axis represents the angle that grain A was rotated from the reference orientation,
while the vertical axis represents the angle for grain B. Each point of the diagram then
represents a pair of orientations for grain A and B. As the orientations of the grains are
independent and randomly chosen, all points within the diagram are equally likely, so long as the
angles for A and B are between -,,4a and ma. In this diagram, the area contained between the
two dashed lines represents the orientations for grains A and B which are within OLAB of one
another, and therefore cause the AB boundary to become a low angle boundary. Because all of
the points in this space are equally probable, the probability of a low angle boundary is simply
the area of the area inside of the dashed lines divided by the total area of the space. This comes
out to be'

LAB LAB
p = 4 2

011]¢ 41]

(3.1)

Note that this equation can be expressed in terms of the ratio OLAB / fmax. This can be seen in
figure 1, as the figure would look the same if all of the angles in the figure were doubled. If the
ratio is explicitly defined as
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= LAB

max

(3.2)

then the equation for p becomes
X2

p=X--
4

(3.3)

The next step of the analysis involves adding grain C into the picture, as shown in figure
3.

(a)

+a

B

(b)
A

(C)

A

A
(d)

PA

Figure 3. A representation of orientations for grains A and B for specific orientations of C. The position of
the black dot projected on either axis gives the orientation of grain C.

In part (a) of the figure, grain C is at an orientation rotated -mx from the reference orientation.
As before, the region in space between the two diagonal lines is the region where the AB
boundary is a low angle boundary. With the addition of the grain C, the region below the
horizontal line indicates the points where the AC boundary is low angle, and the region to the left
of the vertical line indicates a low angle BC boundary. The lines then break up the space into the
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various types of junctions, which are labeled on the diagram. Grain C is then let move from it's
orientation of- ,. up to the reference orientation in parts (b) to (d). By integrating the areas of
the various regions as grain C moves, volumes proportional to the probabilities of the various
junctions can be found2, similar to how the area proportional to p was found above. The
probabilities for the various types of junctions are found to be:

J0 = 1- 3X + 3X2 - X3 X<1 (3.4a)

Jo =0 X>1 (3.4b)
9X2 7X 3

J =3X- -- + X<1 (3.5a)
2 4

J, = 2- 3X+ - X>1 (3.5b)
2 4

3X 2 X3

J2 -X<1 (3.6a)4 2
9X 2 X3

J2 = -1 +3X - ~ + X>1 (3.6b)
4 2

3X2 X3

J3= (3.7)
4 4

3.2 General texture
To determine the junction probabilities for general texture, a way to represent arbitrary

orientations in space must be chosen. For this derivation, quatemions are used to represent
orientation. Quaternions can be thought of as points on the surface of a four dimensional unit
sphere. A coordinate system can be defined for the sphere with the axes x, y, z, and w. Points
on the sphere can then be defined by a vector (x,y,z,w). Orientations are defined from a
reference orientation at (0,0,0,1). A rotation from the reference orientation of an angle theta
about an axis (x,y,z) is represented on the sphere by rotating away from the reference orientation
by an angle of theta/2, in the direction of (x,y,z,0). Misorientation angles between two grains in
this space are represented half of the angular distance between their orientations on the surface of
the quaternion sphere. The density of grain orientations is uniform over the surface of this
sphere.3

If m,, the maximum angle from a reference orientation that we allow grains to rotate to,
is less than approximately 40 degrees, then the angle covered on the surface of the hypersphere
will be less than 20 degrees. If the only orientations that are considered are orientations that are
within +m of the reference orientation, a low angle approximation can then be used, where the
surface of the hypersphere can then be projected onto a solid three dimensional sphere, much like
the surface of a 3 dimensional sphere can be projected onto a solid 3 dimensional disk. Uniform
density of grain orientations is preserved in the low angle approximation. Orientations are now
represented by points within a solid 3 dimensional sphere, of radius 0,a,/2 (with angles in
radians). The distance between two points divided by two represents the misorientation angle of
two grains with orientations defined by those points. This means that each point representing an
orientation has a sphere around it of radius OLAB /2, and all points lying within this sphere

7
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represent orientations which would share a low angle boundary with the orientation at the center
of the sphere. At this point, the space can be scaled by a factor of 2, so orientations are
represented within a sphere of radius hix, and misorientation angles are simply the distance
between two points.

Figure 4 shows a plane section of the spherical orientation space, with the reference
orientation at the center of the large circle. The large circle is the section of the sphere within
which are orientations existing in the texture. An orientation for grain A is shown, around which
there is a smaller circle. Points within the smaller circle represent orientations for which grains
would share a low angle boundary with grain A.

Figure 4. A section of the spherical space of possible orientations a grain can take. Grain A is rotated by
some angle away from the reference orientation, and an points near it represent orientations which would
form low angle boundaries with grain A

If the orientation of grain B was picked randomly within x of the reference orientation,
it could fall anywhere within the sphere centered at the reference orientation. The AB boundary
would be low angle if grain B fell within the sphere centered at the orientation of grain A.
Because the density of orientations is even throughout the space, the probability of a low angle
boundary for this particular orientation of grain A proportional to the volume of space that grain
B could fall in which is inside the sphere centered at grain A, that is, the intersection volume of
the two spheres. By integrating this volume as grain A moves over the orientations that it is
allowed to take on, the probability p of a low angle boundary for a material of this texture can be
found.4

3 18X2 X3

P = X -- + (3.8)
32 32

Figure 5 shows some possibilities for fixing the orientations of grains A and B, and
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letting grain C fall anywhere in the space.

Figure 5. A section of the sphere that represents the orientation space for general texture, with possible
orientations of two grains shown inside the sphere. The types of junctions that would result from a third
grain having an orientation within a certain area are labeled.

By integrating the volumes as grains A and B move over the space, the various junction
probabilities can be found. Unfortunately these integrals are somewhat difficult to set up, and
integrals for the volumes have not been completed at this time. However, integrals leading to
another constraint on the system have been completed. It is possible to find the volume for
which the AB and BC boundaries are low angle boundaries. Looking at table 1, this corresponds
to J3 + J2 /3.5

J 2 2120X 9 + 2835X8 - 25488X7 + 26880X6

J3 + 68= X<1 (3.9a)
3 26880

J J2 - 440X9 + 2835X8 - 4752X7 + 26880X6 - 20736X5 + 2560
3 26880X>I (3.9b)

3 26880

Combining equation (3.9) with equations (2.1), (3.8), and (2.7) gives us three constraints
on the distribution of Jo, J 1, J2, and J3. This means that solving for any one of the junction
probabilities will give us the other three. The largest misorientations that three grains can have
in this space are when they are spaced in an equilateral triangle, with each grain rotated "ma
from the reference orientation. When the grains are at these locations, they are at the corners of a
triangle inscribed in a circle of radius max. The distance between the grains is then sqrt(3) * ,max
apart from each other. Hence, for OLAB greater than sqrt(3) * Fx, there must be at least one low
angle boundary in a triple junction, and Jo is therefore equal to zero. Using the above constraints,
we can solve for the other triple junctions.

9 8 1X2 27X 4 3X6 297X 7 81X8 1X 9-3 - - + �- (3.10)
7 35 16 32 560 256 224

9
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25 162X 2
3 81X4 9X 6 297X 7 81X8 11X 9J = - + --- + 3X3 ----- + - + _-- _ --- ---- (3.11)

7 35 16 32 280 128 112

23 81X2 27X4 3X 6 297X7 81Xs l1X 9J1 = 3X3 + -- - + - (3.12)
7 35 8 16 560 256 224

J0 =0 (3.13)

However, the solution for X less than the square root of three still requires the solution of one of
the probabilities for one of the junctions.

4. Results and discussion
The geometric methods presented here seem to provide a way to find analytical solutions

to the distribution of triple junctions for various textures. These methods could be applied to
non-uniform textures if a weighting function was applied to the integrals.

For the constraints found for the general texture, the integrals had to be broken up into
multiple parts, and yet the answers were sometimes continuous across those parts. As we have
full solutions for the general texture for X greater than the square root of three, it seems tempting
to attempt to assume that one of the junctions has the same solution for X less than the square
root of three. However, because the constraints in equations (2.7), (3.8), and (3.9b) are all
continuous at X equal to the square root of three, if any one of the functions for the junction
probabilities is continuous, all of the junction probabilities would be continuous. However, it is
evident that Jo is not continuous, so all of the junctions must have a discontinuity in their
functions at X equal to the square root of three.

Appendix A
Derivation of probability of a low angle boundary for fiber texture

As discussed in section 3.1, the area AreaP inside of the dotted lines in Figure 1 is
proportional to the probability of having a low angle boundary in a fiber textured material. In
order to find the area in that figure, we use the construction shown in Figure Al.

10



''max

B 

'I
/ I

/ I

/ I

.1. I
/ti

/
/

/
/ I

Mf ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

f~~ ?/ j
//~~~

//
//

~~~~~~/ /
?/

?~~~~~~~
//

|I s/
/I /

I /

I //

/max / 0 max
I /
1/

Figure A 1. The same figure as figure 2, with an additional geometric construction to enable the solution of
the area for low angle boundaries

The area of the parallelogram minus the area of the two triangles contained in the parallelogram
is the area that we are trying to find. The area of the parallelogram can be found by integrating
the height of the parallelogram over fA from -,,ax to Oma. As the height is a constant 2 times
OLAB, the area comes out to be 4 * ax * OLAB. Each of the triangles is a right triangle with legs
of length OLAB. The area of each triangle is then OLAB2/ 2. Subtracting the area of the two
triangles from the area of the parallelogram, we get

AreaP = 4mx 0,AB - 2 L (A. 1)
2

To find P, we then divide the area found by the total area of the space of the allowed
grain orientations. The space of the allowed grain orientations is a square that is 2 * 4m on a
side, so the area is 4 * max2. This gives us

= B LAB (A.2)

max 40max

Appendix B
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Derivation of junction probabilities for fiber texture

There are two regimes of X to be concerned with for deriving the probabilities of
different types of fiber texture triple junctions, the first where OLAB is between zero and b, and
the second where OLAB is between Wx and 2 * ., In either case, only two of the junction
probabilities need to be solved for, as the constraints in equations (2.1) and (2.7) will allow the
other two to be solved for.

In the first regime, where OLAB is less than .ax, Figure 1 may be used to find the volumes
of the regions. First, to find J3, (a) to (c) of Figure 3 is examined to determine what happens as
the orientation of C moves from -mx. to -max + OLAB. It can be seen that in part (a), J 3 covers an
area of OLAB2. J3 then linearly increases as the orientation of C increases, until grain C reaches a
orientation of -Qmx + OLAB. At this point, the J 3 has an area of 30LAB2, as can be seen from
Figure B1.

max

0
B

Figure B 1. An expanded version of Figure 3c, with lines drawn in to find the area of J3

The average area of J 3 in this region is then 20LAB2. The volume this sweeps out is equal to the
average area multiplied by the distance that grain C travels, OLAB. The volume in this region is
therefore 2 * OLAB3. The second region to examine is where the orientation of C is between -max
+ OLAB and 0. In this region, the area of J3 is constant at 3* OLAB2 . The volume swept out is then
3* OLAB *(ma - OLAB). for orientations of C greater than zero, the diagrams are symmetric to the
ones for orientations less than zero, and the volume swept out can simply be doubled to account
for those orientations of C. Therefore

VolumeJ3 = 2(20aB3 + 30 (0 - OLB)) (B.1)

12
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The probability of a J3 junction is the volume of this J3 region, divided by the volume of the
space of possible orientations. The total possible volume of the space is the volume of the square
that makes up the orientations for A and B, (2* m) 2, times the distance that the possible
orientations of C can take, 2* H. The total volume of the space of allowed orientations is

VolumeSpace = 8q0m.3 (B.2)

which makes the probability of a J3 junction
VolumeJ 3 3X 2 X3

,3 = (B.3)
VolumeSpace 4 4

To find J2 in the first regime, the area where the AB boundary is a high angle boundary,
but the BC and AC boundaries are low angle is examined. From table 1, the area of this region is
J2/3. While the orientation of C increases between - +, and - r + LAB, this area is made up
of two right triangles whose side lengths increase linearly with C, up to a side length of OLAB.

The volume swept out is that of two pyramids, with a base areas of OLAB2/2, and a height of the
distance C moved, OLAB. The volume of the each pyramids is then OLAB3/6. While the
orientation of C moves between - ma + LAB and 0, the area of this region is constant, made of
two right triangles of side length OLAB, and area OLAB2/2. The total volume is therefore

VolumeJ = 2(AB 3 + LAB (0( -SB)) (B.4)
3 6

J VolumeJ2 (B.5)J = (B.5)
VolumeSpace

combining equations (B.5) and (B.2),
3X2 X3

J2 - 2 (B.6)4 2
Using equations (2.1), (2.7), (3.3), (B.3),and (B.6), J1 and Jo can be found to be

J0 = 1- 3X + 3X2 - X3 (B.7)

9X2 7X 3

J, = 3X --- +-- (B.8)
2 4

for Oma greater than 0 LAB.

For the second regime, where OLAB is greater than .a, Figure B2 is used. It can be noted
that Jo is equal to zero for this regime.
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Figure B 2. A representation for possible orientations of grains for fiber texture when O,, is less than OLAB

Here, the region for J1/3 where the AB boundary is low angle is examined. As grain C moves
between - .x and ,x -theta, a square pyramid is swept out, with a base of (2 - OLAB) 2 and
a height of 2 max - LAB. This gives

VolumeJ 2(0., - B) (B.9)
3 3

VolumeJ (B.
VolumeSpace

3X 2 X 3

J, =2-3X+ -- - (B.11)
2 4

Combining this with
Jo =0
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and equations (2.1), (A.2) and (2.7) gives
9X2 X3

J 2 = -1 +3X- + 
4 2

3X2 X3J3= - _
4 4

Appendix C
Demonstration of even coverage of points for quaternions

For a given rotation of angle d from the reference orientation on a quaternion sphere, the
density of points for random orientations on a quatemion is proportional to sin2 (d/2). [2]
Translating to rotations on the unit hypersphere, the density of points is proportional to sin2 (0),
where 0 is the angle of rotation on the hypersphere. If the four dimensional space is sectioned at
a constant value of w, a three dimensional space with a spherical shell of radius sin(O) results.
The area of this shell is proportional to sin2 (0), and hence the density of points is constant for a
given area.

Appendix D
Constraints on general texture

To solve for p for general texture, a method similar to the solution shown in Appendix A
for fiber texture can be used. The volume swept out by the sphere that determines a low angle
boundary for grain A is taken as the orientation of A changes, and the amount of the sphere that
is outside of the space of allowed orientations is subtracted off from that. The volume swept out
by the sphere as grain A moves in the orientation space is simply the size of the space, 47/3 *
~max3 , times the size of the sphere about grain A, 4it/3 * LAB3. To find the amount of the sphere
outside the space of allowed orientations, the construction in Figure D1 is used.

15



Figure D 1. A construction to solve for the volume of space that represents orientations that would share a
low angle boundary with grain A, but are outside the allowed space for the texture.

Grain A must be within OLAB of the boundary of the allowed orientations for part of the sphere to
be outside, so the integral for A goes from +m - OLAB to max. The integral is weighted by the
area for which grain A could be that distance from the boundary, the area of a spherical shell of
radius A, 4cA2. B is then integrated over the outside area in spherical caps of an angle yl,
centered at the reference orientation. A spherical cap of angle gamma on a sphere of radius R
has an area Ar given by

Ar = 2rR 2(1 - Cos(y )) (D.1)
By the law of cosines,

Cos = A 2 +B 2
_LAB

Cos()y') a= A+ -0B (D.2)2AB
The area outside the space Ao is then

Ao = _ dA * 4,rA2 += dB * 2rB2 (1 -Cos(y,)) (D.3)

The area for p becomes

A=reaP = 3 0axB - Ao (D.4)

Integrating for Ao and dividing AreaP by the volume of the allowed space for pairs of
orientations for grains, (4t4)ax3/3) 2, this becomes

16



AreaP 18X 2 X 3
= =X 3 -- + X (D.5)

4;r j 32 32
( 3

The above derivation only holds for OLAB less than x. For LABgreater than m, a
similar construction in Figure D2 is used. However, instead of integrating for p, here the integral
is for q, the probability of a high angle boundary, where

q=1l-p (D.6)

It'

max

Figure D 2. A construction to solve for the probability of a high angle boundary in the general texture

In this case the area can be found directly through integration. From the law of cosines,

A2 B 2 - mx
Cos(y 3) = A +B (D.7)

2AB
Integrating for the allowed space where grain B can fall to not cause a low angle boundary yields

AreaQ= ;a dA * 4M 2i, dB *2 B2 (1-Cos( 3 )) (D.8)

q AreaQ (D.9)

Ci, 3 2

3

Solving through for p yields the same equation as in D.5, despite having a different derivation.
This means that there is only one formula for p for the entire range of X.

Appendix E
To solve for J3 + J2/3, the integrals are set up as follows: Grain A can move over the

entire space. Grain B can move anywhere within OLAB of grain A, and grain C can then move
within OLAB of grain B. The problem must be broken up into many different regimes of X in

17



order to solve it. To simplify some of the integrals, the idea of integrating on the space outside
the allowed orientations in the texture is used for grain C. For X less than 1, the following
equation holds for the integral of the outside area for C, Aoc.

(E.1)J3 +-= pX3- 
3 4 31

3)

To complete the integrals, the math coming from figure D1 can be used for grain B. A similar
figure could be used to get from grain B to grain C, yielding

Cos() = B2 +C -LAB (E.2)
2BC

For X less than 0.5, there are two integrals which must be added together, one where
grain A is within 0LAB of the boundary of the space, and one where it is within 2 0LAB of the
boundary. Hence in this region,

Aoc = Aocl +Aoc2 (E.3)

Aocl = dA * 4M2 dB*2rB 2(1-Cos(y )) LB dC * 2,C2 (1-Cos(y2))
x OB a AB ,ax

Aoc2= AU*4MdA * 4, BL2 dB * 2rB2 (1lCos(y)) if dC * 2,C2( (-Cos(y2 ))
· r-20AB Im. -v,-

Combining equations (E. 1), (E.3), (E.4), and (E.5) yields

J2 2120X9 + 2835X8 - 25488X7 + 26880X6

J3 +- =
3 26880

For X between one half and two thirds, the following equations are used to find
Aoc = Aoc3 +Aoc4 + Aoc5 + Aoc6

Aoc3 = ir2mA dA * 4zM2 rma dB *2,rB2 (1-Cos(y,)) jr+°B dC * 2ZC2 (1- Cos(y2))
ax L2 B - O.,LAUB r max

Aoc4 = f_- B dA * 4Mf42 A dB * 2B 2(l -Cos(y,)) f dC 2rC2 (l-Cos(, 2))
2L.B m. ax - OUB LAB Z4 OMB ;rB2(l m B

Aoc6 = JA im'ax dA*4/2 4 tO-A dB*4 2 + dC* 2nC2(1 Cos(y2 ))

Solving the equations results in equation (E.6) again for this region.
For X between two thirds and one, again slightly different equations are used to

Aoc = Aoc7 +Aoc8 + Aoc9 + Aocl 0

Aoc7= = ma dA * 4 2 m. dB * 2zB2 (1-CoS(yl)) B dC * 2C 2 (1-Cos(r2 ))1.B -max f. -lAB

Aoc8= OAB -Om& dA*4rA2 m dB*2,rB 2 (l _Cos(yl)) OMB dC* 2ZC2(l -_Cos(y 2 ))
'Aoc9 = Oa dLB 2 B - B+A tL dax

Aoc9 = r m~ -° z' dA * 47-£B B*2'B (1-Cos(ry)) C*272zC2 (1-Cos(r2))

Aocl O = I9-B ~max dA * 4if/2 z-A dB * 4;r-.B2 r 0LAB dC * 2z 2 (1- Cos(r2 ))
ap~, -OzeB

(E.4)

(E.5)

(E.6)

Aoc:
(E.7)

(E.8)

(E.9)

(E. 10)

(E.11)

find Aoc:
(E.12)

(E.13)

(E.14)

(E.15)

(E.16)
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In this region, J3 + J2/3 again comes out as in equation (E.6)
As for finding p, when X becomes larger than one, it becomes easier to find high angle

boundaries. Integration can be done to find where the AB and BC boundaries are both high
angle. Looking at Table 1, this is Jo + J1/3. Note that from equations (2.1) and (2.7),

J3 + = 2P -1-(J + )
3 3

Figure El shows the construction necessary to carry out the integral for Jo + J1/3

(E.17)

Figure E 1. Construction to find JO + J1/3. This is slightly more complex than preceding constructions due to
the need to change the point about which concentric spherical caps are being integrated from the orientation
of grain A to the orientation of grain B.

Using the law of cosines:

Cos (4) =
A 2 + 0LAB -

2A0JAB
(E.18)

(A + B)2 + 90~B2 - (B*)2

2(A + B)OL8

Cos () = 2B2 -(B*) 2

2B2

Combining (E.18) and (E.19),

A2 +9LB2 -B2
(B')2 = (A + B)2 + )LAB2 - (A + B)( 2A )

2A
The integral to find the area Ah for Jo + J 1/3 is

Ah = m dA * 4M 2 dB *2rB2 (I- Cos(r,)) dC * 2C 2 (1- Cos(ry))

where

19

- B2

(E.19)

(E.20)

(E.21)

(E.22)



C2 B2 -- 2
Cos(y) 2B (E.23)

finally,

J. Ah
o + (E.24)

33 1'
Solving the integral and combining equations (E.24) with (E.17) and (D.5) yields

J2 - 440X9 + 2835X8 - 4752X 7 + 26880X6 - 20736X5 + 2560
3 26880 (E.25)
3 26880
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