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Abstract

A Threat-Rigidity Analysis of the Apache Software Foundation's Response
to Reported Server Security Issues

By

Yoav Shapira

Submitted to the System Design and Management Program in Partial Fulfillment of the
Requirements for the Degree of Master of Science in Engineering and Management

There exists a broad body of literature documenting organizational responses to

competitive threats, including those responses which fit into the threat-rigidity

hypothesis. The purpose of this thesis is to investigate how a novel organizational form,

the open-source software development community known as the Apache Software

Foundation, responds to a specific type of threat: security issues reported to exist in its

software products.

An analysis of publicly available data from the Apache Software Foundation is

conducted, the security issue handling process is described in detail, and an analysis on

security issue origin, severity, and resolution is provided. Special attention is given to

communication along the issue resolution process, as the threat-rigidity hypothesis

predicts a reduction in the flow of information across the organization. The results show

that this organization defies some central predictions of the hypothesis: there is little

reduction in information flow, little or no centralization in decision-making, and no loss

of group-level focus.

The research results are framed within the literature of user-led innovation and

organizational behavior. The implications for traditional software development

organizations are discussed, and recommendations for further research are provided.

Thesis Supervisor:
Eric A. von Hippel, Professor of Management
Sloan School of Management
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Chapter 1: Introduction

"Software is usually accompanied by documentation in the form of big fat scary manuals
that nobody ever reads. In fact, for the past five years most of the manuals shipped with

software products have actually been copies of Stephen King's The Stand with new
covers pasted on.

-Dave Barry

For better or worse, competition is the primary focus for most companies and managers

in the world. It is an existing fact in most markets, and a weight for consideration in

nearly all product development processes. After all, if one company's product is inferior

to a competitor's offering, that company will most likely sell fewer units, make less

money, and deliver less value to its shareholders. That, at least, is the prevailing thought

in many organizations, and numerous strategies have been formulated and studied in

order to defeat the competition in one manner or another.

Researchers in the academic fields of psychology, organizational behavior, strategy, and

management have been conducting studies of competition for centuries. A broad and rich

body of literature exists on the topic, and specific parts of it are reviewed later in this

thesis. Within this body of work is a segment focusing on organizational responses to

competitive threats: how do companies behave when a competitor's product is shown to

be superior, or when a newcomer threatens to corner a lucrative market segment? How

do individuals or groups scramble to address the threat? What is the role of managers in

redirecting strategy - do they just add stress? These questions and more are of interest to

researchers in the combined areas of organizational behavior, psychology, and

technology management.

One hypothesis in this area is that of threat-rigidity. Originally posed by Staw,

Sandelands, and Dutton (Staw et al. 1981), it makes several observations and assertions

regarding organizational responses to competitive threats. This hypothesis is discussed at

length as part of the Literature Review chapter of this thesis. It has been both empirically

and theoretically confirmed in a range of studies spanning diverse industries and
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contexts. However, the vast majority of researchers surveyed traditional organizational

structures: the for-profit company competing in an open market. The main contribution

of this thesis is the survey of a novel organizational form, the free and open-source

software development community, in light of the threat-rigidity hypothesis.

There has also been much research in recent years on open-source communities such as

the Apache Software Foundation. This research is valuable and presents numerous

interesting findings, but rarely do these publications describe operational aspects where

time is of the essence, such as responding to a competitive threat. Indeed, one motto of

many open-source software organizations is that "the product is ready when it's ready"

(Chaven 2003). Working according to a schedule is an exceedingly rare practice in the

free and open-source software development world. Accordingly, the study of how this

type of organization reacts when time is of the essence has not been widely pursued.

Moreover, these organizations typically rely heavily on volunteers, some of which have

not been involved in the product's development, to help fix bugs and contribute new

software. Are these volunteers effective in helping address competitive threats, or is the

reliance on a volunteer work force a point of weakness when speed is of the essence?

As explained above, the purpose of this thesis is to explore how a relatively novel

organizational form, the loosely-organized, geographically-distributed, non-profit open-

source software development group, handles competitive threats. The key research

questions include:

" How does the Apache Software Foundation handle reported security issues?

" Does the issue-handling process lead to restrictions in information flow and

centralized decision-making, as predicted by the threat-rigidity hypothesis?

" Does such an organizational structure present advantages and benefits in

responding to competitive threats?

* What is the role of volunteers in scrambling to address competitive threats?

" Can we apply lessons from this organizational structure to traditional ones?

" How can this research inform the broader fields of organizational behavior and

management of innovation?

-8-



1.1 The Apache Software Foundation
The Apache Software Foundation is a non-profit organization that consists of a

community of software developers and the technical infrastructure required to support

them (Coar 2005). The Foundation is one of the oldest and most eminent free and open-

source development communities in the world, established in 1995 and providing more

than 100 different products at no cost. The Apache Software Foundation was chosen as

the focus of study for this thesis due to several reasons discussed below and further in the

Sample Selection section of Chapter 3.

The Foundation's main product, the Apache HTTPD web server, is the dominant product

in its market segment. Nearly 70% of the Internet's web sites are powered by the Apache

server (Netcraft 2005). As this includes a tremendous diversity of server environments,

mission-critical systems, and extremely high-traffic environments, users are quick to

report any issue with the product. Moreover, an issue reported by one user is likely to

affect millions of others. If untreated or improperly treated, these issues can cause

serious damage to the Apache brand and divert customers to other products. The product

faces strong competition from for-profit corporations such as Microsoft and Sun

Microsystems.

Security issues are probably the most severe type of defect reported against the Apache

web server. They can lead to horrendous consequences, such as hackers shutting down

web sites or stealing financial and health care information about millions of customers.

Accordingly, the Apache Software Foundation has recognized the importance of dealing

with reported issues quickly and effectively. The Foundation has implemented a special

and well-defined process for dealing with security issues; that process is discussed in

detail in the Research Methodology chapter of this thesis.

In addition, much of the Apache Software Foundation's processes and data are publicly

available. It is an open and accepting community, and direct contact with the people who

respond to security issues is possible. Such contact, which was part of this thesis, can

substantially improve the researcher's understanding of the relevant processes and issues.
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Furthermore, because of the Foundation's age and the product's adoption rate, the sample

size of security issues is larger than in many other open-source communities. This

enabled a more statistically-significant analysis of the organization's response to

competitive threats.

The following diagram illustrates the open-source software development process. While

it originates in a book about the Linux operating system, the same process is applied in

the Apache Software Foundation, with one relevant difference: "project management"

and the "development team" are one and the same.

Apache Open-Source Software Development Model

Via Code Repository
Via Mailing Lists

Figure 1 - Apache Development Process, Adapted from LinuxCare 2000
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1.2 Expected Findings
As the above section explains, the Apache Software Foundation is a volunteer-based

community of software developers. It is not a traditional software development

organization where employees are paid for their time and are therefore expected to act

according to management directive. Indeed, there is no "management" per se in the

Foundation, as no one member has the authority to direct another. Given the structure of

the Foundation and the threat-rigidity hypothesis, we would make several educated

assumptions about the security issue resolution process.

First, we would expect the burden of fixing security issues to divide roughly equally

among the many different Foundation volunteers working on the project. We would not

expect one or two members to fix a majority of security issues in the long-term, although

over any shorter time period, for example a few months, one member may take an active

leadership role in addressing security issues. To test this assumption, we will attempt to

track the average number of issues addressed per developer: it should be close to one.

We would also expect that more serious issues would be addressed more quickly. While

this makes common sense from a user perspective, it is worth nothing that traditional

software development organizations frequently bundle multiple fixes into one bigger

release to help alleviate the burden of deploying the new release to many customers. In

the open-source software development world, the "release early, release often" (Raymond

1999) mantra is common practice, and we would expect the Apache Software Foundation

to issue new product versions faster than normal when security issues are involved. In

order to test this assumption, we will analyze the time taken for new product releases

overall and separately for those releases driven by serious security issues. We would

expect the time to release security-motivated product versions to be less than the average.

Because the product we have chosen to examine, the Apache HTTPD server, is typically

used by system administrators, third party integration engineers, and other

technologically-advanced or "lead" users, we would expect these users to report a large

percentage of security issues. Specifically, we would expect users to report a much larger
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proportion of security issues than the team discovers by itself. An analysis of security

issues sources will be conducted in order to determine the relative proportion of serious

security issues reported by different types of users.

The threat-rigidity hypothesis predicts that organizations facing a competitive threat will

react by centralizing decision-making, often resulting in a few senior individuals in

management making technical decisions that are typically best left to the engineers most

familiar with the project. At the Apache Software Foundation, the engineers are their

own managers, so we would expect the normal decision-making process to stay in place,

without management interruption. This assumption is difficult to test empirically, but we

will conduct a detailed analysis of the security issue handling process and discuss

opportunities for management interruption.

Finally, the threat-rigidity hypothesis also predicts a restriction in the flow of information

across the organization during times of competitive threat. Because the Foundation

espouses an open culture with publicly-accessible communications forums, we expect

this facet of the hypothesis not to hold true. The detailed analysis of the security issue

resolution process will attempt to address this aspect of the threat-rigidity hypothesis in a

qualitative manner.
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1.3 Thesis Structure
This chapter provides an introduction to the thesis and what questions the research

attempts to address. The discussion above describes the Apache Software Foundation,

why it was chosen for this research, and the expected findings of this thesis according to

the threat-rigidity hypothesis. As noted, there has been significant previous research on

the Foundation and other open-source development communities, but the focus of this

thesis is unique: it examines the response of this type of organization under stress from a

competitive threat, where timely action is of the essence. This thesis is the first work to

examine the threat-rigidity hypothesis in relation to this type of an organization.

The rest of the work is structured as follows:

* Chapter 2 is a review of relevant literature intended to establish the context for

this work as drawn from previous research in competition, psychology,

technology management, and user-led innovation. The focus of the chapter is on

the relevant aspects of the threat-rigidity hypothesis, especially centralized

decision-making and restrictions in information flow throughout the organization.

* Chapter 3 describes in detail the research methodology and sources of data used

in this study, including the Apache security process and publicly available data

sources.

* Chapter 4 presents the research results regarding incident handling, organizational

response, and participant motivation. It also provides an analysis of the findings.

* Chapter 5 discusses the implications of the findings, draws conclusions, and

provides recommendations for further work.
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Chapter 2: Literature Review and Research Questions

"Given enough eyeballs, all bugs are shallow."
-Eric S. Raymond

This chapter examines the relevant existing literature in order to provide a context for the

work in this thesis. There exists a substantial body of work on competition, competitive

strategy, and the psychology of individuals and groups responding to threats. There is

also a growing collection of research studies on open-source software, user innovation

communities, and related business models. This literature review reviews the key

findings of interest in these fields, but it does not attempt to provide a detailed view of

any one area of research. Moreover, the findings are reviews only as they related to the

research objectives in this thesis: further references are made available to the interested

reader but are not discussed in depth.

This thesis combines elements from numerous fields, and works will be reviewed with a

focus on how they apply to a distributed user innovation community under stress.

Relevant theoretical and empirical evidence will be cited as appropriate, with a focus on

those aspects of the threat-rigidity hypothesis tested by the Apache Software Foundation.

The key research questions are summarized at the end of the chapter.

-14-



2.1 The Threat-Rigidity Hypothesis
In 1981, Staw, Sandelands, and Dutton published research combining many of the

previously observed phenomena regarding individual, group, and organizational

responses to competitive threats. In this paper, they put forth a set of claims that has

since become known as "The Threat-Rigidity Hypothesis." Staw et al define "threat" as

"an environmental event that has impending negative or harmful consequences for the

entity," where "the entity" may be an individual, a group, or the entire firm (Staw et al.

1981).

In their study, Staw et al found that external threats lead to restriction in information

processing and constriction in decision making, in turn leading to rigid responses at all

organizational levels. The restriction in information processing manifests itself in the use

of fewer communication channels for discussion and consideration of fewer strategic and

tactical alternatives for action. The latter impact is sometimes called "tunnel vision," and

it can be detected by a decline in organizational sensitivity to peripheral cues. The

constriction in decision-making is typically manifested via increased involvement from

executive management, executives making decisions that are best left to middle managers

and staff, less people involved in the decision-making process, and an increased focus on

established processes rather than creative problem-solving.

Staw et al further posit that these rigid responses can be adaptive in a positive way for the

organization, or maladaptive and leading to failure. They suggest that whether rigidity is

good or bad is determined by the degree of environmental change: if the normal, causal

links between firm performance and organizational processes are stable, rigidity is

adaptive in a positive manner. But if the environment has changed significantly, rigidity

is maladaptive and will lead to a deeper crisis.
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The Threat-Rigidity Hypothesis

Reproduced from Gladstein and Reilly (1985), Figure 1

Figure 2 - Key Elements of the Threat-Rigidity Hypothesis

In the twenty-five years since its publication, the work of Staw et al. has become one of

the central theories of organizational behavior under stress. It has been studied by

numerous researchers in diverse fields, including shipbuilding, electronics, government

agencies, activist organizations, farm equipment, and more. Selected field studies are

covered in subsequent sections of this chapter.
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2.2 Restriction in Information Processing
One of the key predictions of the threat-rigidity hypothesis is a restriction in information

flow along different organizational levels: at the individual level where the person

ignores information not related to the current threat, the group level where the group

lapses into "groupthink" (Janis 1982), the organization level where all focus is given to

the current threat at the expense of other issues, and sometimes at the level of

organizational partnerships and joint ventures (Staw et al. 1981).

The restriction in information flow is bothersome because it prevents the individual,

group, or organizational from making fully-informed decisions. However, the existing

literature shows that this restriction is not universal. It may be limited only to

organizations small enough for the current threat to be critical (Audia and Greve 2002),

or may only occur at the organizational-level instead of at all four levels discussed above

(Beckman et al. 2004). For the Apache Software Foundation, we assume no one security

threat is critical: the Foundation's diverse user base and strong reputation prevents any

one threat from destroying the organization.

The restriction in information flow seems to occur at the management levels of

electronics firms (Hoffi-Hofstetter and Mannheim 1999) as well as non-profit drug

treatment centers (D'Aunno and Sutton 1992). The Apache Software Foundation, like

electronics firms, operates in a high-technology arena, but like the drug treatment centers

relies on volunteers and runs a non-profit operation. Both studies pointed to

management-level restriction of information flow as a threat-rigid behavioral response.

Other studies have considered the amount of attention devoted to internal versus external

communications when an organization is faced with a competitive threat (D'Aveni and

MacMillan 1990). As discussed in the findings of this research, the Apache Software

Foundation maintains an open channel of communication with the reporters of security

issues, offering to work together to identify and resolve issues as well as test suggested
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patches. This equal focus on internal and external communications defies existing field

evidence of the threat-rigidity hypothesis (Taylor 2001, Pauwels and Matthyssens 2002).
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2.3 Constriction of Control
The threat-rigidity hypothesis predicts that when faced with a competitive threat,

organizations and groups will constrict control of operations to a smaller group of

individuals than normal for that organization or group (Staw et al. 1981). This is

frequently manifested as more senior individuals, including management, take control of

low-level decision-making processes, make more technical and engineering decisions

than they should, and become less open to alternative ideas, approaches, and strategies.

As a side effect, these managers lose track of other activities, having become too

involved in low-level details.

This part of the threat-rigidity hypothesis has been observed in the electronics industry

(Hoffi-Hofstetter and Mannheim 1999), where the researchers found management to

restrict decision-making to itself during a crisis and gradually adapt over time. It has also

been observed in the withdrawal of firms from international market operations (Pauwels

and Matthyssens 2002), not an area of concern for the Apache Software Foundation

because its marginal cost of operating internationally compared to operating only in the

United States is virtually zero.

Other authors have observed this restriction in information processing in controlled game

situations (Gladstein and Reilly 1985), where the increased stress of having to make

numerous decisions at a rapid pace caused rigid behaviors inside and across participant

groups. As the research shows, Apache Software Foundation volunteers rarely work on

more than one or two security issues at a time, and therefore this field finding does not

apply to the Foundation.

Sometimes the restriction in information processing is natural: for example, drug

treatment centers needing to reduce personnel necessarily turn only to senior

management to make the downsizing decisions (D'Aunno and Sutton 1992). Again, the

Foundation has no such decision to make as it is entirely volunteer-driven. Moreover,

internal competition for resources within the organization is practically non-existent, as

each volunteer does only what he or she wants to do, so the type of internal threat that
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leads to rigid behaviors inside the organization (Thomas 1976) is not found at the

Foundation.

Finally, some researchers investigated the theory that these threat-rigid behaviors among

individuals were a function of stress. One of the most dominant factors of stress among

software professionals is fear of professional obsolescence. This fear leads to

individually threat-rigid responses, such as focusing only on the emergent issue at hand

and ignoring alternative technologies or solutions proposed by others, over long periods

of time (Rajeswari and Anantharaman 2003). These individual manifestations of

restriction in information processing are not limited to the engineers but also appear at the

management level, as evidenced by studies that framed threats honestly or as

opportunities for advancement, resulting in different management behaviors (Xie and

Wang 2003). In the Apache Software Foundation, where there are no managers and

advancement is not a concern, we would not expect the same rigid behavior. In fact,

because the Foundation's volunteers are not concerned about being fired, they may learn

from these threat situations more than employees in conventional scenarios (Barnett and

Pratt 2000), allowing true "double-loop learning" (Argyris and Schon 1978) at both the

individual and group levels.
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2.4 Open-Source Software Development
The previous sections of this chapter describe the threat-rigidity hypothesis and related

research in various fields. While the hypothesis has been considered in diverse scenarios,

it has not been studied within the context of an open-source software development

community. This section of the chapter provides a review of some relevant literature on

the composition, function, and form of these distributed innovation groups. In order to

understand the findings of this research, it is important to understand the community-

driven nature of open-source software development, the role played by volunteer

participants, the openness of the community, and the nature of its users as innovators who

are ahead of the mainstream adoption curve.

Open-source software (OSS) is a term that combines technical aspects of software

development, practices of project management and group organization, licensing and

legal terms for the resulting software, and a philosophical approach to the production and

use of software. The focus of this thesis is on group organization, management, and

response to threats.

The premise behind OSS is that the source code for software is made publicly available,

so that that "when programmers can read, redistribute, and modify the source code for a

piece of software, the software evolves. People improve it, people adapt it, and people fix

bugs. And this can happen at a speed that, if one is used to the slow pace of conventional

software development, seems astonishing" (Open Source Initiative 2005).

Many authors have noted the "necessity is the mother of invention" proverb, and

Raymond (1999) relates it to open-source software development by saying that "every

good work of software starts by scratching a developer's personal itch." Developers of

open-source software have numerous motivations, and many have personal or

organizational software requirements that they fulfill by suitably enhancing an existing

open-source software package.
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Among the key motivations are the creative challenge of the work and a feeling of

obligation to the project's community (Lakhani and Wolf 2005). Solving security issues

can be regarded as a creative activity, especially for the highly capable and experienced

programmers who have been involved in the project for a considerable time, as well as

for the programmers who wrote the code in which the security vulnerability is revealed.

One of the main arguments against open-source software is the lack of a support

department or help desk for users. OSS is supported mainly by volunteers using mailing

lists, but there are also commercial organizations providing support and consulting

services. The volunteer-driven support system is effective and efficient (Lakhani and von

Hippel 2003), leading us to expect that a volunteer-driven security issue resolution

system would also be effective. However, as shown by the security process analysis in

the following chapters, the handling of security issues is done over a more private forum

than normal support, perhaps reducing the amount of community learning in the process.

The users of the Apache web server who also contribute patches, documentation, and

feature ideas are a classical example of lead users (von Hippel 1986). Reporting a

security issue and suggesting a patch for it are a classical lead user activity, because the

solution to a security flaw has high value to those lead users reporting the issue. To this

effect, the Apache Software Foundation should go further in providing users with

security information, "user innovation toolkits," or configuration options and tools to

allow custom security solutions to users (Franke and von Hippel 2002).

Coar (2005) notes that the Apache Software Foundation's goal is for each project to

develop a community of people with a common interest in that project. The Foundation

simply "allows code creation to occur within this community." Management of the

community is decentralized and delegated to the community itself, which usually does

not have a set schedule for releases or other activities. Security issues, however, are

unique in that they should be handled urgently, and there may be negative consequences

to not resolving them quickly. The consideration of such issues is missing from much of
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the literature on open-source software development, and it is the central research question

of this thesis.
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2.5 Summary of Research Questions
The following is a summary of the primary research questions that formed the basis of

this thesis.

* What aspects of the threat-rigidity hypothesis are shown to be accurate in an

open-source software development organization?

* If any aspects of the threat-rigidity hypothesis are shown to be inaccurate within

this type of organization, why is this so?

* How does the lack of formal management in the Apache Software Foundation

impact the organization's response to competitive threats?

* How does the lack of a schedule or project manager impact the efficiency of the

issue resolution process?

* What aspects of the open-source software development organization help with

threat-rigidity, and which, if any, can be applied in a traditional organization?

* Does the open-source organization behave differently under competitive threats

than it does during normal development?

* What role do the reporters of security issues play in their resolution? Do they

report the issue and disappear? How often do they solve the problem or provide

the code fix?

* What is the process used by the Apache Software Foundation to handle reported

security issues? Is it effective and efficient? How does it compare to processes

used by traditional organizations?
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Chapter 3: Research Methodology

"The idea is to try to give all the information to help others to judge the value ofyour
contribution; notjust the information that leads to judgment in one particular direction

or another."
- Richard P. Feynman

This chapter describes the sources of data used in this study and the research approaches

used to obtain and characterize the data. There is a perception that within free and open-

source software development communities such as the Apache Software Foundation, all

data is publicly available. That perception is largely true, but security issues, due to their

sensitive nature and potentially dangerous consequences, are one of the rare exceptions.

These issues are typically made public only following resolution: in fact, the way most

users find out about an existing security issue is when the product team announces a new

software version that addresses the issue.

Fortunately for this research, however, once a fix for the issue is made available, much of

the relevant history is released into the public domain as well. Moreover, during the past

several years, centralized security issue tracking bodies and mechanisms have been

established. These mechanisms are described in more detail below. The Apache

Software Foundation and other vendors typically fully cooperate with these tracking

bodies and comply with naming conventions, making cross-referencing of security issues

possible.

The major challenge in gathering data for this study involved the notion of timing, which

was central to this thesis. While it was fairly easy to confirm the date of public

announcement for a given issue, it was frequently difficult or impossible to ascertain the

original date when the issue was reported to Apache and therefore the time span for

resolving the issue. The approach used to reconstruct this information is also described

below.
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In the spirit of the Feynman quote above, this thesis relies on publicly-available data

sources. The data used is easy to independently analyze or verify.

3.1 Security Issue Databases
There are several organizations that track security issues for multiple products in

publicly-available databases on the Internet. This section describes three of the leading

such databases, all of which were used to gather security issue data for the purposes of

this thesis. There are several other relevant repositories on- and off-line, but their

contents are nearly always included in one or more of these three databases.

For a given security issue, the following sources present some redundant information,

which allows for cross-referencing and data validation. However, each source typically

contributes at least one unique piece of information which is difficult or impossible to

obtain elsewhere, and so a thorough examination of any specific security issue typically

includes data from all of the sources detailed below.

3.1.1 Common Vulnerabilities and Exposures (CVE)
The CVE database is maintained by MITRE, a not-for-profit organization specializing in

information technology, systems engineering, and related research.' The CVE database

is primarily a naming and numbering scheme for security issues affecting the public.

This includes bugs in numerous products, including the Apache web server, reported by

many organizations and individuals.

The CVE database is not a solution center but simply a resource for uniquely naming and

identifying issues for discussion and resolution. Many other data sources, including the

Apache Software Foundation's own public announcements, use the CVE numbering

scheme when discussing security issues. Even those organizations that assign their own

number to the issue usually include the CVE number for cross-referencing purposes.

Similarly, the CVE entry includes numbers used by other organizations as applicable.

1 Please see http://www.cve.mitre.org/about/ for more information about the CVE database, and
http://www.mitre.org/about/index.html for more information about MITRE.
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Issues are reported to CVE either by the person who identified them, by the entity

affected, or by third parties. Thus, an Apache web server vulnerability may be reported

by a hacker who discovered it, by the Apache Security Foundation, or by a user of the

web server.

A sample CVE entry is shown below. This entry, number 913 for the year 2000, is for a

typical Apache web server vulnerability. Note the cross-reference identification numbers

for multiple other sources:

Nhestndd for nforaaion secrty v nbllty Nn

Re m E&E CVEw EGot Boardr, Couns Proec

CVE-2000-0913
AddixtoraI i~f0?mzrnn is available ftom

(aso sponsoredb t3 -CED

CVE Version: 20040901

This is an entry on the CVE list, which standardizes names for security problems. It was reviewed and accepted by
the CVE Editorial Board before it was added to CVE.

Name CVE-2000-0913
Status[Entry

DsrpinMod rewrite in Apache 1.3.12 and earlier allows remote attackers to read arbitrary filsiaDsrpin[RewriteRule1 directive 1is. expanded to Include a filename whose name contains a regular expression.

References

" BUGTRAQ:20000929 Security vulnerability in Apache mod-rewrite
* MANDRAKE:MDKSA-2000:060
* REDHAT:RHSA-2000:088
* REDHAT:RHSA-2000:095
" CALDERA:CSSA-2000-035.0
* HP:HPSBUXOO1O-126
" BUGTRAQ:20001011 Conectiva Linux Security Announcement - apache
* BID:1728

Fore
Figure 3 - Typical CVE Entry
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3.1.2 SecurityFocus and BugTraq
SecurityFocus is a web site owned and operated by Symantec, Inc. with the aim of

providing a central and exhaustive security vulnerability repository.2 The site and its

data are provided free of charge to the public. Like CVE, SecurityFocus contains data on

products from numerous vendors, and information on issues reported by many

individuals and organizations, including third parties not related to the product in

question.

An essential part of the site is the BugTraq mailing list and its searchable archives. The

BugTraq mailing list is one of the earliest sources of security information on the Internet,

dating back to early Usenet adoption. It is still a central discussion point for security

issues, with tens of thousands of subscribers and wide circulation. The BugTraq archives

provide a treasure trove of security issue information, including data on who reported the

issue and when, who researched the issue and how, and details of the issue resolution.

While the BugTraq mailing list originally assigned its own identifiers for security issues,

that practice has ceased. Most of the current BugTraq issues use CVE numbers, and the

archives are searchable by CVE numbers as well.

The screenshot below shows a typical SecurityFocus entry for an Apache web server

vulnerability. Note the CVE cross-reference identification number and the links to

discussion pages for the issue.

2 Please see http://www.securityfocus.com/about for more details about the site.
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i r-symawt ThrmatCon

Learn how to secure your Web site with the -k"Immov
I strongest $$L encryption possible. "eN i Address

VeriSign" SSL Services. Submit U"
Cclc here o b a casaa

Bugtraq | VulnerbilitiSE M iin st et 30 9

f dscussio xl so uin references
-------

Apache Web Server Remote IPv6 Buffer Overflow Vulnerability
Usix
IDS
Imden Bugtraq ID: 11187
ViuS
Pen-st Class: Boundary Condition Error

- CVE: CAN-2004-078&

"ain.iUsts Remote: Yes
Newsletters
SuLoca: No

SF Published; Sep 15 2004 12:00AM4
*Focxs o c x o
FoUps updated: Dec 03 2004 03:42PI

Discovery of this issue is credited to the Red Hat ASF
Vred De Security-Team.

Vulnerable: Turbolinux Turbotinux Desktop 10.0
jobs- -Trustix Secure Linux 2.1o Trustix Secure Linux 2.0

b seeketx Trustix Secure Enterprise Linux 2.0
-- -- rzRedHat Fedora Core2

Tl_: -= -: RedHat Fedora Corel
-....-. RedHat Enterprise Linux WS 3

FOR SQL
INJECN
XSS& MORE

Get the latest Linux
News
Info and resources you
need to maximize your
use of Linux now

Apache Web Server
Get 24x7 support,
consulting. & enterprise
ready Apache software
xxw xs*erLc*"

Remove Security
Defects
Proven solution to
eliminate security defects
from software.

JavaScript Ptretay Allowed [<script>: 11] [3+F+P: 00

Figure 4 - Typical SecurityFocus Entry

The following screen shot shows the "references" tab from the above screen. It illustrates

Security Focus's excellent cross-referencing database. In this case, which is fairly typical

for serious and confirmed security vulnerabilities, vendors other than Apache have

released updates to their products which incorporate the Apache server. SecurityFocus

provides links to that information and directs the user to the appropriate vendor site. In

this case, note for example the updated Linux distributions from Red Hat, Fedora,

TurboLinux, and other vendors.
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Apahe Web Seryr Reoute IPv6 Bufer Overflo Vulnerability Mozzll Firefox

E - 2 gookmarks lods __ep

- htt.jjw ,secutyos.com/djIi87references / o otgtraq

Ap h discuion expfor scluon , e unce a

-Apache Web Server Remote IPv6 Buffer Overflow Vulnerabifity
ufix

I' Advisories:

Pen-Tt e Security Update 2004-12-02 (Apple
s apache (Conectiva )
* Fedora Core 1 Update, apr-utl-0.9,4-2.1 (RedHat

Na n @ Fedora Core 2 Updat apr-uti-0.9.4-14.2 (RedHat)
G * Apache 2, mod dav: Multiple vulnerabilities (Gentoo)

Focus on IDS * SSRT4812, SSRT4832 Rev.0 HP TruG4 IX (Internet Express) PHP / Apache
Focus on Linlx Multiple Local and Remote (HP )
Focus on Nl-acrsct e SSRT4853 rev. 0 - HP-UX Apache with PHP reote Denial. of Service, local
Selevation of privileges (HP)

sewfity Dasi e apache2 (Mandrake

.. I apache2 (SuSE )
e Two vulnerabilities discovered in httpd (TurboLinux)

Jobs... . - a multi (Trustix

References:
Ekpc ers

Tools - - e Apache Homepage (Apache Software Foundation)
= Apache HTTPD Server Proiect Home Page (Apache Software Foundation)
@ PQ94086; 2.0,42.2; 2.0.47.1: Potentiai denial of service exposure,

CAN-2004-0786 (IBM)
P soduca"rch * RHSA-2004:463-09 - Updated httpd packages fix security issues (RedHat)

e (ANNOUNCE] Apache HTTP Server 2.0.51 Released (Apache Software
Foundation)

FOR SQL
INECON
XSS& MORE

Figure 5 - SecurityFocus External References

3.1.3 Computer Emergency Response Team (CERT)
The CERT coordination center was established in 1988 by Carnegie Mellon University's

Software Engineering Institute (SEI). Its aim is to provide an information center

regarding security vulnerabilities of public interest and to foster research in this area. 3

Over time, the CERT center has focused more on tracking consumer-centric security

issues such as flaws in the Windows operating system or Internet Explorer web browser.

It contains relatively little information on server products such as the Apache web server.

3 Please see http://www.cert.org/meet cert/meetcertcc.html for more background information about CERT.
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For example, as of this writing there were only 12 Apache-related advisories in the CERT

database, compared with hundreds in the CVE and SecurityFocus indices.

Unfortunately, CERT assigns its own identification numbers to security issues and does

not automatically cross-reference CVE numbers. However, because issues tracked by

CERT are independently confirmed and of wide interest, they always exist in the CVE

databases with their proper CVE identification; the researcher must manually link the two

sources of data.

However, where the CERT center contains data on a specific security issue, that data is

typically of high quality. More importantly, the CERT center is meticulous in

maintaining and publishing the revision history for any issues it tracks. This provides a

valuable timeline in security issue evolution for researchers. For example, the following

screenshots illustrate a typical Apache-related CERT issue. Note specifically the revision

history in the second screenshot:
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Options

CERTr Advisory CA-2002-17 Apache Web Server Chunk Handling
U5-Z.ERT

V.'atvac.#E
Vulnerability

,n .. Original release date June 17, 2002
Last revised: March 27, 2003

c zmt MA. Source: CERT/CC

A complete revision history can be found at the end of this file.

7 Systems Affected

* Web servers based on Apache code versions 1.2.2 and above
* Web servers based on Apache code versions 1.3 through 1.3.24
# Web servers based on Apache code versions 2.0 through 2. 0.36

Overview

There is a remotely exploitable vulnerability in the way that Apache web servers (or other web servers based on their source code) handle data encoded
in chunks. This vulnerability is present by default in configurations of Apache web server versions 1.2.2 and above, 1.3 through 1.3.24 and versions 2.0
through 2.0.36. The impact of this vulnerability is dependent upon the software version and the hardware platform the server is running on.

1. Description

Figure 6 - Typical Apache-Related CERT Advisory
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Eje Eck View o aOOICOft look 11* ...

* - [U~ http://www,cert.org/adVisoriesCA-2002-17.htw - . . - v@ o

Revision History

June 17, 2002: Initial release
June 18, 2002: Added Fujitsu vendor statement.
June 18, 2002: Added information about Apache version 1.2.2 and above.
June 18, 2002: Added pointers to Apache versions including 1.3.26.
June 19, 2002: Added Covalent vendor statement.
June 19, 2002: Added Compaq vendor statement.
June 19, 2002: Added Engarde vendor statement.
June 19, 2002: Added SGI vendor statement.
June 19, 2002: Updated Solution section to clarify patch capabilities.
June 19, 2002: Added statement about exploit code for 32-bit platforms.
June 19, 2002: Try to be as clear as possible on the impact (all systems).
June 20, 2002: Added a link to the vulnerability note.
June 20, 2002: Added Hewlett-Packard vendor statement.
June 21, 2002: Added Oracle vendor statement.
June 24, 2002: Added F5 Networks vendor statement.
June 24, 2002: Updated IBM vendor statement to include Websphere information.
June 24, 2002: Added Sun Microsystems Inc. vendor statement.
June 27, 2002: Added Nortel vendor statement.
June 27, 2002: Updated Unisphere vendor statement.
June 28, 2002: Added Alcatel vendor statement.
June 28, 2002: Added Apple vendor statement.
July 08, 2002: Added Cisco vendor statement.
July 15, 2002: Updated Hewlett-Packard vendor statement.

ms

Figure 7 - Parts of the Revision History for a Typical CERT Advisory
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3.2 Sample Selection: Why Apache?
Several other open-source organizations with successful products that were considered

for this thesis include the Sendmail electronic messages transfer agent, the MySQL

relational database system, the PHP scripting language, and the Linux operating system.

In fact, one interesting extension to this thesis would be to conduct similar research at any

one or more of these organizations. The Apache web server was chosen as the focus of

this thesis because of its infrastructure-critical nature and the availability of data from the

Apache Software Foundation.

There has been considerable research on lead users (von Hippel 1986) and their role as

innovators. Von Hippel describes the two essential characteristics of lead users: their

concerns foreshadow general demand, and they expect to obtain high benefits from the

solution to their needs. It is intuitive to see that the first characteristic holds true for

people reporting Apache security issues: their concerns echo general demand because all

users want or would want the security issue addressed. This study attempts to confirm

the second characteristic as well: reporters of security issues obtain benefits both by

having the issue fixed for their own servers and by receiving praise or recognition in the

community. Lead users and the relevant literature were discussed at length in Chapter 2.

The Apache Software Foundation lies at one extreme of the open-source software

development world. It is among the most mature OSS organizations, at more than ten

years old, more than one thousand committers (persons with the technical privileges to

directly modify the software), and thousands of other contributors and users. Its

processes are accordingly different from the many smaller open-source groups, including

projects consisting of a handful (or less) of developers on SourceForge.net or Tigris.org.

These projects are fascinating and worthy of analysis, but there are significant operational

and organizational differences between them and the Apache Software Foundation.

Other large and mature groups, such as the Linux project or the Mozilla Foundation,

would present a more direct analog for comparative studies.
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3.3 Apache Security Team Information
As part of this research, the author initiated contact with members of the Apache

Software Foundation's Security Team. This team consists of volunteers who participate

as developers on several Apache products, including the web server. The Foundation has

approximately one thousand committers, people with the technical access privileges to

directly add source code to the software, but only six serve on this Security Team.4 The

role of this team and the Foundation's security issue handling process in general are

discussed at length in Chapter 4 of this thesis.

The team was a significant source of information for this research. It provided a

computerized record of security incidents including reporting and resolution dates as well

as issue severity. This record is one of the best sources of Apache-specific security

information. A snippet of it is shown on the next page, and the complete record is

included in the Appendix.

4 As of this writing, the six committers are Harmeet Bedi (hbedi(apache.org), Mark J.
Cox (micCdgapache.org), Lars Eilebrecht (lars(apache.org), G.W. Haywood
(ged(&)apache.org), Ben Laurie (benapache.org), and Marc Slemko
(marc@apache.org), identified on the Apache Software Foundation's committer list page
at httD://Deonle.apache.orp/-iim/committers.html.
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C -raets rco nup',oa.Versin .. ~
<issue>
:issue fixed="1.3.33' public="20041021" released="20041028" reported="200410215

<cve namre="CAN-2004-0940* />
<titie>modinclude overflow<ttle>
<severity level="3">moderate</severity>

- <descripton>
<p>A buffer overflow in mod-include could allow a local user who is authorised to create server side include (SSI) files

to gain the privileges of a httpd child.</p>
<description>
<affects prod="httpd' version="1.3.32"/>
<affects prod="httpd version= 1.3.31'/>
<affects prod="httpd' version=*1.3.29"/>
<affects prod="httpd" version="1.3.28"/>
<affects prod="httpd" version="1.3.27 />
<affects prrod="httpd' version="1.3.26' />
<affects prod="httpd' version="1.3.24" />
<affects prod= httpd' version= 1.3.22" />
<affects prod="httpd' version=1.3.20" />
<affects prod="httpd" version="1.3.19 />
<affects prod=httpd" version=1.3.17"
<affects prod="httpd* version: 1.3.14" />
<affects prod ="httpd' version=*1.3.12" />
<affects prod="httpd" version=1.3.11" />
<affects prod= httpd version="1.3.9' />
<affects prcd="httpd" version="1.3.6' />
<affects prod="httpd' version".3.4" />
<affects prod="httpd' version=13.3"/>
<affects prod="httpd' version="1.3.2
<affects prod="httpd" version=1.3.1/>
<affects prcd="httpd" version=1.3.0"/>

<issue>
<issue fixed="2.0.53" public="20041001' reported='20041001">

<cve name="CAN-2004-0885"/>
<severity level='3">moderate</severity>
<title >SSLCipherSuite bypass<ftitle>

- <description>
<p>An issue has been discovered In the mod.ssl module when configured to use the "SSLCIpherSuIte" directive in

IDre u

Figure 8 - Apache Security Team Records (Abbreviated Sample)

As part of this thesis, a computer program was written to analyze the raw log records and

convert them into a format suitable for reading and analysis by Microsoft Excel. The

code for this program, written in the Java programming language, is included in the

Appendix.

While these files are an excellent data source, they are incomplete and sometimes

inaccurate. As part of this research, the author assisted the Apache Security Team in

correcting and completing this file using his findings from other data sources.

-36-



3.3.1 What is the Core Product Team?
As part of this research, contributors to the Apache web server product split into the "core

product team" and external contributors. The core product team is a dynamic group of

people within this project, like all other Apache projects and most open-source software

development communities in general. While various groupings can be used to describe

the core product team, this thesis adopts two fairly simple criteria.

At any given time, the core product team members at any given time are those who are

already Apache committers, people with the technical privileges to submit source code

directly into the product code repository, as listed in (Jagielski 2005). In addition, to

ensure a person was otherwise active on the product, he or she must have made at least

one other code contribution during the year preceding the security incident in question in

order to be considered part of the core product team. These contributions can be verified

by accessing the Foundation's source code repositories as described in the following

section.

Other contributors who help in resolving security issues are referred to as "3rd party" or

"external contributors" as appropriate. They were not part of the core product team at the

time of the specific security issue in question. They may have become part of the core

product team since then, due to additional contributors and the normal dynamics of the

open-source software development community. Conversely, they may have contributed

only one fix and since disappeared entirely. It would be interesting to research whether

contributors to security issues are more likely to become core committers over time than

normal contributors, but this question is left as further work following this thesis.
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3.4 Source Code Repositories
Open-source software development organizations, including the Apache Software

Foundation, use publicly-accessible repositories to hold their software source code. The

Apache Software Foundation uses two such systems: the Concurrent Versions System

(CVS) and Subversion. Some of the data for this research came from the records held in

these source code control systems, which record every change to the software.

Specifically, developers frequently comment on changes they are making, and in the case

of security issues, they sometimes identify the issue they are working on. The screenshot

below illustrates one such example.

Die Edt Yiew go apokmoafts Tools Hels. ........ *.
__77~~ -.,, - - - =-

to httpd-2.1 trunk, but has nothing to do with responses.

r219103 I wrowe 1 2005-07-14 14:22:49 -0700 (Thu, 14 Jul 2005) 1 6 lines

Note two patches available for 2.0.55

There is low hanging fruit here, if anyone's up to committing a few
backports in the next day before a release candidate is tagged ;-)

r219061 I wrowe 1 2.005-07-14 09:51:55 -0700 (Thu, 14 Jul 2005) 1 9 lines

core: strip C-L from any request with a T-E header
resolves external origin. CAN-2005-2088 issues, does not
address internal origin C-L/T-E discrepancies within proxyhttp

Security: CVE CAN-2005-2088
Submitted by: Joe Orton
Reviewed by: Jeff Trawick, Will Rowe

r219059 I wrowe j 2005-07-14 09:47:30 -0700 (Thu, 14 Jul 2005) 1 7 lines

proxy HTTP - ignore C-L and disable keepalive to origin server

Fhhd: Fid af d Preylous R1t* 0fotso eached endl of pag, continued from top

Figure 9 - Apache Web Server Commit Log Example: Fixing CVE CAN-2005-2088

CVS is one of the original open-source code repository systems and is the most widely

used by open-sourced projects (Price and Ximbiot 2005). Between 1995 and 2002, it was

the only system used by the Foundation.
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Subversion is a newer source code control system intended to replace CVS. It contains

virtually all the same features as CVS and more convenience tools for administrators and

users alike (Tigris 2005). The Foundation took care to preserve historical records when

migrating from CVS to Subversion, making this research easier than it would have been

otherwise.

Also included in the source code repositories are change logs for the Apache web server

product. These files contain a list of major new features and changes in each product

version and sometimes contain further information as to who reported or fixed the issue.

An example section of such a file is shown below.

|Aa h[ 9NiJ View nofhttpd/httpd-Jasl .v I~K. Mi aa ree
tie Odt Jew ao ka rk lools Lt

e ht:jv~pd~~rjecscghpftpltg/..5CANEkwnru Go lRtpa- e httndC1AGES_.a

*)F TixExpires handling in modcache. [Justin Erenkrantz]

k) Alter modexpires to run at a different filter priority to E
proper Expires storage by mod-cache. [Justin Erenkrantz]

Langes with Apache 2.0.52

*) Use HTML 2.0 <hr> for error pages. PR 30732 [AndrAQ Malol

*) Fix the global mutex crash when the global mutex is never a]
due to disabled/empty caches. [Jess Holle <jessh ptc.com>]

*) Fix a segfault in the LDAP cache when it is configured switc
off. [Jess Holle <jessh ptc.com>]

*) SECURITY: CAN-2004-0811 (cve.mitre.org)
Fix merging of the Satisfy directive, which was applied to
the surrounding context and could allow access despite confi
authentication. PR 31315. [Rici Lake <rici ricilake.net>]

) Fix the handling of URIs containing %2F when AllowEncodedSli

Fig.re ----------- -a-p-e-Ch--ge--1gshwing -F -ix --- C

Figure 10 - Sample Change Log showing Fix for CVE-2004-081 1
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In the previous screen shot, the change log shows that Rici Lake fixed this security issue.

Further investigation and cross-referenced data sources such as the CVE database showed

that Rici Lake was also the original reporter of this issue. Therefore we conclude that

this is one of the cases showing a user-led issue discovery and resolution process.
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3.5 Product Release Announcements
Every time a new version of the Apache HTTP server product is released to the public, an

announcement is made on the relevant mailing list. This announcement lists major new

features added and significant bugs fixed. Particular attention is paid to any security

issues that may have been addressed in this release. These release announcements, a

sample of which is shown below, constitute the best source for establishing the level of

user involvement in fixing a specific security issue.

For example, the screenshot below shows that the security issue identified as CVE-2003-

0245 was addressed in Apache version 2.0.46, the issue was originally reported by David

Endler (an employee of iDefense Labs, a computer security research and consulting

firm), and the fix was contributed by Joe Orton (an employee of RedHat, a Linux

solutions provider).

k K- w kCvo f-Lpoadc TooIs Kp____&____

Apache 2.0.46 Released

The Apache Software Foundation and the Apache HTTP Server Project are

pleased to announce the ninth public release of the Apache 2.0

HTTP Server. This Announcement notes the significant changes in

2.0.46 as compared to 2.0.45.

This version of Apache is principally a security and bug fix release.

A summary of the bug fixes is given at the end of this document.

of particular note is that 2.0.46 addresses two security
vulnerabilities:

Apache 2.0 versions 2.0.37 through 2.0.45 can be caused to crash in

certain circumstances. This can be triggered remotely through mod day

and possibly other mechanisms. The crash was originally reported by
David Endler <DEndler at iDefense.com> and was researched and fixed by

Joe Orton <jorton at redhat.com>. Specific details and an analysis of the

crash will be published Friday, May 30. No more specific information

is disclosed at this time, but all Apache 2.0 users are encouraged to

upgrade now.
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-02451

Apache 2.0 versions 2.0.40 through 2.0.45 on Unix platforms were

vulnerable to a denial-of-service attack on the basic authentication
module, which was reported by John Hughes <john.hughes at entegrity.com>.

A bug in the configuration scripts caused the apr_password validate()
function to be thread-unsafe on platforms with crypt_ro, including

AIX and Linux. All versions of Apache 2.0 have this thread-safety

problem on platforms with no crypt_rO and no thread-safe crypto,

Figure 11 - Product Release Announcement Example
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Chapter 4: Results and Analysis

"However beautiful the strategy, you should occasionally look at the results."
- Sir Winston Churchill

This chapter presents both the data collected during the research and an analysis of that

data. The data collected is fairly voluminous, so summaries or excerpts will be used as

appropriate; additional detailed data is available in the Appendix. The results are

presented in light of the theoretical assumptions of the threat-rigidity hypothesis,

discussed in the previous chapters, with a focus on answering the research questions of

this thesis.

The findings are divided into the following sections. First, the Apache Software

Foundation's security issue resolution process is discussed in detail. The process

includes multiple optional steps that may be followed depending on the specific details of

the issue in question. One of the main objectives of this research was to document and

analyze the Apache security issue handling process in order to understand its benefits as

well as its shortcomings. Specifically, the question is whether the process contributes to,

prevents, or is natural with respect to the restriction of information flow and

centralization of decision-making aspects of the threat-rigidity hypothesis.

Next, the types of issues reported, their sources, the actions of the team, and participant

involvement in the process are explored. Because the server is so widely used in diverse

and heterogeneous environments, we expect a broad range of types of issues and some

diversity in how these issues are found initially. It will be interesting to see how much

work is performed by the reporter of the issue in finding, discussing, and solving it, and

how much of the work is done by other volunteers. This participation of issue reporters

as well as third parties in resolving security issues speaks to the centralization of

decision-making during this stressful process as well as to the restriction in information

flow. If the process allows input from all interested parties, it does not constrict

information flow.

-42-



The frequency of new product releases will also be examined, along with the relationship

between the release frequency and the magnitude of security issues addressed in the new

release. It will be shown that new product versions which address serious security issues

do tend to arrive faster than average for a new release, but not much faster. This

observation confirms that the release process, including its community consensus

requirements, is not violated or modified for security-driven product releases, thereby

ensuring that decision-making is not centralized to those working on the security issue.

As previously noted, the majority of the Apache Software Foundation's data is publicly

available. Some of the data, such as new product release dates and what product version

addresses what security issue, is easy to find and validate. Other data, such as the

severity classification of a security issue, is more subjective, but the ratings assigned by

the Foundation itself will always be used to ensure data consistency. In fact, there was at

least one case where this research revealed an inconsistency in the Security Team's data:

these inconsistencies were reported to the Team, addressed by the Foundation, and the

updated data was used in this research.
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4.1 The Apache Security Process

This section describes the process used by the Apache Software Foundation to handle

reports of security issues related to its products. While virtually every for-profit software

organization has a process in place for handling security reports, not all open-source

communities do. The Foundation has developed and refined its process over the past

decade, partially in anticipation of widening product usage and increasing consequences

for security issues, and partially in response to past accidents and mishandling thereof. It

is important to understand this process in order to analyze its efficiency and efficacy in

dealing with security issues, restriction of information flow, centralization of decision-

making, and other threat-rigid behaviors.

The original process for handling security issues at the Foundation was neither well-

defined nor well-documented. The initial group of contributors was small, consisting of

only eight engineers, and each contributor was familiar with a large percentage of the

source code. Accordingly, each person could help in analyzing security issues and fixing

them quickly. However, as the group of contributors grew along with the size of the code

base, the need for a better process became apparent. The current process was established

in the late 1990s by several of the original founders of the Foundation. It has been

proven adequate over the past eight years, especially in the face of rapid Foundation

growth and product diversification.

The security process is different from most other Apache processes, and indeed from

most other open-source development processes, in two key ways. First, it is more

centralized than other processes: there is one Apache Security Committee (ASC)

responsible for coordinating all Apache security responses. The membership of this

committee, listed previously in this thesis, consists of senior core members who have

typically been involved with the Foundation for several years. The members tend to have

an understanding of numerous Apache products, not just their own. This is again

different from most open-source processes, whereby contributors are primarily involved

with one product that they use routinely.
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The other key difference between the security process and other processes at Apache is

its privacy concerns. Because the information discussed during this process presents a

potential security exploit, which would impact millions of web sites, it is kept private.

The discussions take place on lists which are not open to the public, and the information

is made available to the public only once a fix has been made. While the original process

was more open, it also facilitated rapid exploits of reported security issues in the form of

hackers attacking vulnerable systems before the administrators could update the Apache

product, so the revised process is significantly more closed. However, an emphasis is

placed on including all relevant stakeholders in the decision-making process: the original

reporter, the entire security team, the entire product team, and sometimes key third parties

such as those working for external threat databases.

The following is a detailed description of the process, which has been proven adequate in

the face of the Apache products' explosive user base growth as well as the Foundation's

diversifying product line. The stage numbers in the description correspond to the

numbers in the process flow diagram following the detailed description below.

Stage Stage Description
Number
1 A possible security issues is reported to the Apache Software Foundation via

an electronic message to the designated address, securityapache.org. This

address is monitored by all members of the Apache Security Committee

(ASC), and its contents or archives are not open to detailed public review.

The report may come from a user stumbling upon the issue, a paid consultant

conducting a product security audit, or even another Apache developer who

happened to notice suspect code or behavior while working on another section

of the product. Section 4.2 of this thesis examines the distribution of security

issue sources.

Please note that there is no standard template or web page for the reporter to
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fill out. The reports come in as free-form electronic mail messages. While

this can be construed as a weakness in the process, the average technical

competency level of issue reporters is high enough that he or she includes

much of the relevant information a-priori without a need for further

prompting. Once an issue is made public, it is typically entered into the

official product issue tracking software, where detailed information about the

affected operating systems and other details are recorded.

2 The ASC acknowledges the issue report by sending an electronic message

back to the reporter. The ASC requests that the issue be kept private until

further notice, in order to allow for further diagnosis and repair efforts as

necessary. If any relevant information is missing, such as what product

version the reporter was using, then the ASC requests that this information be

submitted as well.

3 The ASC rejects any obviously inappropriate issues. This includes spain

messages to the securitvapache.org address, messages not related to

security issues, messages related to issues which have been publicly addressed

in the past, and messages not related to Apache products at all.

These messages are silently ignored, and the reporter is usually not provided

any feedback. While this may seem unprofessional, it has been deemed

necessary in order to not overwhelm the volunteers on the ASC.

4 Once the issue is accepted by the ASC as relevant, further diagnosis and

triage are conducted. The ASC may request additional details from the issue

reporter. The primary goal of the ASC at this stage is to identify the relevant

product or product section and therefore the relevant developer team to

contact. The ASC is not expected to fix security issues by itself, but it is

expected to conduct sufficient triage to locate the correct developers for fixing

the issue.

Once the relevant product is identified, the ASC forwards all the available

information on the issue, including the original issue reporter's identity and
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contact information, to the product team.

For some products, the forwarding address is the Project Management

Committee (PMC), while other products have dedicated security addresses,

such as securitydtomcat.apache.org. Each product team must provide the

ASC with a forwarding address and is accountable for its own security issue

resolution.

Once the issue is reported to the product team, that team conducts an in-depth

analysis using all available information. The team attempts to reproduce the

issue reported and may ask the original reporter for more information. The

product team makes one of three possible decisions: the issue is invalid, the

issue has been addressed already in new versions of the software, or the issue

is valid and further work is necessary.

5 One possible decision for the project team is to reject the issue as having been

addressed already in versions of the software that followed the reporter's

version. This happens when the user is using an old version, or when a fix

was independently made a short time before the issue was reported to the

product team. This is the least frequent of the three possible product team

decisions described in stages 5, 6, and 7.

When this happens, the original reporter is encouraged to update to the latest

version as soon as possible, but typically no further action is taken. If the

issue had been previously leaked to the public, then an announcement is made

with the same message, urging everyone to update their product versions.

6 The product team rejects the issue as invalid. As mentioned above, the ASC

has some knowledge of most Apache products, but it is not always detailed

operational knowledge, and it may be slightly out of date. Accordingly,

issues occasionally slip through the ASC that the product team is able to

dismiss as invalid.
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One common reason for an issue to be declared as invalid stems from

inappropriate usage of the product. For example, a user reporting a security

issue caused by using a 3rd party extension to an Apache product would see

that issue rejected as inappropriate, and the product team would suggest that

the user contact the 3 rd party library provider so that it may fix the product. If

the extension is widely used, the product team may announce this issue on the

public mailing list and it may also assist the 3rd party provider in addressing

this issue. However, the official Apache process would be over at this point.

7 If the product team verifies that the issue is valid and that it has not been fixed

in other versions, work proceeds towards fixing the issue. Again, the issue

reporter may be contacted for more details, but usually the team knows the

code well enough to proceed without further assistance.

If particular developers are associated with the section of the product where

the issue is reported, these developers are often contacted by the product team

and asked to assist with the process. Sometimes these developers have been

inactive for a prolonged period of time, but as the original authors of parts of

the code, their opinion is respected and they are also the most qualified to fix

the issue.

Frequently, it is during this step that these more veteran, but less involved,

core team members become temporarily involved in order to help fix the

issue.

The product team notifies the ASC of its plan and progress.

8 The ASC continues to remain in contact with the issue reporter, updating him

or her on the progress to date and continued plans for addressing the issue. At

this point, the ASC may contact external parties that track security issues,
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9

such as the Computer Emergency Response Team (CERT) at Carnegie

Mellon University,5 or the Common Vulnerabilities and Exposures (CVE)

initiative at MITRE.6 These organizations assign a case number to the

security issue for further tracking, communication, and archival purposes.

In parallel to the ASC activities in stage 8 above, the product team works on

fixing the issue. Once a code fix is available, it is first tested by the product

team. If the fix is found satisfactory, the product team notifies the ASC of the

results. The fix is also committed into the project's source code repository,

where lead users who track the repository may download and use it before any

formal announcement is made.

10 The ASC or the product team may request the original reporter to help with

verifying the fix. The ASC may also advise the same third parties (CERT and

CVE) of the progress to date, indicating a fix is available. This is an

important communications measure, because many organizations that use

Apache products rely on these third parties to disseminate security updates to

them.

11 After updating the source code repository and notifying the ASC, the product

team issues a new official release of the product. The release is announced on

public mailing lists, with special emphasis given to the security issues

addressed. Credit is given to the issue reporter as appropriate, and users are

encouraged to update to the latest version as soon as possible.

5 For more details on CERT, please see Chapter 3.
6 For more details on CVE, please see Chapter 3.

-49-



The Apache Security Process

8. ASC notifies
reporter of plan to

address issue

10. (optional) ASC
requests issue +-- --

reporter to verify fix

2. Apache Security
Committee (ASC) is 3. ASC rejects

notified of issue, appropriate issues
acknowledges receipt to inappropriate issues

reporter

4. ASC accepts issue,
identifies relevant Apache
product, forwards issue
details to that product's

team

7. Product team
acknowledges issue,

commits to fixing it, and
notifies ASC of plan

9. Product team fixes issue,
notifies ASC of fix

availability

5. Product team acknowledges
issue exists only in old versions,

encourages user update

6. Product team rejects
issue if appropriate

11. Fix made available to the
public accompanied by
information about issue

Greet indicates process
start, red indicates process

end.

Figure 12 - Apache Security Process
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The process is fairly efficient. Step 2, notification of the security team and an

acknowledgement to the issue reporter, is virtually always completed within a few hours

of the reporter's message to the team.

Steps 3 and 4 typically require a day or two for analysis and triage. The team is careful to

assess each issue thoroughly prior to rejecting it. The process for identifying the relevant

Apache product is fairly straightforward, as most of the issues are reported against the

web server itself, and the remaining issues are evenly split among less than a handful of

other projects that can have server-level security issues.

There is further variance in steps 5, 6, and 7, depending on the project team availability

and the complexity of the issue. These steps can take a few hours, typically in the case

where the issue is invalid, or a few days, where the issue requires deeper analysis or is

difficult to reproduce. Cases that require further information from the issue reporter take

longer.

Step 9, actually fixing the issue, also has high variance, taking anywhere from a couple of

hours to a week. Some fixes are as trivial as correcting the documentation or removing a

misleading comment in the code, but others involve significant code changes to key data

structures in multiple modules of the software. Accordingly, testing these patches can

also be a significant effort, sometimes requiring as much work as the fixing effort itself.

Finally, a new product release is issued containing the fixes as appropriate. For critical or

important issues, a release is typically made as soon as the fix is available. For less

important releases, the code is fixed in the repository, but no release may be made until

additional features and fixes are implemented. In these cases, users are free to download

and build the code from the repository, but there is no official product release made. The

cases of users downloading specific patches as opposed to official releases are not

included in the analysis for this thesis, as they are assumed to be a negligible fraction of

the overall product adoption.
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During the entire process, the original reporter and entire product team are kept in the

loop. While the Security Team steers the process, it does not make technical decisions on

behalf of the product team, and these decisions are made using the normal voting and

consensus guidelines of the Apache Software Foundation. Accordingly, the process does

not lead to excessive centralization of decision-making, and this aspect of the threat-

rigidity hypothesis does not hold in this context.

However, when looking at the restriction of information flow aspect, we observed that

virtually all others Foundation processes are completely open to the public. The security

issue handling process is not open to the public, and although it is closed for good

reasons, it still represents a restriction in information flow. This restriction forfeits many

of the benefits of the open-source software development community, such as having

more people look at every code fix or issue, but the Foundation believes this sacrifice is

necessary in order to mitigate the impact of a security issue becoming publicly known

prematurely. Therefore, although there technically is a restriction in information flow

compared to normal Foundation processes, we do not find it to be the same type of

restriction predicted by the threat-rigidity hypothesis.
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4.2 Security Issue Severity Classification
There have been more than 1,000 security issues reported to the Apache Security Team,

judging from the archives of the security(&apache.org mailing list. Only a small portion

(55, or less than 5.5%) is verified as a legitimate issue and receives a tracking number

such as the one provided by the CVE database described in Chapter 3. The mailing list

archives, which are private and cannot be published as part of this thesis, contain a large

amount of spam messages: 98% according to a recent estimate conveyed in private

discussions with one Security Team member. The team sifts through these messages

without comment, focusing instead on the actual or apparent issues reported.

Like other software organizations, the Foundation has developed a classification scheme

for security issues according to their severity. The classification serves two purposes: it

focuses the attention of developers should simultaneous issues arise and helps convey the

significance of issues to users. The latter is especially important when issues become

publicly known before a fix is available for them, and when a fix is available but requires

a substantial upgrade effort. Some server administrators will not upgrade their

installation unless an issue falls in the "Critical" or "Important" categories. For our

purposes, the classification serves to divide security issues into "serious" or not and for

statistical analysis purposes: the effects of threat-rigidity should be most pronounced for

the most serious security issues and less evident for less serious issues.

The Apache Software Foundation's security classification is repeated below (Cox 2004):

Severity Category Description
Critical A vulnerability rated with a Critical impact is one which could

potentially be exploited by a remote attacker to get Apache to

execute arbitrary code (either as the user the server is running as,

or root). These are the sorts of vulnerabilities that could be

exploited automatically by worms.

Important A vulnerability rated as Important impact is one which could
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result in the compromise of data or availability of the server. For

the Apache web server this includes issues that allow an easy

remote denial of service (something that is out of proportion to

the attack or with a lasting consequence), access to arbitrary files

outside of the document root, or access to files that should be

otherwise prevented by limits or authentication.

Moderate A vulnerability is likely to be rated as Moderate if there is

significant mitigation to make the issue less of an impact. This

might be because the flaw does not affect likely configurations, or

it is a configuration that isn't widely used, or where a remote user

must be authenticated in order to exploit the issue. Flaws that

allow Apache to serve directory listings instead of index files are

included here, as are flaws that might crash an Apache child

process in Apache 1.3.

Low All other security flaws are classed as a Low impact. This rating

is used for issues that are believed to be extremely hard to exploit,

or where an exploit gives minimal consequences.

In this research, we use the classification in two ways: to categorize security issues and to

categorize product versions as "security-driven" or not. A "security-driven" product

release is defined as one addressing at least one issue of critical or important severity.

The complete record of security

below.7

Issue ID Date Reported
CVE-2005-2970
CVE-2005-2728 7/7/2005
CVE-2005-2700 8/30/2005
CVE-2005-2491
CVE-2005-2088
CVE-2005-1268 5/26/2005
CVE-2004-1834 3/2/2004
CVE-2004-0942 10/28/2004
CVE-2004-0940 10/21/2004

issues that have been given a CVE tracking number is

Date Made Public
9/19/2005
7/7/2005

8/30/2005
8/1/2005

6/11/2005
5/26/2005
3/20/2004
11/1/2004

10/21/2004

Date Resolved Days to Resolution
10/14/2005 25
10/14/2005 99
10/14/2005 45
10/14/2005 74
10/14/2005 125
10/14/2005 141

2/8/2005 343
2/8/2005 103

10/28/2004 7

See Chapter 3 for an explanation of the CVE system.
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CVE-2004-0885
CVE-2004-0811
CVE-2004-0786
CVE-2004-0751
CVE-2004-0748
CVE-2004-0747
CVE-2004-0493
CVE-2004-0809
CVE-2004-0492
CVE-2004-0488
CVE-2004-0174
CVE-2004-0113
CVE-2003-0993
CVE-2003-0987
CVE-2003-0789
CVE-2003-0542
CVE-2003-0460
CVE-2003-0254
CVE-2003-0253
CVE-2003-0245
CVE-2003-0192
CVE-2003-0189
CVE-2003-0134
CVE-2003-0132
CVE-2003-0083
CVE-2003-0020
CVE-2003-0017
CVE-2003-0016
CVE-2002-1593
CVE-2002-1592
CVE-2002-1156
CVE-2002-0843
CVE-2002-0840
CVE-2002-0839
CVE-2002-0661
CVE-2002-0654
CVE-2002-0392
CVE-2002-0061
CVE-2001-1342
CVE-2001-0925
CVE-2001-0731
CVE-2001-0730
CVE-2001-0729
CVE-2000-1205
CVE-2000-1204
CVE-2000-091:3
CVE-2000-0505
Table 1 - Apache

10/1/2004
9/18/2004
8/25/2004

7/7/2004
7/7/2004
8/5/2004

6/13/2004
9/12/2004

6/8/2003

2/25/2004
2/20/2004

10/15/2003
12/18/2003
10/3/2003
8/4/2003
7/4/2003

6/25/2003
6/25/2003

4/9/2003
4/30/2003
4/25/2003
3/31/2003
3/31/2003
2/24/2003
2/24/2003

11/15/2002
12/4/2002

9/23/2002
9/20/2002

11/11/2001
8/7/2002
7/5/2002

5/27/2002
2/13/2002

9/18/2001

9/22/2000

Security Issues, 2000-2005

10/1/2004 2/8/2005
9/18/2004 9/28/2004
9/15/2004 9/15/2004

7/7/2004 9/15/2004
7/7/2004 9/15/2004

9/15/2004 9/15/2004
7/1/2004 7/1/2004

9/12/2004 9/15/2004
6/10/2003 10/20/2004
5/17/2004 7/1/2004
3/18/2004 5/12/2004
2/20/2004 3/19/2004

10/15/2003 5/12/2004
12/18/2003 5/12/2004
10/27/2003 10/27/2003
10/27/2003 10/27/2003
7/18/2003 7/18/2003
7/9/2003 7/9/2003
7/9/2003 7/9/2003

5/28/2003 5/28/2003
7/9/2003 7/9/2003

5/28/2003 5/28/2003
4/2/2003 4/2/2003
4/2/2003 4/2/2003

2/24/2003 4/2/2003
2/24/2003 3/19/2004
1/20/2003 1/20/2003
1/20/2003 1/20/2003
9/19/2002 9/24/2002
4/22/2002 5/8/2002
9/25/2002 10/3/2002
10/3/2002 10/3/2002
10/2/2002 10/3/2002
10/3/2002 10/3/2002
8/9/2002 8/9/2002
8/9/2002 8/9/2002

6/17/2002 6/18/2002
3/22/2002 3/22/2002
4/5/2001 5/22/2001

3/12/2001 5/22/2001
7/9/2001 10/12/2001

9/28/2001 10/12/2001
9/28/2001 10/12/2001

2/25/2000
10/13/2000

9/29/2000 10/13/2000
5/31/2000 10/13/2000
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130 Moderate
10 Important
21 Critical
70 Low
70 Important
41 Low
18 Important

3 Low
500 Moderate
45 Low
77 Important
28 Important

210 Important
146 Low
24 Moderate
84 Low
14 Important
14 Moderate
14 Important
49 Critical
70 Low
33 Important

2 Important
2 Important

37 Low
389 Low
66 Important
47 Critical

5 Moderate
16 Low
8 Moderate

10 Important
13 Low

326 Important

2 Important
35 Low
22 Critical
37 Critical
47 Important
71 Important
95 Important
14 Moderate
24 Important

Important
Important

14 Important
135 Moderate



Of the 55 issues in the security records five (9.1%) are classified as critical, twenty four

(43.6%) as important, twelve (21.8%) as moderate, and fourteen (25.5%) as low. This is

fairly remarkable considering the product team itself is responsible for categorizing

security issues: one might think that the team, having developed the buggy code itself,

would down-play the significance of issues. Instead, more than 52% of issues are in the

top two most serious categories.

Figure 13 - Security Issues by Severity

When examining the average resolution time from when the issue is reported (either

privately to security(alapache.org or via public announcements) to when a release is made

that addresses the issue, one sees that the response is faster when the issue severity is

higher, as one would hope.
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Figure 14 - Average Resolution Time by Severity

The average time to address critical issues is 35.2 days, important issues 53.38 days,

moderate issues 90.5 days, and low issues 97.6 days, for an overall average resolution

time of 74.0 days. It is interesting to note that the average resolution time for moderate-

and low-severity issues is fairly similar: this reflects the fact that the low-priority issues

are frequently rolled into another product version, whereas critical or important issues

typically have a product release made specifically to address them once a fix is available.

However, one might also expect security-driven product releases to be issued more

frequently than standard releases. This does not appear to be the case, as shown in the

following two tables. Each table shows the release history for one Apache server branch:

1.3 and 2.0 have been the two major branches over the past six years. The 1.3 branch has

been in maintenance mode for much of this time, as users have been encouraged to

migrate towards the 2.0 branch. However, when important security issues arise in a 1.3

version, they are addressed and a new release made; the product team has been very

reluctant to force users to upgrade.

The following charts include releases intended for General Availability or a wide-scope

beta test. They do not include releases that were tagged in the source code control
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repository but never made available to the public, or releases that were only available for

a few days and recalled due to severe issues.

Apache 2.0 Releases (General Availability / Stable Quality)
ses Serious Security

Issues
Yes
No

Yes
Yes
Yes
Yes
Yes
No

Yes
Yes
Yes
Yes
No
No

Yes
Yes
No
No
No
No
No

Release Addres
Version Date
2.0.55 10/14/2005
2.0.54 4/17/2005
2.0.53 2/8/2005
2.0.52 9/28/2004
2.0.51 9/15/2004
2.0.50 6/30/2004
2.0.49 3/19/2004
2.0.48 10/29/2003
2.0.47 7/9/2003
2.0.46 5/28/2003
2.0.45 4/2/2003
2.0.44 1/21/2003
2.0.43 10/3/2002
2.0.42 9/24/2002
2.0.40 8/9/2002
2.0.39 6/18/2002
2.0.36 5/8/2002
2.0.35 4/6/2002
2.0.32 2/17/2002
2.0.28 11/16/2001
2.0.16 4/8/2001

Table 2 - Apache 2.0 Release History

Time Since Previous
Release

180
68
133
13
77
103
142
112
42
56
71
110

9
46
52
41
32
48
93

222
N/A

Apache 2.0 Time between Releases (Days)

868074 76 78

Figure 15 - Apache 2.0 Average Time between Releases
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As the graph shows, there is a fairly small variance between the overall average time

between releases, 83 days, and the averages for security-driven (85 days, or within 3% of

the normal time) and non-security-driven (79 days, or within 5% of the normal time)

releases.

The data for the Apache 1.3 branch is consistent in terms of percentages and variance.

As mentioned above, this version of the product is in maintenance mode, and releases are

generally less frequent because of that. The focus of development was shifted to the

Apache 2.0 branch in 1999.

As with the other tables in this work, the time since previous release is measured in days.

Apache 1.3 Releases (General Availability I
Release Addresses Serious Security

Version Date Issues
1.3.34 10/18/2005 No
1.3.33 10/29/2004 No
1.3.31 5/11/2004 Yes
1.3.29 10/29/2003 No
1.3.28 7/18/2003 Yes
1.3.27 10/3/2002 Yes
1.3.26 6/18/2002 Yes
1.3.24 3/22/2002 Yes
1.3.23 1/24/2002 No
1.3.22 10/12/2001 Yes
1.3.20 5/22/2001 Yes
1.3.19 2/28/2001 Yes
1.3.17 1/26/2001 No
1.3.14 10/13/2000 Yes
1.3.12 2/25/2000 Yes
1.3.11 1/21/2000 No
1.3.9 8/20/1999 No
1.3.6 3/25/1999 No
1.3.4 1/11/1999 Yes
1.3.3 10/9/1998 No
1.3.2 9/23/1998 Yes
1.3.1 7/22/1998 No
1.3.0 6/6/1998 No

Table 3 - Apache 1.3 Release History

Stable Quality)
Time Since Previous

Release
354
171
195
103
288
107
88
57
104
143
83
33
105
231
35
154
148
73
94
16
63
46
N/A
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Apache 1.3 Time between Releases (Days)

uri ty-

112 114 116 118 120 122 124 126 128 130

Figure 16 - Apache 1.3 Average Time between Releases

In this branch of the software, the situation is similar to the 2.0 branch; the overall

average time between releases is 122 days. The average for security-driven releases is

118 days, within 4% of the normal time, and the average for non-security-driven releases

is 127 days, also within 4% of the normal time.

This suggests that security issues do not cause a panic or emergency situation within the

Foundation. Issues are reported, fixes are made, and the product is released when the fix

is ready. Moreover, the data shows that the normal processes of code validation, testing,

and release by team consensus are all still followed for security-driven releases as well as

normal releases. This negates the threat-rigidity hypothesis' prediction that due to

centralized decision-making, security-driven releases should emerge significantly faster

than the average release.
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4.3 User Participation
As part of the research questions motivated by the user-led innovation nature of open-

source software development, we examine the level of involvement of users in the

security issue identification and handling process.

Users of the Apache HTTP web server are technically-savvy individuals: they download,

install, and configure web servers, sometimes for mission-critical applications in complex

environments. Because the product is popular and frequently used to serve content to the

public from a company's front page, it is also independently tested and audited for

security issues by users and third party consultants alike.

Unfortunately, identifying the reporters of security issues is not always easy or even

possible. Issues are sometimes reported anonymously. Other times the team fails to

disclose the identity of the reporter, whether intentionally in response to the reporter's

request or unintentionally by an error of omission.

Source of Reported Security Issues

100%
90%

80%

70%

60% 72.73% o Extemal Users

50% * Apache security team

40% m Core product team

30%

20%

10%

0%

Figure 17 - Sources of Reported Security Issues

Out of the 55 issues that received a CVE identifier, the majority (more than 70%) were

reported by external users who were not part of the Apache Software Foundation in any

way. The core product team found and reported most of the remaining issues, accounting

for approximately 20% of the total. The Apache Security Team itself reported two

issues, possibly in the process of testing or verifying a different report.
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While the 20% figure may seem small, it is actually significant. One must assume that

the core product team stumbles upon many real or possible security issues during regular

development and testing. There is nothing to compel any team member to report these

issues; a fix could be made silently and included in the next product version silently as

well. However, it appears that the individuals working in the core product team have a

high ethical motivation, and they choose to report in public those security issues that

become visible to them, even before any users encounter the problem. Perhaps this is an

indication of the team's awareness of the level of stress associated with fixing these

issues once they are publicly known, or perhaps it is addressing a simple need: as

mentioned previously, these developers are also strong and frequent users of the product.

The users within the "External" or non-Apache category can be broken down further

according to the type of employment or activity they were doing when they found the

security issue. For this analysis, they are divided into 5 groups:

" Security analysts who are paid to conduct audits ofproducts such as the Apache

server. These companies, such as iDefense Labs or Next Generation Security

Software, routinely inspect new product releases for security issues, develop tools

to test security, and cooperate with the Foundation on resolving these issues.

Their employees are highly knowledgeable about security issues on both the

theoretical and practical levels, and they tend to monitor the CVE and related

databases described in Chapter 3 above on a regular basis.

" Employees of companies that provide services utilizing the Apache server, such as

web site design firms or system integrators. These firms typically run audits of

new product versions and also stress-test various product features as part of their

normal operations. They are not, however, as dedicated to finding and reporting

security issues as the analysts in the first category. Moreover, they are generally

not as knowledgeable as the specialists in the security analysis firms described

above.

" Independent security analysts and "hackers." These are people who report issues

independently of any organization; they do not appear to be users of the product,
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but rather hackers or independent consultants providing security assessments. For

them, finding and reporting issues is partially a matter of pride, a way to establish

credibility in the technical arena, or perhaps a way to draw the attention of and

gain employment with security analysis firms. They are geographically

dispersed: this research found issues reported by hackers in Russia, England,

Italy, China, and the United States.

* Normal users who just happen to run across an issue while using the product.

Again, "normal users" of the Apache web server are typically experienced

technical professionals who have set up the server for their organization. They

are webmasters or server administrators, and they typically conduct a limited set

of tests when deploying new product versions.

* Users of another product. Because the Apache server is a central infrastructure

component for many applications, sometimes users note bad behavior in those

applications and trace it to the server. This is a fairly difficult debugging effort,

so this category is typically very small.

External Sources of Issues

3% m Software security
analysis firm

3% m Software services
28% 35% company

o Independent Security
Analyst / Hacker

o Normal user

31%
* User of another product

Figure 18 - Breakdown of External Sources of Issue

As the breakdown diagram above shows, software security firms are the leading reporters

of security issues in the Apache web server, with approximately 35% of the issues. This

is not surprising: in recent years, the number of these firms and their level of
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sophistication have greatly increased. They employ various automated tools as well as

experienced analysts with complete knowledge of historically buggy areas in the product.

These companies conduct some audits on their own, and other times they are hired by a

third party that relies on the product to independently test it.

The next leading sources of issues are software services companies and independent

hackers. While neither typically has the resources (time or money) to spend on security

auditing that the dedicated analysis firms do, both of these groups have strong

motivations to find and report issues. Software services companies provide consulting

and support services to clients that use the Apache product: it is in their financial interest

to resolve these issues and do so quickly, lest they lose clients to a competing platform.

Independent consultants and hackers have a different interest in finding and reporting

issues: they want to gain recognition and credibility, which typically leads to employment

with the security analysis firms.

This level of involvement from external users is encouraging in light of the threat-rigidity

hypothesis, because it shows that the team does not restrict information flow to itself.

Rather, input from external users is welcomed and taken into full consideration.

Looking at the statistics for external reporters, and counting all reports from one security

analysis firm as one source even if they come from different analysts, one sees the

following:

-64-



Figure 19 - Issues Reported by External Reporters Histogram

Most reporters only report one issue: 19 of them. In fact, the median for issues reported

per reporter is 1.0, although the average is 1.48. Four people have reported two issues

each, three people three issues each, and one person has reported four issues: that

"person" is actually a security analysis firm, iDefense Labs.

It is somewhat surprising that "normal users" only reported a small minority of issues.

There are two complementary explanations for this observation. The first is that the

Apache product is technically mature and extremely well tested by millions of users over

the past decade; accordingly, serious security issues are not only rare but they only

surface in highly unusual configurations or environments. By definition, only a few users

run these configurations, so the opportunity for these bugs to arise is low. This

explanation is partially corroborated by the nature of recent security issues: they tend to

be highly specialized configurations set up by security analysts.

For an illustration of three types of reports, consider the following issues. First, a report

from a security analysis firm, Watchfire, regarding a theoretical security issue called

"HTTP Request Smuggling." The report was submitted to securityoa/apache.org as

requested, and the normal process was followed to fix the server before the report was
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made public. The following two screenshots are just the cover sheet and table of contents

of a 23-page analysis complete with examples and tests (Linhart et al 2005).

4watcHfiRe

HTTP REQUEST SMUGGLING

CHAIM LINHART (chaimlpost.tau.ac.il)

AMIT KLEIN (aksecurity~hotpop.com)

RONEN HELED

AND STEVE ORRIN (sorrin~ix.netcom.com)

A whitepaper from Watchfire

Figure 20 - Security Analyst Issue Report Sample Page 1
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Figure 21 - Security Analyst Issue Report Sample Page 2

Next, consider an issue report from an independent hacker: the report is sent via

electronic mail directly to the BugTraq mailing list discussed in Chapter 3 and not to the

- 67 -



Apache Security Team as requested. The analyst provides a script built from scratch to

demonstrate the vulnerability. The report shows a level of technical maturity but contains

spelling errors and other less professional indicators.

Efe Eckt M~ew rAO ffoolnerhs tools .0

r( http://archives neohapsis comarchivestfuildisclosure/2004-1 /1195.hml Go snsg t

[Full-Disclosure] DoS in Apache 2.0.52 ?

From: Chintan Trivedi (chesschintan@gmaiftcor)
Date: Mon Nov 01 2004 - 03:57:42 CST

* Messages sorted by: [ date 1 thread 1 [ subject I [ author 1

Hi,

I was doing some testing on Apache webserver ver 2.0.52 (unix) and
previous versions. Just found that a special type of request consumes
lot of CPU usage and hangs the webserver. It even hangs other services
like ssh, ftp ..

For Apache 2.0.52 a request like
GET / HTTP/1.O\n
[space] x 8000\n
[space] x 8000n
[space] x 8000\n

Figure 22 - Independent Hacker Bug Report (Excerpt 1)
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Dom

Figure 23 - Independent Hacker Bug Report (Excerpt 2)

Finally, consider a possible issue reported by a "normal user" who is actually a web site

administrator. He noticed strange requests in his site log file and realized Google was

providing search results for a page that had no external links and therefore should not

have been visible to the outside world. That prompted him to investigate the issue and

ask for advice on the mailing list. Further discussion ensued on the list, where

workarounds and tests were devised, and all parties collaborated with the Apache

Security Team to resolve the issue.
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also hanged up. The time required for the attack was just maximum 5
minutes,

I am not sure whether it is a valid DoS or not. Replacing the <space>
with any other char will break the connection just after a few
lines(1 30 or so) of header. Checking the
httpd-2.0.52/server/protocol.c file i see the code for the mime
headers. It checks for the first char of the header. If it is a "space" it
considers it as an extension to the previous line header. The problem
seems to be similar to the advisory published by Guninsky few weeks
ago -> http://Mww.guninski.comihttpdl.html thought its a bit
different. That fix was for the long request field header when the
header line is extended in the next line using space.

Well i guess 8K limit for the number of headers filled with spaces is
quite huge. Its enuf to DoS the server using a few threads.

You can check the attached C file to test it. The file is compiled on
windows system using VC++ 6.0.

------- POC ---
/ Apache 2.0.52 and earlier DoS

#include "stdafx.h"
#include "winsock.h"
#include "string.h"
#include "stdio.h"
#include "windows.h"
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E d L* Yjew -o todknarks Io'lo He'

. -g . *httpj/cert.un l G, 7ur v a2D msgOO 4.htmr G ,how googleindexedafhlwithnoexterr Q

I'm running a modest Apache 1.3.19 server on Mandrake 7.2, with a 2.4

kernel. No cgi's or PHP support, though I do have server-info and

server-status enabled for local reference only.

I noticed some hits in the Apache access log for two files, index.old

and index.older, which were backups of index.html left in my docroot

directory. It wasn't hard to figure out that Google was directing

people to these files; what I couldn't understand was how Google knew

they were there.

Looking a bit deeper, I saw googlebot (and later, some ordinary vistors)

using this syntax:

http://handsonhowto.com/?M=A
http://handsonhowto.com/?S=D

...and if you try this yourself in Internet Explorer, you'll find that

Apache is ignoring my index.html and is giving you a formatted directory

of the docroot directory as though there were no index page.

The differences between the ?M and the ?S versions are not blatantly

obvious, at least not to me.

I'm writing to Bugtraq in frustration because I can't find this documented

ANYWHERE, and it could be a nastier surprise to others than it was to me*.

What other little surprises like this exist, and can I do something in my

Apache config to take control of them?

*Before you tell me about robots.txt, htaccess and so forth, let me

Figure 24 - "Normal User" Issue Report Sample

Note that the user is aware that this might be a more serious issue to others and easily

admits that he is not sure if this is a security flaw. Instead, he asks for help, better

documentation, and commentary. In subsequent discussions, this user helped test the

fixes proposed by the development team, and he was properly credited in the resulting

CVE database record and Apache release announcements.

The second explanation for the relative minority of serious security issues reported by

normal users is that these users actually report many of their issues directly to the team;

these issues are real but not significant enough to merit widespread distribution or a CVE

number. This explanation is also partially corroborated when one examines the release

notes for any particular Apache version: references are frequently made to "possible, but

unlikely or insignificant" security issues reported by a particular user and addressed by

the core team. Because these issues are judged (by both the reporter and the team) to not

present a widespread security risk, they are not passed through the normal security
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process described above. The public is made aware of them only when the release is

made. History has shown this process to be true: over the past five years, there have been

no such issues that were judged insignificant by the team and then became a widespread

risk resulting in CVE / CERT advisories.

Nonetheless, one extension to this work would be to collect and analyze these small user

reports and compare their composition to that of the serious security issues included in

this research. It would also be beneficial to contact these users who reported an issue,

whether it received a CVE tracking number or not, and survey them regarding the effort

they expended in finding and reporting the issue.

Next, consider user participation in actually fixing issues. As the following data shows,

users participate in fixing issues in several ways. Sometimes the person who reported the

issue submits a fix, either at the time of reporting or after further discussions. Other

times, the person drops out of sight after reporting the issue and the core product team

comes up with a fix by itself. Perhaps most interesting, sometimes a third party is

responsible for the fix: these may be people contacted discreetly by the Apache Security

Team, or they may be individuals who stumbled upon the same security issue and are

reporting it after the original report.
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Who Fixes the Issues?
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2% m Core product team

7% 5% * Reporter

o 3rd Party

o Reporter and core

84% product team

* 3rd Party and core
product team

Figure 25 - Breakdown of Sources of Issue Fixes

As the above diagram shows, the vast majority of issues are fixed by the product team.

The probable reason for this difference is that the Apache web server product is a

complex and mature software package with many components, layers, and other

complicating issues. Properly identifying the relevant code in order to fix it, and then

fixing the code without introducing regression defects, is a very difficult task; it is

beyond the capability of most users.

If this explanation is true, one might argue that correcting security issues is beyond the

capability of most Apache developers as well, and therefore we should see a small

minority of developers who fix more than their share of issues. The following tables shed

light on this theory.
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Figure 26 - Issues Fixed per Fixer

The above table shows that most fixers only fix one issue: indeed, the median number of

issues fixed per fixer is 1.0. However, the average is 1.72, 16% higher than the 1.48

issues reported per reporter. Furthermore, the percentage of fixers who fix more than one

issue is 31.03%, slightly greater than the 29.63% of reporters who report more than one

issue.

The difference really becomes evident in the top fixers versus the top reporters

breakdown. An examination of people who report or fix four issues or more shows the

following:

Issues Top Issues
Top Reporters Reported Fixers Fixed
DE 4 JO 8
GG 3 WR 5
MM 3 JT 5
AL 3 JJ 4

AM 4
BS 4

Total: 13 30
Percentage of
Issues: 23.21% 53.57%

Table 4: Top Fixers versus Top Reporters
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As the table shows, the top fixers addressed significantly more issues than the top

reporters, and there are more of them. An examination of the source code repository

shows that these top fixers are among the most senior tenured developers in the Apache

Software Foundation, including one of the original founders and initiators of the Apache

web server product. In addition, several of the top fixers, including JO, have software

security-related responsibilities in their regular employment. The top fixers handled

more than half of all security issues, whereas the top reporters reported less than a quarter

of the same set of issues.

Again, the plurality of issue reporters shows that the security issue handling process is

open to external input and does not feature excessive restrictions in information flow.

Although many security issues are fixed by the top fixers, each fix, independent of its

source, is still validated by the product team, and each product version is approved by the

usual consensus-based Foundation voting procedures. This helps prevent centralized

decision-making by just one or two developers, even if they are top fixers or otherwise

senior members of the team. The overall process is efficient and does not suffer from

threat-rigid behaviors.
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Chapter 5: Conclusions and Further Work

"All of the most significant open source communities have some centralized 'Cathedral'
elements - look at the way Linus controls what goes into the Linux kernel, or the way
Larry Wall controls what goes into the design of Perl. But the most successful open

source communities surround that cathedral with a bazaar that is significantly open."
- Tim O'Reilly (referring to Raymond 1999)

This chapter presents conclusions from the research, notes the limitations of this thesis,

and makes recommendations for further work. In considering the conclusions and scope

of this study, it is helpful to remember the context and time frame of the research. The

work was conducted over approximately seven months while the researcher was engaged

in full-time study at the Massachusetts Institute of Technology. While virtually all the

data gathered for this research is publicly available, it is highly fragmented and its

assembly is a time-consuming and challenging task. Furthermore, it is only in the past

several years that centralized security issue tracking databases have begun thoroughly

cross-referencing and linking entries. Information on issues reported in the year 2000 or

earlier is more difficult to gather and cross-check. In addition, while the current Security

Team members have been active for the past several years, the security process before the

year 2000 was very different, the team members were different, and little public data

exists regarding issues from that time period.

The main goal of this research was to examine how one example of an open-source

software development organization staffed by volunteers, the Apache Software

Foundation, responds to one type of competitive threat: the threat of losing users and

brand quality due to a security flaw in the Apache HTTP web server product. Because

there are competing products and no licensing or contractual costs for users when

switching web server products, this type of threat is presented as a potentially significant

source of threat. The intent of the research was to then examine the response to the

threat, specifically whether the behavioral responses at the personal, group, and

organizational levels matched those predicted by Staw et al. (1981) in their threat-rigidity

hypothesis.
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This examination of the Apache Software Foundation was done in the context of previous

work on user-led innovation (von Hippel 1988). Finding and fixing security issues in this

complex software product is a challenging and creative activity. Professional analysts

and independent hackers alike go to significant lengths to create unusual testing

scenarios, write analyses of discovered security flaws, and often provide test scripts or

patches to the source code that addresses the flaws. They are a significant part of the

security handling process, as predicted by the literature on user innovation.
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5.1 Threat-rigidity?
The threat-rigidity hypothesis, described in detail in Chapter 2, predicts that when a

security issue arises in a public forum, the Apache Software Foundation and its members

would respond in a rigid manner. More specifically, the hypothesis suggests the

Foundation would restrict information flow regarding the security issue to only a selected

few individuals, and that those individuals would be among the more senior members of

the organization. Further, the hypothesis predicts that there would be a constriction in

decision-making, meaning that decisions regarding the security issue would be made by

fewer people and that opposing opinions would be censored. The data collected during

this research shows that most of these predictions do not hold in the Apache Software

Foundation's organization.

On its face, the Foundation's process for dealing with reported security issues does

involve less people and therefore restricts the flow of information. Usually, most Apache

decisions are discussed on public mailing lists open to anyone. Accordingly, any other

forum would represent a reduction in the number of people involved in the discussion.

However, while the Apache Security Team represents a small minority of the

Foundation's developers, they usually open the discussion to all the committers on the

project, even those who have not been involved for a while or who have not been

involved in the part of the product that is under discussion. In numerical terms, this

expands the discussion from the six or so members of the Security Team to the more than

fifty product committers (Apache Software Foundation 2005).

Moreover, because the Foundation is composed of volunteers who may work with other

organizations, the Security Team and product teams are unusually diverse. For example,

the Security Team includes employees of a secure web site hosting company, a Linux

provider, a cryptography research laboratory, and a secure data center provider. The

variance of employment and therefore usage scenarios among the product team members

is even greater. This leads to a significantly more heterogeneous team working on

security issue resolution than the equivalent team in most traditional organizations. Even
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if we accept that information flow is restricted within this team, the diversity of use-cases

included in the discussion is large, and the information that does flow represents many

organizations, many usage scenarios, and broad interests. In this environment, there is no

clear dominant opinion, and no executive decision-maker, so the solution that is finally

adopted really suits most, if not all, of the participants.

The lack of management is another way in which the Apache Software Foundation does

not meet the threat-rigidity hypothesis. While the Foundation does have a formal

hierarchy that culminates in a Board of Directors, this hierarchy does not manifest itself

in security issue discussions. A scan of the securityAapache.org archive reveals very

few messages from directors of the Foundation, and an examination of those message

shows that they are specific to the security issue under discussion. They are not an

attempt to force decisions or dictate policy from further up in the organizational

hierarchy.

The Foundation's guidelines for certifying a product as ready for release ensure that all

the product team members have an equal vote. Any individual member can veto a

product release if he or she thinks the security issue is not adequately addressed or for

any other reason (Coar 2005). This individual veto power ensures an honest and

complete discussion of every issue and prevents any one or few individuals from

exercising undue power or making decisions without the group's consent. This includes

situations where the Security Team thinks an issue has been adequately addressed, but an

individual product team member disagrees: discussion and fixing must continue until this

individual is convinced the issue has been properly addressed. Thus, in this regard, the

Foundation's decision-making guidelines ensure that no constriction will take place even

during stressful situations, such as the ones posed by security issues.

Another aspect of threat-rigidity that is frequently noted and discussed in the Literature

Review above is that of the shifting allocation of resources. Frequently, organizations

will scramble to meet competitive threats by re-assigning key employees and shifting

other resources from their standard work towards addressing the imminent threat. This
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happens to a small extent within the Foundation: much of the finding and analysis of

issues is done by external parties, such as security analysts or independent hackers. The

Security Team is composed of volunteers with specific interest in fixing these issues; it

appears that these individuals are enthusiastic to the point that security flaws attract their

interest more than whatever current work they are pursuing. In other words, they do not

need to be re-assigned by a manager: they re-assign themselves to work on these security

issues. Once re-assigned, they do not face the full brunt of dealing with an issue by

themselves: they have the entire Security Team, product team, and issue reporters with

whom to work. Those individuals who are not interested keep working in their own

areas: they are not forced by management to stop their work stream and address the

security issue, because there is no management. Accordingly, the "ripping" effect where

talented engineers are constantly re-assigned to fight fires in the organization does not

occur in the Foundation.

Several key predictions of the threat-rigidity hypothesis do not hold in the context of the

Apache Software Foundation's handling of security issues, a type of competitive threat.

They do not hold because of a combination of a volunteer-based, user-driven

organization that lacks formal management, and a security issue handling process

designed to incorporate the lead users from beginning to end, harnessing their creative

resources to address the problems they themselves report. The evidence shows that the

Foundation makes good use of these volunteers, decides how to handle issues in an open

and participatory manner, resolves issues in a fairly timely fashion, and communicates

the findings to the public adequately.
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5.2 Limitations of this Research
the Apache Software Foundation is a large and mature open-source software

development organization. Its processes have been refined and tested over the past

decade, resulting in a stable and self-sustaining community. While some other open-

source development groups have attained this level of maturity, it is still the exception:

numerous other open-source software development communities are younger, less

mature, and less tested. Accordingly, the findings of this research may only apply to a

certain subset of open-source communities.

The Apache web server product is among the most successful open-source software

products ever developed. With a market share of 70% and over 50,000,000 customers

(Netcraft 2005), it presents a unique research opportunity. On the one hand, the product

is used in tremendously heterogeneous environments with diverse usage scenarios. On

the other hand, its central place in the Internet's infrastructure has led to increased

attention on security, security handling, and related research, both within the Foundation

and outside. While some other open-source products are similarly widely used, the

lessons drawn from this project may be limited to mature, well-developed, extremely-

well-tested projects that attract a community of analysts and security firms.

Security issues are only one type of a competitive threat. One can easily visualize other

threats in the technical realm, such as a competing product introducing a feature that

Apache does not have and trumpeting this feature in press releases, or in the

organizational realm, such as a large portion of Apache's volunteers leaving the

organization for whatever reason. Neither of these competitive threats is considered in

this research: they may cause the same type of behavior in the Foundation, or they may

bring about a different response. This research is not a general study of competitive

threats to open-source organizations.

This research focused on those security issues serious enough to merit widespread

publication, product fixes, and database tracking numbers such as those assigned by the

CVE and CERT organizations described in Chapter 3. There are many other security
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issues reported to the Apache Software Foundation that do not meet these criteria: they

are judged to be insignificant, they merit a change to the documentation rather than a

code fix, or they are deemed so obscure that the reporter is asked to change his or her

environment. These issues are harder to track and analyze, especially given the privacy

of the security(apache.org mailing list archives.

Finally, one must note that there are artificial constraints on the security issue handling

process imposed on the Apache Software Foundation by external organizations, such as

security analysis firms or central coordinating databases. Sometimes these organizations

report an issue but ask the Foundation to hold off on addressing the issue until further

information is discovered or a user's permission to disclose certain data is obtained. In

these cases, the time to issue resolution and the time to product release may be artificially

lengthened, and some of the statistics presented in Chapter 4 may be inaccurate. This

thesis assumes that such occurrences are rare, and that when they do happen the delay is

minimal in comparison with the actual time spent resolving the security issue.
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5.3 Further Work
The conclusions and limitations sections above identify some opportunities for further

work. As noted, the Apache Software Foundation is somewhat unusual within the open-

source world due to its maturity and development processes. Research in other open-

source software development organizations, such as the Mozilla Foundation, the Eclipse

Project, or the GNU Project would be worthwhile: these are also large organizations with

high visibility and high product usage rates. In addition, research into smaller groups,

such as some of the team projects on SourceForge.net, would be insightful. Such

research could analyze these organizations and compare them to Apache.

Another vein of research to build on this work should involve commercial, for-profit

software development organizations. A comparison of how these organizations handle

security issues, and how they respond to competitive threats in general, would be an

interesting and valuable contribution to the field. For example, one might compare

Microsoft's handling of security issues in its Internet Information Server (IIS), a direct

competitor to the Apache web server product, to the Foundation's handling analyzed in

this work. On its face, it appears that the threat-rigidity hypothesis should hold stronger

in a for-profit organization. The security incident data is typically difficult to obtain from

such organizations, but nonetheless it presents a fascinating research opportunity.

There is much work to be done even within the Apache Software Foundation's

organization. As noted above, this thesis focused on security issues serious enough to

merit widespread attention. There are many more issues that do not meet these criteria;

analyzing them, and the organization's handling of them, would present an interesting

research topic. Along similar lines, analyzing the organizational response to other types

of competitive threats, such as a competitor coming up with a much-hyped new feature or

a competitor claiming to be compliant with some new specification not yet implemented

by the Apache web server, would be a good follow-up research project.

Another type of possible research work in this area involves the composition,

consistency, and completeness of the security issue tracking databases themselves. As
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previously noted, they contain fragmented information, and one must labor to join and

cross-reference the data on any given security issue. Perhaps another type of research

database should be created. New ways are needed for cross-referencing this security data

such that the relevant information remains intact and available for many years.

Finally, and perhaps most fundamentally, there is room for further research on what

constitutes a competitive threat. Is there any type of threat that can make an organization

like the Apache Software Foundation drastically alter the way it operates? How do these

volunteer communities fit into the organizational behavior and strategy literature? These

are interesting questions for further work and analysis.
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Appendix A: Original Thesis Proposal
Below is the original proposal for this thesis. It is included here for
historical reference and completeness only.

SDM Thesis
Proposal Form

Student Name: Yoav Shapira MIT I.D. Number: 966257984

Student's E-Mail Address: yoavsh@sloan.mit.edu

Today's Date: 3 March 2005 Thesis Completion Date: January 2006

Thesis Supervisor: Professor Eric von Hippel e-mail Address: evhippel(&,mit.edu

Thesis Reader: Dr. Karim Lakhani e-mail Address: lakhani@mit.edu

Thesis Title: Threat-Fluidity: How Open-Source Communities Defy Classical Threat-
Rigidity Patterns

Motivation:
There is a significant body of literature suggesting that traditional organizations respond
rigidly to threats: there are numerous social and economic factors which make the
organization retrench its stance and focus on its core competencies and established
procedures. Often times, this is not the optimal behavior, and yet even well-managed
organizations succumb to it. The open-source community model, however, is a relatively
new organizational structure that I believe exhibits the opposite behavior: threat-fluidity.
Unlike traditional organizational structures, the open-source community reacts to threats
with an increased level of productivity and efficiency.

The area of open-source user innovation communities holds particular fascination to me
as both a practitioner and a researcher. I am intrigued by its new organizational forms,
and how they can be applied to traditional organizations in order to improve productivity
and quality. I also hope that this thesis will form an important part of Professor von
Hippel and Dr. Lakhani's ongoing research efforts.

Thesis Statement & Primary Research Objectives:
I contend that open-source software development communities differ from traditional
organizations in how they respond to threats: instead of retrenching and slowing down,
these communities exhibit increased efficiency and effectiveness in responding to the
threat.

The primary research objective of this thesis is to prove the above point. The thesis will
include a review of relevant literature on threat-rigidity and open-source community
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models. I will collect and analyze data on how both classical and open-source software
development organization respond to two types of threats: critical flaws being found in
their products, and new technical specifications to which the products must conform.
Finally, I will attempt to point out those features of open-source organizations that can be
transferred into a more traditional environment, if any, the technical means for doing so,
and under what circumstances such reorganizations are beneficial.

Engineering and Management Content:
This thesis will combine engineering and management content by examining both the
social and technical aspects of open-source communities and traditional software
development organizations as they apply to thread-rigidity.

Much of the existing literature has a sociological focus on organizational behavior. But
with the critical and growing importance of software to practically all organizations
today, a work of research in this area which specifically focuses on the practices of
software development should prove valuable to both engineers and managers.

Research Methods & Approaches:
I plan to employ a combination of classical and open-source-specific research methods.
The literature review and statistical analyses will follow well-established scientific
standards. To analyze open-source communities, I will take advantage of the public
history of changes to source code as well as the publicly available mailing list archives
for the products covered in the thesis.

In addition, I hope to take advantage of my network of open-source developers and
conduct a number of interviews or surveys as part of the thesis research. I would like to
correlate their views with those of other innovating lead users found in Professor von
Hippel's work.

Timeline:
1. Thesis initiation, organization, and planning: Spring 2005.
2. Thesis research, initial writing: Summer 2005.
3. Research concluded and first draft complete: October 2005.
4. Final draft completed, thesis submitted: December 2005.

Signatures:

SDM Fellow: Date:

Thesis Supervisor: Date:

Thesis Reader: Date:

Company Sponsor: Date:
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Appendix B: Raw Security Issue Record
The following is the raw record of security issues, in XML format, as records by the
Apache HTTP web server product team. The record is available in the source code
repository at
http://svn.apache.org/viewcvs.cgi/httpd/site/trunk/xdocs/security/vulnerabilities-
httpd.xml?view=markup.

- <security updated="20051101">
- <issue fixed= "2.0.55" released= "20051014">

<cve name="CVE-2005-2970" />
<severity level= "3">moderate< /severity>
<title>Worker MPM memory leak</title>

- <description>
<p>A memory leak in the worker MPM would allow remote attackers to cause

a denial of service (memory consumption) via aborted connections, which
prevents the memory for the transaction pool from being reused for other
connections. </p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
- < C--
bad code was added

version= "2.0.54"
version= "2.0.53"
version= "2.0.52"
version="2.0.51"
version= "2.0.50"
version= "2.0.49"
version= "2.0.48"
version= "2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version= "2.0.37"
version="2.0.36"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

20020428 therefore after 2.0.35

</issue>
- <issue fixed= "2.0.55" public= "20050707" reported= "20050707"

released="20051014">
<cve name="CVE-2005-2728" />
<severity level= "3" >moderate< /severity>
<title> Byterange filter DoS</title>

- <description>
<p>A flaw in the byterange filter would cause some responses to be buffered

into memory. If a server has a dynamic resource such as a CG I script or PHP
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script which generates a large amount of data, an attacker could send
carefully crafted requests in order to consume resources, potentially leading
to a Denial of Service.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

version= "2.0.54"
version= "2.0.53"
version="2.0.52"
version="2.0.51"
version= "2.0.50"
version= "2.0.49"
version= "2.0.48"
version= "2.0.47"
version="2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version= "2.0.37"
version= "2.0.36"
version= "2.0.35"

- <issue fixed= "2.0.55" public= "20050830" reported= "20050830"
released= "20051014">

<cve name= "CVE-2005-2700" />
<severity level= "2" >important< /severity>
<title>SSLVerifyClient bypass</title>

- <description>
<p>A flaw in the modssl handling of the "SSLVerifyClient" directive. This flaw

would occur if a virtual host has been configured using "SSLVerifyClient
optional" and further a directive "SSLVerifyClient required" is set for a
specific location. For servers configured in this fashion, an attacker may be
able to access resources that should otherwise be protected, by not
supplying a client certificate when connecting.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

version="2.0.54" />
version="2.0.53" />
version="2.0.52" />
version="2.0.51" />
version="2.0.50" />
version="2.0.49" />
version="2.0.48" />
version="2.0.47" />
version="2.0.46" />
version="2.0.45" />
version="2.0.44" />
version="2.0.43" />
version="2.0.42" />
version="2.0.40" />

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
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<affects prod="httpd" version= "2.0.39" />
<affects prod="httpd" version= "2.0.37" />
<affects prod="httpd" version= "2.0.36" />
<affects prod="httpd" version="2.0.35" />

</issue>
- <issue fixed= "2.0.55" public= "20050801" released= "20051014">

<cve name="CVE-2005-2491" />
<severity level= "4">low< /severity>
<title>PCRE overflow</title>
<description>
<p>An integer overflow flaw was found in PCRE, a Pern-compatible regular

expression library included within httpd. A local user who has the ability to
create .htaccess files could create a maliciously crafted regular expression
in such as way that they could gain the privileges of a httpd child.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
<issue fixed="2.0.55"

version= "2.0.54"
version="2.0.53"
version= "2.0.52"
version="2.0.51"
version= "2.0.50"
version= "2.0.49"
version= "2.0.48"
version= "2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version= "2.0.37"
version= "2.0.36"
version= "2.0.35"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

public= "20050611" released= "20051014">
<cve name="CVE-2005-2088" />
<severity level= "" >moderate< /severity>
<title>HTTP Request Spoofing</title>

- <description>
<p>A flaw occured when using the Apache server as a HTTP proxy. A remote

attacker could send a HTTP request with both a "Transfer-Encoding:
chunked" header and a Content-Length header, causing Apache to
incorrectly handle and forward the body of the request in a way that causes
the receiving server to process it as a separate HTTP request. This could
allow the bypass of web application firewall protection or lead to cross-site
scripting (XSS) attacks.</p>
</description>

<affects prod="httpd" version= "2.0.54" />
<affects prod="httpd" version="2.0.53" />
<affects prod="httpd" version="2.0.52" />
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<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
<issue fixed="2.0.55"

version="2.0.51" />
version="2.0.50" />
version="2.0.49" />
version="2.0.48" />
version="2.0.47" />
version="2.0.46" />
version="2.0.45" />
version="2.0.44" />
version="2.0.43" />
version="2.0.42" />
version= "2.0.40" />
version="2.0.39" />
version="2.0.37" />
version="2.0.36" />
version="2.0.35" />

public= "20050608" released= "20051014">
<cve name= "CVE-2005-1268" />
<severity level= "4" >1low< /severity>
<title >Malicious CRL off-by-one< /title>

- <description>
<p>An off-by-one stack overflow was discovered in the modssi CRL

verification callback. In order to exploit this issue the Apache server would
need to be configured to use a malicious certificate revocation list
(CRL) </p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
<issue fixed="2.0.53"

version= "2.0.54"
version="2.0.53"
version= "2.0.52"
version="2.0.51"
version= "2.0.50"
version= "2.0.49"
version= "2.0.48"
version= "2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version= "2.0.37"
version="2.0.36"
version= "2.0.35"

I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>

public="20041101" released="20050208"
reported= "20041028">

<cve name= "CVE-2004-0942" />
<severity level= "2" >important< /severity>
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<title>Memory consumption DoS</title>
- <description>

<p>An issue was discovered where the field length limit was not enforced for
certain malicious requests. This could allow a remote attacker who is able to
send large amounts of data to a server the ability to cause Apache children
to consume proportional amounts of memory, leading to a denial of
service. </p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

version= "2.0.52"
version="2.0.51"
version= "2.0.50"
version= "2.0.49"
version= "2.0.48"
version= "2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version= "2.0.37"
version= "2.0.36"
version= "2.0.35"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

- <issue fixed= "1.3.33" public="20041021" released= "20041028"
reported="20041021">

<cve name="CVE-2004-0940" />
<title>mod-include overflow< /title>
<severity level= "3" >moderate< /severity>
<description>
<p>A buffer overflow in modinclude could allow a local user who is

authorised to create server side include (SSI) files to gain the privileges of a
httpd child.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

version="1.3.32" />
version="1.3.31" />
version="1.3.29" />
version="1.3.28" />
version="1.3.27" />
version="1.3.26" />
version="1.3.24" />
version="1.3.22" />
version="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version="1.3.9" />
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<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

</description>
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
- <issue fixed="2.0.53"

version="1.3.6"
version="1.3.4"
version="1.3.3"
version ="1.3.2"
version="1.3.1"
version="1.3.0"

version= "2.0.52"
version="2.0.51"
version= "2.0.50"
version= "2.0.49"
version="2.0.48"
version= "2.0.47"
version="2.0.46"
version= "2.0.45"
version= "2.0.44"
version="2.0.43"
version="2.0.42"
version= "2.0.40"
version= "2.0.39"
version= "2.0.37"
version="2.0.36"
version= "2.0.35"

/>
/>
/>
/>
/>
/>

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

public= "20040320" reported= "20040302"
released= "20050208">

<cve name= "CVE-2004-1834" />
<severity level= "4" >1low< /severity>
<title>moddiskcache stores sensitive headers</title>

- <description>
<p>The experimental moddiskcache module stored client authentication

credentials for cached objects such as proxy authentication credentials and
Basic Authentication passwords on disk.</p>
</description>

<affects prod="httpd" version="2.0.52" />
<affects prod="httpd" version="2.0.51" />
<affects prod="httpd" version="2.0.50" />
<affects prod="httpd" version="2.0.49" />
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- <issue fixed= "2.0.53" public="20041001" reported= "20041001"
released= "20050208">

<cve name= "CVE-2004-0885" />
<severity level= "3" >moderate< /severity>
<title> SSLCipherSuite bypass</title>

- <description>
<p>An issue has been discovered in the modssi module when configured to

use the "SSLCipherSuite" directive in directory or location context. If a
particular location context has been configured to require a specific set of
cipher suites, then a client will be able to access that location using any
cipher suite allowed by the virtual host configuration.</p>



<affects
<affects
<affects
<affects
<affects
<affects
<affects
<affects
<affects
<affects
<affects
<affects

prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"

</issue>
- <issue fixed="2.0.52"

version= "2.0.48"
version= "2.0.47"
version= "2.0.46"
version= "2.0.45"
version="2.0.44"
version= "2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version="2.0.37"
version= "2.0.36"
version="2.0.35"

released= "20040928" public= "20040918"
reported="20040918">

<cve name="CVE-2004-0811" />
<title>Basic authentication bypass</title>
<severity level= "2">important</severity>

- <description>
<p>A flaw in Apache 2.0.51 (only) broke the merging of the Satisfy directive

which could result in access being granted to resources despite any
configured authentication< /p>
</description>

<affects prod="httpd" version= "2.0.51" />
</issue>

- <issue fixed= "2.0.51" public= "20040915" released= "20040915"
reported= "20040825">

<cve name="CVE-2004-0786" />
<title> IPv6 URI parsing heap overflow</title>
<severity level= "I">critical </severity>

- <description>
<p>Testing using the Codenomicon HTTP Test Tool performed by the Apache

Software Foundation security group and Red Hat uncovered an input
validation issue in the IPv6 URI parsing routines in the apr-util library. If a
remote attacker sent a request including a carefully crafted URI, an httpd
child process could be made to crash. One some BSD systems it is believed
this flaw may be able to lead to remote code execution.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

version= "2.0.50"
version= "2.0.49"
version= "2.0.48"
version= "2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version="2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version="2.0.37"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
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<affects prod="httpd" version="2.0.36" />
<affects prod="httpd" version="2.0.35" />

</issue>
<issue fixed="2.0.51" public= "20040915" released= "20040915"

reported= "20040805">
<cve name= "CVE-2004-0747" />
<severity level= "4">low</severity>
<title> Environment variable expansion flaw</title>

- <description>
<p>The Swedish IT Incident Centre (SITIC) reported a buffer overflow in the

expansion of environment variables during configuration file parsing. This
issue could allow a local user to gain the privileges of a httpd child if a
server can be forced to parse a carefully crafted .htaccess file written by a
local user.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

version="2.0.50"
version= "2.0.49"
version="2.0.48"
version= "2.0.47"
version="2.0.46"
version= "2.0.45"
version="2.0.44"
version="2.0.43"
version= "2.0.42"
version="2.0.40"
version= "2.0.39"
version="2.0.37"
version="2.0.36"
version="2.0.35"

I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>
I>

<issue fixed="2.0.51" released="20040915"
reported="20040707">

<cve name= "CVE-2004-0751" />

public= "20040707"

<severity level= "4" >low</severity>
<title>Malicious SSL proxy can cause crash</title>
-description>

<p>An issue was discovered in the modssi module in Apache 2.0.44-2.0.50
which could be triggered if the server is configured to allow proxying to a
remote SSL server. A malicious remote SSL server could force an httpd child
process to crash by sending a carefully crafted response header. This issue
is not believed to allow execution of arbitrary code and will only result in a
denial of service where a threaded process model is in use.</p>
</description>

<affects prod="httpd" version="2.0.50" />
<affects prod="httpd" version="2.0.49" />
<affects prod="httpd" version= "2.0.48" />
<affects prod="httpd" version="2.0.47" />
<affects prod="httpd" version="2.0.46" />
<affects prod="httpd" version="2.0.45" />
<affects prod="httpd" version= "2.0.44" />
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</issue>
- <issue fixed= "2.0.51" released= "20040915" public= "20040707"

reported= "20040707">
<cve name="CVE-2004-0748" />
<severity level= "2" >important</severity>
<title>SSL connection infinite loop</title>
<description>
<p>An issue was discovered in the modssi module in Apache 2.0. A remote

attacker who forces an SSL connection to be aborted in a particular state
may cause an Apache child process to enter an infinite loop, consuming CPU
resources. < /p>
</description>

<affects prod="httpd" version= "2.0.50" />
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects

</issue>

prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod = "httpd"
prod="httpd"
prod="httpd"
prod = "httpd"
prod="httpd"
prod="httpd"
prod="httpd"

version= "2.0.49"
version= "2.0.48"
version= "2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version="2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version= "2.0.37"
version="2.0.36"
version= "2.0.35"

- <issue fixed= "2.0.51" public= "20040912" reported= "20040912"
released= "20040915">

<cve name="CVE-2004-0809" />
<title>WebDAV remote crash</title>
<severity level= "4">Ilow</severity>
<description>
<p>An issue was discovered in the moddav module which could be triggered

for a location where WebDAV authoring access has been configured. A
malicious remote client which is authorized to use the LOCK method could
force an httpd child process to crash by sending a particular sequence of
LOCK requests. This issue does not allow execution of arbitrary code. and
will only result in a denial of service where a threaded process model is in
use. </p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

version= "2.0.50"
version= "2.0.49"
version="2.0.48"
version= "2.0.47"
version= "2.0.46"
version="2.0.45"
version= "2.0.44"
version="2.0.43"
version= "2.0.42"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

I>
I>
I>
I>
I>
I>
I>
I>
I>
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<affects prod="httpd" version="2.0.40" />
<affects prod="httpd" version= "2.0.39" />
<affects prod="httpd" version="2.0.37" />
<affects prod="httpd" version= "2.0.36" />
<affects prod="httpd" version="2.0.35" />

</issue>
- <issue fixed="2.0.50" released="20040701" reported="20040613"

public="20040701">
<cve name="CVE-2004-0493" />
<title>Header parsing memory leak</title>
<severity level= "2" >important< /severity>

- <description>
<p>A memory leak in parsing of HTTP headers which can be triggered

remotely may allow a denial of service attack due to excessive memory
consumption. </p>
</description>

<affects prod="httpd" version= "2.0.49" />
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects

prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"

version= "2.0.48"
version="2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version="2.0.40"
version= "2.0.39"
version="2.0.37"
version= "2.0.36"
version= "2.0.35"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

</issue>
- <issue fixed="2.0.50" released="20040701" public="20040517">

<cve name= "CVE-2004-0488" />
<severity level= "4"> low</severity>
<title>FakeBasicAuth overflow</title>

- <description>
<p>A buffer overflow in the mod_ssi FakeBasicAuth code could be exploited by

an attacker using a (trusted) client certificate with a subject DN field which
exceeds 6K in length.</p>
</description>

<affects
<affects
<affects
<affects
<affects
<affects
<affects
<affects
<affects
<affects

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
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prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"

version= "2.0.49"
version= "2.0.48"
version= "2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"



<affects prod="httpd" version="2.0.37" />
<affects prod="httpd" version= "2.0.36" />
<affects prod="httpd" version= "2.0.35" />

</issue>
- <issue fixed= "1.3.32" public= "20030610" released= "20041020"

reported= "20030608">
<cve name="CVE-2004-0492" />
<severity level= "3" >moderate< /severity>
<title>modproxy buffer overflow</title>

- <description>
<p>A buffer overflow was found in the Apache proxy module, mod-proxy,

which can be triggered by receiving an invalid Content-Length header. In
order to exploit this issue an attacker would need to get an Apache
installation that was configured as a proxy to connect to a malicious site.
This would cause the Apache child processing the request to crash, although
this does not represent a significant Denial of Service attack as requests will
continue to be handled by other Apache child processes. This issue may lead
to remote arbitrary code execution on some BSD platforms.</p>
</description>

<affects prod="httpd" version= "1.3.31" />
<affects prod="httpd" version= "1.3.29" />
<affects prod="httpd" version= "1.3.28" />
<affects prod="httpd" version= "1.3.27" />
<affects prod="httpd" version= "1.3.26" />

</issue>
- <issue fixed= "1.3.31" public= "20030224" released= "20040512"

reported= "20030224">
<cve name="CVE-2003-0020" />
<title>Error log escape filtering< /title>
<severity level= "4">low< /severity>

- <description>
<p>Apache does not filter terminal escape sequences from error logs, which

could make it easier for attackers to insert those sequences into terminal
emulators containing vulnerabilities related to escape sequences.</p>
</description>

<affects prod="httpd" version= "1.3.29" />
<affects prod="httpd" version= "1.3.28" />
<affects prod="httpd" version="1.3.27" />
<affects prod="httpd" version="1.3.26" />
<affects prod="httpd" version= "1.3.24" />
<affects prod="httpd" version= "1.3.22" />
<affects prod="httpd" version ="1.3.20" />
<affects prod="httpd" version="1.3.19" />
<affects prod="httpd" version ="1.3.17" />
<affects prod="httpd" version= "1.3.14" />
<affects prod="httpd" version="1.3.12" />
<affects prod="httpd" version="1.3.11" />
<affects prod="httpd" version="1.3.9" />
<affects prod="httpd" version ="1.3.6" />
<affects prod="httpd" version= "1.3.4" />
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<affects prod="httpd" version= "1.3.3" />
<affects prod="httpd" version= "1.3.2" />
<affects prod="httpd" version= "1.3.1" />
<affects prod="httpd" version= "1.3.0" />

</issue>
- <issue fixed= "1.3.31" public= "20031218" released= "20040512"

reported= "20031218">
<cve name="CVE-2003-0987" />
<severity level= "4" >1low< /severity>
<title>moddigest nonce checking< /title>

- <description>
<p>mod-digest does not properly verify the nonce of a client response by

using a AuthNonce secret. This could allow a malicious user who is able to
sniff network traffic to conduct a replay attack against a website using
Digest protection. Note that moddigest implements an older version of the
MD5 Digest Authentication specification which is known not to work with
modern browsers. This issue does not affect modauth-digest.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
<issue fixed="1.3.31"

version="1.3.29" />
version="1.3.28" />
version="1.3.27" />
version="1.3.26" />
version="1.3.24" />
version="1.3.22" />
version="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version="1.3.0" />

public= "20040318" released= "20040512"
reported= "20040225">

<cve name="CVE-2004-0174" />
<severity level= "2" >important< /severity>
<title>listening socket starvation</title>

-<description>
<p>A starvation issue on listening sockets occurs when a short-lived

connection on a rarely-accessed listening socket will cause a child to hold
the accept mutex and block out new connections until another connection
arrives on that rarely-accessed listening socket. This issue is known to
affect some versions of A IX, Solaris, and Tru64; it is known to not affect
FreeBSD or Linux.</p>
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</description>
<affects prod="httpd" version= "1.3.29" />
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects

</issue>

prod="httpd"
prod = "httpd"
prod="httpd"
prod="httpd"
prod = "httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"

version="1.3.28" />
version="1.3.27" />
version="1.3.26" />
version="1.3.24" />
version="1.3.22" />
version="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version="1.3.0" />

<issue fixed= "2.0.49" public= "20040318" released= "20040319"
reported="20040225">

<cve name="CVE-2004-0174" />
<severity level= "2"> important< /severity>
<title> listening socket starvation< /title>

- <description>
<p>A starvation issue on listening sockets occurs when a short-lived

connection on a rarely-accessed listening socket will cause a child to hold
the accept mutex and block out new connections until another connection
arrives on that rarely-accessed listening socket. This issue is known to
affect some versions of AIX, Solaris, and Tru64; it is known to not affect
FreeBSD or Linux.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
<issue fixed="1.3.31"

version= "2.0.48"
version="2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version="2.0.37"
version= "2.0.36"
version= "2.0.35"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

public= "20031015" released= "20040512"
reported ="20031015">

<cve name="CVE-2003-0993" />
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<title>Allow/Deny parsing on big-endian 64-bit platforms</title>
<severity level="2"> important</severity>

- <description>
<p>A bug in the parsing of Allow/Deny rules using IP addresses without a

netmask on big-endian 64-bit platforms causes the rules to fail to
match. </p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod='httpd"
<affects prod="'httpd"
<affects prod="'httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
<issue fixed= "2.0.49"

version="1.3.29" />
version="1.3.28" />
version="1.3.27" />
version="1.3.26" />
version="1.3.24" />
version="1.3.22" />
version="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version= "1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version= "1.3.0" />

public="20040220" released="20040319"
reported ="20040220">

<cve name= "CVE-2004-0113" />
<severity level= "2">important< /severity>
<title>modssi memory leak</title>

- <description>
<p>A memory leak in modssi allows a remote denial of service attack against

an SSL-enabled server by sending plain HTTP requests to the SSL port.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

version="2.0.48"
version= "2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version="2.0.40"
version= "2.0.39"
version= "2.0.37"
version= "2.0.36"
version= "2.0.35"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
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- <issue fixed= "2.0.49" public= "20030224" released= "20040319"
reported= "20030224">

<cve name="CVE-2003-0020" />
<severity level= "4"> ow</severity>
<title>Error log escape filtering< /title>

- <description>
<p>Apache does not filter terminal escape sequences from error logs, which

could make it easier for attackers to insert those sequences into terminal
emulators containing vulnerabilities related to escape sequences.</p>
</description>

<affects prod="httpd"
<affects prod= "httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
- <issue fixed="2.0.48"

version="2.0.48" />
version="2.0.47" />
version="2.0.46" />
version="2.0.45" />
version="2.0.44" />
version="2.0.43" />
version="2.0.42" />
version= "2.0.40" />
version="2.0.39" />
version="2.0.37" />
version="2.0.36" />
version="2.0.35" />

public= "20031027" released= "20031027"

</description>
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
<issue fixed="1.3.29"

version="2.0.47" />
version="2.0.46" />
version="2.0.45" />
version="2.0.44" />
version="2.0.43" />
version="2.0.42" />
version="2.0.40" />
version="2.0.39" />
version="2.0.37" />
version="2.0.36" />
version="2.0.35" />

public= "20031027" released= "20031027"
reported="20030804">

<cve name="CVE-2003-0542" />
<severity level= "4" >ow< /severity>
<title>Local configuration regular expression overflow</title>

- <description>
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reported= "20031003">
<cve name="CVE-2003-0789" />
<title>CGI output information leak</title>
<severity level= "3" >moderate</severity>

- <description>
<p>A bug in modcgid mishandling of CGI redirect paths can result in CGI

output going to the wrong client when a threaded MPM is used.</p>



<p>By using a regular expression with more than 9 captures a buffer overflow
can occur in modalias or modrewrite. To exploit this an attacker would
need to be able to
httpd.conf) </p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

create a carefully crafted configuration file (.htaccess or

version="1.3.28" />
version="1.3.27" />
version="1.3.26" />
version="1.3.24" />
version="1.3.22" />
version="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version="1.3.0" />

- <issue fixed= "2.0.48" public="20031027"
reported="20030804">

<cve name="CVE-2003-0542" />
<severity level= "4" >low</severity>

released= "20031027"

<title>Local configuration regular expression overflow< /title>
- <description>

<p> By using a regular expression with more than 9 captures a buffer overflow
can occur in modalias or modrewrite. To exploit this an attacker would
need to be able to
httpd.conf) </p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

create a carefully crafted configuration file (.htaccess or

version="2.0.47"
version= "2.0.46"
version= "2.0.45"
version= "2.0.44"
version= "2.0.43"
version= "2.0.42"
version= "2.0.40"
version= "2.0.39"
version= "2.0.37"
version= "2.0.36"
version= "2.0.35"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

- <issue fixed= "1.3.28" public= "20030718" released= "20030718"
reported= "20030704">

<cve name="CVE-2003-0460" />
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<severity level= "2"> important< /severity>
<title >RotateLogs DoS</title>

- <description>
<p>The rotatelogs support program on Win32 and OS/2 would quit logging

and exit if it received special control characters such as OxlA.</p>
</description>

<affects prod="httpd" version="1.3.27" />
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects

</issue>

prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod = "httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"

version="1.3.26" />
version="1.3.24" />
version="1.3.22" />
version="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version="1.3.0" />

- <issue fixed= "2.0.47" public= "20030709" released= "20030709"
reported= "20030625">

<cve name="CVE-2003-0254" />
<severity level="3" >moderate< /severity>
<title>Remote DoS via IPv6 ftp proxy</title>

- <description>
<p>When a client requests that proxy ftp connect to a ftp server with IPv6

address, and the proxy is unable to create an I Pv6 socket, an infinite loop
occurs causing a remote Denial of Service.</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod= "httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

version="2.0.46" />
version="2.0.45" />
version="2.0.44" />
version="2.0.43" />
version="2.0.42" />
version="2.0.40" />
version="2.0.39" />
version="2.0.37" />
version="2.0.36" />
version="2.0.35" />

- <issue fixed= "2.0.47" public= "20030709"
reported= "20030625">

<cve name="CVE-2003-0253" />
<severity level= "2"> important< /severity>

released= "20030709"
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<title>Remote DoS with multiple Listen directives</title>
- <description>

<p>ln a server with multiple listening sockets a certain error returned by
accepto on a rarely access port can cause a temporary denial of service,
due to a bug in the prefork MPM.</p>
</description>

<affects prod="httpd" version="2.0.46" />
<affects prod="httpd" version="2.0.45" />
<affects prod="httpd" version="2.0.44" />
<affects prod="httpd" version= "2.0.43" />
<affects prod="httpd" version="2.0.42" />
<affects prod="httpd" version= "2.0.40" />
<affects prod="httpd" version="2.0.39" />
<affects prod="httpd" version= "2.0.37" />
<affects prod="httpd" version= "2.0.36" />
<affects prod="httpd" version= "2.0.35" />

</issue>
- <issue fixed="2.0.47" public="20030709" released="20030709"

reported= "20030430">
<cve name="CVE-2003-0192" />
<title>modssl renegotiation issue</title>
<severity level="4" >low</severity>

- <description>
<p>A bug in the optional renegotiation code in modssl included with Apache

httpd can cause cipher suite restrictions to be ignored. This is triggered if
optional renegotiation is used (SSLOptions +OptRenegotiate) along with
verification of client certificates and a change to the cipher suite over the
renegotiation. </p>
</description>

<affects prod="httpd" version="2.0.46" />
<affects prod="httpd" version="2.0.45" />
<affects prod="httpd" version= "2.0.44" />
<affects prod="httpd" version= "2.0.43" />
<affects prod="httpd" version= "2.0.42" />
<affects prod="httpd" version="2.0.40" />
<affects prod="httpd" version="2.0.39" />
<affects prod="httpd" version= "2.0.37" />
<affects prod="httpd" version= "2.0.36" />
<affects prod="httpd" version="2.0.35" />

</issue>
- <issue fixed= "2.0.46" public= "20030528" released= "20030528"

reported= "20030409">
<cve name= "CVE-2003-0245" />
<severity level= "1 ">critical </severity>
<title>APR remote crash</title>

- <description>
<p>A vulnerability in the apr-psprintf function in the Apache Portable Runtime

(APR) library allows remote attackers to cause a denial of service (crash)
and possibly execute arbitrary code via long strings, as demonstrated using
XML objects to moddav, and possibly other vectors.</p>
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</description>
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

version= "2.0.45"
version="2.0.44"
version="2.0.43"
version= "2.0.42"
version="2.0.40"
version="2.0.39"
version="2.0.37"

/>
/>
/>
/>
/>
/>
/>

<issue fixed="2.0.46" public="20030528" released="20030528"
reported="20030425">

<cve name= "CVE-2003-0189" />

<severity level= "2"> important</severity>
<title>Basic Authentication DoS</title>

- <description>
<p>A build system problem in Apache 2.0.40 through 2.0.45 allows remote

attackers to cause a denial of access to authenticated content when a
threaded server is used.</p>
</description>

<affects prod="httpd" version="2.0.45" />

<affects prod="httpd" version="2.0.44" />
<affects prod="httpd" version="2.0.43" />

<affects prod="httpd" version="2.0.42" />

<affects prod="httpd" version= "2.0.40" />
</issue>

<issue fixed="2.0.46" public="20040402" released="20040402">

<cve name= "CVE-2003-0134" />
<severity level=" 2" >important< /severity>
<title>OS2 device name DoS</title>
<description>
<p>Apache on OS2 up to and including Apache 2.0.45 have a Denial of Service

vulnerability caused by device names.</p>
</description>

<affects prod="httpd" version="2.0.45" />

<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects

version="2.0.44"
version="2.0.43"
version="2.0.42"
version="2.0.40"
version= "2.0.39"
version="2.0.37"
version= "2.0.36"
version="2.0.35"

I>
I>
I>
I>
I>
I>
I>
I>

</issue>
- <issue fixed= "2.0.46" released="20040402" public="20030224"

reported= "20030224">
<cve name="CVE-2003-0083" />
<severity level= "4" >Ilow< /severity>
<title>Filtered escape sequences< /title>

- <description>
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<p>Apache did not filter terminal escape sequences from its access logs,
which could make it easier for attackers to insert those sequences into
terminal emulators containing vulnerabilities related to escape
sequences. </p>
</description>

<affects prod="httpd" version="2.0.45" />
<affects prod="httpd" version= "2.0.44" />
<affects prod="httpd" version= "2.0.43" />
<affects prod="httpd" version="2.0.42" />
<affects prod="httpd" version= "2.0.40" />
<affects prod="httpd" version= "2.0.39" />
<affects prod="httpd" version= "2.0.37" />
<affects prod="httpd" version="2.0.36" />
<affects prod="httpd" version= "2.0.35" />

</issue>
- <issue fixed= "2.0.45" public= "20040402" released= "20040402">

<cve name="CVE-2003-0132" />
<severity level= "2" >important</severity>
<title>Line feed memory leak DoS</title>

- <description>
<p>Apache 2.0 versions before Apache 2.0.45 had a significant Denial of

Service vulnerability. Remote attackers could cause a denial of service
(memory consumption) via large chunks of linefeed characters, which
causes Apache to allocate 80 bytes for each linefeed.</p>
</description>

<affects prod="httpd" version="2.0.44" />
<affects prod="httpd" version="2.0.43" />
<affects prod="httpd" version= "2.0.42" />
<affects prod="httpd" version="2.0.40" />
<affects prod="httpd" version="2.0.39" />
<affects prod="httpd" version="2.0.37" />
<affects prod="httpd" version= "2.0.36" />
<affects prod="httpd" version= "2.0.35" />

</issue>
- <issue fixed="2.0.44" public="20030120" released="20030120"

reported = "20021204">
<cve name="CVE-2003-0016" />
<severity level="1 ">critical< /severity>
<flaw type="msdos-device" />
<title>MS-DOS device name filtering </title>

- <description>
<p>On Windows platforms Apache did not correctly filter MS-DOS device

names which could lead to denial of service attacks or remote code
execution. </p>
</description>

<affects prod="httpd" version="2.0.43" />
<maybeaffects prod="httpd" version="2.0.42" />
<maybeaffects prod="httpd" version= "2.0.40" />
<maybeaffects prod="httpd" version="2.0.39" />
<maybeaffects prod="httpd" version="2.0.37" />
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<maybeaffects prod="httpd" version="2.0.36" />

<maybeaffects prod="httpd" version="2.0.35" />
</issue>

- <issue fixed="2.0.44" public="20030120" released="20030120"
reported="20021115">

<cve name= "CVE-2003-0017" />
<flaw type="unk" />
<severity level= "2"> important< /severity>

<title>Apache can serve unexpected files</title>

<description>
<p>On Windows platforms Apache could be forced to serve unexpected files

by appending illegal characters such as '<'to the request URL</p>
</description>

<affects prod="httpd" version="2.0.43" />

<maybeaffects prod="httpd" version="2.0.42" />

<maybeaffects prod="httpd" version="2.0.40" />

<maybeaffects prod="httpd" version="2.0.39" />

<maybeaffects prod="httpd" version="2.0.37" />

<maybeaffects prod="httpd" version="2.0.36" />

<maybeaffects prod="httpd" version= "2.0.35" />

</issue>
<issue fixed="1.3.27" public="20021003" released="20021003"

reported="20020923">
<cve name= "CVE-2002-0843" />

<severity level=" 2" >important< /severity>
<flaw type="buf" />
<title>Buffer overflows in ab utility</title>
<description>
<p>Buffer overflows in the benchmarking utility ab could be exploited if ab is

run against a malicious server</p>
</description>

<affects prod="httpd" version="1.3.26" />
<affects prod="httpd" version="1.3.24" />

<affects prod="httpd" version ="1.3.22" />

<affects prod="httpd" version="1.3.20" />

<affects prod="httpd" version="1.3.19" />

<affects prod="httpd" version="1.3.17" />
<affects prod="httpd" version="1.3.14" />

<affects prod="httpd" version="1.3.12" />
<affects prod="httpd" version="11.3.11" />

<affects prod="httpd" version="1.3.9" />
<affects prod="httpd" version="1.3.6" />

<affects prod="httpd" version="1.3.4" />

<affects prod="httpd" version="1.3.3" />

<affects prod="httpd" version="1.3.2" />
<affects prod="httpd" version="1.3.1" />
<affects prod="httpd" version="1.3.0" />

</issue>
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- <issue fixed= "1.3.27" public="20021003" released= "20021003"
reported="20011111">

<cve name="CVE-2002-0839" />
<severity level= "2" >important</severity>
<flaw type="perm" />
<title>Shared memory permissions lead to local privilege escalation</title>

- <description>
<p>The permissions of the shared memory used for the scoreboard allows an

attacker who can execute under the Apache U ID to send a signal to any
process as root or cause a local denial of service attack.</p>
</description>

<affects prod="httpd" version= "1.3.26" />
<affects prod="httpd" version= "1.3.24" />
<affects prod="httpd" version="1.3.22" />
<affects prod="httpd" version= "1.3.20" />
<affects prod="httpd" version= "1.3.19" />
<affects prod="httpd" version= "1.3.17" />
<affects prod="httpd" version= "1.3.14" />
<affects prod="httpd" version= "1.3.12" />
<affects prod="httpd" version= "1.3.11" />
<affects prod="httpd" version="1.3.9" />
<affects prod="httpd" version= "1.3.6" />
<affects prod="httpd" version="1.3.4" />
<affects prod="httpd" version= "1.3.3" />
<affects prod="httpd" version="1.3.2" />
<affects prod="httpd" version="1.3.1" />
<affects prod="httpd" version= "1.3.0" />

</issue>
- <issue fixed= "2.0.43" public= "20021002" released= "20021003"

reported = "20020920">
<cve name="CVE-2002-0840" />
<flaw type="css" />
<severity level= "4" >low</severity>

<title>Error page XSS using wildcard DNS</title>
- <description>

<p>Cross-site scripting (XSS) vulnerability in the default error page of Apache
2.0 before 2.0.43, and 1.3.x up to 1.3.26, when UseCanonicalName is "Off"
and support for wildcard DNS is present, allows remote attackers to execute
script as other web page visitors via the Host: header.</p>
</description>

<affects prod="httpd" version="2.0.42" />
<affects prod="httpd" version= "2.0.40" />
<affects prod="httpd" version="2.0.39" />
<affects prod="httpd" version="2.0.37" />
<affects prod="httpd" version="2.0.36" />
<affects prod="httpd" version="2.0.35" />

</issue>
- <issue fixed="2.0.43" released="20021003">

<cve name="CVE-2002-1156" />
<flaw type="unk" />
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<severity level= "" >moderate</severity>
<title>CGI scripts source revealed using WebDAV</title>

- <description>
<p> In Apache 2.0.42 only, for a location where both WebDAV and CGI were

enabled, a POST request to a CGI script would reveal the CGI source to a
remote user.</p>
</description>

<affects prod="httpd" version="2.0.42" />
</issue>

- <issue fixed= "2.0.42" public= "20020919" released= "20020924">
<cve name="CVE-2002-1593" />
<severity level=" 3" >moderate< /severity>
<title>moddav crash</title>

- <description>
<p>A flaw was found in handling of versioning hooks in moddav. An attacker

could send a carefully crafted request in such a way to cause the child
process handling the connection to crash. This issue will only result in a
denial of service where a threaded process model is in use.</p>
</description>

<affects prod="httpd" version= "2.0.40" />
<affects prod="httpd" version="2.0.39" />
<affects prod="httpd" version= "2.0.37" />
<affects prod="httpd" version="2.0.36" />
<affects prod="httpd" version= "2.0.35" />

</issue>
- <issue fixed= "1.3.27" public="20021002" released= "20021003"

reported= "20020920">
<cve name="CVE-2002-0840" />
<severity level="4" >low</severity>
<title>Error page XSS using wildcard DNS</title>
<flaw type="css" />

- <description>
<p>Cross-site scripting (XSS) vulnerability in the default error page of Apache

2.0 before 2.0.43, and 1.3.x up to 1.3.26, when UseCanonicalName is "Off"
and support for wildcard DNS is present, allows remote attackers to execute
script as other web page visitors via the Host: header.</p>
</description>

<affects prod="httpd" version= "1.3.26" />
<affects prod="httpd" version= "1.3.24" />
<affects prod="httpd" version= "1.3.22" />
<affects prod="httpd" version= "1.3.20" />
<affects prod="httpd" version ="1.3.19" />
<affects prod="httpd" version ="1.3.17" />
<affects prod="httpd" version= "1.3.14" />
<affects prod="httpd" version= "1.3.12" />
<affects prod="httpd" version="1.3.11" />
<affects prod="httpd" version= "1.3.9" />
<affects prod="httpd" version= "1.3.6" />
<affects prod="httpd" version="1.3.4" />
<affects prod="httpd" version ="1.3.3" />
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<affects prod="httpd" version= "1.3.2" />
<affects prod="httpd" version="1.3.1" />
<affects prod="httpd" version ="1.3.0" />

</issue>
- <issue fixed= "2.0.40" public= "20020809" released= "20020809"

reported= "20020807">
<title>Path vulnerability</title>
<severity level= "2" >important< /severity>
<flaw type="priv" />

- <description>
<p>Certain URIs would bypass security and allow users to invoke or access

any file depending on the system configuration. Affects Windows, OS2,
Netware and Cygwin platforms only.</p>
</description>

<os>win32</os>
<os>netware</os>
<os>os2</os>
<os>cygwin</os>
<cve name="CVE-2002-0661" />
<affects prod="httpd" version="2.0.39" />
<affects prod="httpd" version="2.0.37" />
<affects prod="httpd" version= "2.0.36" />
<affects prod="httpd" version= "2.0.35" />

</issue>
- <issue fixed= "2.0.40" public= "20020809" released= "20020809"

reported= "20020705">
<title>Path revealing exposures< /title>
<severity level= "4" >low</severity>

<flaw type="unk" />
- <description>

<p>A path-revealing exposure was present in multiview type map negotiation
(such as the default error documents) where a module would report the full
path of the typemapped .var file when multiple documents or no documents
could be served. Additionally a path-revealing exposure in cgi/cgid when
Apache fails to invoke a script. The modules would report "couldn't create
child process /path-to-script/script.pl" revealing the full path of the
script. </p>
</description>

<cve name="CVE-2002-0654" />
<affects prod="httpd" version= "2.0.39" />
<maybeaffects prod="httpd" version= "2.0.37" />
<maybeaffects prod="httpd" version="2.0.36" />
<maybeaffects prod="httpd" version= "2.0.35" />

</issue>
- <issue fixed= "2.0.37" public= "20020617" released= "20020618"

reported="20020527">
<title>Apache Chunked encoding vulnerability< /title>
<severity level= "I">critical</severity>
<flaw type="buf" />

- <description>
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<p>Malicious requests can cause various effects ranging from a relatively
harmless increase in system resources through to denial of service attacks
and in some cases the ability to execute arbitrary remote code.</p>
</description>

<cve name="CVE-2002-0392" />
<affects prod="httpd" version= "2.0.36" />
<affects prod="httpd" version= "2.0.35" />

</issue>
- <issue fixed= "2.0.36" public= "20020422" released= "20020508">

<cve name="CVE-2002-1592" />
<severity issue= "4">low< /severity>
<title>Warning messages could be displayed to users</title>

- <description>
<p>l n some cases warning messages could get returned to end users in

addition to being recorded in the error log. This could reveal the path to a
CGI script for example, a minor security exposure.</p>
</description>

<affects prod="httpd" version= "2.0.35" />
</issue>

- <issue fixed= "1.3.26" public= "20020617" released= "20020618"
reported= "20020527">

<title>Apache Chunked encoding vulnerability< /title>
<severity level = "1 ">critical </severity>
<flaw type="buf" />

- <description>
<p>Requests to all versions of Apache 1.3 can cause various effects ranging

from a relatively harmless increase in system resources through to denial of
service attacks and in some cases the ability to be remotely exploited.</p>
</description>

<cve name="CVE-2002-0392" />
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

version="1.3.24" />
version="1.3.22" />
version="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version="1.3.0" />

- <issue fixed="1.3.26" released="20020618"
public="20030224">

<cve name="CVE-2003-0083" />
<severity level= "4" >low< /severity>

reported= "20030224"
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<title>Filtered escape sequences< /title>
- <description>

<p>Apache does not filter terminal escape sequences from its access logs,
which could make it easier for attackers to insert those sequences into
terminal emulators containing vulnerabilities related to escape
sequences,</p>
</description>

<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>
- <issue fixed="1.3.24"

version="1.3.24" />
version="1.3.22" />
version="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version ="1.3.0" />

released= "20020322" reported= "20020213">
<severity level="1 ">critical< /severity>
<title>Win32 Apache Remote command execution< /title>
<os>win32</os>
<cve name="CVE-2002-0061" />
<flaw type="metachar" />

- <description>
<p>Apache for Win32 before 1.3.24 and 2.0.34-beta allows remote attackers

to execute arbitrary commands via parameters passed to batch file CGI
scripts.</p>
</description>

<affects prod="httpd" version= "1.3.22" />
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects

</issue>

prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"

version ="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version="1.3.0" />
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- <issue fixed= "1.3.22" released= "20011012" public= "20010928"
reported="20010918">

<title>Requests can cause directory listing to be displayed</title>
<severity level= "2" >important< /severity>
<flaw type="unk" />

- <description>
<p>A vulnerability was found in the Win32 port of Apache 1.3.20. A client

submitting a very long URI could cause a directory listing to be returned
rather than the default index page.</p>
</description>

<os>win32</os>
<cve name="CVE-2001-0729" />
<affects prod="httpd" version= "1.3.20" />

</issue>
- <issue fixed= "1.3.22" released= "20011012" public= "20010928">

<severity level= "3" >moderate< /severity>
<title>split-logfile can cause arbitrary log files to be written to</title>

- <description>
- <p>

A vulnerability was found in the
<samp>split-logfile</samp>

support program. A request with a specially crafted
<samp>Host:</samp>

header could allow any file with a
<samp>.log</samp>

extension on the system to be written to.
</p>
</description>

<os>all</os>
<cve name="CVE-2001-0730" />
<flaw type="dot" />
<bug pr="7848" />
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"
<affects prod="httpd"

</issue>

version="1.3.20" />
version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.12" />
version="1.3.11" />
version="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version="11.3.0" />

- <issue fixed= "1.3.22" released= "20011012" public= "20010709">

- BUGTRAQ:20010709 How Google indexed a file with no external link

-116-



UR:L: htt.p: //www. securi.t.yfocus com/archiv/1/200107C'92.14744 .A28765@bra.ssc
annon . net

* CONFIR1M: http: / /www. apa cheweek .1com/issues /01-10-05#security

* BID:3co!,/* d 00
URl:http: //www. securityfocus com/bid/3009

<severity level= 2">important< /severity>
<title>Multiviews can cause a directory listing to be displayed</title>

- <description>

A vulnerability was found when
<directive> Multiviews< /directive>

are used to negotiate the directory index. In some configurations,
requesting a URI with a

<samp>QUERYSTRING</samp>
of

<samp>M=D</samp>
could return a directory listing rather than the expected index page.
</p>
</description>

<cve name="CVE-2001-0731" />
<flaw type="other" />
<affects prod="httpd" version ="1.3.20" />
<maybeaffects prod="httpd" version= "1.3.19" />
<maybeaffects prod="httpd" version="1.3.17" />
<maybeaffects prod="httpd" version= "1.3.14" />
<maybeaffects prod="httpd" version="1.3.12" />
<maybeaffects prod="httpd" version="1.3.11" />
<maybeaffects prod="httpd" version="1.3.9" />
<maybeaffects prod="httpd" version= "1.3.6" />
<maybeaffects prod="httpd" version="1.3.4" />
<maybeaffects prod="httpd" version= "1.3.3" />
<maybeaffects prod="httpd" version= "1.3.2" />
<maybeaffects prod="httpd" version="1.3.1" />
<maybeaffects prod="httpd" version ="1.3.0" />

</issue>
- <issue fixed= "1.3.20" released= "20010522">

<title>Denial of service attack on Win32 and OS2</title>
<cve name="CVE-2001-1342" />
<severity level= "2" >important< /severity>
<flaw type="dos-malform" />

- <description>
<p>A vulnerability was found in the Win32 and OS2 ports of Apache 1.3. A

client submitting a carefully constructed URI could cause a General
Protection Fault in a child process, bringing up a message box which would
have to be cleared by the operator to resume operation. This vulnerability
introduced no identified means to compromise the server other than
introducing a possible denial of service.</p>
</description>
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h1tp: //www. securiteam. co/wi.ndowsntfocus/5IPOQK4.4AU. html

<os>win32</os>
<os>os2</os>
<affects prod="httpd" version ="1.3.20" />
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects,
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects

</issue>

prod="httpd"
prod = "httpd"
prod="httpd"
prod="httpd"
prod = "httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod = "httpd"

version="1.3.19" />
version="1.3.17" />
version="1.3.14" />
version="1.3.112" />
version="1.3.11" />
version ="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version ="1.3.2" />
version="1.3.1" />
version="1.3.0" />

- <issue fixed= "1.3.19" released= "20010228">
<--
.aocore 200:O2

<title>Requests can cause directory listing
<severity level= "2">important< /severity>
<description>
<p>

The default installation can lead

to be displayed</title>

<samp>mod negotiation</samp>
and

<samp>moddir</samp>
or

<samp>modautoindex</samp>
to display a directory listing instead of the multiview index.html file if a very
long path was created artificially by using many slashes.
</p>
</description>

- <resolution>
<p>From Apache 1.3.19 a 403 (Forbidden) response is given.</p>

</resolution>
- <exploit>

<p> In order to exploit this bug the server has to have "Options +MultiViews"
enabled and be using multiviews to determine which document to send as a
directory index. By contstructing a GET request with the right number of
trailing slashes the directory index will be displayed instead of the default
document index. The number of trailing slashes required depends on the
directory requested, where the full path is around the OS file limit, usually
1024 characters. With too few trailing slashes the index.html file will be
displayed, with too many a 403 (forbidden) response will be given. </p>
</exploit>

-118-



<cve name="CVE-2001-0925" />
<flaw type="unk" />
<affects prod="httpd" version= "1.3.17" />
<affects prod="httpd" version= "1.3.14" />
<affects prod="httpd" version ="1.3.12" />
<affects prod="httpd" version="1.3.11" />

</issue>
- <I--

319
* NetWa re is a. case i nsensitive file system so all direcry and file

names are now compared in a case insensitive manner to avoid security
holes.

- <issue fixed= "1.3.14" released= "20001013" public= "20000929">
- <1--
RHSA-2000: 088-04

<cve name= "CVE-2000-0913" public= "20000929" />
<severity level= "2" >important< /severity>
<title>Rewrite rules that include references allow access to any file</title>

- <description>
- <p>

The Rewrite module,
<samp>modrewrite</samp>

, can allow access to any file on the web server. The vulnerability occurs
only with certain specific cases of using regular expression references in

<samp>RewriteRule</samp>
directives: If the destination of a

<samp>RewriteRule</samp>
contains regular expression references then an attacker will be able to
access any file on the server.
</p>
</description>

<exploit> RewriteRule /test/(.*) /usr/ocal/data/test-stuff/\$1 RewriteRule
/more-icons/(.*) /icons/\$1 </exploit>

<os>all</os>
<affects prod="httpd" version="1.3.12" />
<maybeaffects prod="httpd" version="1.3.11" />
<maybeaffects prod="httpd" version ="1.3.9" />
<maybeaffects prod="httpd" version= "1.3.6" />
<maybeaffects prod="httpd" version= "1.3.4" />
<maybeaffects prod="httpd" version ="1.3.3" />
<maybeaffects prod="httpd" version=" 1.3.2" />
<maybeaffects prod="httpd" version="1.3.1" />
<maybeaffects prod="httpd" version="1.3.0" />

</issue>

i don't think this one actually exists, I looked
tVhrouqh the sweb and think. it. 's a dup:li cate
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- <issue fixed="1.3.14" released="20001013">
<severity level="2" >important</severity>

<title>Mass virtual hosting can display CGI source</title>
- <description>

- p>
A security problem for users of the mass virtual hosting module,

<samp>modvhost_alias</samp>
, causes the source to a CG I to be sent if the

<samp>cgi-bin</samp>
directory is under the document root. However, it is not normal to have your
cgi-bin directory under a document root.
</p>
</description>

<os>all</os>
<cve name= "CVE-2000-1204" />
<flaw type="unk" />
<affects prod="httpd" version="1.3.12" />
<affects prod="httpd" version="1.3.11" />
<affects prod="httpd" version="1.3.9" />

</issue>
- <issue fixed="1.3.14" released="20001013">

<cve name= "CVE-2000-0505" />
<severity level=" 3" >moderate< /severity>
<title>Requests can cause directory listing to be displayed on NT</title>

- <description>
<p>A security hole on Apache for Windows allows a user to view the listing of

a directory instead of the default HTML page by sending a carefully
constructed request.</p>
</description>

<os>win32</os>
<flaw type="unk" />
<affects prod="httpd" os="win32" version="1.3.12" />
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects
<maybeaffects

prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"
prod="httpd"

version="1.3.11" />
version="1.3.9" />
version="1.3.6" />
version="1.3.4" />
version="1.3.3" />
version="1.3.2" />
version="1.3.1" />
version="1.3.0" />

</issue>
- <issue fixed="1.3.12" released= "20000225">

<severity level= "2" >important< /severity>
<title>Cross-site scripting can reveal private session information</title>

- <description>
<p>Apache was vulnerable to cross site scripting issues. It was shown that

malicious HTML tags can be embedded in client web requests if the server or
script handling the request does not carefully encode all information
displayed to the user. Using these vulnerabilities attackers could, for

120 -



example, obtain copies of your private cookies used to authenticate you to
other sites.</p>
</description>

<cve name="CVE-2000-1205" />
<flaw type="css" />
<os>all</os>

<affects prod="httpd" version= "1.3.11" />
<affects prod="httpd" version= "1.3.9" />
<affects prod="httpd" version= "1.3.6" />
<affects prod="httpd" version= "1.3.4" />
<affects prod="httpd" version= "1.3.3" />
<affects prod="httpd" version="1.3.2" />
<affects prod="httpd" version="1.3.1" />
<affects prod="httpd" version="1.3.0" />

</issue>
- <issue fixed="1.3.11" released="20000121">

<severity level=" 3" >moderate< /severity>
<title>Mass virtual hosting security issue</title>

- <description>

- <p>
A security problem can occur for sites using mass name-based virtual
hosting (using the new

<samp>modvhostalias</samp>
module) or with special

<samp>modrewrite</samp>
rules.

Makes sure vhost alias can only be alnum, - or

</p>
</description>

<os>all</os>
<cve name="CVE-2000-1206" />
<flaw type="unk" />
<affects prod="httpd" version="1.3.9" />
- <_--

mod rewr.:Lte stuff o..1.y below

<maybeaffects prod="httpd" version= "1.3.6" />
<maybeaffects prod="httpd" version= "1.3.4" />
<maybeaffects prod="httpd" version="1.3.3" />
<maybeaffects prod="httpd" version= "1.3.2" />
<maybeaffects prod="httpd" version="1.3.1" />
<maybeaffects prod="httpd" version="1.3.0" />

</issue>
- <issue fixed="1.3.4" released="19990111">

<severity level= "2" >important</severity>
<title>Denial of service attack on Win32</title>

-<description>
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<p>There have been a number of important security fixes to Apache on
Windows. The most important is that there is much better protection
against people trying to access special DOS device names (such as
"nul").</p>
</description>

<os>win32</os>
<affects prod="httpd" version="1.3.3" />
<affects prod="httpd" version= "1.3.2" />
<affects prod="httpd" version= "1.3.1" />
<affects prod="httpd" version= "1.3.0" />

</issue>
- <issue fixed="1.3.2" released= "19980923">

<cve name="CVE-1999-1199" />
<severity level= "2" >important< /severity>
<flaw type="memleak" />
<title>Multiple header Denial of Service vulnerability</title>

- <description>
<p>A serious problem exists when a client sends a large number of headers

with the same header name. Apache uses up memory faster than the
amount of memory required to simply store the received data itself. That is,
memory use increases faster and faster as more headers are received,
rather than increasing at a constant rate. This makes a denial of service
attack based on this method more effective than methods which cause
Apache to use memory at a constant rate, since the attacker has to send
less data.</p>
</description>

<os>all</os>
<affects prod="httpd" version="1.3.1" />
<affects prod="httpd" version= "1.3.0" />

</issue>
- <issue fixed="1.3.2" released= "19980923">

<title>Denial of service attacks</title>
<severity level= "2" >important< /severity>

- <description>

- <p>
Apache 1.3.2 has better protection against denial of service attacks. These
are when people make excessive requests to the server to try and prevent
other people using it. In 1.3.2 there are several new directives which can
limit the size of requests (these directives all start with the word

<SAMP>Limit</SAMP>

</p>
</description>

<flaw type="msdos-device" />
<os>all</os>
<affects prod="httpd" version="1.3.1" />
<affects prod="httpd" version="1.3.0" />

</issue>
- <!--
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* Avoid denial of service attacks if a coif iuration file (such as a
* .htaccess file) is a. device file, by refuing to open device files

apart from /dev/null which is still valid (1.3.0)
Correctly handle over-1.ong lines in configuration.Les (1.3.0)

* Fix denial of service attack by sending requests with lots of
slashes in them (1.3.0)

* Deny access to directories .if a htaccess file in that directory
cannot be read (1.3.0)

</security>
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Appendix C: Security Record Processing Scripts
The following software was written to process the raw security records above. It is a

collection of Java classes aimed to enable the reader to reproduce these results as well as

to analyze updated security records that will be published following the release of this

thesis.

import java.util.Date;

final class
private
private
private
private
private
private

Issue {
Date released;
Date reported;
Date pub;
String severity;
String cve;
String releaseFixed;

void setCve(final String theCve)
cve = theCve;

}

String getCve()
return cve;

}

void setReleaseFixed(final
releaseFixed = fix;

}

void setReleased(final
released = rel;

I

void setReported(final
reported = rep;

I

void setPub(final Date
pub = pubDate;

I

void setSeverity(final
severity = sev;

I

String fix) {

Date rel)

Date rep)

pubDate)

{

{

String sev) {

String getSeverity()
return severity;

I

boolean isSerious()
if(getSeverity() == null) {
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return false;
} else if(getSeverity().equals("critical")) {

return true;
} else if(getSeverity().equals("important")) {

return true;
} else {

return false;
}

private Date findEarliest() {
if((reported != null) && (pub == null)) {

return reported;
} else if((reported == null) && (pub null)) {

return pub;
} else if((reported == null) && (pub null)) {

return released;
} else if(reported.before(pub)) {

return reported;
} else {

return pub;

}
}

* Returns the number of days it took to resolve this issue.
*

* @return The number of days
*/

double getDaysToResolve() {
Date start = findEarliest(;
Date finish = released;

return findDifferenceInDays(start, finish);

}

* Finds the difference between two dates, in days.
*

* @param datel The first date (can't be null)
* @param date2 The second date (can't be null)
* @return The difference between datel and date2, in days
*/

static double findDifferenceInDays(final Date datel, final
date2) {

if((datel == null) 11 (date2 == null)) {
throw new IllegalArgumentException("Args cannot be

Date

null.");

long millis = Math.abs(date2.getTime() - datel.getTimeo);

double seconds = millis / 1000;
double minutes = seconds / 60;
double hours = minutes / 60;
double days = hours / 24;

return days;
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public String toString() {
StringBuffer buffer = new StringBuffero;

buffer.append("Issue: ");
buffer.append("CVE: " + cve);
buffer.append(" / ");
buffer.append("Release fixed: " + releaseFixed);
buffer.append(" / ");
buffer.append("released: " + released);
buffer.append(" / ");
buffer.append("reported: " + reported);
buffer.append(" / ");
buffer.append("public: " + pub);
buffer.append(" / ");
buffer.append("severity: " + severity);

return buffer.toStringo;

}

import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

* Entry point to the issue analyzer package.
*/

public final class IssueAnalyzer {

* The parser.
*/

private IssueParser parser = null;

* Constructor.
*/

IssueAnalyzer()

* Parses the issues file.
*

* @param path (Optional) The path to vulnerabilities-httpd.xml
* @throws Exception If an error occurs
*/

private void parse(final String path) throws Exception {
parser = new IssueParsero;

if(path != null) f
parser.parse(path);

} else {
parser.parse("vulnerabilities-httpd.xml");

I
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System.out.println("Done parsing, got +
parser.getIssues().size() + " issues.");

* Command-line entry point. One argument is optional: the path to
* the vulnerabilities-httpd file.
*

* @param args Command-line arguments
* @throws Exception If an error occurs
*/

public static void main(String[] args) throws Exception {
IssueAnalyzer ia = new IssueAnalyzero;

if((args != null) && (args.length > 0)) {
ia.parse(args[0]);

I else {
ia.parse(null);

I

ia.calculateAverageResolutionTime();
ia.countCveNames();

ia.calculateAverageIssuesPerRelease();
ia.calculateAverageReleaseTimes();

* Returns the security-driven releases.
*

* @return The security-driven releases
*/

private List getSecurityDrivenReleases() {
List combined = parser.getReleases(;

List driven = new ArrayList();
Iterator iter = combined.iterator);
Release rel = null;

while(iter.hasNext()) {
rel = (Release) iter.next();
if(rel.isSecurityDriven()

driven.add(rel);

}

System.out.println("Security-driven releases: " + driven);

return driven;

* Calculates the average release times, for security-driven and
all releases.

*
* @throws Exception If an error occurs
*/
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private void calculateAverageReleaseTimes() throws Exception {
List releases = parser.getReleasesl3();
double avg = calculateAverageReleaseTime(releases);
System.out.println("Average release time for 1.3 releases: " +

avg);

releases = parser.getReleases20();
avg = calculateAverageReleaseTime(releases);
System.out.println("Average release time for 2.0 releases: " +

avg);

List driven = getSecurityDrivenReleases(;
avg = calculateAverageReleaseTime(releases);
System.out.println("Average release time for security-driven

releases: " + avg);

* Calculates the average release time for releases on the given
list.

*

* @param releases The releases
* @return The average (in days)
* @throws Exception If an error occurs
*/

private double calculateAverageReleaseTime(final List releases)
throws Exception {

if((releases == null) 11 (releases.size() < 1)) {
return 0.0;

I

Iterator iter = releases.iterator(;

Release release = null;
String version null;
String nextVersion = null;
Date date = null;
Date nextDate = null;
double releaseTime = 0.0;
List releaseTimes = new ArrayListo;

ReleaseDates releaseDates = ReleaseDates.getInstance(null);

while(iter.hasNext()) {
release = (Release) iter.next();
version = release.getVersion(;
date = releaseDates.getDate(version);

nextVersion = releaseDates.getNextVersion(version);
if(nextVersion != null) {

nextDate = releaseDates.getDate(nextVersion);
} else {

nextDate = null;
I

if((date != null) && (nextDate != null)){

-128-



releaseTime = Issue.findDifferenceInDays(date,
nextDate);

if(releaseTime > 0)
releaseTimes.add(new Double(releaseTime));

}
}

iter = releaseTimes.iterator(;
double sum = 0.0;
while(iter.hasNext()) {

sum += ((Double) iter.next().doubleValue();

return sum / releaseTimes.size);

* Calculates the average number of issues per release, for 1.3,
2.0, and combined.

*

* @throws Exception If an error occurs
*/

private void calculateAverageIssuesPerRelease() throws Exception {
List r13 = parser.getReleasesl3();
double avgl3 = calculateAverageIssuesPerRelease(r13);
System.out.println("1.3 average issues per release: " + avgl3);

List r20 = parser.getReleases20();
double avg20 = calculateAverageIssuesPerRelease(r20);
System.out.println("2.0 average issues per release: " + avg20);

List combined = parser.getReleases(;
double avgCombined =

calculateAverageIssuesPerRelease(combined);
System.out.println("Combined average issues per release: " +

avgCombined);

* Calculates the average number of issues per release in the given
list.

*

* @param releases The releases
* @return The average
*/

private double calculateAverageIssuesPerRelease(final List
releases) {

if((releases == null) 11 (releases.size() < 1)) {
return 0.0;

}

Iterator iter = releases.iterator(;
Release rel = null;
double sum = 0.0;
int n = 0;
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while(iter.hasNext()) {
rel = (Release) iter.next();

sum += rel.getIssueCount(false);
n++;

}

return sum / n;

/ **

* Counts the issues that have CVE names.
*/

private void countCveNames() {
List issues = parser.getIssues(;
if((issues == null) 11 (issues.size()

return;

I

< 1)) {

Iterator iter = issues.iterator();
Issue issue = null;
String name = null;
int names = 0;
int n = 0;

while(iter.hasNext()) {
issue (Issue) iter.next();
name = issue.getCve();
if((name != null) && (name.trim(.length() > 0)) {

names++;
I
n++;
name = null;

}

names /
I

System.out.println(names + " issues have
n) + "%) ");

/ **

* Calculates the average resolution time by
* for all levels of severity.
*
* @throws Exception If an error occurs
*/

CVE names (" + (100 *

issue severity

private void calculateAverageResolutionTime() throws Exception {
List issues = parser.getIssues(;
if((issues == null) 11 (issues.size() < 1))

return;

I

calculateAverageResolutionTime(issues,
calculateAverageResolutionTime(issues,
calculateAverageResolutionTime(issues,
calculateAverageResolutionTime(issues,
calculateAverageResolutionTime(issues,

null);
"critical");
"important");
"moderate");
"low");

I
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* Calculates the average resolution time for the issues in the
given

* list that match the given severity level.

* @param issues The list of issues
* @param severity The severity level to match
* @throws Exception If an error occurs
*/

private void calculateAverageResolutionTime(final List issues,
final String severity) throws Exception {

if((issues == null) 11 (issues.size() < 1)) {
return;

}

Iterator iter = issues.iterator();
Issue issue = null;
int n = 0;
double sum = 0;

while(iter.hasNext()) {
issue = (Issue) iter.next();

if((severity != null) && (!
(severity.equals(issue.getSeverity()))) {

// Skip
} else {

n++;
sum += issue.getDaysToResolveo;

}
}

double average = sum / n;
System.out.println("Average resolution time: " + average + "

using severity filter: " + severity +
and " + n + " issues passing this

filter.");

}
}
import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.List;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

final class IssueParser extends DefaultHandler {

* The issue currently being parsed.
*/

private Issue issue;
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/ **

* The release currently being parsed.

private Release release;

* All the issues.

private static List issues;

* The 1.3 releases.

private static List releasesl3;

* The 2.0 releases.
*/

private static List releases20;

* All the releases.

private static List releases;

* The date format: yyyyMMdd.

private SimpleDateFormat sdf = new SimpleDateFormat("yyyyMMdd");

* The release dates.

private ReleaseDates releaseDates;

* Constructor.
*

* @throws Exception If an error occurs
*/

IssueParser() throws Exception
issue = null;

release = null;

issues = new ArrayList();
releases13 = new ArrayList();
releases20 = new ArrayList();
releases = new ArrayList();
sdf = new SimpleDateFormat("yyyyMMdd");
releaseDates = ReleaseDates.getInstance(null);

* Parses the file.
*

* @param path (Optional) path to vulnerabilities-httpd.xml
* @throws Exception If any error occurs
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void parse(final String path) throws Exception
DefaultHandler handler = new IssueParser(;
SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();

if(path != null) {
saxParser.parse(path, handler);

else {
saxParser.parse("vulnerabilities-httpd.xml", handler);

}
}

* Returns a list of all the issues.
*

* @return All the issues
*/

List getIssues ()
return issues;

}

* Returns a list of all the releases.
*

* @reutrn All the releases

List getReleases()
return releases;

* Returns all the 1.3 releases.
* May return an empty list.

* @return The 1.3 releases
*/

List getReleasesl3() {
return releasesl3;

* Returns all the 2.0 releases.
* May return an empty list.

* @return The 2.0 releases

List getReleases20() {
return releases20;

* Adds the current release to the proper list.
*/

private void addRelease() {
if(release == null) {
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throw new IllegalArgumentException("Can't add null
release.");

}

releases.add(release);

String version = release.getVersiono;
if((version == null) 1| (version.trimo.length() < 1)) {

throw new IllegalArgumentException("Can't add release
without a version.");

I else if(version.startsWith("1.3")) {
releasesl3.add(release);

} else if(version.startsWith("2.0"))
releases20.add(release);

} else {
throw new IllegalArgumentException("Unknown branch: " +

version);

}

* Returns the XML element name. This is a convenience method
* added to handle both namespace-aware and namespace-unaware
* SAX parser implementations. Preference is given to the local
* name over the qualified one.
*

* @param sName The local name
* @param qName The qualified name
* @return The name
*/

private String getName(final String sName, final String qName)
String name = sName;
if((name == null) 11 (name.trimo.length() < 1)) {

name = qName;

}

return name;

}

* Parses the given string into a Date object.
*

* @param yyyymmdd The date string
* @return The Date object, or null if an error occurred
*/

private Date getDate(final String yyyymmdd) {
try {

return sdf.parse(yyyymmdd);
I catch (Exception e) {

e.printStackTrace();
return null;

}

* Translates the integer severity level (from 1-4)
* into the string one, from critical to low.
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*

* @param level 1-4
* @return The string level
*/

private String getSeverityLevel(final String level) {
if((level == null) 1| (level.trimo.length() < 1)) {

throw new IllegalArgumentException("Arg can't be null or
empty.");

} else if(level.equals("1")) {
return "critical";

} else if(level.equals("2")) {
return "important";

} else if(level.equals("3")) {
return "moderate";

} else if(level.equals("4")) {
return "low";

else {
throw new IllegalArgumentException("Unknown severity level:

+ level);

* Called by the SAX parser implementation for each element.
*/

public void startElement(String namespaceURI, String sName, String
qName, Attributes attrs)

throws SAXException
String name = getName(sName, qName);

if(name.equals("issue"))
issue = new Issueo;

for(int i = 0; i < attrs.getLengtho; i++) {
String aName = getName(attrs.getLocalName(i),

attrs.getQName(i));
if(aName.equals("reported")) {

issue.setReported(getDate(attrs.getValue(i)));
} else if(aName.equals("released")) {

issue.setReleased(getDate(attrs.getValue(i)));
} else if(aName.equals("public")) {

issue.setPub(getDate(attrs.getValue(i)));
} else if(aName.equals("fixed")) {

String version = attrs.getValue(i);

issue.setReleaseFixed(version);

if(release == null) {
release = new Release();
release.setVersion(version);

I else if(release.getVersion().equals(version)) {
// Do nothing

} else {
addRelease();

release = new Release(;
release.setVersion(version);
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if(release.getDate() == null) {

System.out.println("Setting date for " +
release.getVersion() +

" to " +
releaseDates.getDate(release.getVersion()));

release.setDate(releaseDates.getDate(release.getVersion()));

else if(name.equals("severity"))

for(int i = 0; i < attrs.getLength(; i++) {

String aName = getName(attrs.getLocalName(i),
attrs.getQName(i));

if(aName.equals("level")) {

issue.setSeverity(getSeverityLevel(attrs.getValue(i)));

} else if(name.equals("cve"))

for(int i = 0; i < attrs.getLength(); i++) {

String aName = getName(attrs.getLocalName(i),
attrs.getQName(i));

if(aName.equals("name"))

issue.setCve(attrs.getValue(i));

}

* Called by the SAXParser implementation at the end of each
element.

public void endElement(String namespaceURI, String sName, String
qName) throws SAXException {

String name = getName(sName, qName);

if(name.equals("issue"))
issues.add(issue);

release.addIssue(issue);

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

final class Release {
private String version;

private List issues;

private int seriousIssues;

private Date date;

Release()
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issues = new ArrayListo;
seriousIssues = 0;

}

void setVersion(final String v) {
version = v;

}

String getVersion() {
return version;

}

void setDate(final Date d) {
date = d;

}

Date getDate() {
return date;

I

void addIssue(final Issue issue) {
issues.add(issue);

if(issue.isSerious()
seriousIssues++;

}
}

int getIssueCount(boolean onlySerious)
if(onlySerious) {

return seriousIssues;
I else {

return issues.size();

}
}

boolean isSecurityDriven()
return getIssueCount(true) > 0;

}

public String toString() {
StringBuffer buffer = new StringBuffer();

buffer.append("Release " + version + " has " +
getIssueCount(false) + " issues, " +

getIssueCount(true) + " of which are serious.");

return buffer.toString();

}
}

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.HashMap;
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import java.util.Map;
import java.util.StringTokenizer;

* Holds information about release dates.
*

* ** Note that this class relies on the ordering of the source file:
* ** It assumes all the 2.0 releases are first, in descending order,
* *** followed by all the 1.3 releases, also in descending order.
*/

final class ReleaseDates {

* The instance of this singleton.
*/

private static ReleaseDates instance = null;

* The release dates for the 2.0 branch, keyed by version.
*/

private Map release20Dates;

* The release dates for the 1.3 branch, keyed by version.
*/

private Map releasel3Dates;

* Map of release name to next release name.
* The value for 2.0.55 is null, for 2.0.54 is 2.0.55, etc.
*/

private Map nextReleases;

* The date formatter.
*/

private SimpleDateFormat sdf;

* Constructor.
*

* @param path (Optional) path to releaseDates.txt file
*/

private ReleaseDates(final String path) throws Exception {
release20Dates = new HashMap();
releasel3Dates = new HashMapo;
nextReleases = new HashMapo;
sdf = new SimpleDateFormat("yyyyMMdd");

if(path != null) {
readFile(path);

} else {
readFile("releaseDates.txt");

}
}

* Returns the instance of this singleton.
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*

* @param path (Optional) path to releaseDates.txt file
* @return ReleaseDates
* @throws Exception If an error occurs
*/

static ReleaseDates getInstance(final String path) throws Exception

if(instance == null) {
instance new ReleaseDates(path);

I

return instance;

* Reads the file, populates the release dates map.

* @param path The file path
*/

private void readFile(final String path) throws Exception {
BufferedReader reader = new BufferedReader(new FileReader(new

File(path)));

String line = null;
String nextVersion = null;
String version = null;
String yyyymmdd = null;
Date date = null;
StringTokenizer st = null;

while((line = reader.readLine()) != null) {
st = new StringTokenizer(line);
while(st.hasMoreTokens()) {

version = st.nextToken().trim();
yyyymmdd = st.nextToken().trim();

date = sdf.parse(yyyymmdd);

if(version.startsWith("1.3")) {
releasel3Dates.put(version, date);

I else {
release20Dates.put(version, date);

I

nextReleases.put(version, nextVersion);
nextVersion = version;

reader.close();

* Returns the next version name for the given version name.
* May return null.
*
* @param version The version, e.g. 2.0.54

-139-



* @return The next version name, e.g. 2.0.55, or null
*/

String getNextVersion(final String version) {
return (String) nextReleases.get(version);

}

* Returns the release date for the given release.
*

* @param version The version
* @return The date (if found, null otherwise)
*/

Date getDate(final String version) {
if((version == null) 11 (version.trimo.length() < 1)) {

return null;
I else if(version.startsWith("1.3")) {

return (Date) releasel3Dates.get(version);
I else {

return (Date) release20Dates.get(version);

}
}

}
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