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INTRODUCTION AND OVERVIEW

The qualitative choice models utilized in many microeconomic analyses

incorporate the preferences of a "representative" individual; as a result,

these models should be estimated utilizing data on the actual choices of

individuals [as in 10, 18, 19, 26, 28, 29]. However, data experiments

focusing on individual choices are expensive to gather and not readily

available.1 Furthermore, those experiments that do gather individual data

are usually geographically (and sometimes socioeconomically) stratified.

As a result, variation in tastes and socioeconomic/demographic character-

istics across U.S. regions and groups of individuals may not be fully

captured.

On the other hand, compilations of aggregate data are fairly access-

ible. For example,a body of aggregate data that is readily available

and used extensively for analysis of fuel choice [2, 3, 4, 5, 6, 7, 14,

16, 17, 23, 24] consists of pooled time-series of state cross-sections.

However, the use of such aggregate data for estimating individual choice

models can be defended by its success as an empirical tool rather than

its appropriateness for the underlying behavioral model: McFadden and

Reid [27] demonstrate that the use of such aggregate data for parameter

estimation and prediction with disaggregated choice models leads to

serious inconsistencies unless rather restrictive conditions are met.2

This paper attempts to bridge the gap between models of individual

choice and aggregate data. The reasons for bridging the gap are immediate.

1The Midwest Research Institute [1979] data is one extensively-used
example.

2Their results are developed for a binary probit model estimated by
regression techniques.
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The use. of coice models bas proved very useful in. demand analysis, in

particular for energy demand. Furth.ermore, the aggregate pooled time-

seri.es/cross-sectional data available for many demand analyses (again

particularly energy demand) offer a rich resource to be exploited. The

capability to combi:ne such models and such. data would be extremely useful.

To that end, Section I below analyzes the effects of using aggregate

data to estimate individual choice models. A standard choice model is

introduced, the effects of introducing aggregate data are analyzed, and

a method suggested for obtaining consistent maximum likelihood estimates.

Using the results of Section I, Section II analyzes the choice of fuel

for residential appliances using aggregate data. The model of choice

is developed fully in [15]. Given a simple version of the model of fuel

choice and using the aggregate data, Section III presents estimates of

the individual parameters of taste and indicates the extent of asymptotic

bias generated when aggregate data are used without correction. Systematic

parameter bias toward zero is demonstrated when measurement error is present.

Estimates are presented for several appliances where the extent of measure-

ment error is actually estimated.
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I) INDIVIDUAL CHOICE MODELS AND AGGREGATE DATA

A. THE STANDARD MODEL WITH INDIVIDUAL DATA

The standard utility formulation for individual choice models is that

the utility Uij of alternative j to individual i is

U ij = Uij(Xj, a) + i (la)

= Zij + eij' where (lb)

X. is a vector of the observable attributes and levels of consumer services
3

offered by alternative j; ai is a vector of observable characteristics of

the individual i and the environment in which individual i makes his/her

choice; Uij is the "average" utility of a "representative" individual and

Ejj is a random error term induced by purely random behavior, measurement

error and/or unobserved characteristics of the individual and/or alternative.

Letting Zij represent combinations of Xj and a i, then Uij(X j, a i) = Zij

where f is assumed constant over the entire population (i.e., homogenous

tastes).l1

Given utility function (1), the probability that an individual i chooses

alternative k is:

Pik = Pr [Uik > Uij, for all j k]

Pr [Zik + ik > Zij + eij, for all j k]

Pr ij - Cik < (Zik - Zij) , for all j k]

= Pr [njk < (Zik - Zij) for all j Q k] (2)

11This is the utility formulation utilized by most authors. Hausman and
Wise [19] utilize this model for heterogeneous tastes within a probit speci-
fication by decomposing the elements of into both a constant (mean) and a
random taste parameter. McFadden, Tye and Train also develop a heterogenous
preference model in 29]. Heterogenous tastes could be introduced here; how-
ever for simplicity I focus only on issues of aggregation.
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where

njk = ij - ik

Once the form of the utility function and the distribution F(6) of the j

are specified, unknown parameters (i.e. ) of Uj and the parameters of F(c)

can be estimated using the likelihood function

mn Yik
L(0) = IT Pik (3)

i k

where the likelihood function L(O) is defined over all individuals i=l ... m

and alternatives k = 1 ... n; Yik = 1 if individual i chooses alternative k

n

and =0 otherwise; Z Pik = 1 for any individual i.
k=l

As is well known, the assumptions regarding the distribution F(C) deter-

mine the functional form of the Pik as follows:

I e.. distributed as Weibull

This assumption is the basis for logit analyses. In this case

njk = sij - Cik is distributed logistically [10] and

Pik Pr [jk <Uik - Uij for all j Q k]

eUik 1 1
(4)

e U (Uij - Uik) n (Zij Zik)

j j j

I cij distributed as normal

In this case, njk is also distributed normally and equation (2) becomes

W*i W* W*kn
Pik = kl . kj . . . (r; 0; )dr dr drn

- co-co -00

for j k (5)
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where w*kj = Uik - Uij and (r; O, ) is the multivariate normal frequency

with 0 mean and covariance matrix evaluated at r. If the off-diagonal

terms of are zero, "independent" probit resultsl; if is dense, co-

variance probit results [19].

Substituting (4) or (5) into (3), using data on individuals for their

choices and ai , and maximizing L with respect to will yield estimates

of the parameters of Uij (i.e. ) and F(e).

B. THE MODEL USING AGGREGATE DATA

Suppose as before we want to estimate the taste parameters B in

equation (lb) but hope to rely on the pooled time-series/cross-sectional

data rather than data on individuals. How will the model and the

estimation procedures be altered?

For purposes of discussion let equation 1 become

Uij = XjBl + ai-2 + i(6)

and assume that only three choices are available (j = 1 - 3). Assume

further that we hope to use (6), (2) and (3) to estimate 81 and 82 with

aggregate data consisting of pooled annual time-series of state cross-

sections. In that case, we observe collections of individuals i (market

shares) who made choices among j = 1, 2 and 3 in a given cross-sectional unit

(state) and time period (year) when their utility functions are assumed to

be (6). Furthermore, we observe only average state estimates of X and a.

IWith parameter estimates and predictive performance similar to that
of logit when micro data is used.
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rather than the actual individual values. For example, rather than

observing the "true" price of alternative j (Xj),we observe j = X - Vj

(Xj observed with error v) where 3j is the average price of alternative j

in a state; and rather than observing the true income of individual i (ai)

we observe a = a - v (ai observed with error v) where a. is the

average income in a state. Using such aggregate data for the character-

istics of individual i (ai) and the characteristics of the choices facing

individual i (Xj), let us redefine equation (6) as follows:

Uij = Xj 1 + aiB2 + Eij

:= ( + v Y_ + ( + v.)j2 + vj)l + (6a)

= + a2 - + (j + vj1 + V 2) = 1 + B2 + ij

where the new error ij is induced by is, in addition to the measurement

errors of X and a (vj 1 + v i-2) generated by using the aggregate data

rather than the individual data.l

Using equation (6a), the probability that an individual i chooses

alternative k is given by an altered version of (2) as follows:

ik = Pr[(ij + vj 1 + v i-2 ) - (ik + Vkl +i2) <

(Zik- ij) for all j k]

ij Pr - ik < (Zik - j) for all j k] (7)
13 - iik ik 1

= Pr[njk < (Zik - Zij)~ for all j Q k]

1This formulation is similar to that of Hausman and Wise [19] except they
attribute the additional randomness to tastes rather than measurement error.
With individual data, randomness in tastes will probably be most important;
when using aggregate data randomness in the measurement error will probably
be most important. Of course,both types of randomness could be parameterized
and tested if the data existed. Such data would require observations on in-
dividuals with repetitions where the measurement errors were capable of char-
acterization.
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where njk = ij - ik. Once we have characterized the Pik will then
jk th Pijk w il tn

be substituted into a version of (3) that takes into account the use

of the pooled data as follows:

tl 50 K Mskt t1 50 K Mskt

L() ik Yik = P k (8)

t=t 0 s=l k=l i=l t=t 0 s=l k=l

where the pooled time-series runs from yea, t0 to t , covering 50

cross-sectional units (states) for M persons in state s in period

t that choose alternative k.

As in the case above, the assumptions regarding the distributions

of ij v, vk and vj will determine the functional.form of the Pik' How-

ever, the possible outcomes are more limited with aggregate data. For example,

for njk to be distributed as a logistic curve, the cij must be distributed as

Weibull. However, random variables distributed as Weibull are closed under maxi-

mization;2 since the ij consists of the sum of random variables

Eij, vi and vj, the distribution of ij is not easily characterized if

Eij, vi and vj are Weibull. Likewise, if Eij is distributed as Weibull

and the v vk and vj are distributed normally (which seems to be most

realistic for v,vkand vj)9cj (hence jk) is the sum of both Weibull and normal

random variables. The distribution of that sum is extremely complicated.

Only when Eij vi vk and vj are distributed normally will .j. and jk be distri-

buted normally; in that case the Pik will be analytically tractable.

1The use of aggregate data implies that M will be determined by shares
data; hence,it too is subject to measurement error. I do not examine the
effects of that measurement error here.

2See Domencich and McFadden [10], pp. 61-62.
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We can make this stochastic analysis more precise as follows. Given indi-

vidual utility in equation (6a) for j=1l..3 and the determination of Pik in (7) for

k =1 .. 3, we need to characterize njk, where

jk = (ij- Eik)+ (vj - k) + ( i - i)02 (9)

In (9) it is immediately evident that for personal attributes (ai) that

enter utility additively, measurement errors will have no effect on

estimation - (v - vi) o. Thus, if there are no measurement errors

in the attributes of the alternatives (vj v k - o) and the attributes

of the alternatives enter utility additively (i.e. not in interaction

with personal attributes) then njk = cij - Cik and standard logit or

probit analysis is possible given assumptions about ij and cik [section Ia].

If, however, measurement errors occur in the attributes of the alternatives

(Xj) or in interaction terms of the Xj and a i, then
2

njk ( j - Eik) +(vj - vk)l. (9a)

Assuming vj N(O,Qj) and ij %N(O,~a) for all j,where j is a diagonal

covariance matrix with the variances of measurement errors of X along the

diagonal; assuming all covariances among measurement errors (i.e. off-diagonal ele-

ments of 0j) and between measurement errors and ij are zero; and assuming

COV(Eij ik) = jk for all j and k, we obtain

E(njk) : E[(j - Eik) + (Vj - Vk)' 1] = 0 (9b)

Of course, the individual attributes themselves will have no effect
either, in equation (7).

2Assuming includes parameters for attributes of the alternatives and
all interactio terms.
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(9c)and V(njk) = a + afk 2oajk+i(j + Qk)il

For further ease of exposition assume 1 is a scaler; then

V(rj 2 2 _2 2 2Vjk) =j + ak -2ajk i 1 + a )v
3j k

and for n21 and 31 with bivariate normal density function gl(n21,n31,Ql) and

covariance matrix

1 =1

-2 2 2
2+8(a v +av2)

1 2

2-1 3+a vl1

we have from equation (5)

Pi(UlU2)/l+a 2-2a12 + 1 (av +a 2)JPil :2 2

al2+aC-2a13+-1( 2 + 23)

a +a3 2 a13+ (v+v)

o1 
300 lr-~--3-'-3-

(10)

(11)

where b is a standard bivariate normal distribution with correlation

coefficient p.l The probabilities of Pi2 and Pi3 are calculated in the

same manner.

+a ))(a1+a32a1+1(~+)(+a23 2-l3 v 1 (aICF+a2 -2a1 +B(cv +V1 l+V2 3- 2 1 (+a V ))
1 2 1 3

;PIId '\" 1 d
1 ('21\31 2 r3 Id~3
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c) MODEL ESTIMATION

For estimation we need the full Pij and Qj for j=l..3 and the likelihood

function (8). For the three alternatives we have the following covariance

matrices for an individual in state s and period t:

22 2 - 2 2 2
oJ2-2012+ z Tj+ 2j)st

2 -2 2
L1+23-2- 3+j= j(av)st

m~~~~P 

22 22 2
1+3-2 1 3+_ 1 ( vj v 3 )Stj~~~l + 3v~ st

w1,11

l1,12 W1,22

K2 2 J2 2 2
2 1 2+r 1 2+ j ( + v )st

j=l Vj 2j

2 E f f2 (2 )

2+013- a21 -c23+ j_ j (2j )StL 2 13 2 1 2 3 l~ v2 j st

22 2 2
a3 +C 1-2a 1 3 +l -j (Ov +V )st

=1 j vv3jst

+cyl 2-331 -32 +j71Bj 3j st";(% 3)'

2 2 2 2 2 2
a2+o3-2 23+ Z f(E + )St

j=l 2j v3j st

22 2 J-2 2 2
U3 +2- 232+ 7 (a v )

j 2 v 3j 

2,11 1

w2,12 w2,22

(12)

3,11

3,12 m3,22

where in (lb) has J elements j ; av 'av, a2 are the measurement
errorj v , 2 and 3 respectively

error variances for attributes j of alternative 1, 2 and 3 respectively;

2 2

Vlj' v2j
and 3j

v3'
are assumed to be unique for state s and year t--hence

the subscript st for

+v2j st; aoj, ajk characterize the multivariate residual variance in

Q3

2

vij

Q1

Q2
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(Eil, i2' i3) which will most likely pick up unobserved factors across

states and time.l

Generalizing from (11) we have for a given individual with k=l

P1 J b(12 13 3 1,p1 ) d 3 1 dn21
co

(13)

= (Z1-Z2)' /VW,1 1 ,' W13 = (Z1-Z3) //wl, 2 2, b is the standard

bivariate normal with Pl = 1 2//wl1 1 1 lw 2 2' Similar derivations hold

for P2 and P3.

Using the mathematics developed in Appendix A the first order condi-

tions are now apparent.

aL ( ) =
ao1

tl

to

For the log of (8) we have for element oi of 

50 3 M aP

s=l k=l Pk aDei

where o i can be an element of , aij or aii for i and j=l..3.

For any 9g we have for k=l

aP1 

aBg

. .(W.) .3 a 2g

w*
2 - PWr3 1 + (W.1) ' 2 3)3

L 2) J g

+ b(w1 *2 w* 3, pl
) Pl ;

ag

(14)

(15)

lThis randomness could be incorporated through state and time specific
variances; this is not done here.

where w12
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while for any aij

DP 1 wk* 13 P 1 1 2 aw1 2
= (w12) 2)J aaij

Y\1 `m (16)

+ b(wl*2, w*3, P1) aa

Equation (15) indicates how the choice model estimated from aggregate

data differs from that estimated from individual data. For example, if

individual data is used, apl/aBg=O;and for aw*g2/g a w3/ , j/a9=O

for i and j=l-2. Hence,the first order condition (15) for -6 reduces to [see

Hausman and Wise (19)],

L '1 1 (Z w- z),,2

+ (wl*3) 4L - 1 (Z1 - Z3)g/f , 22 (17)

where (Z1 - Z3)g = a(Z1 - Z3)/aS9.

Similar derivations are possible for the remaining first order conditions.

The method used to maximize the likelihood function is that developed

by Berndt, Hall, Hall and Hausman.1 The resulting maximum likelihood esti-

mates will be consistent and asymptotically normal. The asymptotic

1Berndt, E.K., B.H. Hall, R.E. Hall, and J.A. Hausman, "Estimation and
inference in Nonlinear Structural Models," Annals of Economic and Social
Measurement, 3(1974), 653-665. The computer program is adapted from that
developed in L19].
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covariance matrix of the maximum likelihood estimates is equal to the inverse

of the covariance matrix of the gradient of the likelihood function evaluated

at the maximum = (,a.ij).
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II CONSUMER CHOICE AMONG ALTERNATIVE FUELS FOR RESIDENTIAL ENERGY-USING
APPLIANCES

The analysis of residential appliance and fuel choice offers an ex-

ample where individual choice models and aggregate data can be usefully

combined. The behavior of residential energy demand argues for the appli-

cation of choice models while the paucity data on individuals necessi-

tates the use of plentiful aggregate data.

As developed elsewhere [12, 14, 15], any analysis of residential

energy demand should deal with the fact that fuels and fuel using appli-

ances/equipment are combined in varying ways to produce a particular

residential service. This demand behavior can be decomposed into three

decisions:

1) The decision to buy an energy-using appliance, capable of

providing a particular comfort service(e.g., cooking, heating,

lighting, air conditioning, etc.).

2) The decision concerning the technical characteristics of the

equipment purchased, the fuel to be used by the equipment and

whether the equipment embodies a new technology.

3) Given such equipment, the decision about the frequency and inten-

sity of use.

These decisions span the short run ( when the appliance stock is fixed)

and the long run (when the size and characteristics of the appliance stock

are variable). All three decisions are explicitly modeled in the most

current residential energy demand analyses [12].

It is the second decision that is usually analyzed using choice models [3,4,

5, 6, 7, 8, 12, 14, 15, 16, 17, 20, 23, 24]. However, most of these

efforts utilize aggregate data without correcting for it. As indicated in

Section I, the use of such data in disaggregated behavioral models will
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generate inconsistent parameter estimates and inconsistent aggregate

energy choice estimates [27]. To help overcome this and other diffi-

culties,l this Section specifies a choice model for residential appli-

ances which will be estimated using the techniques developed in Section I.

The specification of random utility used here is a version of models

found in the literature [see 15, 18]. In that development, the size or

capacity of an appliance for household i (Xi) will be determined by a

vector of household characteristics ai where ai includes weather effects,

climate effects and socioeconomic factors such as the size, tastes and

age composition of the family, the size of the residence, etc. The

capacity of the equipment can then be parameterized Xi(ai). Conditional

on Xi(ai), the cost of capital and cost of fuels (Pj), rational consumers

will identify within each fuel the type of appliance to be purchased

(characterized by appliance price Cj, its efficiency EFFj, and all other

characteristics ij) and the desired level of utilization [15]. Finally,

consumers will make their fuel/appliance choice based on comparing

utility among the possible choices j, j = gas, oil and electricity.

Using an indirect utility formulation, we have the utility of alternative

Other deficiencies include the following:
I The analyses have applied the choice models to shares of the

stock of home heating equipment. The discrete choice models

are really appropriate only for changes (new and replacement
purchases) in the stock of capital [See 12, 15].

! The characteristics of the fuels and complementary fuel-burning

equipment in the choice set have not been adequately specified.
Most choice models in this area have based choice upon only fuel

operating costs and have not included capital costs. [see 12, 15].

I Most formulations to date have utilized conditional logit, there-

by suffering from the "independence of irrelevant alternatives".

[See 12, 13].
All three of these deficiencies are corrected here.
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j to household i given as (see [15])

Uij = VY i, Cj , P/EFFj, ij; X(ai) }

(18)

1 Uj + ij = Zj + ij

where Yi is household income. By specifying the form of V, the exact components

of V and Xi(ai), and the stochastic nature of cij and all measurement errors,

we can substitute (18) into (7) and (8) to estimate the individual para-

meters of taste. This is done in Section III.
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III EMPIRICAL RESULTS

My purpose here is to explore the estimation results generated by

using aggregate data in individual choice models. To that end, I do

not specify complicated versions of the indirect utility in equation (18).

Rather, a straightforward model of utility is posited that includes

operating costs and capital costs for the alternative fuel/appliance

options. The end-use equipment for which the choice model is estimated in-

clude space heating equipment, clothes dryers, water heaters and kitchen ranges.

Two models are tested for space heating which incorporate different

variables for the estimation of operating costs and the cost of capital

services. More specifically, the variablesl include

Space Heating Capital Costs (a1 ) Operating Costs (a2)

Model 1 Cost of space heat- Fuel price (Pf)
ing equipment (Cf)

Model 2 Cost of space heat- Fuel price * heating
ing equipment/house- degree days (Pf*HDD)
hold income (Cf/Y)

Both models are estimated for choices across natural gas, oil and

1Fuel prices are the average price of natural gas per cubic foot
(GAS FACTS), marginal price of electricity (developed by Data Resources,
Inc. for the Electric Power Research Institute) and #2 fuel oil prices
per gallon (AGA househeating survey). Heating degree days are developed
by the Natural Oceanic and Atmospheric Administration. Household income
is developed from Survey of Current Business data. Finally, detailed
equipment costs have been developed for alternative space heating equip-
ment. The data is summarized in M.I.T. Residential Energy Demand Group,
"Aggregate Pooled Data Utilized and/or Developed for Residential Energy
Demand," M.I.T. Energy Laboratory Working Paper No. MIT-EL 79-047WP,
August 1979.
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electricity. For clothes dryers, water heaters and kitchen ranges, the

variables include1

Clothes Drying,
Water Heating,
and Cooking Capital Costs ( 1) Operating Costs (2)

Equipment cost/ Fuel price/household
household income income (Pf/y)

(Cf/y)

The models of choice for these three end-uses are estimated for natural

gas and electricity.

For all of these end-uses, unit fuel price and equipment costs are

appropriate measures of operating costs and capital service costs if

weather/climate is fairly constant or irrelevant to use, if equipment

lifetimes are similar across fuel-specific equipment and if household

discount rates are fairly constant. It is assumed that use of water

heaters, kitchen ranges and clothes dryers is invariant to weather; however,

it is clear that space heating use and operating costs will be very weather

sensitive. Since weather and climate differ across state and furthermore

since empirical work suggests that discount rates vary inversely with

income [18], space heating model #2 adds weather into operating costs

(Pf*HDD) and attempts to proxy varying discount rates by dividing by

household income (Cf/y). The other end-uses exclude weather but divide

both costs by income. As a result, we have from equation (18)

1The price and income variables are the same as those used for space
heating. The appliance equipment costs are developed by Merchandising
Week. Again for greater discussion see M.I.T. Residential Energy Demand
Group, op. cit.
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Space Heating Model 1: U Cjct + Pj + 
ij = C~Ia+ Pja2 + cij

Space Heati'ng Model 2: U (Cj/y) l + (Pj * HDD) 2 + ij

All Other End-uses: U = (Cj/y) al + (Pj/Y) a2 + ij

Pooled annual state averages for Pj, HDD, Cj, and y are utilized.

The results from estimation of space heating models 1 and 2 are

given in Tables 1A & 1B. The other end uses are compiled in Table 2.

Logit results are given which are equivalent to independent probit results

when there are no errors in variables (EIV). For comparison sake in exam-

ining the effects of aggregate data, all results utilize independent probit.

For model 1 in Table 1A, measurement error has a substantial effect

on the parameter estimates. If measurement error exists at 10% of the

average data,2 consistent parameter estimates (at extremely high levels of

significance) are 30% - 70% larger than the inconsistent estimates generated

by assuming no errors in variables. If the measurement error is 15% of the

variable means, consistent parameter estimates are 7.27 and -11.24 compared

with 3.96 and -3.60 generated if no measurement error is assumed. For

measurement error above 15%, the likelihood function becomes ill conditiloned

and estimation becomes impossible. From these results, it is clear that

1The full covariance probit could have also been developed.

2That is, measurement error variances are 10% of the value of the composite
variables appearing in utility.
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ignoring measurement error attendent with aggregate data will generate

severely inconsistent parameter estimates of household tastes (al and a2)

The space heating model in Table lB is better specified and more

robust to measurement error. With measurement error at 75% of the vari-

able means,l highly significant convergent estimates obtain which differ

significantly from those obtained by ignoring such measurement error.

However, the inconsistency is only 20% for l and 50% for a2'

Table 2 presents results for clothes dryers, water heaters and

kitchen ranges. These results are much more sensitive to measurement

error. For clothes dryers, measurement error at the .10% level would

imply parameter inconsistency at the level of 8% for l and 9% for a2

if uncorrected aggregate data were used. With measurement error variances

at .50% of the means, the inconsistencies would be 41% and 44% respec-

tively. For water heaters at .10% EIV, the inconsistency is 8% and 18%

while at .50% EIV the likelihood function becomes ill conditioned so that

estimation is impossible. Kitchen range choice estimation is somewhat

more robust to error. For measurement error at the .10% level, the incon-

sistency in at is 1% and in 2 it is 4%. At the .50% EIV level, the

inconsistency is 7% for &l and 2. At levels of measurement error of

1.00% the inconsistency is 14%.

Table 2 also presents estimates of al and a2 for levels of measure-

ment errors that differ across capital and operating costs--.20% for

capital costs and.l0% for fuel prices. For clothes dryers the resulting

1That is, 75% of Cf/y and Pf*HDD, appropriately scaled. See notes
to Table 1.



-21-

TABLE 1: LOGIT AND PROBIT RESULTS FOR SPACE HEATING

a(Cf) c2 (Pf)

A) MODEL 1

Logit 5.0954 -4.5665
(94.01) (-57.61)

Independent 3.9622 -3.6048
Probit (967) (-548)
No EIV

Independent
Probit
10% EIV

Independent
Probit
15% EIV

5.3741
(590)

7.2749
(332)

-6.4704
(-441)

-11 .2436

(-261)

Independent
Probit
EIV > 15%

Becomes ill-conditioned

EIV = Errors in variables at x% of means

L = Value of likelihood function

T statistics for Ho: ai = 0 in parentheses

L

-46435

-46629

-46532

-46479
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TABLE 1: (cont.)

al(Cf/y) a2(Pf*HDD) L

B) MODEL 2

Logit .54217 -.55782 -47210
(98.8) (34.5)

Independent .4229 -.4513 -47370
Probit (919.5) (-323.4)
No EIV

Independent .4332 -.4839 -47349
Probit (884) (-329)
10% EIV

Independent .4397 -.5039 -47339
Probit (869) (-332)
15% EIV

Independent .4528 -.5436 -47322
Probit (836) (-336)
25% EIV

Independent .4906 -.6849 -47287
Probit (748) (-342)
50% EIV

Independent .5366 -.9112 -47257
Probit (646) (-326)
75% EIV

EIV = Errors in variables at X% of means

L = Value of likelihood finction

T statistics for Ho: ai = 0 in parentheses

Notes

Cf is system costs in dollars, scaled by 1/100.

y is household income, undeflated

Pf is cents per therm. KWH and gallon

HDD is in degree days, scaled by 1/10000.

See M.I.T. Residential Energy Demand Group, "Aggregate Pooled Data Utilized
and/or Developed for Residential Energy Demand," M.I.T. Energy Laboratory
Working Paper No. MIT-EL 79-047WP, August, 1979.



-23-

TABLE 2: LOGIT AND PROBIT RESULTS FOR WATER HEATERS, KITCHEN RANGES,
AND CLOTHES DRYERS

a) Clothes Dryers al (Cf/y)

-5.-7468

(-1958.5)

Independent
Probit
No EIV

-3.434356
(.-43.17)

.. 2 (Pf/y)

-71.909
(-926.93)

-42.31929

(-18.38)

L

-2131.6 x 104

-2133.11 x 104

Independent
Probit
.10% EIV

-3.7089

(-38.6)

-46.6127
(-18.1)

-2130.6 x 104

Independent
Probit
.50% EIV

-5.768181
(-15.65)

-75.745163

(-11.03)

-2132.9 x 104

Independent
Probit
.75% EIV

-10.264
(-4.75)

-134.4774
(-4.23)

-2132.41 x 104

Independent
Probit
.90% EIV

Independent
Probit
.20%/.10%

-272.4153
(-.009)

-3.835122

(-35.99)

-3526.2268
(-.009)

-48.291519
(-17.44)

-2131.9 x 104

-2130 x 104

b) Water Heaters

Logit

L

-4.0667
(-713.46)

Independent
Probit
No EIV

Independent
Probit
.10% EIV

Independent
Probit
.30% EIV

-2.480393
(-21.36)

-2.6932

(-19.75)

-5.1787

(-12.78)

-139.05
(-3062.8)

-80.2258
(-77.20)

-97.9115
(-60.87)

-258.9160
(-12.82)

-2784.7 x 104

-2798.13 x 104

-2778.72 x 104

-2740.35 x 104

Logit

a, (.Cfy) a2,(p fy)
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TABLE 2: (cont.)

b) (cont.)

Independent
Probit
.50% EIV

Independent
Probit

.20%/.10%

c) Kitchen Ranges

Logit

Independent
Probit
No EIV

Independent
Probit
.10% EIV

Independent
Probit
.50% EIV

Independent
Probit
1.00% EIV

Independent
Probit

2,50% EIV

Independent
Probit
500% EIV

Independent
Probit
.20%/.10%

Likelihood function becomes ill-conditioned

-2.7785
(-20.03)

al (Cf/y)

.26202
(573.93)

.162983
(16.44)

.165318

(16.33)

.176118
(15.87)

.189929
(15.03)

.283482
(10.91)

12.0719
(.007)

.165333
(16.33)

-98.6644

(-61.39)
-2778.1 x

a2 (Pf/Y)

.41.678

(-1139.1)

-25.9708
(-31.77)

-26.3130
(-31.06)

-27.9519
(-38.39)

-30.09
(-24.92)

-44.5183
(-13.75)

-1894.74

(-.007)

-26.3152
(-31.06)

10

L

-4111.5 x

-4111.6 x

10

l14

-4111.56 x 104

-4111.3 x 104

-4111.06 x 104

-4110.3 x 104

-4109.9 x 104

-4111.6 x 104

Notes

X% EIV is errors in variables at X% of the mean

L is the value of the likelihood function at maximum

t statistics for Ho: parameter = 0 in parentheses

Cf is appliance price for fuel f in dollars
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TABLE 2: (cont.)

Pf is fuel price in cents per therm and KWH

y is real household income

Prices are deflated by the consumer price index regionalized using
the state cross-sectional index of Kent Anderson [1].

Number of purchases of each choice (i.e. Mskt in equation (8))
scaled by 10-.

Cf/y and Pf/y scaled by 100.0 to speed convergence

Data fully discussed in M.I.T. Residential Energy Demand Group,
"Aggregate Pooled Data Utilized and/or developed for Residential
Energy Demand," M.I.T. Energy Laboratory Working Paper No. MIT-EL,
79-047WP, August, 1979.
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estimates of al and a2 are -3.835 and -48.292. For water heaters the

extimates are -2.78 and -98.66. For kitchen ranges the estimates are

.1653 and -26.32. The extent of inconsistency generated by using un-

corrected aggregate data (no EIV) can be easily estimated for the

Table.

Tables 1 and 2 indicate the standard resultI that measurement

error systematically biases the parameter estimates toward zero. It

is clear from the results that the greater the measurement error, the

greater is the bias toward zero.

Finally Table 3 presents actual results for water heater and

kitchen range choice. Because Table 2 indicates that consistent

estimates can be extremely sensitive to measurement error, it may be

impossible to estimate individual taste parameters if the measurement

error is too large. This fact should not be surprising. As a result,

the contents of Table 3 are interesting. The sources for the estimates

of measurement error and the technique for estimating the composite

variable variances are indicated in the notes to Table 3. The measurement

errors for fuel prices were the smallest, varying from 0.0% of the state

mean (for single utility states such as Montana) to 71% for New York.

Income measurement variances varied from 150% of the state mean for homo-

geneous states such as New Hampshire to 863% of the state mean for

Alaska. The variances for appliances prices are quite large--a full 8800%

of the mean for gas water heaters,for example.

In spite of these large variances, the variances of the composite

1See, for example, E. Malinvaud, Statistical Methods of Econometrics,
North Holland, 1970, pp. 144-147.



-27-

variables were sufficiently small to permit estimation of individual

taste parameters for appliances that revealed the greatest sensitivity

to measurement error. The results indicate in Table 3 that severe

bias in a2 for water heaters will occur if uncorrected aggregate data

is used. Likewise, for kitchen ranges a2 is more severely biased than a1.

In addition to the observation that aggregate data can generate

severely inconsistent parameter estimates, a second observation is

warranted. Notice in all cases that the operating cost effect is

negative. Ceteris paribus, we would also expect the capital cost effect

to be negative. This is true for water heaters and clothes dryers;

however, the capital cost effect for both space heating equipment and

kitchen ranges is positive. It would appear that this positive capital

cost effect reflects excluded equipment characteristics such as quality,

brand effects and optional specialty features. The presence of such

specialty features and fuel-specific preferences would exist more con-

vincingly for space heating equipment and kitchen ranges. Clothes dryers

and particularly water heaters offer a smaller array of specialty options;

hence the choice is truly ceteris paribus and the capital cost effect is

negative. Until more extensive aggregate data on the quality and specialty

options can be developed, it is difficult to improve upon the positive

capital cost effect.
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TABLE 3: ACTUAL RESULTS FOR WATER HEATERS AND KITCHEN RANGES

a1 (Cf/y)

Water Heaters

Kitchen Ranges

-2.91303

(-23.86)

0.17343
(15.15)

a2(Pf/y)

-374.781

(-28.70)

-28.11302

(-27.51)

L

-2703.09

-4111.63

NOTES:

1) Using a first-order Taylor approximation and
dence of the measurement errors,

assuming indepen-

V(Cf/y) 12 V(Cf) + Cf 2/y4 V(y)

and V(Pf/y) 2 V(Pf) + Pf2/ 4 V(y)

2) V(Pf) is estimated from state utility data. The estimate for

each state was chosen from the year between 1965-1975 for which
the greatest number of utilities reported. The appropriate
block rate was chosen for an assumed average usage; for example,
200-25 KWH for electricity. The variance was assumed to hold
hold for all sample years. For the data source, see Data Resources
Inc., The Residential Demand for Energy: Estimates of Residential
Stocks of Energy Using Capital, Report to Electric Power Research
Institute, EPRI EA-235, January 1977, revised 1979. The raw data
files are needed.

3) V(y) is estimated by state for 1975 by the Bureau of the Census,

Department of Commerce, Money Income and Poverty Status in 1975
of Families and Persons in the United States and by Region,
Divisions and States, Series p. 60, No. 110-113, 1978. It is
assumed to be constant across sample years.

4) V(Cf) is estimated from a national sample of appliance distri-

butors and assumed to hold for each state. For example, 125 gas
water heaters and 80 electric water heaters were sampled.
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APPENDIX A

For the likelihood function the probabilities are in the form

F = P1 = I a l (n ) a2 (n)
I c a

(A1)

where we arbitrarily work with P1 and parameterize al, a2 and p as func-

tions of n. b is the standard bivariate normal density function. We require

aF/an, which by the fundamental theorem of calculus is

F a aaaF= F aF l + 2F F ap (A2)
an aal an aa2 an an (.

We can calculate the components of (A2) as follows. Rewrite F in

two equivalent formulations by reversing the order of integration:

al(n)

and F a2(n)
and F 

a 2(n)- P(n)X 1

(1 -P (n)2) ½

(l-p(n)2 )

2(X12x l ) 1(X1 ) dX 2 dX 1

(Xll X2 ) (X2 ) dX 1 dX 2

Then

aa a2(n)- (n) al ()

= (al(n)) a2(l-P(n)al ( )

(A3)

(A4)

(A5)

b X1Xl , XV (n)) dX 1 dX 2
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al(n)-P(n)a2(n)

aF - (lP(n)2) p(X1 a2 (n )) (a2(n) ) dX1 (A6)

2P(a())) [a( -P(n)a2(n)

f {2(n~l (-P( )2) 2

Finally using the relation that the derivative of a multivariate

normal distribution with respect to an element of the correlation matrix

equals the second cross partial derivative with respect to the corres-

ponding ordinates we have

-F ~F = bjal(~). "2(")' (~) (A7)
ap aalaa2 b(al, a2,P) ba(n), a2(n), p(n) (A7)

Combining A5, A6, and A7 into (A2) we obtain

aF =r (ria2( n -p(n )a(r)) aa,(

(a()) al(n)-p(n)a2(n)] a(n)
(l-p(n)2 )½ a

+ ba l( (n) a2(n) p(n)) p() ]
' 2( ' I T1) -

See [19].
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