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INDUSTRIAL RESPONSE TO SPOT ELECTRICITY PRICES:

SOME EMPIRICAL EVIDENCE

Abstract: Time of day prices for electricity are usually preferable to
constant rates, as the true cost of generating energy varies over the
course of a day. But time of day rates are still inefficient,

because prices do not change in step with day by day random fluctuations
in actual generating costs. Spot prices, which change every five minutes,
can avoid this inefficiency by tracking actual marginal cost.

This paper empirically estimates the ability of industrial
customers to respond to rapidly varying prices. The conclusion is
that some customers will be able to react quickly to such prices.
Because the estimates were made from a rate structure which is not
a full spot pricing system, the magnitude of customer response
remains problematic. Also, it appears that the utility in questions
could make a minor change to its rate structure which would help
both it and its customers.



INDUSTRIAL RESPONSE TO SPOT ELECTRICITY PRICES;

SOME EMPIRICAL EVIDENCE

I. Introduction

Electricity pricing schedules in which rates change periodically have become

the subject of increasing discussion in the U.S. The proposal usually advanced

is that different rates per kilowatt hour should be charged during different,

prespecified, periods of the day, week, and year. Such rates are generally

referred to as time of day rates, and have in fact been implemented in various

parts of the U.S.1 /

Time of day rates are superior to constant rates, as measured by overall

welfare, because customers are more likely to pay the marginal cost of gener-

ating the electricity they use. When demand is high for a utility or reli-

ability region, the marginal cost is high. Hence time of day rates are set

higher for those periods when demand is usually high.

However, setting prices in advance can never achieve a full welfare

optimum, since actual demand at any time in the future can vary considerably

from its "normal" level. Furthermore, since prices are not adjusted in re-

sponse to actual demands, the possibility arises that demand will be higher

than available capacity, making rationing necessary.2/

A new concept for pricing electricity addresses these problems. New

technology makes it possible to change prices every few minutes, and to

signal the current price to customers. In this way, the price will track

the actual marginal cost of generation, rather than the marginal cost of

generating the amount of power "usually" demanded at that time of day.

Furthermore the need for reserves, including spinning reserves, may be

reduced if customers can respond rapidly enough to higher prices. When

demand approaches the utilities capacity, it can respond by raising prices.

Those customers most able to reduce demand will do so, returning the system

to equilibrium. This concept, called "homeostatic control", was the sub-

ject of a recent conference.3 /

An important issue in the value of such a pricing system is the cus-

tomer's ability to respond to rapidly changing prices. For customers who

are risk averse or who have to "lock in" their schedules in advance,
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it would be possible to sell options or futures.4/ But it is still desir-

able to sell a substantial amount of power on a spot basis, to allow for

unanticipated weather, outages, etc. (By charging a premium for options

or futures over the expected spot price, the utility could make sure some

customers would be willing to buy on the spot market.5 /

How would customers react to spot prices? Presumably the best can-

didates would be large industrial customers, who already have automated

process sequencing and control equipment and whose volume of electricity

use would best justify the cost of special metering and communication

equipment. But there are very few studies on how industrial customers

react even to time of day rates, with their price schedules set a year

or more in advance.6 / There is apparently no data at all on how cus-

tomers will react to spot prices.7/ Until there is some evidence that

customers can and will react within a few minutes to a newly announced

price, the concept of really being able to maintain "homeostasis"'in the

utility system by spot pricing must be considered speculative.

This paper is a first attempt to explore this issue, using empirical

data from a rate which has been in effect for two years in California.

This rate schedule is not a true spot pricing system, but it has the essen-

tial feature: customers do not know how much they will pay for electricity

until the time they actually use it. The reason is that the customers are

assessed a charge based on their power demand at the time the entire system

experienced its monthly peak. (So in fact, the customers don't know how

much they paid for electricity until the end of the month! This complica-

tion can be put aside by assuming the customer calculates the probability

that the current period will be assessed the special charge, and uses this

probability to calculate the expected value of the current price.) There-

fore it should give evidence about the ability of large customers to react

quickly to newly "announced" prices.

Qualitative Discussion of Customer Ability to Respond to Spot Prices

It is rare for economists to concern themselves with fluctuations

which take place from minute to minute. /The next few paragraphs sketch
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the types of response we may expect on this time scale. The most impor-

tant implication is that each customer will be unique.

It is important to distinguish among three different issues concerning

the time a particular price lasts.

1. How long is each actual spot price in effect? For current time of day

pricing schedules, for example, a price may be in effect from 5 p.m.

to 10 p.m. each weekday. True spot prices might be posted for as

little as five minutes.

2. How far in advance is the customer told what the price will be? For

a time of day schedule which must be cleared by a regulatory commission,

this will be months to years. For a spot price, the price may be an-

nounced only a few seconds ahead of time.9 / Or the customer might buy an

option which fixes the price several days in advance. Advance warning is

important because it allows the customer to choose his capital stock,

tell his workers what time to report for work, and set up an optimal

production schedule in a job shop type of operation. (With advance

warnings respectively of years, weeks, and days/hours.)

3. How far in advance are the rules which will subsequently generate the

actual spot prices announced? Knowing these rules allows the customer

to predict the probability distribution of spot prices, and plan ac-

cordingly. For example, he may redesign his plant to allow more short

term adjustments to be made. Or he may sign contracts with his union

to allow him to schedule breaks at a different time each day. IO/

Suppose the customer is told there is a 50% chance that from 1 p.m. to

2 p.m. the next day, the price of his electricity will be $1.00/kwh. Other-

wise it will be the normal 4¢/kwh. He then has three basic ways of re-

ducing his electricity demand during that interval.

1. Rescheduling. He can take operations which he would perform anyway

and which do not use much electricity, and move them to the 1-2 p.m.

interval. Candidates are: lunch breaks, machine changeovers, and

routine maintenance.
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2. Storage. He can "store" electricity in advance, in one of two forms.

a. As heat. He can run his air conditioners hard all morning,

and be prepared to turn them off at 1 p.m. (This is particu-

larly effective strategy for large buildings.)

b. As embodied end product from an electricity intensive process.

He can run the electricity intensive process hard all morning,

and store its output to be fed to the next stage downstream.

This type of adjustment requires advance provision in the form

of surge tanks, and oversized capacity at critical stages of

a product flow line.

3. Outright curtailment. He can simply shut down the power intensive

unit at 1 p.m. If he has no room to store the upstream product, he

may have to shut down the whole production line. In any case, he

will have to shut down all of his downstream operations.

The costs of these three alternatives will depend on the particular

plant configuration, labor costs, opportunity costs of reduced output,

whether the plant is operating at full capacity, etc. It is clear that

the costs and opportunities for curtailments in response to higher prices

will depend on the particular circumstances of each plant. It is also

clear that a plant designed for flexibility will have more opportunities

for adjustment than will an automobile sytle assembly line. Thus the price

elasticity of response to spot prices may improve for a decade or more after

their introduction.
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II. The San Diego Data

The actual rate structure used by San Diego Gas & Electric Company is

very different than the spot market pricing system outlined above. It and

the resulting data for estimation are discussed in this section.

All customers whose peak demand exceeds 4,500 kw during a month are

placed on Schedule A-6. There are five charges on this schedule:

a. A metering charge of $600 per month.

b. A time of day differentiated rate, per kilowatt hour of electricity

used. Presently usage during the peak hours is charged l¢/kwh,

usage during semi-peak costs .5¢/kwh, and usage during off-peak

.25¢/kwh. These rates have changed every few months; they were

about .3¢/kwh lower in early 1978.

c. An energy "adjustment" which is the bulk of the total expense. It

is rougly 3 per kwh, regardless of time of day.

d. A peaking charge which depends on the amount of power used by the

customer during the 15 minute period which turns out to be the time

of the system's peak total load for that billing month. Thus neither

the customer nor the utility know in advance which period will be

the critical period.11 / The charge is presently $7.67 per kilowatt.

For a customer with flat demand over the course of the month, this

charge could be 25% of his total bill.

e. Various minor taxes and special charges.

Only the fourth of these charges is of interest in this paper.

This coincident peak demand charge (abbreviated Cpeak, to distinguish

it from standard demand charges which are based on the customer's own

peak demand during the month) can come to $250,000 per year, out of

a total bill of $1 million. This rate structure has been in effect

since late 1977.

The Sample

There are currently 21 customers on this rate schedule. For these customers,

demand is recorded every 15 minutes by recording meters. In addition, six

of these customers have special telephone hook-ups to San Diego Gas and

Electric (SDG&E) which tells the customers the system's total load at each
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instant. Thus these customers can monitor the system load and assign a

probability to the event "the next 15 minutes will show the highest system

load for my entire billing month". When this probability is high, the

expected value of the Cpeak charge is also high. Most of the time, however,

this probability will be zero. The remaining customers, who lack the tele-

phone hook-ups, can also estimate probabilities, but their estimates will

be much more diffuse.1 2/

Of the six customers with telephone links, three are government owned

and three are privately owned manufacturing plants. Six months of data

were selected from each of the three industrial customers; June, July, and

August 1978 and 1979. This provided about 120 observations on each customer.1 3/

Very important additional information was the actual daily SDG&E peak

system load, in MW, and its time of occurence.14/ This data was used to

generate probabilities that each 15 minute interval would be the critical

one.

Problems with the Data

The only major problem with this data is that the six customers who re-

ceived the real time information by telephone were self-selected. Presum-

ably they felt that the monetary value of this information was worth the

cost of the leased phone line and the associated analog to digital conver-

sion equipment. These six are not likely to be typical of the 21 customers

on schedule A-6. They will have the highest marginal benefit from the im-

proved probability estimates. (But not necessarily the highest total benefit

from adjusting their demands to the Cpeak charge.)

Furthermore, San Diego is not a "typical" industrial city. It is im-

possible to say to what extent San Diego's largest electricity users response

to this rate structure is typical of how others would respond. Therefore

all of the estimates in this paper must be interpreted as conditional on

the observed sample.

Other minor problems were encountered. Some customers' demand data was

mildly multicollinear over the six month sampled. July 3 and other days ad-

jacent to holidays were dropped when appropriate.l5/
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III. An Econometric Model of Demand as a Function of Spot Prices

Customers will respond to the random portion of San Diego Gas

& Electric's price schedule in two stages. First, they will estimate the

probability that the Cpeak charge will be assessed on their demand over

the next few minutes. If it is assessed, then the cost of each kilowatt

hour used over a 15 minute period is 4 x $7.67 or about $30/kwh. If it

is not assessed, then the cost is about 4 per kwh. Customers may

evaluate the probability of this Bernoulli distributed event using any

of a wide range of current and historical information, by any means from

subjective judgement to real time computer analysis.

Second, given their probability estimate, customers must decide how

to react. Since these are large industrial customers, it is reasonable to

assume that they are expected value maximizers. Therefore they will

respond to the product of the probability (of incurring the Cpeak charge)

times the charge. This gives them an estimated "pseudo price" for their

electricity use over the next 15 minutes. The larger this pseudo price,

the less electricity they will use. The amount of demand reduction depends

on how much advance warning they get, and on how costly it is for them to

cut demand quickly but briefly. It is this second response function

(demand as a function of pseudo price) that we wish to estimate, since it

will suggest whether the same customers would respond to true spot prices.

Estimating the Pseudo Price

Before deciding whether to reduce its electricity use, each customer

must estimate the pseudo price in the next few minutes. This is proportional

to the probability that the next 15 minute interval will include the system's

peak load for the month.

Utilities have developed for their own purposes load forecasting

techniques which cover both of the relevant time scales (minutes and weeks).

Time series and weather dependent methods have both been used. See for

example the survey by F.D. Galiana 17/ and the multitude of papers

published in the early 1970's, such as Galiana and Schweppe.1 8/ These

*Casual readers may skip this subsection as the methods used are not crucial.
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forecasting methods provide a "most likely" forecast for utility planning

purposes, and often a (very conservative) confidence band of the

maximum possible load. For calculating pseudo prices, such forecasts

must be adapted to give the probability of an extreme value, rather than

the most likely value.

For this investigation, a comparatively simple but adequate model was

used to calculate pseudo prices. No weather data, weather forecast data,

or knowledge of the minute by minute dynamics of system load was available.l9/

Therefore a purely time series model of daily peaks was developed, ignoring

the minute by minute dynamics. Because of the pattern of SDG&E's peak

loads, this model probably gives a good representation of the true

pseudo prices.20 / A completely accurate calculation would have to use

Monte Carlo techniques, because of the very complex conditional relationships

inherent in minute by minute data with high autocorrelations at the

highest frequencies and at frequencies of days, weeks, and years. Further-

more, historical weather forecasts would be needed, since if tomorrow is

likely to be hotter than today, today is unlikely to be a peak. (The

real object here is to mimic the decision making procedures used by the

customers. It is unlikely that all of them are this sophisticated.)

The basic probability calculating model is as follows.

(1) P[ Sn(t) P[ S(t) S] x P[SnSSn Sn(t)]

where 
S = Highest system load for the billing month.

Sn = Highest system load for day n.

Sn(t) = System load at time t of day n, where t is the midpoint

of a 15 minute interval.
A
Sn(t) = Max . [ Sn(t+k) ] = Highest level of system load during

_-7tI47 the current interval. 2 1 /

In words, the probability that the current 15 minute interval will turn

out to have been the peak for the month is the probability that it is

the peak for today, times the probability that the current reading will

not be exceeded any other day this month.
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One very important indentity dominates the evaluation of equation 1:

A
(2) I[^n =S Sn( A 0 (°if S < S for any k<n in the current

(2) P[ n~ =S n =S Sn(t)] = r R n billing month.

P[Sn+l <S n] P[Sn+2¢Sn Sn+l S
n] x ....

20 n I' n+l 2' "' 19 t

if SSk for all kn in current month.

In words, day n is a candidate to be the peak for the month only if no

previous day has had a higher daily peak. If day n passes this test,

its chance of being a peak is the probability that all of the succeeding

days of the month have lower daily peaks. (The exact form of equation 2

assumes 20 business days in a month.)

Finally, we assume that the daily peaks n are independent, identically

distributed with a normal distribution. A constant variance but different

mean is assumed for each of the six summer months in the sample. 22/ The

normalcy assumption appears correct. But the independence assumption

oversimplifies; there is autocorrelation between adjacent days, mainly due

to weather persistence. The best way to correct for this would be with

a weather dependent model, or barring that an autoregressive model.2 3

Figure 1 shows the daily system peaks over the sample period, to

illustrate the magnitude of the effects involved.

Equations 1 and 2 give the probability that the highest point in

day n is also a peak for the month. There remains the issue of whether

any particular time t is the highest for its day. Equation 1 was evaluated

for only one time each day: that time period which, ex poste, was the peak

for the day.

Examination of the daily load curves gives an indication of the

magnitude of the first term of the right side of equation 1, evaluated at

these particular times. Figure 2 shows the shape of Summer load curves.

It is apparent that any of the intervals in early afternoon could turn out

to be the peak for the day, depending on the vagaries of the minute by

minute random walk refered to in footnote 21. In contrast, Figure 3

illustrates that Winter peaks are sharp and predictable. In fact,
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FIGURE 1

DAILY PEAKS FOR SDG&E (MW)
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FIGURE 2

FIGURE 3
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the peak during the Winter almost always occurs during the same interval

as the previous day's peak. From this we estimate:

(3) P n(t) = S ] = Probability that the highest reading during the

15 minute interval around t is the peak for the day.

~=K ( .25 in Summer months
.8 in Winter months

Note that the same estimate is used for each day in a sample.

The final form of equation 1 is therefore:

(4) P[The 15 minute interval around tn', the time of peak on day n,

includes the monthly system peak]

) 0 if Sn k , for any kn /24

Z [w[Sn - ]/c' 20-n

where

jr= Mean daily system peak for the month

f = Standard deviation of system peaks (about 100 MW)

20-n= Number of working days left in the billing month.

I = Unit Normal cumulative distribution function

Finally, adjusting for the fact that each kw demanded during the Cpeak

interval incurs a charge of C, in dollars per kilowatt,

(5) C n Pn (tn) x C

where Cn = pseudo price for day n at time tn, in $/kw.

Figure 4 shows the estimated pseudo prices over the course of the sample.
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FIGURE 4

Estimated pseudo prices
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Demand for Electricity as a Function of Spot Pseudo Prices

Given a continually changing pseudo price, which is not known in

advance, how will a manufacturing customer respond? First, consider the

demand for electricity during the periods when the pseudo price is zero.

This will exhibit a normal pattern of diurnal, weekly, and random fluc-

tuations, based on the hour by hour operations of the electricity using

equipment in the plant. Then when the pseudo price rises above zero,

the customer can respond by shutting down some equipment temporarily,

turning up air conditioner thermostats, and similar measures discussed

in section I. How much demand is cut back will depend on the cost of

reduction compared with the amount saved.2 5/ The marginal cost of reduction will

be an increasing function of the amount of reduction, since the cheapest

cutbacks will be made first.2 6/ The costs will also depend on:

1. The amount of advance warning of high price. More advance warning

will allow time for rescheduling. If the precise time of the peak

can be anticipated, as is true in Winter months, then breaks, line

changeovers, etc. can be scheduled in advance.

2. The time of day. Certain loads, which are only run at certain times

of day, may be cheaper to curtail or reschedule than others. Also,

if human intervention is required to reduce demand, operator attentiveness

will be higher at some times than others, due to other demands on

the operator.

3. Anticipated persistence of high prices. A pseudo price of $1/kwh

which is expected to last for 30 minutes may elicit more response in

each period than one which only lasts for 15 minutes. This will be

the case if any cutbacks incur fixed costs as well as incremental

costs per unit of time. 27/

Curtailments, A, will therefore have the shape shown in Figure 5 as

a function of pseudo price C and advance warning W, at some fixed time t.
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Normal dem-
and at time
t

j xI _rj

- = psud p at
C = pseudo price at t

in $/kw

Figure 5

Curtailments as a function of price C

and advance warning W (illustrative)

Econometric specification of the curtailment response function

The basic econometric model estimated here uses lagged demand to

provide a forecast of normal demands each day. Reductions below normal

demand are then explained as curtailments due to spot prices.

Becasue of the time of day price structure of San Diego Gas &Electric

rates, as well as the diurnal variations in the demand for electric

services, demand will depend on time of day even if the spot pseudo price

remains zero. One possible approach would be to attempt an engineering

or econometric model of normal demand over time. This would be more

complex than necessary to find the influence of spot prices.
A

Instead, current demand at the critical time tn was regressed on

demand of exactly one week before and on average demand for the same day.

Thus normal annual, monthly, weekly, daily, and hourly demand variations

Atr w +1 ( t,-)

01
-

.0

I

I
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(such as lunch hours) are removed. In addition any special features

affecting an entire shift or entire day will be removed via the average

daily demand term.

A linear version of Figure 5 was used to estimate the impact of spot

prices. The final equation estimated was therefore of the form:

(6) Xn(tn) a + X + (Xn t) + 7 +x C + Sn(t n)

where Cn = calculated pseudo price for day n, time tn

Xn = average demand on day n

tn = the time of highest SDG&E system load on day n

n = index for day, month, and year.

Xn(t) = demand for electricity at time t of day n.

Sn(t) = System load at time t of day n. Used as an instrument

for weather.

If customers can and do respond to spot prices, thenl[should be negative.

The null hypothesis is that customers cannot respond quickly enough, in

which caselwill be zero. The last term, involving S n() reflects the

possibility that some customers have high air conditioning demand. During

the summer the absolute level of system load in the afternoons will be

correlated with the demand for air conditioning.

Equation 6 was estimated separately for each of the three customers.

There is no rationale for thinking that the three have the same electricity

using technologies, hence similar response functions A(C,W,t). Nor is

there any reason to think they have the same pattern of shift changes,

weekly and diurnal variations, etc., hence the same constants ,B,y, or 6.

Therefore separate estimates were made for each customer.2 8/

Various extensions of equation 6 may be appropriate.

1. The relationship between average demand for the day and demand at time

t stays constant from week to week. Hence the constraint

(7) S = -j
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should hold.

2. The parameters of equation 6 may depend on the time of day. This will

certainly be the case if the plant is in full operation during the

day but reduced operation at night. Since the sample includes different

times of day ranging from 10AM to 3 PM, there is possible aggregation

error in the estimates. This could be easily corrected, albeit at some

cost for computer time.9/

3. Equation 6 ignores the questions of warning time and anticipated

persistence of high pseudo prices.

4. Finally, there is the question of short versus long run response.

SDG&E's rate schedule has been in effect for two years. This is

probably long enough to adjust plant operating procedures to the

spot pricing system. But it is not enough to change the capital

stock significantly. All else equal, we expect thelT coefficient of

responsiveness to increase in absolute value from year to year. In

particular, customer 3 added the telephone hookup between 1978 and 79.

Robust Tests

Equation 6 assumes a very special response to the Cpeak charge. First,

it assumes a comparatively sophisticated calculation of pseudo prices.

An alternative, for example, would be to make a plant operator responsible

for monitoring system load, and taking action when he deems it appropriate.

Second, it assumed a linear response to the calculated pseudo prices.

Given these assumptions, the test used to reject the null hypothesis (that

customers don't respond) is then a one tailed test that the coefficient

i s not zero.

More robust tests of the hypothesis that customers respond are also

possible. A basic test is simply to compare demand on days with some

chance of being a peak for the month against demand on days with no

chance. This can be done in two ways. First, the demand at the same

time of day can be compared for all days of the month. Second, equation

6 can be estimated withlTrrestricted to zero. Then the residuals from
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this estimation can be summed over the days with a positive pseudo price

and compared with zero. Either approach will, asymptotically, detect

nonlinear responses and responses based on either more or less sophis-

ticated calculations of pseudo prices.

All of the techniques discussed in this paper use some days of

each month as controls for comparison with other days. There is one

form of behavior which this will not detect under any circumstances.

That is changes in behavior which do not depend on the actual system

load on that particular day. For example, most peaks on Winter days

occur during the interval from 5:45 PM to 6:00 PM. It might be cost

effective to schedule shift changes for this period, regardless of the

pseudo price on any particular day. In effect the customer would be

substituting the average pseudo price for the actual spot price.30/

The only way to detect such a shift is to compare behavior before and

after the Cpeak charge was imposed.3 1/
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IV. Results

The basic results are that two of the three industrial customers are

clearly responding to the Cpeak demand charge during the Summers, while

the third customer may or may not be responding. The magnitude of the

response, however, implies that sudden adjustments of demand are quite

costly. In one case a pseudo price of $.25 per kw leads to a demand

reduction of only about 70 kw or 1.5%.32/ For the second customer, the

same price led to reductions of only about 50 kw, or 1%.

These results indicate that a significant amount of utility peak load

reducing can be achieved by the Cpeak charge. At present the utility can

impose a pseudo price of at most about $2 in Summer, and double that in

Winter.3 3 / This price would probably occur, for example, on the highest

day of the year. Such a price would reduce demand of these two customers

alone by 1 MW (compared with a maximum system load of about 2,000 MW).

The utility cn et suhstarnil??y ore effect from this rate struc-

ture by moving toward true spot pricing, ather than the once a month but

random Cpeak charge. A corrronise would be to tie the charge to the ab-

solute level of system load. In this way rluths where even the high for

the month placed no strain on SDG&E capacity would cause little incentive

for customers to shed loads. Conversely, the highest peaks of the year

would encourage substantial conservation.

Even without such modifications, however, the coincident peak charge

is clearly Pareto superior to the standard peak charge. Industrial cus-

tomers can and do find it cost effective to lower their demands at the time

of maximum system load.

Basic Results

The basic results for the three customers are shown in Table 1. The

first four coefficients predict demand on days when pseudo prices are zero,

and are not important. The important coefficient is T. It is negative

for all three customers, but significant only for the first two. (At the

1% level in both cases.)

The final term in Table 1 is shown only for customer 3. For the other

two customers the estimated value of 3 was very small, insignificant, and

its presence had almost no impact on the estimated value of T. Including
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Xn(tn) = + ~

TABLE 1

Basic Results

+xn 7 (n) + n7 + ITCn

Constant, 6k

Average demand for
day, B

Lagged demand at same
time of day, 6

Lagged average demand,6

Effect of pseudo price,
Tr in kw response per
$/kw pseudo price

Effect of absolute system
load, 

R2

Durbin-Watson

Customer 1

325

(336)

1.08
(.126)

.294
(.074)

-. 333
(.138)

-288*
(60.4)

.666

1.50

Customer 2

203

(70)

1.08
(.109)

.120

(.099)

-.248

(.140)

-194*
(56.0)

.976

1.61

Customer 3+

1076

(628)

.88

(.14)

.00
(.08)

-.13

(.10)

-46.4+

(120)

.77

(.34)

.36

1.39

Standard error 202 189 335

*Significant at the 1% level.

+Customer 3 did not install equipment to monitor system load until 1979.
This table shows results from pooled 1978 and 1979 data. See text.

Standard errors are shown in parentheses. No adjustment for auto-
correlation was made in the results shown here.

Number of observations is about 120.
17 of these observations have positive values of Cn .

+ 0 Sn(tn)
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absolute system load in the explanatory variables also caused a multi-

collinearity problem for customer 2. Therefore this term is omitted in
34/

subsequent analysis.

Several other more general specifications were tested for all three

customers.3 5 / These included: a) enforcing the restriction of equation

7 on the coefficients of lagged demand; b) allowing W'to change between

1978 and 1979; c) allowing all other coefficients to change between 1978

and 1979; and d) correcting for autocorrelation of residuals. With one

exception, these specifications did not change the value of the critical

Ir parameter by more than 10 kw/$/kw, not enough to affect any conclu-

sions. For example, forcing the nonlinear restriction that - i 

changed the values ofe and greatly. But in no case did it alterWT

appreciably, nor did it change the standard error of the equation. Thus

the conclusion that customers 1 and 2 did reduce their demand in response

to high instantaneous pseudo prices appears robust. Customer 3 remained

ambiguous.

The one specification which did affect the value of was to allow it

to change between 1978 and 1979. For customer 2, this made an appreciable

difference, as shown in Table 2.

Customer 1 Customer 2 Customer 3

1If joint 78/79)

179

-288
(60)

-312
(116)

!t -284
(729
'L-I

-194

(56)

-364
(104)

-1312 {645
i

¥
t I

-47
(120)

15

(200)

-70
(1360

Table 2: Changes in price responsiveness
between years (kw per $/kw)

For customer 2, a Chow test indicates that price responsiveness probable

did change between the two years. However, the customer became less re-

sponsive, rather than more responsive as we would expect due to long

term adaptation. Customer 1 also changed in the wrong direction, although

\IVV/
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not significantly.

Customer 3 also changed, showing a much larger response in 1979.

This is to be expected, since this customer installed a telephone link

to monitor system load, between the two Summers. However even the 1979

coefficient is not large enough to unequivocally reject the null hypothesis

of no response. 3 6 /

Estimating changes from 1978 to 1979 was frustrated by the small

number of days in the sample with non-zero pseudo prices. This is shown

on Figure 4. Extending the sample to cover more months in each year is

the only solution.

Robust Test Results

As discussed, equation 6 assumes a linear response to the spot

pseudo price. It also assumes a moderately sophisticated calculation of

this price. One test was made which did not require such assumptions.

Equation 6 was estimated withirheld to zero, i.e. assuming that customers

do not respond to pseudo prices at all. Then the residuals from this es-

timation were summed over those days for which Cn was positive, i.e. on

which there was some chance of a peak. Under the null hypothesis, the

sum of these residuals will have mean zero, and asymptotically be normally

distributed. But if a positive chance of a peak leads to reduced demand,

the sum of the residuals will be negative, regardless of the exact form

of the response function.3 7 / The results are shown in Table 3.

It is clear from the bottom row of this table that customers 1 and 2

were indeed reducing demand when there was a significant chancpof incurring

a Cpeak charge. On the other hand it appears that customer 3 was not

responding, at least not effectively. The sum of its residuals on the

appropriate days was only .04 standard deviations below that expected by

pure chance. Segregating residuals into 1978 and 1979 observations gives

a positive sum for 1979. Again, the small sample problem mentioned in

footnote 36 frustrates analysis of customer 3.



-23-

TABLE 3

A Robust Test of Response

A A

n-7(tn) +6x1 + Sn(tn) + f(Cn)Xn(tn) =d+n + X 

Estimate with f(Cn)
- 0

Then find V

If f(C n ) 0

V

(no response)

= [u n +f(Cn)].
n s.t.

Cn>>0

is true, then V > Normal(O, N.3)

where N is the number of days

with Cn > O.

Customer
1

-2578

852

+

Customer
2

-2425

Customer

3

-60

770 1320

V/ir o -.04

*Significant at the .005 level.

+ In small samples, even if the true residuals are iid Normal, V will have

variance;

E E [I-X(X'X) - 1 X ]ij

Sample size: N=15, total sample size = 120.

Il··lllrrrrrr�lrrr,�·Il·llr�� - 'L__.._, _ _...__ __

+ n

-3.2* -3.2*
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Interpretation and Significance of Results

The results of this paper demonstrate that some large industrial

customers can and will respond to rapidly varying ("spot") prices of

electricity. This overcomes an important theoretical objection which has

been raised to spot or homeostatic pricing, namely that customers could not

respond rapidly enough to the price signals. But the results also suggest

that the strength of the response may be low for some customers. On site

interviews, and engineering/economic analysis in the style of Manichaikul

and Schweppe3 9/ would be needed to find out why customer 3 did not respond more.

(Absent a much larger cross section than will ever come out of the current

San Diego rate structure.)

How large is the response of the two customers who definitely did

react? Measured conventionally, it is miniscule, especially if considered

in terms of energy (kwh used during the 15 minute period) instead of

power (kilowatts). Both customers showed an elasticity of roughly .002

in terms of power, one quarter that in terms of energy used over 15 minutes.4 0/

As mentioned earlier, even this small elasticity can be quite useful

and cost effective for a utility which a) can use very high prices for short

periods of time, and b) has the sole objective of delaying additions to

capacity. The days of annual and seasonal peaks are guaranteed to have

high pseudo prices. With high pseudo prices, the utility can cut several

megawatts off its peak, judging by the results of the calculations in this

paper.

It is also clear that, from the broader perspective of homeostatic

pricing, the bang/bang feature of the Cpeak charge has undesirable properties.

The pseudo prices will not correspond to true marginal generating costs

for more than a few hours a month, since as long as an earlier day of the

month had a higher system load, customers will have no incentive to reduce

use, no matter how overloaded the SDG&E system is. In addition, the present

pricing schedule presents problems to customers. First, it may not be cost

effective for them to arrange load shedding procedures and equipment which

will only be used a few hours a month, at most. Second, to truly minimize

;I 
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their expected electricity bill, they must continually calculate the

probability that the next 15 minutes will contain the peak for the month.

This requires an on line, real time computer, or a very alert human op-

erator. SDG&E, on the other hand, can calculate these probabilities fairly

easily, and do so for all affected customers at once. If the utility were

to substitute either the probability, or better yet a true and guaranteed

price in cents per kilowatt hour, for the load information now sent out

on its telephone line, customers would not have to do these calculations.

Thus there is a natural progression from the Cpeak charge to homeostatic/

spot pricing. (Of course equitable distribution of the resulting savings

to both customers and the utility might have to be negotiated.)

What would be the behavior of customers who faced continually evolving

spot prices, rather than the bang/bang feature of the current price system?

Unfortunately their response in the present case tells us only a little about

the more general case. Most important, some of the customers would respond.

(Remember the self selection bias in the current sample.) But it might

become cost effective for them to undertake a much broader adaptation to

the new rate structure. At present, only a few relatively unimportant

pieces of equipment may be set up to drop loads at critical times. Equip-

ment for which there is a high cost for the shutdown/startup sequence

would not be set to respond. But in a situation with homeostatic prices,

there would be longer periods of high prices. (It is also likely that

prices early in the day would give better indications of prices later in

the day. With more advance warning, responses would also be higher.) Hence

more response would probably occur under homeostatic pricing than is

suggested by the very low elasticities calculated here.4 1/

Possible Biases and Errors

Many real or potential problems with this study have already been

mentioned. This section attempts to list all which may be important.

In many cases, the data to ameliorate them is already available, and merely

needs to be mounted on a computer.
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1. Limited sample. Because of time and data availability, the sample

estimated was limited to one observation per day, for six months (out of

two years) and 6 customers (.out of 21 on this rate schedule, of whom six

receive real time telephone signals). A larger sample would provide more

information.

2. Advance warning. There is theoretical reason to expect more response

with several hours of advance warning that a system peak might be approaching.

This was not tested.

3. Time of day. If shift changes, breaks, or other changes in production

occur between 12:30 PM and 2:30 PM, then responsiveness to pseudo price

may depend on time of day. Also, when a high system load occurs late

in the afternoon, there is less chance that it will be followed by an

even higher reading. Therefore the "constant" in equation 4 may depend

on the time of day.

4. Biases in the calculation of the pseudo prices, Cn. Most days

unequivocally had a pseudo price of zero, throughout the day. The

exact price on other days is harder to calculate. But the ordinal

ranking of days would probably not change much when using more sophistic-

ated calculations.

5. Autocorrelation. The Durbin Watson statistics from the estimates of

equation 6 consistently indicated positive autocorrelation in the residuals.

This is to be expected. The regressions used demand lagged by one week;

demand the previous day would be positively correlated. Also, because

weather persistence was not considered in the calculation of pseudo

prices, these prices tended to be autocorrelated. Equation 6 was estim-

ated with a correction for first order autocorrelation. But the maximum

likelihood values of e were only about .1 to .15, and this adjustment had
little impact on the estimates.

7. Omitted variables. Temperature or some other measure of air conditioning

load might be important for some customers. Using gross system load as an

instrument is acceptable, but not efficient since it contains many other
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components also.

A more complete model, which would better predict demand at each time

in the absence of a Cpeak charge, would have given smaller residuals and

hence tighter estimates of responsiveness to the Cpeak charge. Such a model

might improve the low R2 of equation 6 for customers 1 and 3.

8. Evolution of customer behavior over time. Tests for changes from

1978 to 1979 were tried, but were inconclusive. Putting in 12 months

of data for each year would allow tests with higher power.

Conclusion

San Diego Gas and Electric Company has put into effect a rate

schedule in which the cost per kilowatt hour is not known in advance.

Several of its largest customers have chosen to pay the fixed costs

for telephone equipment which allows them to better monitor the

price at each moment. These customers then adjust their demands

for electricity according to the instantaneous or "spot" price.

The success of this concept, at least on a limited scale, suggests

the value of further pursuit of the more general concept of "homeostatic

pricing", in which the price of electricity changes continuously,

reflecting the true marginal costs of generation at that time. In

fact relatively slight changes in the rate structure in the direction

of homeostatic pricing may be the logical next step.
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FOOTNOTES

1. For examples, see John T. Wenders and Lester D. Taylor, 1976, "Exper-
iments in seasonal-time-of-day pricing of electricity to residential
users," The Bell Journal of Economics, volume 7 pp 531-552.

2. Roger Sherman and Michael Visscher, 1978, "Second best pricing with
stochastic demand", American Economic Review, volume 68 no. 1, pp41-53.

3. MIT Center for Energy Policy Research, and Electric Power Systems
Engineering Laboratory, "New Electric Utility Management and Control
Systems", conference proceedings, June 1979. See also the forthcoming
paper, Fred C. Schweppe et al, "Homeostatic utility control", IEEE
Transactions on Power Apparatus and Systems.

4. For example, the option to purchase a fixed amount of electricity at a
prespecified price, from 10AM to noon the next day. Such options could
be "sold" electronically the night before.

5. Regulatory intervention in the price setting process would presumably
be necessary. William Vickrey, "Efficient pricing under regulations:
the case of responsive pricing as a substitute for interruptible pcwer
contracts," June 1978, unpublished, proposes a "pool" which wVould
be rebated to customers at the end of the year. His concept of "respon-
sive pricing" is very similar to "homeostatic" or "spot" pricing.

6. But see B.M. Mitchell, W.G. Manning Jr., and J.P. Acton, "Electricity
Pricing and Load Management: Foreign Experience and California Opportu-
nities," Rand Corporation Report R-2106-CERCDC, March 1977.

7. Although the British apparently use a related system called "Peak
Period Warnings." Ibid.

8. An exception is M. Barry Goldman and Howard B. Sosin, 1979, "Infor-
mation dissemination, market efficiency, and the frequency of transactions,"
Journal of Financial Ecenomics, Volume 7 no. 1, pp 29-61. The analogy
between a stock market and the electricity "market" implied in this
paper is strong.

9. But each customer could generate a subjective probability distribution
of the price at some future time. As the time approaches, the distribu-
tion would usually become more peaked. Note the value of a futures
market for electricity as a means of "pooling" different customers
estimates of the spot price at a later time.

10. For the San Diego Gas &Electric rate structure discussed in this paper,
the answers are: a rate is in effect for 15 minutes; the customer is
told the rate in the middle of the period to which it applies, so there
is almost no advance warning; the rules were approved by the CPUC more
than two years ago.
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11. However only peak period hours are eligible. During Winter months,
the peak must fall between 5 PM and 9 PM, PST. During the Summer
months, the peak must fall between 10 AM and 5 PM, PST. Weekends and
holidays are ineligible. Thus the customer does not have to monitor
the system load at other times.

12. The peak during the Summer is heavily influenced by air conditioning
load. Therefore these customers would use a temperature related
estimate of probabilities.

13. One customer installed the telephone monitoring equipment midway
through the sample.

14. This data had holes which were filled by interpolation from hourly load
profiles.

15. Average demand for the day was used as the criterion for dropping a day.

16. No footnote.

17. F.D. Galiana, "Short term load forecasting," 1976 (?), IEEE Transactions
on Power Apparatus and Systems (?).

18. F.D. Galiana and F.C. Schweppe, 1972, "A weather dependent probabil-
istic model for short term load forecasting," paper C 72 171-2,
IEEE Winter Meeting, 1972.

19. Such information would be available to customers, with some effort.
Therefore customers could have better estimates of pseudo prices than
the estimates developed here. This will introduce some measurement
error into the regressions, as discussed below.

20. It is reasonable to treat each customer as a perfect competitor, since
each customer's load is less than .5% of the system peak load.

21. Movements over this short a time period can probably be described as
a Wiener process, ignoring drift. Note that the volatility of this
process may be important. If one waits until the middle of a 15
minute interval to realise one should reduce demand, the effect will
be proportionally reduced. (The 15 minute demand meters integrate over
each quarter hour.)

22. To allow for seasonal variation and trends in peak loads.

23. First order autocorrelation of daily peaks was about .7. However
even an AR(1) model would not eliminate measurement error, since most
of this persistence was due to weather.

24. Actually, if Sk - Sn < 10 MW this was adjusted to allow for the possibility

that demand would rise several MW during the next few minutes. Ex poste,
we know this didn't happen. But that could not have been known at the
time.
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25. Actually the expected value of savings, since pseudo price is an
expected value. We assume all customers are risk neutral for such
small dollar amounts.

26. Except that there may be an initial nonconvexity, if there is a fixed
cost which must be incurred before the first curtailment can take
effect.

27. See Mohan Munasinghe and Mark Gellerson, "Economic criteria for
optimizing power system reliability levels," 1979, The Bell Journal
of Economics, Vol. 10 no. 1, pp 353-365 for a discussion of the
cost to customers of blackouts. Such costs are an upper bound on the
amount of price incentive needed to achieve voluntary demand reductions.

28. Because of the approximate methods used to estimate the pseudo prices,
there will be measurement errors which should be correlated between
customers. Therefore the residuals should be positively correlated
on days when Cn was positive. In fact, the residuals were slightly

negatively correlated, perhaps because of time of day effects. Therefore
Zellner estimation was not attempted.

29. Such estimation would have been simple if the data were available on
computer tape, since there would then be massive amounts of information
available to estimate normal demand at each time of day. Instead, the 15

minute demands were available only on paper.

30. If half of all Winter peaks fall during this interval, the average
pseudo price is about 70¢ per kilowatt hour, over the entire month!

31. See Electrical World, September 15, 1979 pp 138-139 for a comparison of
average demands of pooled schedule A-6 customers at the time of peak,
before and after the rate was changed.

32. Some results have been scaled to protect the confidentiality of customers.

33. Since the peaks are sharper in Winter, the customer can be more certain
which 15 minute interval will contain the peak.

34. These two customers may_still have had air conditioning loads. The
daily average demand, Xn, would also pick up air conditioning demand.

35. Given an unlimited amount of data with no multicolli-nearity problems,
it would be ideal to use the most general specification in all tests.
As shown, this would not have changed the conclusions.

36. The power of the test on 1979 data alone is low. There are only 8 days
with positive pseudo prices in Summer 1979. Four of these are
consecutive days in August. (See Figure 4.) Customer 3 happened to
have very high demand on 3 of these 4 days, perhaps because of something
happening that week.

37. The null hypothesis is thus that f(Cn) 0, compared with f(C)0.O when
C>O. In either case we expect that f(O)=O. We also know that f(C) is
non increasing, but this restriction is not incorporated into the test.



38. No footnote.

39. Y. Manichaikul and FC. Schweppe,"Physical/ economic analysis of
industrial demand," presented at the IEEE Power Engineering Society
1979 Summer Meeting, July 1979.

40. Since the impact of a $7/kw Cpeak charge, measured on demand over 15
minutes, is $28/kwh. Of course if the peak were measured instantaneously,
this would be an infinite chargeper kwh at the critical instant!

41. Of course this depends on how the homeostatic prices compare with the
Cpeak charge. Consider a Cpeak charge of $1 per kw, in effect for 15
minutes. Compare this with a spot charge of $1 per kwh, in effect for
an hour. Both raise $1 of revenue from a lkw load which is on forthe entire
hour. But the customer might be willing to turn off his equipment only
for the former rate, for only 15 minutes. On the other hand the true
higher costs to SDG&E are probably incurred over several hours. In
addition the spot price would be more predictable, allowing customers
to take actions which require longer lead times.


