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ABSTRACT

This report presents the results of a social cost evaluation of

three prospective photovoltaic electricity supply technologies. The

technologies--based on cadmium sulfide, silicon, and gallium

arsenide--are compared with each other and with coal in three categories

of direct social impacts: occupational and public health and

environmental effects. Indirect impacts, due to opportunity costs and

benefits, or to health or other effects of use of material, labor or

energy itself, are also considered. Special attention is given to

regulatory issues that will arise in connection with these social costs

and to their potential importance to government programs and commercial

development.
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EXECUTIVE SUMMARY

* SCOPE AND APPROACH

Solar energy is often regarded as a totally clean and hazard-free alternative to
conventional energy sources that have numerous negative impacts on health, the
environment, political and social processes, or on domestic and international
security. This view of solar energy is, of course, born primarily of hope: indeed, it
is unlikely that any energy technology--whatever its social benefits-will be entirely
free of social costs. This study makes a first effort to provide a comparative
analytical basis for social perspectives on one important solar technology, the direct
photovoltaic conversion of sunlight to electricity.

It considers the social costs associated with three generic photovoltaic
technology options and draws comparisons with the analogous social costs associated
with coal-fired electricity generation.* The three photovoltaic technologies
considered are those based on silicon, cadmium sulfide, and gallium arsenide.
Estimates of health, environmental, and other impacts are given for the major
materials and processes associated with each technology. All costs are prorated
over the electrical energy produced.**

Quantitative assessments of the impacts of the photovoltaic technologies are
done in the spirit of upper-bound (worst-case) calculations, based where possible on
experience in comparable industries. This approach permits maximally cautious
comparison of the impacts of photovoltaics with the known effects of conventional
energy sources. In addition, it highlights those points at which preventive or
mitigating measures might be most appropriate. It should be borne in mind that
upper-bound calculations probably overstate the true impacts of a mature
commitment to photovoltaics and should be used only for the policy purposes
indicated. It is also important to note that detailed health and environmental
analyses will be required for all specific proposed photovoltaic facilities and
installations, and for establishing the regulatory basis on which photovoltaic devices
will be manufactured and used.

*Grounds for quantitative comparison of photovoltaics with nuclear power are
almost nonexistent; the qualitative judgments affecting choice of one of these
technologies over the other are beyond the scope of this study. The other fuel likely
to be replaced by photovoltaics, especially in the near term, is oil; here the obvious
dominating sociopolitical factor favoring photovoltaics, besides price, is security of
supply.

"Costs associated with energy-storage devices are not included in this study;
such devices would be required only with stand-alone photovoltaic installations and
are unnecessary when photovoltaic generating capacity is integrated with the
electricity supply grid.
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Before proceeding with its analysis, the study investigates methodological
issues involved in comparing photovoltaics with conventional energy sources and
identifies the major potential risk centers in the three photovoltaic technologies
considered. Four major categories of social costs are then examined; with respect
to impacts in each category, the photovoltaic technologies are compared with each
other and with coal. The categories examined are: occupational health and safety;
public health; environmental impacts; and the indirect costs associated with the use
of land, labor, materials, and energy. Particular attention is given to potential
public health impacts: the study employs an atmospheric dispersion model to
determine dispersal patterns for released hazardous materials and the resulting
population exposures. In addition to its comparative assessments, the study
identifies a number of areas where future research is essential to determine the
precise nature and magnitude of the social costs and benefits of developing
photovoltaic energy systems and proposes actions that would improve the
cost/benefit trade-off.

* RISK CENTERS

The study describes the steps involved in producing photovoltaic arrays, and
identifies the following as points of concern with respect to direct social costs:

Technology-Specific Issues

Silicon * mining-silicon dust emissions
· refining--submicron silicon particulate emissions

Cadmium Sulfide

Gallium Arsenide

Specific substances used in
each of these steps depend
on exact process chosen;
many proposed or in use are
highly toxic and/or
potential carcinogens, and
will occur as vapors or
very fine sprays.

* smelting-CdO emissions
* conversion--CdO emissions
* manufacturing-CdS emissions
* utilization--house fire releases of CdO

* smelting--As2 o 3 emissions
* reduction--As 2 0 3 emissions
* manufacturing-As 2 0 3 fugitive dust
* utilization-house fire releases of As203

Cell Fabrication and Array Assembly

(all three technologies)

* substrate preparation
· junction formation (for Si and GaAs)
· metallization
* encapsulation
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* OCCUPATIONAL SAFETY AND HEALTH

It is important to distinguish between the two classes of occupational
impacts. Occupational safety refers to accidents, whose consequences are
immediately evident and causally unambiguous. Occupational health effects, on the
other hand, may be delayed and only statistically correlatable with exposures to
toxic, carcinogenic, or mutagenic materials.

Occupational safety issues in photovoltaic technologies are likely to be
qualitatively similar to those in existing industries. Inordinate safety hazards are
usually relatively easy to identify; industries are accumstomed to internalizing the
economic costs of alleviating them. Rates of worker injury for photovoltaics are
unlikely to be higher than those currently prevailing elsewhere and generally
considered acceptable.

Impacts on worker health tend to be much more difficult to identify and to
deal with, in this as in other industries. For all three technologies, there is the
additional complication for analysis that the photovoltaic industries either don't
exist yet, or are immature. Thus, quantitative comparison with coal (which results
in roughly one worker death for every GWe-year) is difficult. Our evaluation is
necessarily limited primarily to identification of potential problem areas though a
few generalizations are possible. For example, it seems clear that cadmium sulfide
and gallium arsenide technologies potentially involve more serious worker health
problems than silicon. Worker exposures to hazardous dusts, sprays, or vapors are
possible at a number of stages in the manufacture of CdS and GaAs cells. Both
cadmium and arsenic are highly toxic; arsenic is a known and cadmium a suspected
carcinogen. There is a strong prospect of increasingly stringent regulatory
standards for permissible workplace levels of both substances, particularly in new
and potentially large industries. Large safety margins should be included in planning
to minimize the chance of disruption due to regulatory change. Research and
engineering emphasis on isolation of workers from these substances is desirable,
though at some process steps zero exposure would be economically if not technically
impractical. Care must be taken to avoid protecting worker health at the expense
of public and environmental welfare (by, for example, simply venting workplace
emissions into the atmosphere).

The occupational health issue for silicon is considerably less problematic,
though the technology is not entirely benign and the extent of worker hazard is still
uncertain. The dominant risk occurs at a single process steps the refining of
high-grade silica in open electric-arc furnaces. (This step would involve roughly
one-fourth of the workers employed in the silicon-photovoltaics industry.) At the
high temperatures attained in the furnace, vapors condensing into very small
particles of crystalline silica of several forms are emitted. Inhalation can result in
scarring of lung tissue (silicosis) and damage to kidneys or other sensitive organs.
Elimination of this hazard appears technically difficult. Though better
understanding and control techniques are certainly desirable, both the proportion of
potentially affected workers and the magnitude of the adverse effects seem likely
to be smaller than for the other photovoltaic technologies.
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In addition to the risks associated with primary materials, all three
technologies present potential worker health hazards in connection with secondary
substances used in cell fabrication and array assembly. Care must be taken at the
stages of substrate preparation, junction formation, metallization, and encapsulation
to isolate workers from potential carcinogens and to keep other exposures well
below toxic levels. The synergistic effects of substances used together must be
taken into account; at present very little is known about such interactive effects.

There is opportunity in the development of these new industries to anticipate
and avoid the worker health hazards that are continuing problems in some existing
industries; such consideration is to be recommended in any case, given increasingly
stringent regulatory attention, especially to carcinogens. Government-sponsored
R,D and D programs should make these issues an integral part of their mission,
avoiding the approach used in some previous technology programs of considering the
problem one of "confirming" an assumed safety.

* PUBLIC HEALTH

The major direct impacts of photovoltaics on public health result from
atmospheric releases of potentially hazardous materials. The only significant risk in
silicon technology appears to come from the release of particulates during the
refining of silicon; possible health effects include lung and kidney damage. For
cadmium and gallium arsenide technologies, the major public risks appear to come
from the release of cadmium or arsenic compounds in refining, during processing and
handling in manufacture, and from fires involving arrays. For cadmium, potential
health effects include kidney damage, hypertension, and, possibly, carcinogenesis;
for arsenic, carcinogenesis is the primary potential effect.

It is possible to make direct comparison with the public health effects of using
coal because, in addition to the well-known releases of oxides of sulfur, nitrogen,
and carbon, the mining and combustion of coal also involve the emission of
particulates (including silicon), cadmium, and arsenic-precisely the materials
emitted in the production and use of photovoltaics.

In comparing the public health effects of two technologies, for facilities
associated with equal electricity generation, one must consider not only the kind and
amount of hazardous material released, but also the height and temperature of the
release, atmospheric conditions, and population density. To take these factors into
account, this study employed a three-dimensional Gaussian diffusion model for the
atmospheric transport of each pollutant at a given release height and temperature
and under varying weather conditions.

The estimation and modeling of relevant releases in this way suggests strongly
that the direct public health impacts of photovoltaics are considerably smaller than
those of coal. For both silicon and gallium arsenide technologies, the superiority of
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photovoltaics is relatively easy to establish. Particulate and arsenic releases from
coal affect larger numbers of people at higher concentrations than emissions of
these substances due to photovoltaics, even under worst-case assumptions for the
latter. The comparison is somewhat more difficult in the case of cadmium since the
cadmium release from coal is likely smaller than for cadmium photovoltaics. Under
worst-case conditions, the collective population uptake of cadmium could be as
much as ten times as large for photovoltaics as for coal. Since dose-response
relationships for cadmium compounds are unknown, these exposures cannot be
translated into quantitative health impacts. However, it is extremely unlikely that
the adverse health effects of cadmium from photovoltaics will be as large as the
combined health effects of trace elements, polycyclic hydrocarbons, and oxides of
sulfur and nitrogen emitted by a coal-fired power plant.

The superiority of photovoltaics to coal in the area of public health impacts
does not mean that these technologies are risk-free. Each of the technologies
involves hazards-concentrations of particulates from silicon-refining arc furnaces,
of cadmium oxide from materials-processing plants, and of arsenic from house fires
involving arrays-that are potentially large enough to be of significant concern.
Efforts to contol these emissions are highly desirable, as are efforts to establish
dose-response relationships for the substances involved so that the actual magnitude
of public health impacts can be predicted accurately and avoided where possible.

The assessment of potential public health effects suggests several grounds for
preferring silicon-based photovoltaics to the cadmium and gallium arsenide
technologies, although technological change and improved epidemiological data may
alter the balance. Significant potential emissions occur at only one point for silicon,
but at several points for the other technologies. Silicon presents no health risk once
solar arrays are installed and in use, where they will inevitably be close to-indeed,
on top of-densely populated areas. Perhaps most significant in terms of the growth
and development of photovoltaic technology is the fact that silicon is neither a
known carcinogen (like arsenic) nor a suspected carcinogen (like cadmium). Since
there is no obviously safe limit for carcinogens, the likelihood of increasingly
stringent regulations governing their emissions is very high; new sources will
probably be the most severely restricted. Cadmium and gallium arsenide
photovoltaic technologies present a series of control problems, and thus a series of
opportunities for regulatory intervention and change potentially disruptive to
evolving industries.

* ENVIRONMENTAL IMPACTS

The study examines three broad categories of environmental impact: land use;
thermal and climatic effects; and emissions.

Decentralized photovoltaic arrays will have no net impact on land use (except
perhaps for denying roof use for other purposes). A central station solar facility
would occupy 10 to 40 square miles, roughly comparable to the 5 to 18 square miles
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strip mined for a coal plant with the same electrical output.* A central station,
whether solar or conventional, also requires land for power transmission lines: about
one square mile is needed for every ten miles distance between the facility and the
point of use. In addition, an uncertain amount of land will be required for the
disposal of waste fly ash and slurry in the case of coal, worn-out arrays in the case
of photovoltaics. For cadmium- and arsenic-based arrays, waste disposal sites would
have to be remote and geologically secure against ground-water intrusion to prevent
leakage of hazardous materials.

The thermal and climatic effects associated with photovoltaics are likely to be
minimal. Solar panels may reduce reflectivity somewhat, raising local temperatures
slightly, but this effect will be partly offset by the conversion to electricity of
sunlight that would otherwise produce heat. A coal plant emits about two units of
heat for every unit of electricity generated (about 1.5 x 106 kilowatts of heat).
Some of this heat is dissipated directly into the atmosphere, the rest in cooling
water. Local climatic changes may result, especially if many plants are co-located.
Coal particulate emissions probably also affect temperature, though it is still
unknown whether the result is net warming or net cooling.

The most serious potential climatic effect due to coal stems from the buildup
of atmospheric C02, which traps the sun's rays and leads to global warming.
Atmospheric CO2 has increased about 10 percent since the industrial revolution
and may double by the early decades of the next century. The resulting "greenhouse
effect" is not yet well understood. However, a technology like photovoltaics which
permits society to avoid this risk of global climatic change presents an obvious
environmental benefit.

Photovoltaic technologies are clearly superior to coal in the area of emissions,
as well. Combustion of Eastern coal in a conventional boiler with wet limestone
scrubbing results in the release (per GWe-yr) of 3,000 tons of particulates, 18,000
tons of nitrous oxides, 15,000 tons of sulfur oxides, and about 400 tons of
hydrocarbons. The coal required for this plant also contains dozens of heavy metals
and trace elements, including cadmium (5.8 tons), lead (80 tons), nickel (48 tons),
arsenic (32 tons), vanadium (75 tons), and mercury (0.5 tons). Emission rates are
unknown but may be high, especially for volatile elements like mercury and arsenic.

There are no environmentally hazardous emissions produced by silicon
photovoltaics. Assuming a percent release rate, use of cadmium and arsenic
technologies could result in the addition of 80 tons of cadmium and 7 tons of arsenic
per GWe-year, respectively, to the environment. These releases could significantly
increase the current environmental deposition rates of these elements; emission
controls and appropriate siting are desirable. However, the environmental impact of
coal combustion clearly exceeds that for any photovoltaic technology.

*Mining and milling of uranium for a nuclear plant would likely deny much
larger areas to significant human use for thousands of years.
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* INDIRECT IMPACTS: LABOR, MATERIALS, AND ENERGY

The deployment of any new technology entails a reallocation of society's
productive resources. The study examines the social costs and benefits due to the
use of labor, materials, and energy in the production and use of photovoltaic systems.

In its present immature state, photovoltaics is extremely labor-intensive. It
appears that in a mature industry, using automation where possible, the total labor
intensity of photovoltaic systems may be reducible to between 5 and 25 million
man-hours per GWe-year. Coal and nuclear power require about 2.5 to 4.0 million
man-hours per GWe-year. The electric utility component of the energy sector has
become considerably less labor-intensive in recent decades; a shift toward
photovoltaics would help reverse this trend. Such a shift would probably reduce
unemployment, unless the capital, material, or other demands of photovoltaics
undermine the economic sources of jobs in other sectors. The employment spectrum
for photovoltaics may also be more desirable than that for other energy
technologies, with a larger percentage of long-term stable jobs being created in
existing communities.

The demand for materials for photovoltaics is also large; in this case any social
impact is likely to be negative, increasing the demand and price for some common
materials. The specific kinds and amounts of materials required vary considerably
with array design; it is still uncertain what materials will prove most suitable
(physically and economically) for the backing and support structures onto which
photovoltaic cells are mounted. Photovoltaic panels could require 100,000 metric
tons of steel per GWe-year, or 30,000 metric tons of glass or aluminum per
GWe-year, or 80,000 bbl of oil (for vinyl) per GWe-year. Besides the arrays
themselves, a central station photovoltaic power plant could require an additional
100,000 metric tons of steel and 60,000 metric tons of cement per GWe-year for
support structures. A coal or nuclear plant requires approximately 10,000 metric
tons of concrete and 2500 metric tons of steel per GWe-year.

One way to estimate the impact of materials requirements for photovoltaics is
to compare the amounts required to add 20 GWe-peak of capacity per year (the high
DoE goal for the year 2000) with amounts presently produced. For aluminum, the
photovoltaic demand would be about 45 percent of present production; for steel,
about 15 percent. (Demand for the primary cell materials is also an area of
concern: photovoltaic demand for silicon would be about 30 percent of present
production; for arsenic, between 5 and 35 percent; for cadmium, between 250 and
1100 percent*.) It is obvious that materials-efficient photovoltaics designs should
be accorded a high priority unless we are willing to commit a considerably larger
fraction of our material resources to electricity generation than we presently do. In
addition to the opportunity cost of denying these materials to other sectors, the
social cost of a unit of energy will escalate as it requres larger amounts of industrial
materials, each of whose production may involve its own spectrum of .adverse
occupational, public health, and environmental impacts.

*Assuming in each case all photovoltaic use involves only this single technology.
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The production of any electricity-generating facility also requires an
appreciable input of energy. As with the other factors of production, photovoltaics
seems likely to require more energy per unit of output than a coal or nuclear plant.
Energy requirements can usefully be characterized by the time it takes a system to
repay its original energy debt-the payback time. Present estimates for
photovoltaic system payback times range from about two to more than ten years.
The energy required to produce materials for panels and support structures accounts
for about one to three years of total payback time; this requirement is difficult to
reduce. Energy requirements for production of photovoltaic cells themselves are
larger and more variable. Energy investments in present-technology silicon cells are
especially large (payback time approximately 5 years). Technological improvements
may reduce this requirement somewhat. Requirements for cadmium sulfide and
gallium arsenide cells are uncertain but probably smaller (minimum achievable
payback time probably between I and 4 years). The energy payback time for
photovoltaics, even with optimistic assumptions, is considerably longer than the
approximately seven-month payback time of a coal or nuclear plant.

A particularly important question is how the energy-intensiveness of
photovoltaics affects the ability of this new technology to increase energy supply
and alleviate energy-related social costs in the next few decades. In its early
stages, most of the input energy for photovoltaics must come from conventional
sources. In a period of rapid growth for photovoltaics, it is possible that more
energy from conventional sources will be used than will be produced by the
photovoltaic devices already deployed. If this occurred, the result would be a
temporary aggravation of energy supply problems and of energy-related social
costs. At the growth rate currently projected by DoE for photovoltaics, the energy
payback time for photovoltaic systems would have to be well under two and one-half
years for photovoltaics to make a net contribution to energy supply or to reduce
appreciably the average social cost of energy. The photovoltaics program must
therefore be seen as a long-term effort to change the mix of energy supply
technologies, rather than as a means to deal with the energy problems faced by this
generation.
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I. INTRODUCTION

Social costs are associated with all commonly used electrical energy

sources. These costs arise from effects on public and occupational

health and on the environment; they also originate in a number of

important effects on social and political processes. The use of coal,

for example, not only affects the health of miners and the public and the

environment (throughout such impacts as mine drainage, acid rain and a

possible increase in global CO2 levels) but also raises other national

and even international political and social issues. Among these are

conflicts resulting from power plant siting, from inequities between

coal-producing and coal-consuming regions, and from the movement of

pollutants from coal combustion across state or national boundaries. For

nuclear power the mix of such impacts is different, but significant

impacts certainly exist. Thus, for example, while nuclear power probably

involves lower average impacts on health and environment than coal under

normal operating conditions, there are countervailing negative effects

from the possibility of nuclear accidents, from the difficulties in

managing the disposal of wastes, and from the international security

threat of nuclear weapons proliferation. The impacts associated with

conventional electrical energy sources, despite decades of use, are still

highly uncertain in their identity and magnitude; experience suggests

that we have not yet become aware of the extent to which even

conventional energy technologies involve significant social costs.

The existence of substantial social costs (known and possible)

associated with conventional technologies provides incentive to develop

new energy technologies characterized by demonstrably small impacts on

human health and the environment or, perhaps, by contributing less to the
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causes of social and political conflict than do conventional sources. In

the popular mind, solar energy technologies have come to be associated

with precisely these virtues. Among the solar technologies, thermal

electric and photovoltaic generation of electricity are those most often

thought of as substitutable for current electrical generation systems.

While popular conceptions undoubtedly play a role in the initial

acceptance of a new technology, current policy decisions, and the

long-term success of a new technology, must rest on critical evaluation

of the social costs associated with that technology, as compared with

conventional alternatives. Given large uncertainties about these

alternatives, and the even larger uncertainties associated with a yet

immature new technology, this is indeed difficult. It is not, however,

impossible to make such evaluations, at least qualitatively, and in some

instances, quantitatively.

In this report we shall present a preliminary social cost evaluation

of photovoltaic technologies, emphasizing qualitative comparisons with

electricity generation systems based on coal (and, in some cases, nuclear

fuels).* Where possible and important, quantitative assessments of

photovoltaic impacts will be performed. These typically will be rough

calculations intended to establish relative priorities in policy issues.

In many cases, calculations will be performed in the spirit of upper

bound--or worst case-situations. Calculations of this type are of great

*Ultimately photovoltaics may be competitive with coal and nuclear
power; in the interim it will more likely compete with oil and natural
gas for peak load generation. The comparison in this case is somewhat
more difficult since the primary social costs associated with oil and gas
(except for sulfur and particulates for some oil) are opportunity costs:
the drawing of oil and gas away from other uses and resulting price
increases due to higher demand.
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value if it can be shown that the maximum possible impacts of new

technology are well below the minimum impacts known to be associated with

conventional sources of electricity. The value of this type of

comparison is especially great because the large uncertainties currently

involved in evaluation of conventional technologies, especially coal,

lead to a perceived (and very likely also a real) probability of

increasingly high social costs. Thus, if it is possible to establish

firm upper bounds on photovoltaic impacts, one has thereby established a

basis for evaluating the value of that technology in avoiding not only

the currently known costs of conventional sources, but also the risk of

currently unknown, but potentially high, costs which might eventually be

found to be associated with them. It should be remembered, however, that

upper bound calculations probably overstate the true impacts of

photovoltaics and should be used only for the policy purposes indicated.

Careful and comprehensive health and environmental analyses will be

required for dealing with more detailed policy issues and for

establishing the regulatory basis on which photovoltaic devices will be

manufactured and used.

Comparison of the impacts of different energy technologies can be

examined in the several dimensions affected:

· Occupational safety and health impacts arising at the
various stages of production, installation, and use. Both
immediate effects such as accidents or toxic exposures and
long-term health effects must be considered.

* Public health impacts arising from the above stages. These
result from routine emissions or from accidents and
generally involve assessment of long-term low-level health
effects as well as immediate effects. The standards for
public health effects are generally much more restrictive
than those for occupational impacts.

* Environmental effects, including impacts on ecosystems, land
use, and thermal, climatic and other effects.
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* Impacts on social, political, economic and institutional
processes. Different energy devices involve different mixes
of the factors of production: among them, capital, labor,
energy and materials. The applications of these
technologies also have major implications for societal
decisions and decision processes, for choices of living and
development patterns, and for the balances between regional
or ideological political interests. While the nature of
these impacts may be described independently, relative
assessment invariably involves social judgments.

In subsequent chapters, we shall deal with the first three of these

categories, on a comparative basis, for photovoltaic technologies and

applications. With respect to the fourth category, we limit our

attention here to the effects attributable to differing factors of

production. The broader sociopolitical issues remain to be addressed in

future research.

Before embarking on our analysis, it is useful to identify some of

the methodological problems which must be resolved in comparing

photovoltaic systems with conventional and alternative energy sources and

to sketch the important characteristics of photovoltaic technologies.
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II. METHODOLOGICAL ISSUES

In assessing the relative health and environmental impacts of

photovoltaic and alternative technologies, several methodological

problems arise. These include establishing the basis for proper

allocation of social costs, the incomparabilities of different types of

social costs and the impossibility of making value-free overall

comparisons, constraints on the displacement of social costs associated

with one energy technology by those of another, and the difficulty of

accounting for social costs only indirectly related to the use of a given

energy technology. Since the resolution of these problems strongly

affects social cost comparisons, each deserves discussion in greater

detail.

Social Cost Allocation

The first methodological issue is a normalization problem stemming

from the fact that sunlight is an inconstant source* of energy. While

fossil and nuclear facilities may be operated as continuously as is

technically feasible, solar power installations are limited by variations

in insolation (diurnal, seasonal and weather-induced variations).

Because of this, social costs cannot be assessed on the basis of

installed peak generating capacity. Instead, it is useful to prorate

effects over the electrical energy produced; for example, the deaths or

injuries or emissions levels ascribable to the generation of a

kilowatt-hour or gigawatt-electric year (GWe-yr) of electricity.

*We do not consider earth satellite photovoltaic power systems in
this report.
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The latter unit, equivalent to 8.76 to 109 kwh*, will be used throughout

this paper.**

While this device does a great deal to reduce very different

technologies to a common measure of social disutility, it should be noted

that it is not a perfect basis for a relative social cost/benefit

comparison since a kilowatt-hour produced at the time of peak demand may

be regarded as providing a higher social benefit. Since peak

photovoltaic generation generally coincides with the onset of peak

demand, it can be used to relieve peak load generating requirements (now

generally satisfied by burning oil or natural gas), if it is used in the

electric grid. However, if photovoltaics were to be used in stand-alone

applications, it would be necessary to use energy storage systems, such

as batteries or flywheels, to hold power until needed. These storage

systems usually involve additional social costs which may or may not be

equal to the additional benefit of having the power available on a

continuous basis. For purposes of comparison in this paper, we ignore

these use parameters. However, they may be of great importance in

determining the social utility of specific proposed installations.

*About 2xlO 12 Kwh, or 228 GWe-yr of electricity, were used in the
U.S. in 1976.

**Under average conditions, a coal or nuclear plant with a rated
capacity of 1 GWe will produce only about 0.6 GWe-yr of electricity in a
year; photovoltaic arrays with a comparable total peak output will
produce about 0.2 GWe-yr in a year (the peak to average output ratio of 5
is commonly used, and is used here, but clearly varies with geographical
area).
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Incomparability and Social Values

The second methodological problem in comparing energy technologies is

that different technologies have qualitatively different impacts and thus

may not be directly comparable. For example, it is difficult to compare

the health impact on coal miners of coal mining with the effects on the

public of perceptions of risks associated with nuclear wastes. Impacts

may be different in character, may affect different groups or

institutions in society, and may even affect different generations. In

dealing with this problem, the first step in analysis is clearly to

estimate, within the limits set by imperfect knowledge, social impacts in

various categories-occupational deaths, injuries, delayed health

effects, analogous public health impacts, and so forth. For each energy

technology one then has a balance sheet with many columns, with the

entries in each column expressed in a different currency of social

disutility.

While it is then possible to compare technologies in each category of

impact, it is not possible to make a direct overall comparison between

the impacts of different energy technologies without imposing social

judgments about the relative importance of various types of impacts (the

currency exchange values, as it were). For example, only society can

decide whether an occupational death is more or less important than a

given number of cases of degradation of health of members of the public,

or a given level of risk to future generations. Efforts have been made

to find a common currency--usually an equivalent dollar value for lives

and other effects--and to the extent that society has commonly expressed

such judgments (as in the case of occupational hazards), such efforts

provide some guidance. However, it is not possible to provide an overall
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comparison between technologies in a way which is free of the social

values of the analyst.

This lack of commonality is especially important in considering

choices between energy technologies which have very different

characteristics, since preference for avoiding one particular type of

social cost may lead to a judgment in favor of one technology while

emphasis on another cost element may lead to the opposite. This

difference in social focus is in part responsible for controversy over

the choice between coal and nuclear power, where a choice must be made

between widespread, but perhaps individually modest, aggravation of

public health in the case of coal, and low-probability/high-consequence

accidents (involving reactors or, perhaps, nuclear wastes) in the case of

nuclear power. This situation is further complicated by lack of

information. If such problems can arise in the comparison of two

technologies which otherwise have rather similar configurations, they

will be even more profound for comparisons of conventional sources of

electricity with photovoltaic systems, which may be quite different.

This is especially important for the fourth class of impacts listed

above: the effects on the social/economic/political/institutional system.

Substitution and Energy Interdependencies

The third methodological problem is that deployment of one energy

technology must be seen as displacing use of another. Accounting for

this raises the allocation and commonality issues above, and incomplete

consideration again may give misleading results. There is, however,

another important subtlety involved in the social cost accounting.

Manufacture and deployment of new energy generation devices involves the
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use of energy from conventional sources. Use of this energy incurs a

social cost debt for the new energy device, since there is directly

attributable to deployment of the new devices some use of conventional

sources which otherwise would not be used or would be used for other

purposes. Even if a new technology entails no direct social costs, its

use must therefore be seen as entailing energy-related indirect social

costs.

These costs, which are characteristic of the mix of technologies in

use at the time of deployment of the new energy generation device, should

be prorated over the lifetime energy output of the new device (we ignore

possible discounting of future social costs). Then the introduction of a

new technology results, in effect, in a dilution of the social costs

associated with preexisting energy sources (if the new technology in fact

involves lower direct social costs). The magnitude of this dilution

depends on the energy investment from conventional sources and on the

lifetime energy return on this investment. For example, if the new

energy technology device (e.g., an installed solar panel) requires an

investment (say of energy from coal) equal to five years' output, and has

a life of twenty years, each unit of energy input is eventually

transformed into four units of energy output, resulting in a reduction of

average energy-related social costs by a factor of four, if the direct

costs of the new technology are negligible. In the longer term,

deployment of the new "clean" technology will gradually displace

technologies which are socially more costly; itself a social benefit.

But the extent and rate at.which a new technology can bring an

alleviation of social impacts of energy use in the near term is small.
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Indirect Social Costs

The fourth problem that arises in the assessment of any energy (or

other) technology is that there are important underlying and antecedent

social costs that may be less evident than the direct effects of the

technology. For example, the manufacture of energy devices involves the

use of materials, like aluminum or steel. The production of these

materials may affect the environment, or the health of workers or the

public. These underlying costs may in fact be larger than the direct

impacts of the technology. Antecedent even to these underlying costs,

there are also activities with social impacts. The construction of a

steel mill to make the steel in our example above also involves social

costs. The difficulty here is that there is no obvious limit on how far

back to go, nor in how widely to range, in bookkeeping social costs. A

truly complete bookkeeping of social costs associated with a given energy

technology would require a comprehensive examination of the very fabric

of society.

Fortunately, this problem may drop out in some comparisons between

energy technologies. New energy technologies may place comparable

burdens on the underlying productive organization of society; for

example, the amounts of material and capital used in a nuclear plant (and

its associated distribution grid) may be comparable to those required for

a decentralized system of photovoltaic devices of similar total energy

output. Where this is not the case, the most important effects can be

accounted for largely through consideration of the pervasive factors of

production: labor, materials, and energy.* It is this approach that we

use in Chapter VII to account for indirect social costs.

*Capital is a fourth major factor but is not considered in this
analysis.
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III. POTENTIAL RISK CENTERS IN PHOTOVOLTAIC TECHNOLOGIES

Photovoltaic technologies and production processes are far from

mature, resulting in a lack of information on precisely how these

technologies may be used and a lack of data on what impacts actually

occur. Nevertheless, preliminary health and environmental analysis of

generic technological choices can play an extremely important role in

decisions made concerning photovoltaic technolgies. Indeed, analysis of

present processes may help in determining which suboptions are most

attractive from a social cost standpoint, or which process steps need

improvement before an option may be considered acceptable.

For purposes of analysis, this study will consider the three main

lines of photovoltaic research and development effort:*

* large-crystal silicon (Si) wafer cells in flat plate arrays

* cadmium sulfide (CdS) cells in flat plate arrays

* gallium arsenide (GaAs) cells in flat plate or concentrator
arrays;

and three categories of applications:

· decentralized residential installations

* decentralized neighborhood, commercial or industrial
applications

* central station plants.

Conventional and other advanced technologies can be compared with these,

especially at points of identified risk.**

*These technologies are currently at rather different stages of
development; however, all are potentially viable candidates for future
applications.

**To the extent that storage systems are necessary to shift energy
from periods of peak insolation to periods of use, it is necessary to
bookkeep the associated social costs. We shall not consider storage
technologies in this report except to note that the manufacture and use
of such systems are not without hazards.
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It is necessary to characterize each technology in somewhat more

detail before proceeding with evaluation of occupational, public and

other impacts.*

Silicon

Silicon cells are currently manufactured using materials and

processes developed in the semiconductor industry. Silicon dioxide is

mined, as sand or quartzite, and must be reduced by heating with coke in

an electric arc furnace to produce metallurgical-grade silicon of 96-98

percent purity. These steps are probably essential for any silicon-based

PV technology. The amount of silicon reduced and refined per unit of

installed capacity depends on cell thickness, photovoltaic efficiency

and, especially, on the process efficiencies assumed.

Representative figures for silicon consumed are given in Figure V-1

below as 135 tonnes of SiO 2 mined per peak MWe of PV capacity, resulting

ultimately in 2.5 tonnes/MWe peak of semiconductor grade SiO 2 in PV

arrays.** All of these figures depend on technological assumptions which

may change in time. SiO or SiO 2 particulates and flyash from coke during

electric arc refining are the principal source of direct occupational

and public health concerns. The processes by which submicron

particulates find their way to humans are explored in subsequent

sections. Once inhaled, however, silicon particulates can result in

scarring of lung tissue (silicosis) or be translocated to the kidneys or

other sensitive organs. Synergistic effects involving other pollutants

*A recent review of technological statis is given by McCleary [1].

**Cell thickness is assumed to be 0.15 mm and process efficiency
following refining is assumed to be 40 percent.
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are also likely (e.g. particulates may provide catalytic surfaces for

reactions involving chemical pollutants or a transport mechanism into the

lung) and impairment of lung function may increase the likelihood of

other diseases. The presence of SiO (which is more reactive then SiO 2)

in emissions, and its role in health effects, are of particular interest.

Present cells require further refinement of metallurgical silicon to

semiconductor grade (through chlorination, hydrogenation, reactive gas

blow-through, zone refining, directional freezing or combination of

these). Process steps and chemicals used may involve hazards which could

be studied in existing industries.* The purified silicon is then formed

into single crystals or polycrystalline ingots, by one of several

processes, and cut into wafers or blanks for cells. New processes include

ribbon, sheet, vapor deposition and other processes producing a

"solar-grade" material of varying crystalline character. Conventional

processes may involve hazards from silicon dust or cutting oils.

Cell Fabrication and Array Assembly

Several further steps are required to transform silicon cell blanks

into finished photovoltaic arrays, capable of absorbing sunlight and

producing electricity. At the earlier two of these steps (substrate

preparation and junction formation) processes are fairly similar for

silicon and gallium arsenide cells; the remaining stages (metallization,

*Since Si purification and crystal growth are very large cost
elements, a variety of research is under way seeking means to modify or
avoid these steps. Amorphous silicon looks increasingly promising for PV
use. However, particular new processes must be carefully scrutinized for
risk centers not present in conventional technology. For example, one
experimental purification process, invoving fluidized bed reactors, could
cause worker exposure to large amounts of SiC14 and significant
atmospheric release of particulates.
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connection, and encapsulation) are common to all three photovoltaic

technologies. We will discuss all these steps here as they apply to

silicon cells; qualifications and exceptions pertaining to the other two

technologies will be noted below, in the sections on cadmium sulfide and

gallium arsenide. The particular secondary substances involved at these

stages vary considerably, not only among the three generic technologies,

but among variants of a single technology. However, a large number of

the substances being used or considered are highly toxic; some are known

or suspected carcinogens. The health effects of specific secondary

substances (and combinations of substances) need to be studied in detail;

their presence in the workplace and/or emissions to the environment

should be carefully monitored and controlled.

After a silicon cell blank is cut from the purified silicon crystal

or ingot, its surface must be carefully polished, cleaned, and etched.

Next the cell surface must be "doped"-that is, small amounts of selected

impurities (such as boron, zinc, or selenium) are added to provide the

excess or deficiency of electrons needed to make the cell a

semiconductor. The substances used at this stage are typically highly

toxic; they are typically applied as fine sprays or vapors.

The final stage in cell fabrication is the application of a fine

metal conductive grid to allow the extraction of electrical energy in

use. This is regarded by those engaged in photovoltaic research as

potentially one of the most hazardous production steps, involving the

presence of heavy metal or organometallic vapors and the use of other

hazardous substances such as cyanides. Efforts are being made to develop

metallization methods that allow isolation of workers at this stage.
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Following metallization, the completed cells are assembled into

panels or arrays, and their metallic grids soldered together. Finally,

the cells are embedded in a pottant (usually a room-temperature

vulcanizing material) and covered with glass or plastic and an

antireflective coating. Potentially toxic or carcinogenic chemical

agents, including organic solvents, are used in some of these steps, and

heavy metal vapors or particulates from soldering operations may be

present.

Too little is known about the precise character of processing risks

at the various stages of cell fabrication and array assembly. These

risks will depend on the detailed process chosen, the degree of

automation, and success in implementing control technologies. However,

considerable data could be collected from the existing electronics and

semiconductor industries; it is important that such information be

available on a timescale appropriate to the rate of development of a

large-scale PV industry.

Cadmium Sulfide

Cadmium is currently largely a byproduct of zinc production,* with

cadmium fumes relased and partially recaptured when zinc and cadmium

bearing ore is roasted and sintered. Emission from refining plants are

significant, even in the U.S. Though uncertain, one estimate puts

releases at about 300 pounds (see Chapter V below) cadmium for each ton

of cadmium throughput. About 70 percent by weight of this release

involves particles of less than 2 diameter, reflecting the low removal

*Significant quantities of cadmium are also present in lead and
copper ore but recovery is not common.
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efficiency of control technology (baghouses and electrostatic

precipitators) for removing very small particulates.* As discussed

below, such small particulates present special hazards. Cadmium

recovered from ore roasting is reacted with hydrogen sulfide to produce a

fine powder of cadmium sulfide (CdS); prior industrial experience

(primarily in the paint industry) suggests that subsequent handling of

this product also involves an appreciable fugitive dust problem.

Cadmium cell manufacture is more completely a series of chemical

operations than the corresponding silicon cell process. Though there are

several variations, the CdS cell consists of a thin film of CdS applied

by vacuum deposition on a substrate, followed (or preceded, in some

cases) by a dipped layer of cuprous chloride. Alternatively, the thin

film of CdS may be produced by spraying a solution of CdC12 and thiourea

(NH-CS-NH2) on a heated substrate in air. The cells are completed by

adding a very thin layer of copper and a transparent gold grid, followed

by encapsulation. Workplace levels of CdS will probably be most

significantly affected by the handling of input CdS powder; however, the

fate of excess spray materials (cadmium and copper compounds) resulting

from cell production should be examined. Problems arising in array

fabrication will be similar to those encountered in silicon array

manufacture; however, there is probably great opportunity for automation

and closed process line operation for CdS cells, given current

technologies.

*In principle, such controls can be very efficient, even for very
small particulates; however, high efficiency requires high capital cost
devices and careful maintenance. The latter can result in larger
occupational exposures, illustrating an all-too-frequent tradeoff between
occupational and public health impacts.
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The toxicity and carcinogenicity of cadmium and cadmium sulfide are

still matters of some uncertainty. The industrial use of cadmium

(electroplating, alloys, batteries, paint) has an unfortunate history,

with chronic exposures of workers (largely through inhalation) and the

public (largely through deposition on food crops) resulting in health

damage that went unnoticed for decades. Cadmium metal and its oxide

(fumes and dust) are now recognized as acutely and chronically toxic

materials. Inhalation of fumes, as in refining or compounding, is most

dangerous, followed by inhalation of dust and, finally, by ingestion.

Acute doses (fatal pulmonary edema) have occured at exposures of 2500

mg-min/m3 (e.g., 8 mg/m3 for 5 hours [2]).

Chronic exposures to levels lower than 100 g/m3 may result in

emphysema, decreased bone mineralization, gastrointestinal disorders, and

renal (kidney) damage, the latter leading to proteinuria and

aminoaciduria. Increased cancer incidence (especially in the organs

related to the renal system, such as the prostate) and hypertension have

also been linked to low but extended exposure levels. The long residence

time of cadmium in the body (a half life of about 20 years) and the delay

in health effects after exposure make difficult the determination of

dose-response relationships.

Though cadmium and cadmium oxide are the dominant compounds

encountered at the refining stage (and as a result of fires involving

cadmium arrays), cadmium sulfide is the compound most likely encountered

in the cell manufacturing industry.

Gallium Arsenide

Gallium arsenide cells are the least developed of the three cell

technologies; process definition is at a very early stage with cell
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production still at the laboratory scale and based on proprietory

methods. Thus, the following process description and discussion of

potential sources of risk is general, reflecting the wide range of

options and assumptions still associated with GaAs technology.

Gallium arsenide can be used in high efficiency single crystal cells

consisting of relatively thick wafers (up to 300,) since these cells

operate well at high temperatures, over 2000F, they are best utilized in

conjunction with Fresnel lenses or hyperbolic concentrators with

concentration ratios ranging from 100:1 to 500:1. These configurations

demonstrate an overall efficiency of up to 19 percent. The high power

densities make it necessary to provide methods of dissipating excess heat

from the concentrator-cell systems by using either forced air or water

cooling, thus introducing the possibility of utilizing the waste heat.

The high operating temperatures and cooling requirements suggest that

these concentrator-GaAs cell configurations would be best suited for the

larger commercial/industrial applications and for centralized power

station systems.

Gallium arsenide can also be used in a polycrystalline form to

produce lower efficiency (5-8 percent) thin film (10-15,) cells which may

be incorporated in conventional flat plate assemblies suitable for

residential and commercial/industrial use.

The direct impacts of producing gallium arsenide cells appear to be

associated primarily with the large quantities of inorganic arsenic

compounds which must be recovered, refined, compounded and handled.

Arsenic (as the trioxide) is obtained as a byproduct of primary copper

smelting. Flue dusts from copper smelters are collected and As203

separated from other smelting byproducts. To obtain gallium arsenide of
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solar grade, arsenic trioxide must be reduced to metallic form which is

then purified by distillation and compounded, at high temperature in a

quartz crucible, with purified gallium, obtained from bauxite as a

byproduct of aluminum refining. Between 25 and 200 kilograms of purified

arsenic and a similar amount of gallium must be used to produce solar

cells with a total peak output of one MWe. (The lower estimate is for

single-crystal cells, the higher estimate for thin-film cells. See

Figure V-3 below.) A solar array manufacturing facility producing 200

MWe of peak capacity per year will use several thousand times as much

gallium arsenide as the largest manufacturer of Light-Emitting Diodes

does now.*

Arsenic and its inorganic compounds are toxic and carcinogenic.

Exposures at levels of 110 g/m3 has been reported to cause skin

irritation, and higher levels lead to vomiting, nausea, diarrhea,

inflammation and ulceration of mucous membranes and skin, and kidney

damage. The effects of chronic arsenic poisoning include increased

pigmentation of the skin, dermatitis, muscular paralysis, visual

disturbances, fatigue, loss of appetite, and cramps. Liver damage and

jaundice may result, as well as kidney degeneration, edema, bone marrow

injury and nervous system disorders. As more has been discovered about

these effects, and as epidemiological data linking arsenic exposure to

cancer incidence have been developed, regulatory standards for exposure

have decreased precipitously. Occupational limits dropped from 500

ug/m3 to 10 g/m3 in 1978 and further reductions-or, since

practicality for existing industries was an issue in setting new

*As of 1976, the largest LED manufacturer used 1 kg GaAs per month [3].
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standards, restrictions on new uses--are possible. There are as yet no

public exposure standards. The implications of potential health impacts

and regulatory processes for photovoltaic industries will be discussed in

the sections on occupational and public health below.

Although the process steps used in the preparation of the GaAs wafer

and subsequent cell fabrication are presumably similar to methods used in

fabricating Si monocrystalline cells, there is not enough information

about the proprietary processes involved to make a detailed health

assessment. The production of polycrystalline GaAs cells poses problems

and requires solutions similar to those associated with thin-film CdS

cells. Array assembly involves the problems common to all three

technologies, as discussed above.

Utilization

Photovoltaic systems may be used in a wide variety of applications

and configurations, each of which may pose somewhat different risks to

different groups of people. In terms of generating capacity, the

applications of P.V. systems may be divided into three general categories:

Small scale 5-100 kw (peak); decentralized, onsite application
on residential structures ranging from single family dwellings
to apartment complexes.

Intermediate scale 100 kw-l Mw (peak); decentralized, onsite
service, commercial or industrial application (hospitals,
colleges, shopping centers, office buildings, factories,
government buildings, etc.)

Large scale lOMw-1O00+MWe (peak); central power applications
ranging from community scale systems to large scale remote
systems comparable to conventional coal and nuclear plants.

Small and intermediate scale systems may also vary in the ways in

which they are integrated with other energy requirements and interfaced
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with existing utility services. For example, heat from photovoltaic

systems may be collected and used for space or water heating, storage

systems may be added to provide greater independence from existing grids,

or utilities may be relied upon to provide extensive backup. The range

of such possibilities is too great to be amenable to comprehensive and

detailed analysis at this time. However, the precise ways in which

photovoltaic systems are used will influence social (as well as economic)

cost-benefit tradeoffs.

In the following chapters, we will focus on the problems which will

be common to generic classes of photovoltaic technologies and

applications as described above. In Chapter IV we review occupational

health and safety issues; in Chapter V, we assess direct public health

impacts; in Chapter VI we consider environmental impacts; in Chapter VII,

we evaluate the impacts of allocating energy, labor and materials to the

production and use of photovoltaic systems. Finally, in Chapter VIII we

summarize our analysis and explore its implications for the prospective

development and use of photovoltaic systems.
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IV. OCCUPATIONAL SAFETY AND HEALTH IMPACTS

The use of a new energy technology--whether for conversion of coal

to gaseous and liquid fuels or for the photovoltaic generation of

electricity from sunlight--will entail a reallocation of societal

resources and a reassignment of the costs of these resources. An

important resource in all industrial activity is labor and among the

costs of labor are the effects of that activity on the health and safety

of workers. In evaluating photovoltaics on a social cost basis it is

necessary to consider how the manufacture and use of these technologies

would affect the overall role of labor in society and also how the

technologies would affect the spectrum of health and safety risks

experienced by workers.

The first of these issues will be explored in Section VII below.

Worker health and safety issues, dealt with in this section, include not

only the social cost picture presented by emerging PV technologies, as

compared to conventional options, but also the interaction of

technological evolution with accumulating health effects data and

changing regulatory standards. Since there are considerable differences

in the policy significance of safety and health issues, we shall deal

with them separately below.

In comparing energy technologies, two very different accounting

perspectives may be used. The first is to compute the overall cost of a

unit of energy produced by each technology in terms of worker injuries,

illnesses and deaths--much as one would do for public impacts. The

second is to analyze the risk to individual workers active in each
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technology and to ask whether one technology presents greater individual

hazards than another.

The first calculation gives the total cost to society--in terms of

worker health and safety--of choosing a particular energy technology,

while the second gives the cost to the worker of choosing a particular

occupation. Both calculations are of value, but in different contexts.

The societal cost calculation is useful in evaluating the benefits to

society of particular energy choices and in considering possibly

unforeseen costs which may have to be borne by society;* the individual

worker risk is of interest to the worker in choosing a job and in

evaluating prospective wage and working condition benefits.

It should be noted that these two calculations do not always give

the same result: workers in a new energy industry may experience the

same level of risk as those in a conventional industry but the new

technology may be considerably more--or less--intensive of labor than the

old. Solar energy systems are generally more labor intensive than coal

or nuclear power, per unit of energy output. Since the overall effect of

this factor cannot be evaluated without also considering social costs and

benefits other than occupational health and safety (such as reduced

unemployment, reduction of dependence on imports or alleviation of other

risks to society), we postpone its discussion to Chapter VII of this

report and focus here on the individual risk issue.

*An example is the national programs of support for those affected
by coal mine pneumoconiosis.
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Occupational Safety

It is conventional to separate occupational safety from health

considerations. Safety generally refers to accidents and deaths which

are usually immediately evident and causally unambiguous. In contrast,

health effects may be delayed in their appearance and only statistically

correlatable (if that) with occupational exposures to toxic, carcinogenic

or mutagenic materials. Because safety hazards are relatively easily

identified and responsibility for them assigned, there are economic and

other pressures which lead to their alleviation or internalization. To

the extent that risks cannot be removed or internalized as economic

factors directly by individual firms or industrial sectors, there are

workmen's compensation and other insurance programs.

The fact that safety can usually be translated directly into

economic terms appears to be responsible for the lack of significant

variation in safety hazards between industries. For example, injury

rates for various manufacturing industries range from about 5 injuries

per 100 worker-years (as for semiconductor manufacturing) to about 30

(for non-ferrous metals production) [1]. Accidental death rates in

construction range from about 2 to 8 per 10,000 worker-years. [2]. One

should thus expect that the safety hazards associated with manufacturing

and installation in a mature photovoltaics industry will fall within the

same range as other industries and energy technologies, and that the

corresponding costs will be internalized.

Within this range, the specific characteristics of risks in a future

PV industry may be estimated by comparison with similar activities

already occurring. Thus, silica mining may be compared with general
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mineral mining statistics (6.8 injuries per 100 worker-years); refining

and processing of cadmium and arsenic may be compared with non-ferrous

metals industries (29.2); cell manufacturing and array assembly with

chemical process industries (8.5), semiconductor industries (6.0) and

electrical equipment manufacturing (6 to 17); and installation of

decentralized arrays with electrical work (15.8) and roofing and sheet

metal work (25.6).* In comparison, petroleum and coal process industries

involve 6-17 injuries per 100 worker-years. These statistics do not

entirely reflect the spectrum of severity of injuries involved--for

example, injuries for coal miners, nuclear plant construction workers or

roof workers are probably more serious than those in the semiconductor

industry--but do suggest, under the reasonable assumption that

photovoltaic industrial activity will not present individual safety risks

very different from those in comparable trades, that the average worker

risk for the photovoltaic industry as a whole is likely to be similar to

the risks involved in conventional energy systems. Indeed, it is

possible that avoidance of heavy construction activities for conventional

technologies (cooling towers or containment domes), which have injury and

death rates near the upper end of industrial risk scales, would result in

a lower average individual worker risk for photovoltaic systems.

Health Impacts

While safety problems are readily detectable and attributable--and

thus internalized in economic and other decision processes--the same is

*The high rates for roofing and sheet metal work appear to reflect
much higher rates for hot composition roofing and a large proportion of
novice workers.
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not true of health effects. Occupational health effects may result from

short-term or chronic exposure to toxic, carcinogenic or mutagenic

materials. Whereas safety hazards generally lead to immediately evident

injuries or deaths, health hazards may be characterized by effects that

are slow to develop, cumulative and complicated by non-occupational

factors. The latter may include synergistic effects, arising from the

interaction of workplace chemical exposures and general environmental

pollutants or other factors to produce disease which would not occur in

response to either factor alone.* Very little is known about the number

and magnitude of synergistic health effects; they are frequently

characterized by delays in the manifestation of symptoms.

The health consequences of worker exposures are thus difficult to

foresee, detect, or quantify and even more difficult to attribute

causally to the workplace.** The result, in the past, was that health

effects were only rarely internalized; costs were instead involuntarily

(and generally unknowingly) borne by individual workers, or shared, to

some extent, through health insurance or social welfare systems.

Internalization of prospective occupational health costs in economic

decisions-say, in deciding to install costly workplace controls--would

require an accurate system for bookkeeping exposures over a worker's

career with multiple employers, a method of assigning responsibility for

effects which might have more than one cause and for anticipating--at

*A relevant example is the increase in ill effects of cadmium in
individuals suffering from calcium deficiency.

**It is significant that only a few percent of reported injuries and
illnesses nationally are in the illness category and of these about 70
percent are readily diagnosed skin ailments [1].



28

least on average--the extent of health impacts which are actually unknown

or have substantial latency periods.

Because of the complexity of such calculations--and perhaps even

more because of the public's perception that employers may not

voluntarily go to any great lengths to protect workers--government has in

recent years become increasingly involved in monitoring and regulating

occupational health hazards. Where relevant, regulatory issues are

discussed in the subsections below which deal with the particular

occupational hazards posed by photovoltaic technologies. But because the

current regulatory climate is likely to affect profoundly the development

of any new technology, we discuss more generally in the concluding

section of this chapter the regulatory philosophy now prevailing and its

implications for photovoltaics.

The following subsections explore the specific potential hazards

associated with manufacturing silicon, cadmium sulfide and gallium

arsenide photovoltaic systems. Because the detailed processes of

large-scale production are either not yet defined, or are proprietary,

the primary focus is on the flows of basic chemical consituents of PV

systems: silicon, cadmium and arsenic. With the possible exception of

conventional structural materials (glass, aluminum and so forth*) these

elements are also likely to be the source of most hazards affecting

appreciable numbers of workers, due to the large throughputs and the

high-temperature processes involved. It should be noted, however, that

our analysis is not a substitute for a program of continuing examination

*Social costs and benefits associated with use of such materials in
photovoltaic devices are discussed in Section VII below.
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of occupational hazards in an evolving industry and that technological

change may reshape the structure of risks identified here. Furthermore,

as research continues on photovoltaic suboptions, it must be understood

that no particular production process can be deemed commercially and

socially viable without detailed consideration of 1) the specific

occupational health risks introduced at every production step; 2) the

permitted levels of exposure for all materials and combinations of

materials involved, and the likelihood of change in relevant regulations;

and 3) the feasibility and costs (economic and other) of measures to

control or reduce the occupational health hazards of that specific solar

technology.

Silicon

The primary locus of occupational health issues for silicon

photovoltaic cells is silica dust and other silicon compounds. Of

greatest concern is silicon refining with electric-arc furnaces; other

potential exposures occur in mining and through use of trichlorosilane to

purify metallurgical-grade silicon further for solar use. Silica was one

of five substances initially chosen by OSHA for special attention because

of its demonstrated role in health problems and because of the large

number of workers affected (about 1 million) [3]. In the form of fine

crystalline particulates silica is highly dangerous; once inhaled it can

result in scarring of lung tissue (silicosis) or be translocated to the

kidneys or other sensitive organs. Synergistic effects involving other

pollutants are also likely (e.g., particulates may provide catalytic

surfaces for reactions involving chemical pollutants or a transport
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mechanism into the lung) and impairment of lung function may increase the

likelihood of other diseases.

Whereas the OSHA standard for the respirable fraction (less than 7

microns) of unspecified particulates is set at 5mg/m3, standards for

various forms of silica containing particulates are set considerably

lower, as shown in Table IV-1. The most restrictive standard is for

crystobalite--a particular crystalline form likely to be produced at high

temperatures. Present standards do not distinguish submicron from larger

particulates, though it is likely that more restrictive standards for the

submicron component will eventually be promulgated.

It is generally believed that the mining of silica-the basic raw

material for silicon cells-is not a source of particulate emissions of

significance to occupational (or public) health. This belief appears* to

be based on a study by Cholekoda and Blackwood [5] and on extrapolation

from the sand and gravel industry to estimate the number of workers at

risk in mining silica. In fact, mining of the high-grade silica (98

percent SiO 2) required for silicon production is about 60 times as labor

intensive as the sand and gravel industry.** Production of 10 GWe-peak

of silicon photovoltaic cells, using current technology, would require

about twice as much high-grade silicon as is currently produced and would

greatly increase the number of workers involved. Furthermore, while

there appears to be no evidence that mining of high-grade silica

*For example, see Lockheed [4].
**Tota) sand and gravel production in 1973 was 938 x 106 tons while

0.589 x TO° tons of high-grade silica were mined; about 50,000 workers
were employed in the domestic sand and gravel industry while 2000 were
employed in mining high-grade silica.
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Table IV-1

Federal Standards for Particulates Containing Silica*

Species Maximum Concentration (mg/ )

Amorphous Silica

Total Crystalline Silica

Respirable Crystalline
Silica

Crystobalite

80
Fraction Si02 + 2

30
Fraction SiO2 + 2

10
Fraction Si0 2 + 2

5
Fraction SiO2 + 2

*Occupational Safety and Health Standards, (Sec. 1910.1000 - (d)(1)(i),
April 20, 1978, p. 42.
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presents inordinate individual worker hazards, the study usually cited

does not provide proof that such hazards are absent; its methodology is

questionable in several important respects.* These problems leave open

the question of actual worker health hazards in silica mining--a question

which deserves more careful review.

The reduction of silica to metallurgical grade (96-98 percent pure)

silicon is a significant source of SiO, SiO 2 particulate and fly ash

emissions to the environment. Between 20 percent and 40 percent of

workers involved in the production of silicon photovoltaic arrays are

employed at this stage. A large proportion of the emissions from the

reduction of silicon alloys are sub-micron particulates; for example, EPA

measurements of mean particle diameter ranged from 0.66 to 1.7p for the

emissions from the open furnace production of ferrochrome silicon [6].

As the silicon content of the final product increases, the rate of

particle formation increases and the particle size decreases. The result

is that particulate emissions from the production of silicon metal are

hardest to control.

The silica emissions from the arc furnace pose a special danger for

two reasons. The high temperature process tends to produce SiO, a highly

reactive compound whose presence may imply a greater hazard to workers in

the immediate vicinity of the furnace than would SiO2. Second, the

*Emission factors were derived by measuring ambient concentrations
some distance from sources and extrapolating back to actual working areas
using a dispersion model-concentrations in work areas were not actually
measured. The silica content of dusts to which workers were exposed also
was not determined directly, but rather inferred from measurements made
on samples collected from unpaved quartzite mine roads. Finally the
silica content (17 percent) was determined for the respirable fraction of
road dust but the permissible exposure used as a reference health
standard was for total silica particulates-a factor of three too high.
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silica particulates emitted from the arc furnace are likely to be

tridymite and cristobalite which are chemically identical to quartz but

differ in crystalline structure. More hazardous than all other forms of

silica, crystobalite and tridymite are formed at the high temperatures

present in the arc furnace.

Open and semi-closed electric arc furnaces allow emissions of such

compounds directly into the workplace--a problem that could not occur

with totally enclosed arc furnaces. However, at this time silicon metal

is produced only in open arc furnaces because of the need for periodic

breaking of the crust covering the charge, a necessary step in order to

prevent violent gas jetting and bridging of the electrodes. Large

amounts of ventilation are required to keep temperature and particle

concentrations at comfortable and safe levels. While high air flow rates

reduce worker exposures they may make it more difficult to control

emissions to the atmosphere, as discussed in the public hazards section.

The extent of occupational hazard associated with particulate

emissions from the arc furnace reduction of silicon will depend on

resolution of several key areas of concern:

* Uncertainty about the nature of the emissions - the amount of
SiO which may reach a worker is unknown; although SiO oxidizes
to SiO2 in air, direct emissions from open arc furnaces may
expose workers to significant amounts of SiO; particle size and
characteristics (whether amorphous or crystalline) must be
better known.

* Appropriateness of silica standard - SiO is potentially more
hazardous than SiO 2 but this is not reflected in the silica
standards; biological effects of crystalline and especially of
sub-micron particulates are still poorly understood; silica
standards do not take special account of sub-micron
particulates.
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* Effectiveness of the control technology - present control
technology is very energy intensive (large amounts of air must
be moved); particulates have high electrical resistivity and
therefore are not easily controlled by electrostatic
precipitators; high air flow rates make atmospheric emissions
control more difficult; discontinuous emissions due to periodic
stirring and tapping pose special difficulties.

* Feasibility of closed electric arc silicon furnaces - a closed
furnace has potential for reduced particulate emissions and
reduced heat loss; it requires less than 5 percent of the air
flow rates needed in open arc furnaces; therefore it also has
significantly lower energy needs.

The arc furnace reduction process also requires significant amounts

of coke--about 21 kg for each kilogram of cell-grade silicon ultimately

produced. Although the old bee-hive once used to produce coke furnaces

are almost completely replaced by new units with much lower atmospheric

particulate emissions, coke production is still a focus for concern, with

OSHA trying to reduce the carcinogenic benzene soluble fraction of total

particulate matter to 0.15 mg/m3 (8-hour average in the workplace).

Additional data and analysis will be required to establish the health

impacts attributable to silicon photovoltaics due to these releases in

coke production [7].

After metallurgical grade silicon is produced, its purification to

semiconductor-grade Si metal requires the processing and handling of

large quantities of halogen compounds such as SiC14 and SiHC13. Although

not particularly toxic, the physical and chemical properties of these

compounds make them quite sensitive to changes in temperature and

reactive when exposed to even small amounts of air or moisture. Thus,

these compounds could present hazards in case of accidental spills and

leaks, the result of which could be rapid decomposition and generation of

large quantities of toxic chlorine gas. However, these chemicals have
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been utilized in large quantities for a long time in other industries

with few significant problems. The only other potential problem

identified at the refining stage is chronic exposure to concentrations of

HC1 emitted during the purification process; the OSHA standard for HC1 is

7 mg/m3 . Beyond the refining stage, the only potential worker exposure

to significant levels of silicon particulates is during the cropping and

sawing of wafers. However, these processes are likely to be enclosed and

automated, greatly reducing or eliminating human involvement.

Cell Fabrication and Array Assembly

Fabrication of cells is another area where workers may be exposed to

significant health hazards. As noted in Chapter III, the three

photovoltaic technologies involve rather similar problems at this stage,

and resemble each other still more closely at the array assembly stage.

As we did in Chapter III, we will discuss these production steps here as

they apply to silicon cells; variations pertaining to the other two

technologies will be noted below.

Although extremely small amounts of toxic phosphine (PH3) and boron

trichloride (BCl3) dopants are used to form semiconductive junctions for

silicon cells, care should be taken to determine and achieve safe

exposure levels for nearby workers. Current OSHA standards for phosphine

are 0.4 mg/m3 (8-hour time weighted average); chronic exposure to low

levels of phosphine is reported to lead to anemia and various nervous

system disorders [8]. The lethal concentration for BC13 is 20 ppm.

Etching of the silicon wafer is done with HF which results in the

production of a highly toxic gas, SiF 4. Projections of actual hazard

levels can only be made when engineering design studies are available.
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Once the cells (whether based upon silicon, cadmium sulfide, or

gallium arsenide) are made semiconductive, metallic grids must be applied

and cells must then be assembled into arrays. At the present

metallization techniques allowing complete worker isolation are still

being sought, and array assembly involves extensive fabrication by hand;

at both these steps there is possible worker exposure to toxic or

carcinogenic chemical agents, including organic solvents and heavy metal

vapors (or small particulates) from soldering. Similar conditions exist

in the industries involved in the manufacturing of industrial and

scientific instruments, fabricated metal products, and the manufacturing

of electrical equipment and supplies. These industries are rated by the

National Institute for Occupational Safety and Health as the three most

hazardous industries in the United States, in terms of exposure of

workers to carcinogens [9]. Since OSHA recommends complete isolation of

workers from carcinogenic substances, present efforts to automate the

metallization and fabrication of photovoltaic cells and arrays are highly

desirable from the standpoint of occupational health.

Cadmium

Cadmium can be refined from the collected particulate releases from

copper and lead as well as from zinc smelting, but most cadmium is

recovered from the latter. At the smelter, flue dusts containing small

particulates of cadmium oxide are collected from baghouses or

electrostatic precipitators. The collected dust is then purified by a

sequence of chemical processes ending with the production of cadmium

metal sponge through a distillation process. Throughout this sequence,

there is potential for occupational exposures to fine dusts of cadmium
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and cadmium fumes (wherever high temperatures are involved). Following

purification, cadmium has been used primarily for electroplating or

batteries or compounded with other elements (notably sulfur) to make

pigments. Health experience in these industries is reviewed in a recent

NIOSH criteria document [10].

A new industry for cadmium sulfide cell manufacture may pose

problems similar to those encountered in traditional industries, though

assessment is made difficult by the proprietary nature of present

processes. Control problems will arise at (at least) two steps: the

initial handling of cadmium sulfide (a fugitive dust problem) and the

control of vapor used in vapor deposition. The precise character of

these and other problems should be examined as part of the general

development program for the technology.

The evolution of a cadmium photovoltaics industry would very likely

be shaped by growing knowledge of the health effects of cadmium. Studies

of workers and others exposed to cadmium, as well as a large number of

animal experiments, have revealed a large number of potential health

impacts. Some of these--such as proteinuria due to effects on the kidney

and respiratory disease--are well-demonstrated. Others--such as

hypertension, carcinogenic and mutagenic effects--have not been proven,

though there is suggestive evidence. For example, a number of animal

experiments, and a few epidemiological studies have correlated the

presence of cadmium compounds with hypertension and other circulatory

problems; a study by Lemen [11] of workers in a facility producing very

pure cadmium oxide and cadmium sulfide indicated excesses of total

malignant neoplasms (respiratory and prostate tumors), despite use of

respirators; and cadmium sulfide has been shown to induce chromosomal
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aberrations in cultured human leukocytes [12]. While the data cannot yet

be regarded as conclusive, it is at least possible, if not probable, that

future health assessments--and regulatory standards--will have to

consider effects which can be correlated statistically with even low dose

levels.

As of April, 1978, the Occupational Safety and Health Standards on

Toxic and Hazardous Substances list 8-hour time-weighted average exposure

limits of 200 g/m3 for cadmium dust and 100 g/m3 for cadmium fumes

[13]. While industry appears to have been able to meet these standards,

chiefly through improved ventilation, there is an increasing likelihood

that the standards will be made more restrictive. For example, the NIOSH

Criteria document recommends that worker exposures should remain below 40

,g/m3 (TWA) and that no 15-minute exposure should exceed 200 g/m3.

Even more stringent standards are possible, especially if evidence for

carcinogenicity is sustained,* since the trend in regulation is to regard

any exposure to carcinogens as unsafe. The prospect, in this case, is

for increasingly severe ratcheting on cadmium standards.**

If cadmium is to become a commercially viable photovoltaic

technology, it will be necessary to anticipate prospective regulatory

changes through evaluation of health effects and through industrial and

process designs which provide very high levels of control. The latter

will be difficult in the case of the high temperature processes used at

*The NIOSH Toxic Substances List of 1976 includes cadmium and
cadmium sulfide as carcinogens, based on animal studies.

**The use of cadmium photovoltaic cells on the scale anticipated by
DoE goals would increase domestic use of cadmium by about a factor of
four over present levels by the year 2000, though this figure depends
critically on cell characteristics and process efficiencies.
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several points in the chain leading from ore to high purity cadmium

sulfide. At the cell manufacture and array fabrication steps, the need

for control would reinforce economic incentives to establish closed

automated process lines. The more difficult questions are whether

control at levels which deal adequately with health impacts and future

standards is possible and whether industrial and regulatory management

will in fact implement appropriate measures.

A final issue which must be resolved is whether cadmium sulfide

presents health risks comparable to or less than those associated with

other cadmium compounds. While cadmium and cadmium oxide are the

compounds encountered at many early stages of processing (and as a result

of accidental releases, where heating in air may result in CdO

formation), cadmium sulfide is the compound most likely encountered at

the cell and array fabrication stages. It is frequently asserted that

cadmium sulfide is ten times less toxic than cadmium. We have been

unable to find adequate documentation for this assertion, despite a

computer search of the NASIC Toxline reference files. While there is

evidence that the lethal dose of cadmium sulfide is greater than that of

the oxide [14] the data are for ingestion rather than inhalation; the

latter is the only hazard of realistic concern in photovoltaic

manufacturing. Other studies which have been used to argue for lower

risk from CdS deal with inequivalent systems; for example, tumorogenesis

following intramuscular injection in rats as compared with toxic oral

doses. The effects of inhalation of cadmium sulfide by humans should be

reviewed much more exhaustively* before it can be concluded that

*There is some evidence, from an old study, that cadmium sulfide is
absorbed somewhat less readily in canine lungs than cadmium oxide [15].
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standards for cadmium sulfide can be set higher than for other cadmium

compounds. Until further research proves otherwise, it is sensible to

follow the NIOSH recommendations* and treat cadmium and all cadmium

compounds equally.

Gallium Arsenide

Of the photovoltaic technologies discussed here, gallium arsenide is

the least developed, just emerging from the laboratory to be considered

for large-scale production. As a result, it is difficult to assess any

hazards except those associated with the key material constituents,

gallium and arsenic.

Very little is known about the health-related properties of gallium,

a by-product of aluminum refining. According to the NIOSH Registry [16],

the lethal dose for gallium is 110 mg/kg (subcutaneous in rats); it is

not listed there as a carcinogen, though some reports [4, p. 106] refer

to it as such. Gallium is used as a scanning agent in medicine and has

been proposed as a malleable constituent for dental amalgams (for which

mercury was previously used). A review of Toxline references reveals

virtually no reports on health effects, though this should certainly not

be taken as evidence of safety.

There is considerably more data on the health effects of arsenic and

arsenic compounds, data which have led to increasingly strict

occupational standards. In addition to known toxic effects, arsenic is

now regarded as a carcinogen, based largely on epidemiologic studies.

(Unlike the case with most carcinogens, animal models have proven more

*The NIOSH Criteria document refers to "elemental cadmium and all
cadmium compounds" and finds no basis in health data for distinction.
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elusive than data on human populations, perhaps because of metabolic

differences.)

Until recently, the occupational limit (8-hour time-weighted average)

for exposure to arsenic, in organic and inorganic compounds, was 500

ug/m3. A NIOSH Criteria report, in 1974, recommended a reduction for

inorganic compounds to 4 pg/m 3, based on a comprehensive review of

health data. In May, 1978, OSHA promulgated a new standard for exposure

to inorganic arsenic (organic compounds, used in agriculture, remain at

the higher standard) of 10 g/m3 (8-hour time-weighted average). The

text of the regulation states that:

The basis for this action is evidence that exposure to inorganic
arsenic poses a cancer risk to workers. The purpose of this
rule is to minimize the incidence of lung cancer among workers
exposed to inorganic arsenic. Employees protected by this
standard work principally in the nonferrous metal smelting,
glass and arsenical chemical industries. Provisions for
monitoring of exposures, recordkeeping, medical surveillance,
hygiene facilities and other requirements are also included.
The 10 g/m3 limit has been set because it will provide
significant employee protection and is the lowest feasible level
in many circumstances [17].

Thus, the OSHA regulation represents a compromise between feasibility

(the 10 g/m3 average limit will probably still require severe control

measures and rotation of workers) and its philosophy that there is no

zero risk level for carcinogens. However, the new standard probably does

reduce the individual worker risk and, to a more limited extent, the risk

to arsenic workers collectively.

As is the case with cadmium, worker exposure to arsenic is possible

both during the production of the raw material and during the subsequent

manufacturing steps. The history of worker exposure during the recovery

of arsenic from refinery flue dusts in the U.S. has been unfortunate;

compliance with the new standard should reduce this problem
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considerably. Any expanded production due to photovoltaics should be

planned with careful consideration given to minimizing worker exposure.

Most gallium arsenide now produced is used in light-emitting diodes.

A survey of this semiconductor industry in 1976 indicated average

workplace exposure levels of 5 to 50 g/m3 of arsenic, as estimated by

company spokespersons [18]. Concentrations in crystal growth areas are

probably considerably higher, due to daily clean-up operations [18, p.

IV-19]. It is likely that ventilation will keep levels in the diffusion

process area (where commercial arsenic trioxide is purified to

semiconductor grade) below the new standard; air-supplied respirators may

be necessary in crystal growth areas.

The extent to which experience with current semiconductor industries

can be generalized to large-scale photovoltaic operations is limited. A

facility producing 200 MWe-peak of gallium arsenide photovoltaic systems

would use about 10,000 times as much gallium arsenide as is now used by

the largest GaAs semiconductor manufacturer. Control problems in the

photovoltaic industry may thus be of an entirely different nature and

scale than those encountered in present industries. However, it does

seem clear that occupational exposure problems may be more easily solved

with thin film gallium arsenide technologies which can be adapted to

closed process line operations than with crystal wafer technologies which

require closer human involvement.* The production process for

*There may also be accidental release hazards which should be
considered. For example in the manufacture of thick wafer
monocrystalline cells, the GaAs ribbon pulling process is conducted at
high temperatures (1250o C) and pressures (100 atm) and therefore
introduces the possibility of chronic low level leaks or accidental
exposure to high arsenic emissions from the reactor vessel. The
alternate epitaxial growth process may be less prone to accidental
releases.



43

polycrystalline GaAs cells will have to include methods to deal with the

existence of excess spray materials from the vacuum deposition and spray

application of thin films.

The fabrication of GaAs arrays presents the hazards that are common

to all the PV technologies (presence of cutting oils, solder compounds,

materials used in vapor deposition of contact grids) as well as unknown

hazards related to the proprietary compounds used during GaAs

compounding, doping and crystal growth. Again, the unknown synergistic

behavior of these various compounds makes it highly desirable to insure

isolation of the various production phases from the workers' environment.

Installations

The use of photovoltaic systems on buildings or in independent arrays

may alter the nature and extent of health hazards to occupational groups

not directly involved in the installation and maintenance of photovoltaic

systems. Such effects are probably most significant for firefighters and

other emergency personnel. Not only may such workers be repeatedly

exposed to toxic materials or electrical hazards, but the presence of

photovoltaic systems on roofs may affect the ways in which fires can be

fought.

Toxic material releases will be most significant for gallium arsenide

since the volatility of arsenic compounds insures high release fractions

at temperatures which are low compared to those commonly achieved in

building fires. Due to sublimation and oxidation processes, it is likely

that primary exposures would be to vapors or small particulates of

arsenic trioxide. Release fractions for cadmium sulfide arrays will be

considerably lower than for arsenic based cells, due to a higher



44

temperature for sublimation. Experimental studies will be necessary to

determine whether arsenic or cadmium uptake from a single fire could lead

to prompt toxic or even lethal exposures for firemen. The possibility of

exposures to toxic materials resulting from combustion of other

materials, such as pottants, used in PV systems, also deserves study. In

this connection it should be noted that toxic gases are already a serious

hazard; a recent study conducted jointly by The Harvard Medical School

and the Boston Fire Department recommends the use of air-supplied

respirators for firemen. Such measures would reduce cadmium and arsenic

hazards considerably.

The possibility of cumulative exposures to firemen and other

emergency personnel is more difficult to assess since ambient

concentrations near fires may not be great enough to justify respirators

but high enough to lead to long-term accumulations. A rough calculation

can suggest a measure of the hazard. Assuming an average exposure of

about 0.01 g-min/m3 of cadmium or arsenic per fire (see Chapter V

below) and 300 such exposures in a career, a firefighter would retain a

total of less than 0.02 gram of arsenic or cadmium. For cadmium, this is

less than one-fourth the quantity needed to cause kidney function

impairment. While exposure to cadmium or arsenic may increase individual

cancer risk slightly, exposures would be less than those presently

allowed for workers in industries using either element. However, the

calculations here suggest that the question of long-term effects on

emergency personnel deserve further attention. Silicon photovoltaic

systems do not raise these questions.

The presence of photovoltaic systems on roofs may also alter the

nature of hazards faced by firemen by requiring changes in the ways in
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which fires are fought. As discussed in section V, interior fires are

often shaped into a vertical configuration by opening holes in the roof.

This minimizes the lateral spread of the fire, reduces hazards to

entering firemen or rescue personnel, and minimizes property damage; it

also makes roof involvement much more likely. If the value of

photovoltaic systems, or the risk of releasing toxic materials, inhibit

use of current firefighting techniques, it is possible that conventional

hazards to firefighters will be increased.

Occupational Health Standards and Regulatory Changes

The course of development of a technology is determined not only by

the risks known (or suspected) to be associated with it, but also by the

attitudes held by society toward various kinds of risks and by the

institutions created to implement those attitudes. In the United States,

the 1970 Congressional Act establishing the Occupational Safety and

Health Administration was a major extension of government's role in

protecting the welfare of workers. With respect to allowable

concentrations of toxic, carcinogenic, or other hazardous substances in

the workplace, the Act stipulates that OSHA must set the standard "which

most adequately assures, to the extent feasible, on the basis of the best

available evidence, that no employee will suffer material impairment of

health or functional capacity even if such employee has regular exposure

to the hazard for the period of his working life" [17, p. 19585].

The 1970 Act is considerably more restrictive than earlier

standards: its aim is to see that no appreciable harm comes to any

worker, whereas the (rather imprecise) Threshold Limit Values on which

previous standards were based aimed at ensuring less than one death per
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million "normal healthy workers." OSHA's task in establishing actual

standards is immense: 12,000 toxic chemicals are currently in use, and

500 are added annually. Adequate human dose-response data are currently

available for very few of these substances, and for almost none of the

millions of combinations which could interact to cause harmful effects.*

Perhaps the most far-reaching aspect of the Occupational Safety and

Health Act is its requirement that standards be based on "the best

available evidence." In the past, TLV's were often based on

extrapolation from animal experiments; now the trend is to rely on direct

human data, on specific epidemiological studies, and on toxicological

analyses to discover the chemical interactions between toxic substances

and human metabolism. It seems clear that the intent of the Act is that

permissible exposure levels should be changed whenever there is reliable

new evidence about concentrations at which a given stubstance is

hazardous to humans. The Act's fundamental conservatism on behalf of

worker health makes it overwhelmingly likely that most if not all changes

will be in the direction of tigher restriction.

The implications, for both new and existing technologies, are clear.

Any technology, no matter how benign at first glance, may lead to

*Carcinogens pose special problems. As longer periods of exposure
are investigated (30-50 years), more and more toxic substances are found
to correlate with increased cancer incidence at low levels of
concentration. OSHA's present policy is to assign absolute levels of
exposure for carcinogens because they are required by law to do so.
However OSHA and NIOSH have publicly expressed the belief that any level
of exposure to carcinogenic agents-including levels not measurable by
present technology--can be responsible for significant health effects.
In some recent comments about rule-making on carcinogens, NIOSH stated
that "health risk should be given primary consideration in questions of
feasibility...." Furthermore "if the lowest feasible limit cannot be set
so that it is lower than that concentration which has been found to cause
cancer in humans and/or animals, then exposure in the workplace should
not be permitted." [19]
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the introduction of significant concentrations of substances with the

potential for adverse occupational health impacts. Establishing

standards for allowable exposure to harmful substances requires

considering numerous factors: biological susceptibility, synergistic

effects, carcinogenic behavior-all presently associated with high

uncertainty. As more information becomes available about the long-term

effects of toxic and carcinogenic substances, and as efforts are made to

deal with the wide range of susceptibilities in the worker population, it

is very likely that standards for occupational exposure will become

increasingly strict and that the overall trend will be toward more

complete isolation of the worker from materials which may pose health

hazards. Therefore, in any industry, present standards must not be seen

as absolute; they should be viewed with the understanding that their

inherent uncertainty requires use of an additional margin of safety and

that this apparent margin can be eroded by better health data.

This current regulatory climate is of great importance in assessing

the prospects for photovoltaics and in choosing between technological

suboptions. A new industry is especially vulnerable to regulatory

changes since it may require greatly expanded use of materials about

which there is already escalating concern, and hence a great reluctance

to allow wider use, or because the new industry may lack the political

support which, in established industries, can moderate the imposition of

rapid changes in standards, especially in cases where scientific evidence

is not entirely conclusive. Indeed, the increased concern over possible

effects on health may result in the subjection of PV technologies to a

level of scrutiny not imposed on technologies introduced in an earlier

health assessment era, although it is to be hoped that present energy

technologies will not be exempted from the same careful analysis.
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Our analysis above suggests that silicon-based photovoltaics

involves fewer (and more tractable) occupational health risks, and thus

is less vulnerable to regulatory intervention and change, than is the

case with technologies based on cadmium or gallium arsenide. However,

worker health hazards exist for all three technologies; these hazards

must not only be assessed in detail, they must also be eliminated when

possible and in other cases must be understood and accepted by the public

and by the workers involved before large-scale commitments are made to

particular production sequences.
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V. PUBLIC HEALTH IMPACTS

Public health risks arising from photovoltaics may be direct or

indirect. Direct impacts include routine or accidental releases of toxic

or carcinogenic materials during manufacturing and utilization of

photovoltaic systems. Indirect impacts include the effects of producing

the inputs to photovoltaic manufacturing processes: aluminum, solder,

plastics, glass, and so forth, and the energy it takes to produce the

photovoltaic system itself.

In the following subsections we shall examine the potential direct

public health impacts of the three main lines of photovoltaic

technologies. Discussion of how indirect impacts affect the comparison

between energy technologies is reserved for Chapter VII.

Nature and Sources of Direct Impacts

As discussed in Chapter III, photovoltaic systems involve the

presence of potentially hazardous materials at several stages of

production or utilization. Atmospheric releases of these materials

appear to be the primary source of public exposures. The dominant

effects in silicon technology appear to come from the mining and refining

of silicon, including the use of coke (as a reducing agent) and the

release of silicon particulates. For cadmium technology, the major

public risks appear to come from the release of cadmium compounds in

refining, during processing and handling in manufacture, and from fires

involving arrays. Risks associated with gallium arsenide are

qualitatively similar in their origin to those of cadmium photovoltaic
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systems. We shall examine each of these effects in turn.* However, in

order to maintain perspective, it is useful to consider how comparison

can be made with conventional sources of electricity. The comparison

with nuclear power is made difficult by the incomparability of risks

(low-probability high-consequence events, nuclear weapons proliferation

and so forth). However, it is possible to make more direct comparison

with the effects of using coal.

In addition to the well-known releases of oxides of sulfur, nitrogen

and carbon, the mining and combustion of coal also involve the emission

of particulates (including silicon), cadmium and arsenic--precisely the

materials emitted in the use of photovoltaics. Though there are some

differences in particle size distribution and chemical and molecular

composition, it should thus be possible to evaluate public health impacts

of photovoltaics on a basis which allows reasonably direct comparison

with a subset of the impacts of coal. For example, if it can be shown

that the human exposures to silicon, cadmium or arsenic resulting from

the use of photovoltaic systems are smaller than or comparable to those

resulting from the use of coal, on a unit of energy basis, then it is

likely that the use of photovoltaics entails public health consequences

considerably smaller than those of coal, since sulfates and nitrous

oxides, organic, and other trace materials from coal are already known to

affect public health significantly. Where photovoltaic impacts are

larger than the exactly analogous effects of coal combustion, it will be

*We shall make a distinction here between immediate public exposures
due to photovoltaics and those health effects which may eventually result
from contributions of pollutants to environmental backgrounds. The
latter effects will be treated in the subsequent chapter on environmental
impacts.
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necessary to consider the relative importance of other categories of

impacts.

Comparability

It is useful at the outset to identify some of the differences

between coal and photovoltaic systems which must be taken into account in

order to arrive at meaningful comparisons of impacts on public health.

One difference is that the connections between emissions and health

effects are different for coal and photovoltaic energy systems. A coal

plant may vent effluents through a 1000-foot stack, resulting in a

considerable dilution of harmful materials before populations are

affected. If there are thresholds below which most individuals

experience few or no adverse effects, this dilution can be extremely

important. In contrast, photovoltaics manufacturing facilities are not

likely to involve such dissipative measures (unless required by

regulation)* and may be built in closer proximity to higher population

densities (in part a consequence of the high labor intensity of the

technology). For decentralized applications--residential, neighborhood

or commercial-potential sources of accidental release, primarily fires,

are necessarily close to high population densities. It is thus necessary

not only to compare total emissions for coal and photovoltaics systems

but also to model the appropriate transport mechanisms leading to human

exposures.

The second difference is one of scale. The scale at which coal

combustion occurs is set, by economics, at about 1 GWe (1000 MFe), for a

*In fact, recent regulatory law (Clean Air Act amendments of 1977)
prohibits dispersive measures, such as stack height increases.
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new plant, and the size of this plant determines the ambient levels of

pollutants to which humans are exposed. Such a plant, operating at 70

percent capacity factor, produces 0.7 GWe-year of electricity for each

year of operation, equivalent to perhaps 0.6 GWe-yr delivered to point of

use. The size of refining and manufacturing facilities for photovoltaics

will similarly affect ambient levels. In comparing with coal, it is thus

necessary to specify photovoltaic plant sizes. One could do this by

designing economically optimal facilities and then prorating the health

impacts over the total power generated by the photovoltaic devices

produced in the plants over the lifetimes of these devices.

Alternatively, one could assume a manufacturing plant size which, in

steady state operation, was responsible for the same amount of power

generation as the model coal plant. For manufacturing facilities, both

procedures appear to give comparable plant sizes: design studies (e.g.,

Lockheed [1]) suggest PV manufacturing facilities with production

capacities of about 100 peak megawatts of PV capacity per year. The

alternative calculation gives a plant size of 150-300 MWe peak PV

capacity produced per year.* We shall use a plant size of 200 MWe

peak/year since it is more directly comparable with coal and nuclear

power plants.

*At 0.2 capacity factor, and a life of 10 to 20 years, each 100 MWe
of peak PV capacity will, over its life, produce 200 to 400 MWe-years of
electricity. Thus a manufacturing plant of 150-300 MWe production
capacity will, on the average, eventually be responsible for the
generation of 0.6 GWe-year of power per year of operation, the same as
the standard coal plant. Our assumption of 200 MWe peak capacity
produced per year corresponds to an assumed lifetime of 15 years; that
is, the PV capacity produced will generate the same 600 MWe-years of
power over 15 years as the coal plant does in one year. In steady state
operation, the PV manufacturing facility can be thought of as being
equivalent to the coal plant.
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In the case of cadmium and gallium arsenide devices, public health

effects may occur not only at the raw material, refining, and

manufacturing states, but also after the devices are installed and in

use. It is also necessary, therefore, to establish equivalences between

small, intermediate and large-scale PV applications and the standard coal

plant. Central station photovoltaic systems are obviously the most

directly comparable to coal plants (except that PV plants might be more

remotely located). For residential PV systems of 5 kilowatt peak

capacity, approximately 600,000 installations are required to supply the

same electricity as a 1 GWe coal plant (allowing about 15 percent loss

for transmission and other losses for the coal plant). Similarly,

approximately six thousand 500 kw intermediate-scale PV installations

are, in total, equivalent to a coal plant.

Public health impacts from cadmium and gallium arsenide

installations appear to arise primarily from fires, especially in

intermediate and small-scale applications. While it is very unlikely

that a fire involving all of a properly designed central station PV

installation could occur, fires involving the roofs of houses and

commercial establishments are fairly common. In order to compute the

effects on public health of such fires on a unit of energy basis, it is

necessary to know the rates of incidence of roof fires and the influence

photovoltaic systems would have on this rate and on the nature of the

fires occurring.

According to available fire statistics and estimates (discussed in

detail below), the 600,000 residential installations, equivalent in total

electrical production to a coal plant, would suffer about 200 fires

involving arrays each year, while six thousand 500 kw installations could
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experience on the order of one fire per year. Like the emissions

associated with production, the emissions from these events can be

modeled and compared with the continuous emission from the coal plant,

similarly modeled.

Assessment of Public Health Impacts

The determination of releases, the modeling of atmospheric transport

and human exposures, and the estimation of the resulting public health

effects are all difficult tasks. In order to estimate impacts, it is

necessary to know or assume:

* the quantities of potentially harmful material present at
each stage of manufacture or application;

* release fraction-the fraction of such materials which are
released, routinely at each process step or accidentally in
fires or other events;

* the precise chemical composition of the material released.
The compounds released may be altered by the mechanism of
release or by other processes (for example, cadmium sulfide
may be oxidized in a fire). Different compounds of the
same element can have different health effects;

* the nature of the release--whether at ground level or from
the top of a roof or exhaust stack, whether hot or cold. A
hot release will rise, expanding adiabatically until
cooled, effectively increasing the height of release. The
height of the release affects the maximum concentration
experienced at ground level;

* atmospheric transport processes affecting the magnitude and
duration of human exposures;

* population distribution relative to distribution of
pollutants; and

* the nature and effect of exposures to various compounds:
inhalation versus ingestion, retention and lifetime in the
body, acute versus cumulative effects, toxic versus
carcinogenic impacts, potentiating and antagonizing
synergisms and so forth.
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The first three entries above are specific to the photovoltaic technology

involved; each will be discussed and compared to coal in subsequent

sections. For the purpose of rough comparison between photovoltaics and

coal, the last (and difficult) stage of analysis can be ignored in

situations in which qualitatively similar exposures can be expected. For

example, lung uptake of similar amounts of cadmium oxide from the two

sources will have comparable health impacts. In the context of our

comparisons, however, we do attempt when possible to characterize the

kind and severity of effects that might occur, and to indicate where

major uncertainties remain. Before turning to these comparisons, it is

useful to consider the model for atmospheric transport and concentration

under various release conditions used in this study. A more detailed

description of the model is given in the Appendix.

For the purposes of this study, a simple three-dimensional Gaussian

diffusion model for the atmospheric dispersion of a general pollutant is

employed. Given the conditions of release and general atmospheric

characteristics, this model gives the average concentration of material

at any point downwind of the source. The conditions which must be

specified include effective height of release, average wind speed, rate

of release and crosswind and vertical dispersion parameters. A more

complex model would take account of deposition and the effects of surface

irregularities, shielding and so forth. However, this increased

sophistication would introduce a level of detail (and many more

assumptions) which is not justified by present knowledge or by the

results of the simpler model; in general, significant exposures occur

primarily under circumstances in which greater model complexity would

make little difference in predicted exposure.
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It should be kept in mind that the models and assumptions used in

a the analysis below are far from definitive. Our primary objective is to

provide evaluations for basic policy purposes--giving only a rough

measure of the relative hazards associated with different photovoltaic

technologies and applications--and to identify areas where further

research or improvements are needed. Refinements of our estimates will

be required in the future in order to reflect changes in technology and

in epidemiological knowledge. In addition, more detailed models must be

used to evaluate the local impacts of particular facilities or

installations.

The three sections that follow examine the potential public health

impacts associated with the three generic photovoltaic technologies. For

each, we estimate the release rates of hazardous materials at each step

in production and use; summarize the results of our dispersion model for

each release; assess the health impacts associated with the predicted

potential public exposures; and draw comparisons with coal. (Detailed

modeling results-including coal comparisons--are given in the Appendix,

along with discussion of the particular assumptions made in applying the

model to specific cases.)

Silicon: Materials and Emissions

Despite experience in the semiconductor industry, the mass flows and

process losses involved in silicon cell production are uncertain, with

estimates in the literature varying widely. Often these differences can

be traced to different assumptions about the efficiency of the process

steps by which raw silicon is eventually turned into cells; however,

there is rarely enough information to identify precisely where different
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assumptions are made. We shall use the description in Figure V-1, which

is based on the most extensively documented analysis available [2]. It

should be noted that there are compelling economic reasons to alter this

picture since it appears difficult to meet price goals with the

technology illustrated. Changes in mass flows or processes will affect

the magnitudes of various impacts.

The largest potential health impacts associated with silicon

technology occur early in the production process; there appear to be few

significant public hazards subsequent to the production of metallurgical

grade material. The primary hazards identified include:

* mining of silica and coal (for coke), resulting in the release
of particulates

· production of coke from coal, resulting in the emission of
suspended particulates, hydrocarbons and other materials

* refining of silicon, resulting in the release of particulates
of silicon dioxide and monoxide and fly ash.

The last of these is by far the most significant. The mining of silicon

and coal for production of solar cells involves a volume of material only

about 2 percent that of a coal power plant. Production of coke produces

emissions qualitatively similar to those from coal burning; here the

volume of material involved is only about I percent that of the coal

power plant. Refining emissions are of relatively greater importance

since atmospheric release fractions are large and since a large fraction

of the particulates emitted are very small (many less than one micron)

and are most likely to remain suspended in the air, inhaled and retained

in the lung.

Respirable particulate emissions from the electric arc furnace (from

silicon and coke) are about 100 grams per minute (for a plant producing
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material sufficient for 200 MWe capacity per year). Estimates of the

fraction smaller than a few microns are uncertain but easily could exceed

50 percent. In contrast, our standard coal plant emits about 3 kilograms

of respirable particulates per minute [3] (Western coal with 99 percent

efficiency by weight in particulate recovery). The fraction in the

micron range is probably smaller than for the electric arc furnace.

Silicon: Population Exposures and Health Effects

The particulate releases from coal and silicon refining were modeled

to determine ground-level concentrations and resulting population

exposures. The basic pattern found is that the larger volume of coal

particulates is diluted and distributed over a much larger area than are

the silicon particulates. Thus, the results of our model indicate that,

given similar population densities, particulates from coal will affect

approximately 3 orders of magnitude more people at any given

concentration than a silicon refining plant responsible for the same

electricity generation. For example, under neutral weather conditions,

silicon refining could expose approximately 50,000 people to a

particulate concentration of one microgram per cubic meter (1 g/m3, or

10-6 g/m3); a coal plant could expose approximately 20,000,000 people to

that same concentration of particulates. However, it should be

remembered that this comparison is not precise--the composition of

particulate emissions from silicon refining and coal combustion are

different* and the dispersion model is rather idealized; the comparisons

are thus only

*About 20 percent of coal plant particulate emissions are silicon.
It is possible, of course, to consider only the silicon component of coal
emissions: roughly one hundred thousand people may be exposed to
1 g/m3 of silicon particulates by a coal plant.
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suggestive. What is perhaps most important is that silicon particulates

represent only a small fraction of the public health impacts of coal but

are probably the major direct public impact of silicon photovoltaic

technology. Thus even comparability of particulate impacts would imply a

significant superiority for silicon photovoltaics.

The comparative evaluation may, however, conceal the possibility of

appreciable health impacts from both technologies. At present, there are

not enough data available to convert concentration levels into public

health consequences. The occupational standards discussed in Chapter IV

are based on experience with worker populations exposed to workplace

concentrations for limited periods of time. The current OSHA respirable

silicon standard is 10-4g/m3 (crystalline silica) for 8-hour shifts.

It is possible that better studies will reveal more subtle health effects

than established thus far, resulting in a reduction in the standard; this

is especially likely for submicron particulates. There is as yet no

federal standard for public exposure to respirable silicon. Public

health standards, however, are normally set considerably lower--often

about two orders of magnitude lower-than occupational standards since

the sensitivity of certain groups (e.g., infants, the chronically ill and

the aged) will be much greater than that of healthy worker populations.*

Thus it is reasonable to expect a public silicon standard of 10-6

g/m3. But as noted above, concentrations produced by both coal plants

and silicon refineries exceed this level for large numbers of people.

*The OSHA standard for respirable particulates generally is 5
mg/m3 while the EPA standard (annual geometric mean) for public
exposures is 75 g/m3, a factor of 70 lower. The maximum level allowed
once a year is 260 g/m3 (24 hour average). It is interesting that
maximum ambient concentrations from coal predicted by our model fall just
within the annual standard.
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(Indeed, under unstable weather conditions, exposures within an order of

magnitude of the occupational standard are possible for hundreds of

people.)

Cadmium: Materials and Emissions

A great many of variations on cadmium sulfide cells are possible.

However, in order to perform an evaluation of public health impacts, it

is necessary to establish flows of materials. We shall use the

quantities shown in Figure V-2 where two cell configurations are

illustrated. In general, thinner film cells are expected to have lower

photovoltaic efficiency and be accompanied by higher losses in

manufacturing. As a result the amount of cadmium required for a given

photovoltaic capacity probably will not vary greatly with design. Figure

V-2 also shows estimated atmospheric emission rates at each step. These

estimates are based on present levels of control; loss rates depend on

availability and commercial utilization of control technology and on

regulatory restrictions amd great improvements are possible. The largest

releases appear to occur during primary zinc refining; a common estimate

is for a loss rate, in the United States, of 15-16 percent (by weight) of

cadmium present in input zinc ore [4]. According to this estimate, about

50 metric tons* of cadmium would be released for each 200 MWe of PV

*This is much larger than the 0.6 metric ton estimated by Energy and
Environmental Associates [5] and subsequently cited elsewhere (e.g., ERDA,
[6]. The EEA report estimates emissions of "14 pounds per ton (33 kg per
metric ton)"-not equivalent quantities--citing an EPA report of 1975 [4].
The citation appears incorrect: the EPA report (p. 5-7) lists an atmospheric
loss in zinc operations of 155 kg cadmium per metric ton of cadmium input in
ore. The EPA figure is based on an Oak Ridge report [7] which in turn cites a
study by W.E. Davis and Associates [8]. The EPA report correctly represents
the original analysis. However, the EEA report, and subsequent reports based
on it, appear to be in error.
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capacity ultimately produced. The accuracy of this estimate is open to

some question since it is based on national mass balances. Empirical

data on actual stack emissions appear to be lacking, with measurements

complicated by institutional and technical problems. Significant amounts

of cadmium may be lost as vapor or as exceedingly fine particulates--both

difficult to measure, and to control. Estimates of recovery rates

achieved with the best present technology appear to range from 90 percent

to about 99 percent (reviewed in Fulkerson [7]). The smallest losses

appear to occur in electrolytic zinc recovery facilities; these are used

primarily abroad. Since impacts are potentially significant, it is

important that uncertainties about present releases be resolved and that

opportunities for reductions be explored. We shall discuss below the

reasons for our assumption that the release during zinc refining should

be attributed to use of photovoltaics.

Following this initial step, the cadmium is purified and reacted

with sulfur to make cadmium sulfide. The atmospheric release fraction at

this stage is quoted as being about 5 percent* in the form of CdO, or

about 14 metric tons per 200 MWe peak capacity. The possibility of

reducing this release will be discussed below.

Cadmium can also be released during subsequent processing and

transport steps; however, the release fractions are far less certain.

Handling risks are present because the cadmium sulfide is in the form of

a fine powder up until the final cell fabrication steps. While

automation and the high value of the output product will justify much

better control, an upper bound on releases probably can be derived from

*The loss rate is derived from the process diagrams, Figures 9a and
b, detailed in Gandel [2], p. 52-3.
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the paint industry where release fractions are as high as 1 percent.

This is either a serious occupational problem or, more likely, a public

hazard since forced ventilation is the probable solution to high

workplace concentrations. If releases were as high as in the paint

industry, up to 2 metric tons of cadmium (as CdS) could be released for

each 200 MWe of peak capacity produced. These would be primarily routine

handling releases (fugitive dust). Because the amounts of cadmium

involved are very large compared to the toxic dose, process steps should

also be examined carefully for possible accident sequences.

Thus, for the three production stages, the releases from cadmium

photovoltaic technology are qualitatively similar to those of silicon,

consisting of continuous emissions from the relatively large industrial

facilities involved in CdS cell production. These emissions are also

those most directly comparable to those from coal plants. Indeed, one

can compare the cadmium releases of up to 60 metric tons annually from

photovoltaic manufacturing (for our 200 MWe annual cell output) with

cadmium releases from coal combustion. The mean concentration of cadmium

in coal is 2.52 ppm; with a release fraction of 0.35, this results in the

emission of about 2 metric tons of cadmium (as CdO) per year for our

model coal plant,* considerably less than for photovoltaics, under the

assumption that refining emissions could be attributable to

*The range of cadmium concentrations in coal is large--from 0.1 to
65.0 ppm; however, the standard deviation about the mean (2.52 ppm) is
only 7.6 [9]. In computing the annual coal plant release we assume
10,000 Btu/pound, 700 MWe-years/year output and 36 percent thermal
efficiency. As a check, we compare with an EPA study [10] which reports
0-130 /m3 for power plant stack gases with a flow rate of 100
m3/MWe/min. This gives a cadmium emission of 0-4.8 metric tons per
year.
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photovoltaics. Of course, this comparison is far from complete since

coal combustion results in the release of other hazardous substances.

Unlike silicon cells, however, the use of cadmium sulfide cells

involves risks arising from fires affecting installed arrays. Depending

on the temperatures reached, it can be expected that fires involving

rooftop installations will result in emission of a certain fraction of

the cadmium present, as cadmium oxide or sulfide. This release fraction

is unknown; since significant impacts are possible, empirical

determinations of releases under various circumstances and for different

configurations should be made before wide-scale use. For purposes of

analysis, we shall assume a release fraction of 0.1. We believe this to

be a conservative assumption--that is, that the actual release fraction

will very likely be found to be smaller.

As discussed earlier, about 600,000 5-kilowatt residential

installations are needed to produce an electrical output equivalent to

that of a large coal plant. Each installation will contain 1-3 kg of

cadmium; the 200 major fires to be expected annually may thus result in

the release of 20 to 60 kg of cadmium. This quantity is small compared

to that emitted in the production of cadmium and cadmium cells, or in the

combustion of coal, and would be episodic rather than continuous. An

individual would thus receive a one-time dose or a sequence of one-time

doses of varying severity rather than a relatively continuous exposure

(as in the case of coal or cadmium industrial facilities). However, it

may still be possible for some individuals to receive significant doses

since releases will occur in areas of high population density. It is

thus necessary to model each type of release independently.
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Cadmium: Population Exposures and Health Effects

As with silicon, we modeled cadmium releases--and resulting

population exposures-from coal, from the three stages in the production

of cadmium sulfide cells, and from house fires involving cadmium sulfide

arrays. At each production stage, concentrations of cadmium due to

photovoltaics are 2 to 3 orders of magnitude higher than for coal under

all weather conditions and at all distances from the plant. The number

of people exposed to any given level of Cd is one to two orders of

magnitude larger for photovoltaics than for coal. By far the greatest

exposure comes at the refining and conversion step. Unless measures to

reduce, dissipate, or isolate emissions from this production step are

taken, several thousand people could experience routinely a cadmium level

of 10-6 g/m3, and up to 100,000 (depending on weather) a level of

10-7 g/m3. (By comparison, a coal plant might expose a few dozen

people to a cadmium level of 10-6 g/m3 and about 500 to a level of

10-7 g/m3.) Only a few hundred people are exposed to comparable

levels at the other two cadmium production stages.*

Cadmium releases due to house fires involving photovoltaic arrays

are somewhat more difficult to compare with coal; however, their effect

seems to be much smaller than effects from the production steps. From a

single fire, few if any people will be exposed to levels between 10-4 and

10-6 g/m3 for as long as ten minutes. While some thousands of people may

be exposed to cadmium from a fire, the exposure will be either for very

short times or at very low concentrations compared with cadmium-array

production steps or even with coal.

*However, this assumes the low population density of 100/mi2
surrounding the zinc smelter. For the other facilities! including
the coal plant, we assume population density of 1000/mi .
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It is important to ask whether these exposure levels could have a

significant impact on public health. It is evident that there is little

chance of prompt fatal exposures for most of the facilities discussed

above, or for array fires. A pompt fatal exposure is believed to be of

order 1 gram-minute/m 3 [11] though it could be lower for sensitive

individuals. Only under extreme worst case conditions, prevailing for

some days, could individuals very near cadmium facilities receive such an

exposure.* Exposures due to house fires are three or more orders of

magnitude too small to result in fatal effects.

The more difficult health issue is whether chronic exposure to lower

concentrations can have significant individual or collective societal

health impacts. This could occur through buildup in specific human

organs (the half-life of cadmium in the body appears to be 15 years or

more), causing degradation of function or carcinogenic effects.

It is believed that renal cortex concentrations of 200 ppm can lead

to kidney dysfunction in sensitive individuals. Possible effects include

proteinuria and hypertension. Since about 1/3 of the body burden of

cadmium deposits in the kidney and since lung absorption may be as high

as 40 percent, inhalation exposure levels should be kept low enough to

prevent buildup to damaging levels. For 40 percent retention, an average

concentration of 0.8 g/m3 over a period of 50 years would be

sufficient to attain a 200 ppm renal concentration.** However, there are

*The worst situation appears to occur for an individual living 100
meters directly downwind of a fabrication plant venting 1 percent of
throughput at ground level. About one week would be required for a fatal
exposure; however, none of these conditions is very likely to exist.

**This is based on the calculation of Friberg [12], modified to
account for a possibly higher retention factor.
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already other sources of cadmium in the environment. Dietary intake in

the U.S. averages 60 g/day with up to 5 percent retention. Thus,

average ambient concentrations should be kept below about 0.5 g/m3.*

Presumably, a safety margin should be applied'to this figure.**

While ambient concentrations of cadmium from smelters, refining and

conversion facilities and manufacturing plants can occasionally exceed

the 0.5 g/m3 level noted above--under the pessimistic release

assumptions made here--it is very unlikely that long-term average

concentrations experienced by individuals would be so high. Array fires

would have even smaller effects; according to our model, the maximum

individual uptake resulting from a house fire would be about 6 g. This

is equivalent to the uptake resulting from smoking about 8 packs of

cigarettes and does not appear to pose a significant individual risk.

All of these conclusions are, of course, subject to verification of

dose-response relationships which are at present somewhat conjectural.

In particular, it is important that epidemiological studies be conducted

in those areas in which cadmium concentrations are already high. It is

possible that more subtle health effects are connected with ambient

concentrations lower than those now thought hazardous.***

*This is about a factor of 100 below the occupational standard for
8-hour daily exposures.

**Smokers and those in the vicinity of smokers are already exposed to
relatively high levels of cadmium and thus may be at greater risk. For
unknown reasons, cigarettes contain 1 to 2 g cadmium each; about 10
percent of this is inhaled and 40 percent released to the local
environment. This is equivalent, for a pack-a-day smoker, to an average
of 1-2 g/m3 in the air. Smokers may thus already exceed harmful
levels of cadmium intake, a possibility which may also correlate with
their higher incidence of hypertension.

***An example is lead, which is now suspected of being responsible for
developmental and learning problems in children at levels previously
thought harmless.
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The final area of potential concern is the possibility that cadmium

compounds could play a role in carcinogenesis. If this were the case,

health assessments of cadmium photovoltaic systems would have to deal

with a much more difficult problem since widescale low levels of

exposures could be responsible--through the stochastic processes

characterizing cancer induction--for significant numbers of health

effects. The evidence of carcinogenicity for cadmium compounds is

increasing, with greater than normal, but yet statistically inconclusive,

incidence of cancers of the genito-urinary system reported for some

occupational groups. However, the lack of conclusive data even for

highly exposed groups is encouraging, implying that the ratio of total

cancers to total human dose is relatively small.

For purposes of later analysis it may be useful to indicate the

total population dose--the effective human uptake--which could occur

under various weather conditions and for different facilities: these are

shown in Table V-1. The quantities shown are very rough upper bounds,

with estimates based on pessimistic assumptions about cadmium release

rates, lack of shielding, deposition, depletion, and so forth; they

should thus only be used to form a preliminary impression of worst case

conditions. It should also be noted that this way of assessing health

impacts is useful only if there is no threshold for cadmium-induced

health effects, since a considerable part of each total results from the

exposure of very large numbers of people to very small doses. If there

is no threshold--for carcinogenesis, hypertension or other effects-then

collective human uptake can be used to form estimates of total health

impacts. This would be similar to the situation with radiation-induced

disease, where a total population exposure can be thought of
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Table V-1

HUMAN CADMIUM UPTAKE

(per GWe-year)

Facility/Condition

Smelter (population density

100/mi2)

Unstable with inversion
Neutral, 4 mph wind

Refining and Conversion
(pop. = 1000/mi )

Unstable with inversion
Neutral

Cell and Array Fabrication

(1000/mi2)
Neutral

Array(4) Fires (5000/mi 2)

Coal Plant (1000/mi2)
Cadmium

Maximum Population Dose (1 )

10 person-grams
3 person-grams

6 person-grams
2 person-grams

(3)
4 person-grams

0.01-1.0 person-gram

1 person-gram

(1)Assumes breathing rate of 10 m3/day and retention of 40 percent of
inhaled cadmium; figures should be considered only approximate and
dependent upon model assumptions. Substantial contributions come from
large numbers of people exposed to very low concentrations. We have
somewhat arbitrarily cut off the sums over populations at about 500,000
people. Small but significant numbers of additional people may
experience health effects even at extremely low concentrations. A more
sophisticated model would be required to sum over such effects properly;
the difference in result would be no more than a few percent.

(2)While present facilities may release 5 percent of throughput, we have
assumed significant control efforts to reduce the release fraction to 1
percent. This is then consistent with the assumptions made subsequently
for arsenic.

(3)Assumes 1 percent loss of cadmium throughput, a high upper bound.

(4)Assumes 200 fires affecting 5-kw residential installations.
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as being responsible for a certain number of cancers or mutagenic

events,* even if these events cannot be correlated empirically with the

exposure of aprticular individuals. At present, it is not possible to

make this kind of estimate for the effects of cadmium exposures.

Gallium Arsenide: Materials and Emissions

Two different lines of gallium arsenide technology have been

proposed: thin polycrystalline films--much like those envisioned for

cadmium sulfide--and thicker monocrystalline cells to be used under

Fresnel lenses or other concentrating devices. It is generally believed

that concentrating arrays would be used primarily in intermediate scale

and central station applications; the thin films may allow residential

applications. The primary source of public health impacts appears to

arise from possible releases of inorganic arsenic.** Potential releases

of arsenic occur at all stages of material processing and fabrication.

The flows and losses of material assumed for the production of both types

of cells are shown in Figure V-3. All flows are normalized to the

production of 200 MWe-peak of capacity--the amount necessary to sustain

an average electrical output equal to that of a conventional central

station plant.

*A frequently cited measure of radiation effects correlates one
cancer (and about one multifactorial genetic event) with a total exposure
of 10,000 man-rem. A similar equation for cadmium-induced effects would
correlate total human uptake (in grams, say) with occurrence of
particular health effects.

**Inorganic arsenic compounds appear, from epidemiological studies,
to be of much greater concern in regard to health than organic compounds;
the latter are used predominantly as herbicides and pesticides.
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Arsenic is present in most copper, lead and zinc ores and being

highly volatile (vaporizing at 169°C), is released when these primary

metals are recovered by smelting or other means. A substantial but

uncertain fraction of the arsenic condenses in plant exhausts, and fine

particulates of arsenic (as the trioxide) are (partially) captured by

electrostatic precipitators, baghouses or other control devices. The

resulting flue dust (a mixture of copper, arsenic and other material) can

then be processed to separate out the arsenic. Release fractions (both

stack emissions and fugitive dust) at copper smelters appear to range

from a few percent to 30 percent or higher.* Mass flow calculations

suggest that the amount of As203 released could be as high as 25 percent

of total domestic production (3,000 tons lost compared to 12,000 tons

recovered), with most of this loss due to uncontrolled emissions at some

smelters.**

At present, arsenic trioxide (about 12,000 tons annually) is

produced commercially in the U.S. only by the ASARCO plant in Tacoma,

Washington. Flue dusts from a number of United States and foreign copper

smelters, as well as copper ores with especially high arsenic content,

*Evaluations in this section are based on information provided by
the Environmental Protection Agency [13] and from Sullivan [14].

**The present domestic market for arsenic is about 30,000 tons
(As203) per year. A great deal of arsenic is imported despite the
relatively large losses at domestic facilities; reduction of these
emissions thus appears to depend more on regulatory than economic
imperatives. As a result, one would expect that increased demand for
inorganic arsenic for use in photovoltaic systems would have minimal
effect on incnetives to reduce emissions; however, it may provide a
market for material collected under emission restrictions. If DOE goals
for PV capacity additions (10-20 GWe peak in 2000) were met entirely with
gallium arsenide cells, demand for arsenic trioxide would increase by
3,000 to 6,000 metric tons per year, a quantity equal to a 10-20 percent
increase in current consumption (and also comparable to domestic
processing losses),
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are processed at the Tacoma facility. Until recently, arsenic emissions

at this plant were at or above the highest levels found at copper

smelters. In the past few years, the Tacoma plant has been required to

install new control devices for several phases of its operation. Success

in controlling emissions is still uncertain; the very small particle size

involved means that baghouses and electrostatic precipitators are less

than fully efficient. For the purpose of our analysis, we assume a loss

rate of 5 percent.* (For our dispersion model, we assume as well a

population density of 100/mi2, considerably less than that of the

Tacoma area. Siting considerations should be of first importance if

photovoltaics should lead to the building of a new arsenic trioxide

production plant.)

Emission rates for subsequent processing steps are essentially

unknown. However, except for the final step, one can use rates for

existing industries as a basis for preliminary estimates. Reduction of

arsenic trioxide to metal, using coke, and its purification by

distillation has many of the same problems with emissions as smelting of

primary ore and is similar to the processing of cadmium. For the

purposes of our model, we assume an emission rate of 1 percent of

throughouput. This assumes a relatively high level of control, to be

expected in response to recent regulatory efforts. (Under present

*We do not consider as attributable to photovoltaics any arsenic
emitted during the production at copper smelters of flue dust which is
then processed at a facility like the Tacoma plant. Because of its high
volatility, it is likely that arsenic will be emitted during copper
smelting whether or not it is of commercial value. We will discuss below
the dissimilar case of cadmium, which requires especially high refining
temperatures and so is normally left as an impurity in zinc unless there
is commercial demand for the cadmium.
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practices perhaps 5 percent is lost.) On a materials balance basis, such

losses are smaller than those presently associated with primary

production of As203. However, releases may occur in greater proximity to

populations and may have correspondingly greater effects on health. It

is therefore necessary to model potential exposures from the

reduction/purification stage separately.

Once arsenic is obtained and purified, it must be compounded with

gallium. Emission rates for this step can be estimated from data on

emissions from the 25 facilities which produce industrial inorganic

arsenic compounds (mostly catalysts and reagents). These facilities

processed about 5,000 tons of arsenic in 1974 and were estimated [13] to

be responsible for emission of about 170 tons of arsenic--a 3.4 percent

loss rate. It is likely that new regulatory standards and the

construction of new facilities in response to PV demand would result in

somewhat lower rates. We will thus again use a loss rate of 1 percent.

(It should be noted that this assumes considerable efforts at control,

requiring regulatory or economic incentives.)

Since most arsenic compounds are readily oxidized in the presence of

heat, it is likely that most emissions during compounding are in the form

of fine particulates of arsenic trioxide. Thus, the kind and amount of

material released, as well as the resulting concentrations and exposures,

are essentially the same at the compounding step as at the

reduction/purification step and need not be modeled separately.

However, the emissions from the final production steps, cell

manufacturing and array assembly, will be somewhat different since

releases probably will be from ventilation systems and in the form of

fugitive dust, occurring with little or no heat release and near ground
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level. It is also likely that at this stage releases will be in the form

of gallium arsenide, whose health impacts, relative to other inorganic

arsenic compounds, are unknown. As in the case of cadmium cell

fabrication, industrial analogies are of little help in estimating

emission rates for these stages. All that is possible given the current

state of technological development is to indicate what could occur at a

particular level of control. In applying our dispersion model to these

final stages of GaAs cell manufacture, we assumed a loss of 1 percent of

arsenic throughput.

It is possible to compare the arsenic releases that result from

photovoltaic manufacturing with arsenic releases from coal combustion.

The mean concentration of arsenic in coal is 14 ppm; with a release

fraction of 0.35, this results in the emission of about 12 metric tons of

arsenic (as As203) per year for our model coal plant.* Photovoltaic

materials production and manufacturing (for our 200 MWe cell output)

result in the emission of about 4.5 metric tons of arsenic (90 percent as

As203,10 percent as GaAs). Of course, public health effects depend not

only on raw amounts emitted, but also on dispersion patterns and

population densities near facilities.

As with CdS, gallium arsenide arrays also present a potential

public-health hazard in use, in the case of house fires. Because arsenic

vaporizes at a relatively low temperature, we assumed a roof fire would

result in the release of 70 percent of the arsenic (as As203) in a

residential array, or about 180 kg per year. Because fires result in

*In computing the annual coal plant release we assume 10,000
Btu/pound, 700 MWe-years/year output, and 36 percent thermal efficiency.
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episodic exposures, as discussed above in the case of cadmium sulfide

cells, it is necessary to compute total exposure rather than continuous

exposure levels.

In applying our dispersion model, we considered only the case of

thin-film GaAs cells. To produce a given electrical output,

single-crystal GaAs cells require considerably less material, and

therefore should normally result in lower emissions and exposure levels

than those associated with thin-film cells. However, two important

exceptions should be noted. First, the mechanical operations associated

with fabrication of single-crystal wafers may prove more problematic in

terms of emission control than the chemical process line approach used

for thin films. Second, single-crystal cells will most likely be

appropriate only for central-station use with concentrators. While this

eliminates the danger from house fires, such arrays will require constant

cooling. A loss-of-coolant accident could conceivably result in the

release of significant quantitires of arsenic--one of the few imaginable

situations in which solar technology might involve risk of sudden

large-scale accidents in operation. Designs for facilities to produce or

employ single-crystal GaAs cells should take account of these potential

hazards.

Gallium Arsenide: Population Exposures and Health Effects

As with the other generic photovotaic technologies, we modeled

arsenic releases from coal, from four stages in the production of GaAs

cells, and from house fires involving GaAs arrays. In comparing the

first three production stages with coal, a pattern emerges qualitatively

similar to that for silicon. Coal burning releases more material, but at
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a greater height. The greater resulting dispersion and dilution means

that maximum atmospheric arsenic levels are roughly comparable for coal

and photovoltaics, but many more people experience any given arsenic

level for coal than for photovoltaics. Under neutral weather conditions,

neither technology causes exposure to levels about 5 x 10-8 g/m3 of

arsenic. In unstable conditions, with an atmospheric inversion, a coal

power plant could expose roughly 1000 people to an arsenic level of

10-7/m3; an arsenic production, purification, or compounding facility

could expose about 100 people to this same level.

The emission and exposure pattern is somewhat diffferent for gallium

arsenide cell manufacture and array assembly, since both the temperature

and the height of release will probably be much lower than those to be

found at the earlier production steps. Therefore effluents will be

carried and diluted very little, and uniquely high concentrations of

arsenic may occur close to the plant. Assuming a 1 percent loss rate,

arsenic concentrations within 1 kilometer of the plant could range from

10-4 to 10-6 g/m3. A few dozen people might be exposed to such

concentrations. (In addition, such a plant could expose several hundred

people to a concentration of 10-7 g/m3, a number comparable to that for

the earlier production steps and lower than for coal.) These maximum

concentrations near the plant result in much higher exposures than for

other processing steps and are higher than the maximum levels produced by

coal, indicating the need for caution in process and plant design for

cell manufacturing. To keep public exposure levels below 1 g/m3 even in

the vicinity of the plant would require that arsenic throughput during

cell manufacture be controlled to better than one part in ten thousand.

(As noted above, this is more likely possible with a chemical process
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line approach to thin film technology than with a mechanical wafer

process for use with concentrators.) High temperature processes are of

particular concern since control under such conditions is most difficult

to achieve.

The final source of public exposure to arsenic-releases due to

house fires involving arrays--may pose the most serious risk to public

health, especially if research reveals that even low concentrations of

arsenic (or brief exposure to higher concentrations) can increase cancer

risk. Our model indicates that for a single house fire, thousands of

people could be exposed to the equivalent of 10-6 g/m3 of arsenic for

several hours. The total annual inhalation of arsenic due to array fires

ranges from about 10 percent to 50 percent of that due to coal

combustion, for the same amount of electricity generated.

The very important question of whether there is a safe level of

exposure to inorganic arsenic compounds has not been resolved for either

occupational or public groups. The old OSHA standard was 500 g/m3; in

January 1975 OSHA proposed a permissible exposure limit (8-hour average)

of 4 g/m3. The new standard [15] is 10 g/m3 In promulgating the

standard, OSHA asserted that there is not enough evidence that there is a

safe level of exposure to arsenic compounds, given their putative

carcinogenicity, and that the new standard is based on feasibility of

achievement rather than on known health effect thresholds.

While public exposure limits have not been set, it can be expected

that they will be more restrictive than the OSHA requirements; it is also

likely that possible new industrial sources of inorganic arsenic will be

regarded with considerable caution by regulatory bodies. An impression

of the magnitude of this problem for photovoltaics can be obtained from a
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review of existing ambient concentrations. Analysis of particulate

samples from the 280 National Air Surveillance Network (NASN) sites in

1974 showed that only 73 sites exceeded the arsenic detection limit of

0.001 g/m3 (quart'erly average). Of these, 11 had values between 0.02

and 0.17 g/m3; 7 of these are in heavily industrialized regions and 4

are near nonferrous smelters. The average site near a smelter had

average concentrations of 0.06 ug/m3 while the nonsmelter sites had

0.01 g/m3 . While epidemiological studies are not conclusive, there are

suggestions (e.g., a 1975 National Cancer Institute study) that there is

excess mortality from respiratory cancers in areas near copper, lead and

zinc smelters. Whether excess cancer incidence is due to arsenic is

unclear; other industrial pollutants are always present. A number of new

studies are under way and better data may soon be available [13]. If

average concentrations as low as 10-8 g/m3 (0.01 g/m3) are shown to

entail significant health risks, it is likely that arsenic emission

control will have to be effective to better than one part in one million

of throughput.

For future analyses, once dose-response data are known, we present,

in Table V-2, approximate quantities of arsenic retained by affected

populations due to photovoltaics and coal plant operation. The

quantities shown (which assume a high retention figure of 40 percent of

inhaled arsenic) should be considered upper bounds, perhaps by an order

of magnitude. The quantities of arsenic retained are comparable for

photovoltaics and coal.

These comparisons do not, however, imply that arsenic exposures due

to photovoltaic (or other sources) are without health consequences, only

that the impacts are comparable to those already occurring due to other



83

Table V-2

HUMAN ARSENIC UPTAKE

(per GWe-year )

Faci 1 ity/Conditi on Maximum Population Dose(1 )
As203 Production Loss
(Population density 100 mi2)
Unstable with Inversion

Refining and Conversion(2)
(Population density 1000. mi )
Unstable with Inversion

Cell and Array Fabrication-(3)
Neutral Conditions

Array Fires (5000/mi2 , 200 fires)

Coal plant
Arsenic

0.1 person-gram

1 person-gram

1 person-gram

1 - 5 person-grams

10 person-grams

(1)Thin film technology. Assumes breathing rate of 10 m 3/day and 40
percent retention; figures very approximate due to model dependencies.

(2)Assumes 1 percent loss of throughput.

(3)Assumes 1 percent loss of throughput; an upper bound.
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sources. The primary hazard associated with low concentrations of

arsenic is its potential for inducing cancer. Dose/response data are

still unavailable, but the importance of such data for energy policy

decisions should not be underestimated. An example--which it should be

noted, is purely hypothetical--will illustrate. Suppose ambient

concentrations near a smelter average 1.0 g/m3 and suppose that

respiratory cancer mortality in the population so exposed is eventially

shown to be twice the normal rate of 379 deaths per 106 persons per

year. On this basis (and assuming an inhalation rate of 20 m3/day and

steady state conditions), the collective inhalation of 5 grams of arsenic

by a large population could be correlated with one excess cancer death.

If lower dose rates are proportionally effective in initiating cancer

(that is, there is a linear dose/response relationship), then it is

possible to convert the total population exposures for coal and

photovoltaics above to imputed cancer deaths. Though this logical chain

is as yet unsupported by data, there is clearly reason to be concerned

about connections between arsenic emissions from coal plants, or gallium

arsenide PV technology, and human health impacts.

Public Health Effects: Assessment Issues

In the course of our analysis of the public health impacts of energy

sources, several interesting and difficult issues arose relating to 1)

assignment of costs, 2) interacting effects, and 3) the need to view old

processes from new perspectives. We mention them here not only because

of their relevance to the comparative assessment of photovoltaics and

other energy technologies, but also because they seem typical of problems

that tend to arise in the attempt to understand the effects on public

well-being of any new, large-scale enterprise.
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The question of the assignment of costs is obviously a vital one and

can, in specific instances, be debatable. It is important not to assume

automatically that a social cost associated with an activity is in fact

caused by that activity; it is also important not to be seduced easily

into believing the reverse.

For example, there is a question whether the large cadmium releases

associated with smelter operation should be attributed to use of

photovoltaics. It is often argued that zinc smeling operations would

occur independently of cadmium requirements for photovoltaic systems. It

is further argued that increased demand for cadmium would in fact provide

economic incentives for better control of cadmium emissions--especially

in lead and copper smelters, where 50 percent (lead) to 90 percent

(copper) of the cadmium in the ore is released--resulting in a net social

benefit. In principle, these arguments are valid. However, in practice

there are economic and technical reasons to be skeptical.

First, control technology (baghouse filters and electrostatic

precipitators) are already being used for primary cadmium recovery in

zinc smelters; cadmium escaping is in the form of vapor or very small

particles (generally less than a few microns) which are difficult to

recover. Better recovery is possible but expensive; instead of

increasing recovery rates at domestic smelters, industry has found it

economical to import cadmium flue dusts from abroad. It is thus likely

that improved domestic recovery will result only from stricter regulation

of emissions and the invention of better recovery devices. One such

device, currently under development, is a fluidized bed of particles

which could adsorb metallic vapors or trap small particulates when

exhausts are passed through the bed.
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Second, the demand for cadmium of a mature photovoltaics industry

may exceed expected supply, even assuming near-perfect recovery. In the

1960s, U.S. cadmium consumption (end-uses) was between 4600 and 6000

metric tons [16]--a rate projected to increase to about 14,000 MT/year by

2000-used mostly in electroplating, plastics and pigments. A

photovoltaic industry installing 10-20 GWe-peak per year in 2000 (the DoE

goal) would be using about 10,000 - 20,000 MT annually, about equal to

demand for other uses. Such quantities could not be produced simply by

capturing cadmium being released through inadequate controls and might

not even be produced as a by-product of normal production increases in

other smelting operations, unless zinc, lead and copper ores with high

cadmium content were selectively chosen for smelting--precisely what is

done in the case of arsenic, as noted above. Such high levels of

consumption are thus likely to result in attributable negative impacts.

The question of assignment of cost has another, thornier, aspect:

the assignment of responsibility. The law is at present far from

clear-cut regarding the sort of delayed and probabilistic effects that

may be associated, for example, with the release of substantial amounts

of arsenic during a house fire. Unless homeowners and manufacturers feel

assured that they are either legally absolved from responsibility or

adequately covered.-by insurance, there may be reluctance to produce or

purchase potentially hazardous devices; there may also be reluctance on

the part of communities to permit their use.

Another kind of issue that arose at several points in our analysis

is the interconnection of kinds of social costs which might at first'

appear to be independent. The possibility of trade-offs, intentional or

unintentional, recurred frequently: a measure that seems to ameliorate
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some cost all too often simply transfers it to another sphere. Workplace

ventilation may increase public exposures. Dispersive methods that lower

the atmospheric concentrations of pollutants near population centers may

distribute the hazardous material over wider areas, perhaps where food is

grown. If we import arsenic trioxide rather than increasing domestic

production, we may quite literally be exporting a health hazard. Since,

as noted below, the safest way to deal with some house fires is to vent

them through the roof, firefighters may have to weigh personal hazard

against increased cancer risk (of presently unknown magnitude) for a

large number of people. No generalization is possible for cases like

these: the lesson is simply that they are very common, and that

"ameliorative" measures must be examined carefully for such trade-offs.

The issue of interconnection raises also the question of synergistic

health effects. As noted in the previous chapter, very little is known

about what substances promote or retard the adverse effects of other

substances. Better information in this area is essential for protecting

public, as well as occupational, health. Better knowledge is also needed

about which population subgroups have special susceptibilities to

hazardous substances, particularly if the present trend in occupational

regulation-keeping exposures low enough to protect all workers, not just

average, healthy, unallergic, unpregnant young adults--is extended to the

public-health sphere. A particular difficulty may arise if an increased

susceptibility is arguably voluntary: society may have to decide whether

it will pay an economic price to protect smokers--or the families and

coworkers of smokers-from small increases in atmospheric cadmium.

The third interesting general issue our analysis raised is that when

a new technology impinges upon a society, it may raise new questions and
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uncertainties about events and processes that were formerly thought

well-understood. We realized this when we attempted to estimate cadmium

and arsenic emissions due to house fires, and discovered that national

fire statistics are not broken down in a way which allows very precise

determination of the number of fires in which roof involvement occurs

(fires are usually classified by origin, by the number of alarms or the

amount of equipment involved, or by dollar loss). For example, it is

known that fire departments responded to about 400,000 residential fires

in 1974* [17], but it is not known how many had roof involvement. If one

assumes that between 1 and 10 percent had roof involvement then between

4000 and 40,000 roofs were affected by fire, or one roof for every 5000

to 50,000 people.

To refine an estimate of roof fire incidence we interviewed a number

of urban and suburban fire officials, finding a wide variation in

rates--from about 1 roof per 2000 persons in the population to about 1

per 50,000. In general, the higher rates occurred in urban areas or in

smaller industrialized cities while the lower rates occurred in moderate

to high income residential suburbs. However, it also became clear that

firefighting practices had some bearing on the range displayed. In many

cases, firefighters will open holes in a roof to vent heat and gases,

allowing entry of the building and preventing a "flashover," or

spontaneous ignition of a larger portion of the interior. Fire officials

were strong in their conviction that shaping a fire into a vertical

configuration, by venting through the roof, saved lives and reduced

property damage. However, this practice also led to a higher incidence

*About ten times as many fires actually occurred.
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of roof involvement in the fire. It is likely that the high incidence of

fires involving the roof (1 per 2000 persons per year) in some areas is

due to inclusion of fire events in which roof involvement results from

the way in which the fire is fought.

This raises the possibility that the installation of photovoltaic

panels on roofs may require changes in firefighting practices--if this is'

possible. While panels would generally cover only half the roof,

allowing holes to be made in the other half, it is likely that the

presence of valuable roof installations (and in the case of cadmium and

gallium arsenide, the possibility of toxic releases) may inhibit

firefighting measures which increase the risks of roof fires.* The

trade-offs involved should be examined in much greater detail. It is

clearly important to be alert for other areas in which unconventional

technologies may themselves act to render unconventional any number of

habitual activities.

Overview of Direct Public Health Effects

In this chapter we have reviewed the nature and approximate

magnitude of direct public health hazards which might arise in connection

with the processing and use of the materials essential to photovoltaic

systems: silicon, cadmium and arsenic compounds. While a complete

assessment alsd requires evaluation of the longer-term environmental

roles played by these compounds and inclusion of the indirect health and

*This in turn raises the separate question of whether the addition of
photovoltaic systems would increase or decrease the likelihood of fires. It
is possible that electrical systems would be upgraded if PV systems are
installed; on the other hand, new electrical hazards could be introduced.
At present, about 8 percent of fires are of electrical origin.
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environmental impacts which result from the use of other materials (such

as aluminum or copper) and energy in making photovoltaic systems, it is

useful here to review the relative importance of the direct impacts

discussed in this chapter.

The most important observation is that the direct public health

impacts of photovoltaics appear to be smaller than those of coal. In the

case of silicon, particulate releases from coal affect large numbers of

people at higher concentrations than do silicon refinining emissions.

While there are significant differences between the particulate emissions

from coal and silicon refining, it is very unlikely that the mix of

hydrocarbons, silicon and other trace materials in coal particulates

could be less harmful than the crystalline silica released in refining.

In addition the public health impacts of sulfates produced as a result of

coal combustion may exceed greatly the effects of particulate emissions

from coal or silicon photovoltaics.

The comparison is much more complex in the case of cadmium and

arsenic-based technologies. Unlike silicon, where the high temperature

processes which can result in the release of dangerous materials are

present only at the refining stage, significant emissions of toxic and

carcinogenic materials are possible at all points of manufacture and use

of cadmium and arsenic photovoltaic systems. It is thus necessary to

include a number of possible effects in comparing with coal.

While immediately toxic effects are unlikely as a result of cadmium

releases, there is a possibility of significant long-term health impacts

due to impairment of kindey function (leading to a number of effects,

including hypertension) and carcinogenesis. Persistent exposure to

cadmium concentrations in excess of about 1 g/m3 over a period of
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decades may result in a relatively high level of individual risk of

kidney problems and hypertension. Under present control regimes, such

levels would appear to be exceeded for many people (some thousands) due

to releases from Cd refining and conversion (CdS) facilities and

photovoltaic manufacturing facilities. Zinc smelter releases of cadmium

are not the largest problem. Individual risk from cadmium-induced cancer

is very small; however, the net impact in large populations may be

significant. Total uptake, by a population of about 500,000, is on order

10 grams per GWe-year of photovoltaic power generated. Average

dose-response relationships are unknown and thus it is at present very

difficult to estimate the effects of such a collective dose. House fires

involving cadmium arrays present smaller individual and collective risks

than do manufacturing steps.

Cadmium concentrations from coal combustion do not exceed 0.1

mg/m3 and total population uptake is less than 1 gram. Thus, in this

very limited category, coal may have lower consequences. However, other

emissions of trace elements (including arsenic), polycyclic hydrocarbons

and oxides of sulfur and nitrogen probably have much greater impact on

human health (perhaps of order one hundred premature deaths per Gwe-year,

according to several epidemiological estimates [18]). It would be useful

to have an epidemiological upper bound of cadmium-induced hypertension

and cancer; we believe that such a bound would demonstrate the net

adverse direct public health impact of cadmium photovoltaics to be

smaller than that of coal.

The situation is somewhat different with arsenic. Here the health

issue is definitely carcinogenesis, and array fires are the dominant

source of public exposures. However, population arsenic uptake from coal
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combustion--while delivered through relatively low exposure

levels-exceeds that of gallium arsenide photovoltaics. This clearly

establishes the superiority of photovoltaics in direct public health

impacts, though the high volatility of arsenic makes array fires a source

of some concern.

It is interesting to ask whether the above analysis provides a basis

for choosing between photovoltaic suboptions. Both the number of risk

centers and the nature of potential adverse public-health impacts seem to

us to give grounds for some preference for silicon-based technology.

With silicon photovoltaics there is only one significant source of

emissions, the arc furnace, and silica does not appear to present cancer

risks. However, firm grounds for quantitative comparison of the public

health effects of different photovoltaic technologies do not yet exist.

The comparison may change as the technologies evolve and as better

information becomes available regarding the dose-response relationships

for all the hazardous substances involved.

Perhaps more important issues in the near-term comparison of

photovoltaic suboptions are the extent to which releases can be

controlled and whether regulation will accomplish such control in ways

which do not inhibit development and deployment of the technologies. In

this regard, cadmium and arsenic technologies present problems at more

points and are also potentially more vulnerable to regulatory change. As

noted above, emissions from the silicon photovoltaic cycle are

predominantly at one point; moreover, silica has been subject to

occupational and environmental regulation for some time. While standards

changes are possible, especially for small crystalline particulates, the

control problem is focused on one manufacturing step. In addition,
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silica regulation does not have to deal with the potential for continuous

ratcheting that accompanies identified carcinogens.

Cadmium and arsenic technologies present a series of control

problems and opportunities for regulatory intervention. Moreover, the

recent severe reduction (a factor of 50) in occupational exposures to

inorganic arsenic--and the likelihood of a similar reduction for

cadmium--may soon be followed by promulgation of regulations governing

releases to the environment. The Clean Air Act amendments of 1977

require that EPA examine cadmium and arsenic emissions (not now subject

to regulation) for public health hazards and establish regulations

governing these emissions if they will "cause, or contribute to, air

pollution which may reasonably be anticipated to endanger public

health." The regulatory prospect is not encouraging. The simplest

solution to occupational exposures is often an increase in ventilation.

Ratcheting on occupational standards may thus increase releases to the

environment. However, it is likely that such emission will in turn be

regulated by EPA. Finally, the new Clean Air Act amendments prohibit

dispersion techniques that "exceed good engineering practice," such as

increasing stack heights, and insure that new sources will be the most

severely restricted. These considerations imply an urgent need to

anticipate regulatory problems as part of the technological evolution of

cadmium and arsenic technologies.
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VI ENVIRONMENTAL IMPACTS

The impacts of energy technologies extend beyond direct exposures of

workers and the public to hazardous substances: through heating effects

or additions of moisture, energy facilities may affect local climate; C02

emitted in fossil fuel combustion may contribute to climatic change; the

mining of energy materials and the siting of facilities may damage land

and ecosystems; and pollutants emitted may enter water supplies and food

chains, ultimately affecting human and other populations. The full list

of such impacts is considerably longer, and because of the complexity of

natural systems the true effects of energy generation and use are highly

uncertain. However, relative comparisons between technologies are

possible. It is generally believed that photovoltaic systems are

relatively benign environmentally and this appears to be true, with

possible exceptions. It is instructive to compare technologies in three

categories of impact: land use, thermal and climatic effects, and

emissions.

Land Use

Coal plants require the use of relatively small land areas for the

actual plants and coal storage; however, over its lifetime, a coal plant

may require the strip-mining of 3,000 to 12,000 acres (about 5-18 mi2)

[1]. While partial restoration is possible (and mandated by law), acid

drainage and other problems may result from coal mining. In addition, an

uncertain quantity of land will be needed for the disposal of fly ash and

slurry recovered by scrubbers. A nuclear plant at first appears to use

considerably less land than coal; mining and milling of uranium ore may

directly affect 2100 to 3600 acres (at 0.2 percent ore concentration) or
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3.3 - 5.6 mi2, during the life of the plant. However, the airborne and

aqueous emission of radon and its radioactive daughter products from mill

tailings may effectively prohibit use of considerably larger areas for

the thousands of years during which emissions continue.* Nuclear fuel

waste disposal would deny additional areas to extensive human use for

many centuries, though this area is likely to be small on a GWe-year

basis since waste from a large number of reactors may be stored in a

relatively small volume underground.

Central station solar facilities would occupy 10 to 40 square miles,

depending on efficiency of conversion and spacing of arrays, to produce

the same total annual electrical output as a coal or nuclear plant (700

MWe-years for the conventional plant, 3500 MWe at 0.2 average capacity

factor for the solar plant); thus solar electricity generation affects an

area not a great deal larger than that committed to a coal plant over its

lifetime. Decentralized photovoltaic systems would be placed largely on

buildings, with no net impact on land use (except perhaps for denying

roof use for other purposes). It is difficult to see how impacts on land

and local ecosystems could be worse, even for central station

photovoltaic systems, than for coal strip mining. Indeed, solar

installations probably cause less permanent damage. Whether solar is

preferable to nuclear power in this respect depends in part on the values

attached to different effects on land and land use. For example, areas

denied to human use as a precaution in case of leakage from sealed

nuclear waste containers might sustain little if any aesthetic or

*The most recent proposals for dealing with tailings include denial
of habitation in mining and milling districts and the reburial of
tailings in exhausted mines.
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ecological damage, whereas a central station solar facility would be

highly visible, and relatively inhospitable to plants and animals. If it

does not prove feasible to recycle solar arrays, their disposal may also

have an impact on land use. Solid waste (under the assumptions about

materials explained in Chapter VII below and assuming a 20-year array

lifetime) will amount to more than 12,000 m3 per GWe-year. For cadmium-

and arsenic-based arrays (as for nuclear waste), disposal sites would

have to be remote, geologically stable, inaccessible to ground water, and

secured from human entry, essentially forever. Such precautions are

unnecessary in the case of silicon.

Central station generating plants-whether coal, nuclear or

solar--can also affect land use through the need to establish

high-voltage transmission corridors connecting generation centers with

major load centers. For coal or nuclear plants, the distances currently

involved are seldom more than a hundred miles; however, lack of sites

near load centers or health and safety concerns may eventually force more

remote siting. Long-distance power lines are now used mostly for tying

regional grids together or for transporting inexpensive hydroelectric

power to large load centers (as is the case with transmission of

electricity from the Pacific Northwest to California). For moderate

blocks of power--say, less than 1 GWe--long-distance transmission is very

expensive. However, for 4-5 or more GWe, unit transmission costs are

reduced considerably, as shown in Figure VI-1. New transmission

technologies, such as superconducting lines, may allow movement of large

blocks of power at even lower unit cost.

This raises the possibility that very large solar collecting

installations could be located far from load centers, perhaps in the
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desert Southwest. Desert siting would increase the effectiveness of

solar collection since average insolation levels would be higher and

since lower atmospheric moisture content would mean less absorption and

scattering of photons in the wavelength regions important in photovoltaic

generation. The land area needed for transmission corridors would be

about 1 mi2 per 10 miles length. For a large installation 1000 miles

from the point of use, about 10-20 mi2 of land use for transportation

is attributable to that fraction of the photovoltaic array which is

equivalent in total average power output to our standard coal or nuclear

plant. Whether such an arrangement is desirable depends on further study

of the trade-offs between transmission losses, economics, grid stability,

and the advantages of remote siting. Again, decentralized arrays would

avoid transmission impacts (and reduce the size and complexity of

terminal distributional networks), though perhaps at some loss in

economic or physical efficiency.

In the case of stand-alone photovoltaic installations, land may also

be required for storage of solar-generated electricity. Presumably,

battery or mechanical storage could be co-located with generation, with

little net increase in land use (but perhaps with more severe impact).

However, pumped hydro or some other storage systems for central station

solar electricity would involve more significant use of land.

Thermal and Climatic Effects

Coal and nuclear plants result in the emission of about two units of

energy as heat for every unit of electricity generated (nuclear actually

produces about 20 percent more heat than does coal). Heat from coal

plants is in part dissipated directly into the atmosphere along with flue
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gases, with the remainder dissipated in cooling water. Heat from nuclear

plants is dissipated primarily through water cooling. For once-through

cooling of a nuclear plant, about 1000 cubic feet per second (cfs) are

required (with a 10 C temperature rise); for evaporative cooling in

cooling towers, about 30 cfs are required. Evaporative cooling lessens

thermal impacts on rivers or lakes but at the expense of injecting water

vapor (and dissolved minerals) into the atmosphere. The total amount of

heat released directly by a large conventional power plant averages about

1.5x106 kilowatts, equivalent to the sun's heating of about 20-30 km2

of land.* While such a heat release would have little effect on a global

scale, local effects on climate may be more substantial, particularly if

many coal or nuclear plants are co-located. Particulate emissions from

coal combustion may also affect the earth's albedo (reflectivity).**

Depending upon size and distribution, particulates can cause increased

reflection of sunlight away from the earth, leading to global cooling, or

trap infrared and reflected radiation, leading to global warming. The

net effect is still unknown.

The effect of central station solar plants on local heat balances

will probably be less than those of conventional plants. Solar panels

will reduce reflectivity, potentially increasing local heating, but this

will be at least partially compensated for by the conversion of some

solar energy to electricity and transmission away from the site. Thus,

*The yearly average solar insolation ranges from 0.16 to 0.26
kilowatts (1200 - 2000 Btu/ft /day). Of this, about half, on average, is
absorbed and re-radiated (most within hours) as heat.

**About 30 percent to 50 percent of sunlight is reflected directly
back into space on the average, a rate which is much higher in desert
areas.
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PV systems will have no effect on local heating if a reduction by 10

percent of total solar flux in the amount of energy reflected back into

space is compensated for by the 10 percent or so of sunlight converted to

electricity. It would be useful to evaluate prototype installations in

this context. In any event, it is very unlikely that net effects on the

local heat balance could be as large as those due to the even more

concentrated heat sources of coal or nuclear plants.* Photovoltaic

installations will have little or no effect on local water supplies,

except during construction, and will do little to alter atmospheric

moisture content.

Solar photovoltaics would help alleviate what may be an increasingly

important effect of fossil fuel combustion: the buildup of atmospheric

CO2 and resulting effects on global climate. Carbon dioxide is

transparent to most incoming solar radiation but not to reradiated

infrared wavelengths; the result of increasing CO2 concentrations is thus

global warming. Due to deforestation, fossil fuels combustion and other

mechanisms, atmospheric CO2 has increased by about 10 percent since the

industrial revolution. Assuming that about 1/3 of the emitted CO2 stays

in the atmosphere (the rest being absorbed, primarily in oceans), the

present-rate of fossil combustion would add about 2 percent per decade to

atmospheric C02. An increase in fossil combustion obviously would

accelerate this process. It is believed, on theoretical grounds, that an

increase of 20 percent in CO2 content can cause an increase of 1C in

*The effect on local heat balance will be even less for
decentralized use of arrays. The average house roof absorbs considerably
more sunlight than does desert sand; a roof's reflectivity will not be
appreciably lessened by the addition of solar panels.
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global temperature--an increase which undoubtedly would cause climatic

change. However, many processes (including the addition of particulates

from coal combustion) affect temperature and climatic changes. The net

effect of fossil combustion and other factors on climate is thus

uncertain. But the possibility that time and better data will reveal

deleterious climatic change adds importance to efforts to develop new

technologies which do not depend on releasing the carbon reservoirs in

oil and coal built up by photosynthesis in millenia past.

Emissions

Significant environmental impacts may result from the addition to

the environment of various substances from coal combustion, nuclear plant

or fuel cycle operations and from photovoltaic manufacturing and

applications. The emissions of coal plants have been studied

extensively, though there is still uncertainty about the ultimate

environmental fate of these emissions. According to a 1973 Battelle

study [2], combustion of Eastern coal in a conventional boiler with wet

limestone scrubbing results in the release of 3000 tons of particulates,

18,000 tons of nitrous oxides, 15,000 tons of sulfur oxides, and about

400 tons of hydrocarbons.* While some of the sulfur and nitrous oxides

contribute to atmospheric particulate concentrations in the form of

sulfates and nitrate byproducts of gaseous emissions, others increase the

acidity of rainfall through the formation of nitric and sulfuric acids.

Airborne pollutants and acid rain can both affect ecosystems, to a

degree and in ways which are not yet fully understood. The effect of

*Amounts are for emissions per 1012 Btus; we have converted to
yearly plant output by using a heat input figure of 60 x l0 Btu/yr.
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acid rain is perhaps the most extensively documented, with strong

evidence that pH reductions in soils and bodies of water are due to

increased fossil fuel combustion. Sulfur dioxide appears to impede

nitrogen fixation, necessary for plant growth, and to inhibit some of the

processes involved in decomposition of dead organic matter. Combustion

of coal--or its conversion to coke or liquid or gaseous fuels-at high

temperatures (in excess of 400C) results in the formation of potent

carcinogens [3], part of the hydrocarbon or particulate release, whose

environmental fate is still uncertain.

A number of heavy metals and trace elements are present in coal, as

shown in Table VI-I. Release fractions in combustion are uncertain and

depend on plant configuration and the method and efficiency of control.

Under current regulatory standards, efforts are made to restrict

emissions of sulfur and particulates: perhaps 90 percent of sulfur is

removed and 99 percent (by weight) of particulates. Other emissions are

restricted only to the extent that controls aimed at these components

also work for other coal constituents. Some evidence of the emission

rates can be derived from examination of fly ash collected from effluent

gases, as shown in Table VI-1. However, the volatility of some elements,

such as mercury, makes such determinations incomplete.

A very conservative basis for analysis is to assume that all metals

are lost in atmospheric emissions. On this basis, annual mean-value

emissions for a coal plant are: cadmium--5.8 tons; lead--80 tons;

nickel-48 tons; arsenic-32 tons; vanadium--75 tons; and mercury--0.5

tons. Of course, controls (especially particulate removal) may reduce
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14.02 ppm 17.70 0.50 93.00

102.21 ppm 54.65 5.00 224.00

1.61 ppm 0.82 0.20 4.00

15.42 ppm 5.92 4.00 52.00

2.52 ppm 7.60 0.10 65.00

9.57 ppm 7.26 1.00 43.00

13.75 ppm 7.26 4.00 54.00

S1.16 ppm 8.12 5.00 61.00

60.94 ppm 20.99 25.00 143.00

3.12 ppm 1.06 1.10 7.50

6.59 ppm 6.71 1.00 43.00

0.20 ppm 0.20 0.02 1.60
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1.26 ppm 1.32 0.20 8.90
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1.29 - 0.45 0.43 3.04

0.77 % 0.55 0.05 2.67

0.14 % 0.14 0.01 0.54

1.92 % 0.79 0.34 4.32

0.16 % 0.06 0.02 0.43

0.05 % 0.04 0.01 0.25

0.05 % 0.04 0.00 0.20

2.49 % 0.80 0.58 6.09

0.07 % 0.02 0.02 0.15

S 1.41 % 0.65 0.31 3.09

S 1.76 % 0.86 0.06 3.78

S 0.10 % 0.19 0.01 1.06

S 3.27 % 1.35 0.42 6.47

2.91 1.24 0.54 5.40

7.70 3.47 1.40 16.70

9.05 % 5.05 0.01 20.70

39.70 % 4.27 18.90 52.70

C 48.82 % 4.95 34.60 65.40

11.44 % 2.89 2.20 25.80

12,748.91 464.50 11,562.00 14,362.00

70.28 % 3.87 55.23 80.14

4.95 % 0.31 4.03 5.79

1.30 % 0.22 0.78 1.84

8.68 % 2.44 4.15 16.03

11.41 2.95 3.28 25.85

15.28 % 4.04 3.82 31.70

Abbreviations other than standard chemical symbols: organic sulfur (Org. S),
pyritic sulfur (Pyr. S), sulfate sulfur (Sul. S), total sulfur (Tot. S),
sulfur by X-ray flouroscence (SXRF), air dry loss (ADL), moisture (Mois.),
volatile matter (Vol.), fixed carbon (Fix. C), high temperature ash (HTA),
low temperature ash (LTA).
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releases considerably.* The environmental fate of particular metals and

metal compounds is a complicated issue, depending on chemical and

physical form, resuspension rate, ion-exchange processes in soil and so

forth.

By comparison, manufacturing cadmium sulfide photovoltaic

systems--using the assumptions in the preceding chapter--results in the

release to the environment of up to 70 to 80 tons of cadmium per year

(largely as CdO or CdS), while fires release on the order of 0.1 ton per

year. Thus manufacturing would be by far the dominant

photovoltaics-related source (for present technologies) of additions of

cadmium to the environment. Atmospheric arsenic emissions during

manufacturing--also under the assumptions specified in Chapter V, and

depending on the technology used--would total 200 to 6700 kg per year

(with by far the greatest share--100-6000 kg, depending on the technology

used and on the success of emission controls--resulting from As202

recovery from copper-smelting byproducts). Array fires might result in

the release of 200 kg of arsenic per year. It can be expected that

significant amounts of arsenic and cadmium will also enter the

environment through waste water releases and treatment of solid wastes.

All of these figures are for installations equivalent to our standard

coal plant, which releases somewhat less cadmium and somewhat more

arsenic than the respective photovoltaic systems but also much larger

amounts of other metals and pollutants.

*It is occasionally useful to recall, too, that electricity
generation--by any technology--is probably not the most socially costly
part of the energy sector: the lead emission from coal is dwarfed by
that from use of leaded gasoline.
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As noted above, it is difficult to predict how emitted materials

will enter the environment and what roles they will play there. In this

situation, it is useful to construct a simple worst-case model giving

average additions to cadmium and arsenic background levels due to

photovoltaics and to compare these additions with recently measured urban

and suburban background levels. Annual average urban atmospheric

concentrations of cadmium [4] range from below 0.01 g/m3 to as high as

0.036 g/m3 , while another study indicates an average deposition rate of

cadmium in residential areas of 40 g/m2/month [5].

Our model for potential photovoltaic impacts due to array fires was

an effectively infinite suburban neighborhood with the very high

population density of 1000 residences (about 3500 people) per square

mile, all powered by photovoltaic systems in which array fires occur at

the rate derived above. Again assuming 10 percent release of cadmium,

the average rate of release of cadmium is about 100 grams/mi2/year or

3 g/m3/month. Since the neighborhood is assumed infinite, this is also

the rate of deposition--less than 10 percent of mean deposition rates

already occurring.

Our estimate is actually an upper bound since neighborhoods are not

in fact infinite (that is, there will be areas with small or no cadmium

emissions) and since not all electricity will be provided by

photovoltaics. However, it should be noted that if the release fraction

in fires should be greater than 0.1, the impact on net deposition would

be correspondingly greater. It should also be noted that our comparison

should not be taken to mean that current deposition rates are necessarily

harmless: over a period of 100 years about 50 mg of cadmium will be

deposited per square meter at current deposition rates. The low
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solubility of cadmium compounds and their propensity for participating in

ion-exchange reactions will result in a gradual buildup in soil; assuming

a 10 cm mixing depth, the added cadmium will be of order 1 ppm, more than

doubling present average concentrations. Since food is already a

significant source of cadmium uptake (perhaps approaching half of that

necessary to cause kidney damage over a lifetime), increases in

deposition rates and soil concentration, which would increase

concentrations in food, should be regarded with caution.

The higher release fraction for arsenic in array fires due to its

high volatility implies proportionately larger contributions to arsenic

backgrounds than in the parallel cadmium situation. According to the

infinite neighborhood model above, the average rate of release of

inorganic arsenic from residential fires would be about 300

grams/mi2/year, or about 10 g/m2/month. This is also an upper bound on

deposition rates; over a period of 100 years, such a deposition rate

could add about 10 mg/m2. Current deposition rates do not appear to be

known. However, the fact that current ambient urban concentrations are

mostly below 0.001 g/m3 suggests that deposition rates are significantly

below those which could occur from photovoltaic sources. An impression

of maximum average atmospheric concentration can be obtained by assuming

a 100 m vertical mixing depth and 3-day average residence time for house

fire emissions. This yields an average concentration of 0.020 g/m3, an

order of magnitude above present levels in most areas. Soil accumulation

of arsenic is possible, and it is known that some food crops concentrate

arsenic; its solubility means that it will also enter waterways, where it

concentrates in the tissues of some edible marine species. Hazardous

levels are unknown. However, it should be noted that our model gives an
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upper bound; it is likely that since in reality there will be large rural

areas making no contribution to arsenic emissions, the contribution of

fires to ambient concentrations will be lower than our estimate--perhaps

below the 0.001 g/m3 set by limits on measurability.

Assessing the potential impacts of the larger releases associated

with photovoltaic manufacturing is a more difficult task than modeling

house-fire releases. Existing smelters and recovery facilities are

already known to result in high local concentrations of cadmium and

arsenic. Since the small particulates resulting from high-temperature

processes can remain suspended for long periods (days to weeks), it is

possible that these emissions will affect ambient levels far from

facilities. Depending on release rates, photovoltaic array manufacturing

facilities may also significantly affect concentrations and deposition

rates nearby. An estimate of the possible magnitude can be obtained by

assuming that emissions from array manufacturing facilities are

distributed uniformly throughout an area whose electrical service is

obtained from photovoltaics. In the steady state (in which an array

plant with annual capacity of 200 MWe provides replacement units for

600,000 residences), the emissions from array manufacturing might be

spread over about 600 mi2. If releases are as high as 1 percent of

throughput, this would imply an average cadmium deposition rate of

100 g/m3/month, far in excess of current rates. While this is a

somewhat unrealistic model,* it is evident that releases must be kept far

below 1 percent, and that array manufacturing facilities must be sited

*The actuat distribution will involve very much higher
concentrations near the facility and much lower concentrations farther
away.
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in a manner appropriate to the emission level actually attained. Similar

cautionary statements are in order concerning inorganic arsenic

emissions: a 1 percent release rate would imply an average arsenic

deposition of 1 Wg/m2/month.
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VII. INDIRECT IMPACTS: LABOR, MATERIALS AND ENERGY

The deployment of any new technology entails a reallocation of

society's productive resources, resources which have their own cost and

benefit attributes. When the technology uses large quantities of these

resources--which include labor, materials and energy itself--the effects

on the industrial infrastructure can be significant. There are thus

indirect costs and benefits associated with changes in energy

technologies. (And the since energy produced is only an intermediate

good, used in many of the goods and services consumed in everyday life,

increases in the resource costs of producing energy will mean that most

of these goods and services will also become more expensive in social as

well as economic terms.) The costs include health effects or other

impacts resulting from the production of materials, machines, services or

capital needed to make energy-producing devices. They will also be

opportunity costs--the costs of not having these resources available to

pursue other socially beneficial activities. The benefits include having

energy available to perform the functions society deems desirable and,

perhaps, to have it available in ways which provide opportunities to

avoid problems associated with conventional energy technologies or which

allow more desirable forms of social organization (opportunity benefits

rather than opportunity costs). Technological change in energy thuS.

implies a transition to a different spectrum of societal and individual

costs, benefits and opportunities.

The assessment and valuation of these effects is a subtle and

difficult problem, requiring important social judgments as well as major

efforts to define the boundaries of analysis. While social judgments

must ultimately be made by society, through individual as well as

___ _-lllllll
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collective choices, it will be useful to provide some rough measures of

how substitution of photovoltaic systems for conventional sources of

electricity would alter the allocation of productive resources and thus

the distribution of particular indirect costs and benefits. The

bookkeeping may be done along several major axes: labor, materials;

energy and capital. Since capital requirements for photovoltaics are

outside the scope of this analysis, we shall limit our discussion to the

first three factors. Our analysis is necessarily limited by the lack of

precise data concerning an immature industry.

Labor

It can be expected that technological change in the energy sector

will affect the level and nature of employment in that sector. It

appears, from virtually all estimates, that manufacture and use of

photovoltaic systems would bring about major changes in the number and

types of jobs directly involved in supplying energy. It is also probable

that industries supplying materials, components and services would be

affected significantly by such a shift in electrical supply technology.

Photovoltaics is now an extremely labor-intensive technology due to

the involvement of human labor in virtually all aspects of cell and array

manufacture. As the technology matures, with continuous-process

automation replacing handwork, there undoubtedly will be a reduction in

this intensity. However, apart from cell and array manufacture, most of

the steps involved in transforming raw materials into electricity

generating applications have already reached economically optimal labor

intensity (as in raw materials production) or are intrinsically labor

intensive (as in transporting and installing arrays). In Table VII-1 we
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illustrate this breakdown with a compilation of estimates for dispersed

on-site silicon photovoltaic systems, using the flow sheet of Chapter V.

Labor is given in millions of man-hours prorated over the electricity

produced in an assumed 20-year array life. These figures are still

highly uncertain and should be considered as only representative of those

which might characterize a future industry. Most indirect labor

requirements are not included.

The most important labor figure, and the most difficult to estimate,

is that for cell and array fabrication. For silicon cells fabricated and

assembled by hand, labor requirements are presently more than an order of

magnitude above the high estimate shown in Table VII-1. That high

estimate, 10 million man-hours, is based on a partially automated plant

design (20 MWe-peak of 4' by 4' modules per year) developed by the

Low-Cost Silicon Solar Array project at JPL. According to projected cost

data, about 60 percent of the labor is for cell manufacture. This

estimate implies a labor intensity of about 40 man-hours per peak

kilowatt (just for cell and array production). The extent to which

reductions are possible with large-crystal silicon wafers is very

uncertain.

It is possible that polycrystalline or amorphous silicon cells would

provide better opportunities for applying mass-production techniques. If

such cells could be made with solar-grade, as opposed to

semiconductor-grade, silicon it might also be possible to reduce the

relatively large labor investment (4.2 million man-hours per Gwe-year)

required for refining silicon. However, it should be realized that the

resulting cells would be of lower efficiency, requiring larger array

areas and hence more labor in the other categories.
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Table VII-1

LABOR REQUIREMENTS FOR RESIDENTIAL SILICON PHOTOVOLTAIC SYSTEMS
(Millions of Man-hours/GWe-yr)(1 )

O/M Construction
Material Procure:nt and Processing

SiO 2 Mining 0.1

Refining(3) 4.2
Transportation(4) 0.1 - 0.6

Component Manufacture (cells, arrays)(5) 1 - 10
Installation (6) 1 - 4
Electrical Subsystems(7) 0.5
Mai ntenance (8) 5

ruAbout 1 million 5-kw installations are required to produce 1 Gwe-year of
electricity per year.

t2)Currently, labor productivity in high-purity silica mining is about 0.4
tonne/man-hour; to compute total requirements we use our flow sheet (Figure
V-1 above), scaling to the GWe-yr basis using a 20-year array life and a 0.2
average capacity factor.

(3)Using present domestic production of 300 tonne/year of high purity silicon,
an industry employing about 1000 [1] and thus having a productivity of about 6.7
x 103 m-hr/tonne. About 500 tonnes of semiconductor Si are used for 200 MWe
capacity (Fig. V-2). Note that use of solar-grade Si could reduce labor
intensity per tonne but lower cell efficiency would require that more
material be used.

(4)Transportation of silicon (3.5 x 104 tonne in various forms), glass,
aluminum (4 x 104 tonne) or vinyl and completed panels or shingles (7 x
104 tonne) by truck for 100 to 1000 miles.

(5)This is very uncertain. About 50,000 5-kw arrays would have to be
manufactured each year to sustain the 1 million installations which
collectively generate 1 Gwe-yr per year. The low figure above (1 million mhr)
implies that it takes only 20 man-hours to perform all of the operations
necessary to manufacture, prepare and ship panels or shingles for one
residential array and clearly assumes a very high degree of automation.
Present silicon wafer technology is several orders of magnitude more labor
intensive. See text for further discussion.

(6)Installation requirements are probably highest for shingle designs (thus
compensating for reduced manufacturing labor requirements). Assuming 80
man-hours per residence, one obtains 4 x 106 man-hours/GWe-year. Of course,
some of this could displace conventional roofing labor needs. Lower
requirements would be associated with larger panels; however, larger labor
investments might be required at the manufacturing stage. The range given
here is comparable with OTA (Table VII-3, p 119).

(7)Assumes 10 man-hours to integrate photovoltaic system with household,
utility and (possibly) on-site electrical storage systems.

(8)Assumes an average of 5 man-hours maintenance (e.g., inspection, cleaning,
repairs) per year for each residence.
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In order to provide a lower bound on cell and array labor

requirements, we have considered a generic 5 percent efficient thin-film

technology applied to float-glass produced in a facility resembling that

currently used in the glass industry. The labor intensity of glass

production is about 9 man-hours per 100 ft2 (for a plant producing or

order 10 mi2 of glass/year). Doubling this figure to allow for thin film

application and special handling, one obtains a labor intensity of about

4,000 man-hours per peak MWe or (prorated over 20 years) one million

man-hours per GWe-year.

It is of interest to ask whether thin-film cadmium or gallium

arsenide technologies would provide greater opportunities for labor

reduction. While the labor intensities of purifying and compounding

cadmium sulfide and gallium arsenide to solar grade are uncertain, they

are undoubtedly less than that of silicon wafer technology using

semiconductor grade silicon.* An informal survey of several prospective

manufacturers of cadmium sulfide arrays suggests that labor intensities

in pilot plants are already as low as roughly 10 million man-hours per

GWe-year, even when research staff is included. There also appears to be

substantial engineering conviction (based on plant design) that much

lower labor intensities are possible--perhaps reaching one million

man-hours per GWe-year.** Thus, industry plans for cadmium sulfide cells

appear to be somewhat closer to realizing reductions in labor intensities

*Large-crystal gallium arsenide cells probably involve labor
intensities comparable to those of silicon.

**It should be noted, however, that at present all cadmium-sulfide
cell lifetimes appear to be in the range 3-10 years, though there is
optimism that 20-year lifetimes (assumed in our analysis) can be reached
with the planned next generation of facilities.
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than do those of silicon cell producers, despite lower overall

photovoltaic efficiencies. However, the lower efficiencies are likely to

mean that other labor requirements--at points where human involvement is

essential (transportation, installation, maintenance)--will be higher.

For example, if cadmium sulfide arrays have half the efficiency of

silicon arrays, achieve a labor intensity in manufacture of one million

man-hours per GWe-year, but involve twice as much installation and

maintenance, then silicon array manufacture need only achieve a labor

intensity of about 5 million man-hours per GWe-year in order to have

comparable overall labor requirements.

When possible variations are taken into account, it appears that the

total labor intensity of photovoltaic systems may be reducible to

somewhere in the range of 5 to 25 million man-hours per GWe-year.

Achieving the low end of this range would involve rather heroic

technological advances and the use of relatively maintenance-free

designs.*

It is instructive to compare the labor requirements for

photovoltaics with those for electricity from nuclear and coal plants as

shown in Tables VII-2 and VII-3. There appears to be considerable

variation in reported figures, perhaps due to actual variations in

*Central station and larger-scale industrial or commercial
installations of photovoltaic systems would have somewhat different
requirements following material procurement and processing than the
residential systems considered here. Both component manufacturing and
installation probably would require more labor since subassemblies would
have to be amenable to stand-alone installations and the latter would
require considerable site preparation and engineering of support
structures. Central station plants would also require transmission and
distribution networks. However, major labor savings could result from
reductions in maintenance requirements or mechanized maintenance
procedures.
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TABLE VII-2

DIRECT REQUIREMENTS FOR ELECTRICITY FROM COAL*

(Millions of Man-hours/GWe-year

O/M

Fuel Cycle

Construction

1.2 - 1.9 0.1

Components 0.2

Power Plant 0.3 - 0.4 0.3

Transmission and Distribution

TOTAL

0.5 0.2

2.5 - 3.6

*Based on 30-year life. Data from Energy and Resources Group [2], Office
of Technology Assessment [3], Atomic Energy Commission [4] and [5], and
Project Independence Task Force Report [6].

TABLE VII-3

DIRECT LABOR REQUIREMENTS
(Million of

FOR ELECTRICITY FROM
Man-hours/GWe-year)

NUCLEAR POWER(1)

O/M

Fuel Cycle 1.2 - 1.3

Components

Construction

0.1 - 0.2

0.2 - 0.3

Power Plant(2) 0.3 - 0.5

Transmission and Distribution

TOTAL

(1)Based on 3-year life.
Energy Commission [4] and
Technology Assessment [3].

Data from Energy Alternatives [7], Atomic
[5]. Atomic Industrial Forum [8], and Office

(2)The wide range of power-plant labor intensity appears due to regional
variations--including extraordinary variations in labor productivity--and
extent of regulatory changes over time and especially during construction.

0.5

0.4 - 1.0

0.2

2.9 - 4.0

of

.

- -- - -

_
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practice, assumptions used, or date of estimate. The latter variation

may be due to regulatory requirements which have changed considerably

over time. The trend appears now to be toward somewhat higher labor

intensities as regulations become more restrictive and as resources

deplete or must be moved greater distances, and as labor productivity

decreases.

Comparison of Tables VII-1 through VII-3 indicates clearly that

photovoltaic systems will be much more intensive in the use of labor than

coal or nuclear power, by a factor of two to five. It is at least not

surprising that the difference in labor intensity between conventional

and photovoltaic systems correlates well with differences in average

capacity factors--a PV array produces on average at 20 percent of peak

capacity while a nuclear or coal plant may operate at a capacity factor

of 60 to 75 percent. Thus even if these technologies required the same

amount of human labor per unit of peak capacity, the average labor

intensity, on a unit of energy basis, would be a factor of three or more

higher. Of course, the output of photovoltaic systems in peak demand

periods is also of greater value than the baseload output of coal or

nuclear plants.

A gradual shift toward photovoltaic technology would help reverse

the trend toward decreasing labor intensity in the electric utility

component of the energy sector. From 1961 to 1973, electric utilities

increased their kilowatt output by an additional 130 percent, their

revenues about 260 percent, their construction costs about 340 percent,

but employment in utilities increased-only 21 percent [9]. This occurred

despite increasingly restrictive regulations and decreasing labor

productivity and was probably due to changes of scale in generation
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facilities (though economies of scale were apparently effective only in

reducing unit labor requirements and not overall costs).

Photovoltaic systems would also provide a different spectrum of

employment than coal and nuclear power, especially if used in

decentralized point-of-use applications. Significant fractions of jobs

in coal and nuclear power are in remote locations (mining, milling,

transportation, and some facilities), require large but temporary worker

populations in small areas (resulting in the so-called boom-town

phenomenon), or are available only to highly skilled migratory workers

(welders of stainless steel, constructors of containment domes or cooling

towers). Fluctuations in these industries are common--due to the large

scale of individual undertakings-though the overall trend is toward

shortages of skilled labor in key industries ('e.g., uranium and coal

mining). Central station photovoltaic plants could have similar

problems, though the ability to build such plants in an incremental and

modular fashion could more than compensate for the magnitude of labor

requirements, which are larger than for coal or nuclear plants.

In contrast, on-site photovoltaic systems would involve more workers

in jobs which were as long-term and stable as those in light industries

generally and could create many jobs at the community level requiring

relatively modest skills (installers or maintenance personnel). While

the achievement of a better congruence between employment and energy

production and use may contribute little to improved economic efficiency,

the local and regional social and political political benefits are

evident.

Whether the use of a labor-intensive energy technology like

photovoltaics would also reduce unemployment--an evident social
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benefit--is difficult to predict. In general, the answer depends on what

other shifts in the economy occur because of the change in energy supply

technology. Some new jobs will obviously come at the expense of old

ones: creation of maintenance jobs for PV systems may be offset

partially by a reduction of jobs associated with transmission and

distribution grids; photovoltaic shingle installers may displace ordinary

roofers. The more subtle question concerns the extent to which the

capital, material and other demands of photovoltaics undermine the

economic sources of jobs in other sectors of the economy. A simple

analysis would suggest that as long as the ratio of jobs to other factors

of production involved in photovoltaics is higher than the average in the

economy, new jobs may result. However, relationships between the energy

sector and other sectors of the economy are complex and such simple

arguments must fail at some point--it is impossible to envision a healthy

economy devoting all of its productive resources to the production and

utilization of an intermediate good like energy. This is clearly a

question deserving of further analysis.

Materials

The nature and quantities of materials required for photovoltaic

systems are still very uncertain: it is not yet known, for example,

whether arrays will consist primarily of vinyl shingles (in which oil is

an important component), aluminum and glass sandwiches, or some other

physical configuration. However, it is likely that relatively large

amounts of common materials will be required for arrays producing a given

amount of electricity, due to the need to cover large areas with durable

assemblies. The production and fabrication of these materials will place
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new demands on industry and be responsible for the allocation of

additional social costs to the energy sector.

A rough impression of materials requirements can be obtained by

assuming that photovoltaic systems operate at 10 percent efficiency for

20 years and are fabricated from material layers 0.5 cm thick (e.g.,

aluminum, vinyl, glass). Prorating materials over the 20 year life (at

0.2 average capacity factor and assuming no recycle value) indicates a

material allocation of 1.25x10 4m3 per GWe-year of electricity produced.

If the material were steel, about 100,000 tonnes/GWe-year would be

required; if aluminum, about 34,000 tonnes/GWe-yr; if glass, about 30,000

tonnes/GWe-year; and if vinyl, about 80,000 bbl of oil.* Of course,

these are extremely rough numbers; but since the assumptions involved are

manifest, variations in assumptions are easily made.

More detailed design studies for specific types of photovoltaic

systems have been conducted; some of these appear to involve much larger

quantities of materials. For example, a Lockheed design [10] for a 1000

MWe central station silicon PV plant (20 percent PV efficiency) was

projected to require (converting to our GWe-yr basis, assuming 20 year

life) 2x105 tonnes of steel (twice our figure above) and 6xlO 4 tonnes of

cement per GWe-year. The large requirements are apparently due to the

tracking and concentration systems assumed. Another Lockheed study [11]

projects materials requirements for cadmiumn sulfide array substrates.

For example, the copper required for the (CU2S) substrates, grid

*Interestingly, the electricity which could be obtained, at 40
percent efficiency, from this quantity of oil is about 0.006 GWe-yr.
Thus oil consumption is less than 1 percent of the electrical output of
the PV arrays; note, however, that oil would have a much higher value for
purposes other than electricity generation.
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electrodes and bus totals about 700 tonnes per GWe-year. Similar

calculations can be done for other designs, presumably with wide

variations in results.

It is instructive to compare these materials requirements with those

of nuclear and coal plants. Assuming a capacity factor of 0.6 and a

30-year life, the major materials requirement for such conventional

plants--on a GWe-year basis--are shown in Table VII-4. As for

photovoltaics, there are also substantial associated and antecedent

materials requirements (as for rail cars for transporting coal, or

machines to make pumps). The direct requirements of photovoltaics for

common construction materials appear to be considerably larger than those

for nuclear or coal plants. For example, the Lockheed central station

design requires 100 times as much steel per GWe-year as a nuclear

plant.* While such a design is probably uneconomical, it is not evident

how small the materials requirements for photovoltaics could be made.

Materials requirements for photovoltaics larger than those for

alternatives would mean that more of society's resources would have to be

devoted to the energy sector, increasing the opportunity costs of this

technology, and that the social costs associated with the production of

these materials would also have to be assigned to that sector. The scale

of use, relative to current output, gives some indication of the

magnitude of the reallocation. If we suppose that 10 percent efficient

photovoltaic panels are backed with 3 mm aluminum, for example, the

annual amount required for a PV industry producing 20 GWe-peak of

capacity annually in 2000 (the higher DoE goal) would be about

*Note, however, that the PV station supports might be used for more
than 20 years.
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Table VII-4

Materials Requirements for Nuclear and Coal Plants

(Metric T

Steel

Aluminum

Concrete

Copper

ons/GWe-year) (1)

Nuclear(2)

2.0 x 103

1.0

1 x 104

40

Coal (3)

2.6 x 103

14

6 x 103

28

(1)Prorated over
average capacity

lifetime power output assuming 30-year life and 0.6
factor.

(2)As summarized in Krugmann [12].

(3)Facilities Task Force Report [13].
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1.6x 106 tonnes aluminum. This is about 45 percent of 1975 U.S. demand

[14]*, suggesting that materials-efficient photovoltaics designs should

be accorded a high priority unless we are willing to commit a

considerably larger fraction of our mineral resources to electricity

generation than we presently do.

The special materials used in photovoltaic systems are also of

interest. In Table VII-5 we indicate the amounts of cadmium, arsenic,

gallium and metallurgical silicon required for an annual production of 20

GWe-peak, using the assumptions in our flow sheets of Chapter V. As an

indication of the scale of these requirements, we also show U.S. domestic

production and imports for the most recent year for which complete data

are available. While production can be expected to grow somewhat by

2000, it is evident that demand due to photovoltaics could be a

substantial fraction of present production for all elements except,

possibly, arsenic. For cadmium and gallium, production would have to

increase dramatically to the point where appreciable dependence on

foreign sources could occur. Indeed, since most of these materials are

byproducts of other extractive industries, the effects of greatly

increased demand for byproducts on these industries should be examined.

The availability of gallium is of particular concern, there being some

question of whether large enough amounts could ever be available.

Gallium is a trace constituent of bauxite (0.005 to 0.01 percent) and

could thus be produced as a by-product of aluminum. Even the very

*If one used the hypothetical Lockheed design for a 1000 MWe central
station plant as the basis for providing the 20 GWe-peak capacity added
annually in 2000, about 1.7x 107 tonnes of steel would be required.
This is about 15 percent of 1975 U.S. production. The PV capacity added
would provide for about 0.5 percent of electricity consumption projected
for the year 2000 (assuming 5 percent annual growth in demand).
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Table VII-5(1)

(Metric Tons)

Photovoltaic Re-
quirements

(tonnes/20GWe-peak)

1975
U.S. Produc-

tion

1975
U.S. Imports

Cadmium(2)

Arsenic(3)

Gall i um(4 )

Silicon (metallurgical)

5,000-22,000

550-3600

500-3,400

140,000

2,000

9,600

6.7

430,000

(1)From [14] and flow sheets of Chapter V. All figures

2,400

8,300

6.8

46,000

rounded.

(2)Cadmium thin films ranging from 3 to 8 microns in th
photovoltaic efficiency ranging from 5 to 9 percent.

ickness, with

(3)U.S. production includes industry stocks. PV range is for wafers
thin film cells.

and

(4)u.S. production includes industry stocks; U.S. demand in 1975 was
about 7.5 kg. PV consumption range is for wafers and thin film cells.
Note that recycling of production wastes could reduce the demand for
wafer-type cells by a factor of two to three.
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optimistic assumption of 100 percent efficiency in recovery would imply

the need to be producing 10-20 million tonnes of aluminum per year,

simply to produce enough by-product gallium for 20 GWe peak capacity per

year of thin film cells; present U.S. demand for aluminum is about 4

million tonnes.

Materials requirements are thus an important issue in choosing among

energy technologies and in choosing among photovoltaic suboptions and

even specific designs. In part, the choice can be made on economic

grounds, since a design or particular technological option which requires

excessive amounts of valuable materials will also be expensive. However,

one can question whether these considerations will enter R,D and D

decisions properly. Today, all photovoltaic choices are comparatively

expensive and analysis of future costs are based upon projections or

target goals which are sometimes not explicit about how costs attributed

to various factors of production-including materials--are to be

reduced. In addition, projected future economic comparisons will have to

take into account the impact on basic supply industries of large-scale

production of particular technologies if there is a chance that

large-scale production could alter conditions in these industries. A

macro approach which includes couplings between industries thus has

certain advantages over the micro approach (e.g., price per peak watt)

currently used to decide between alternative photovoltaic technologies.

There is, for example, a danger in pursuing suboptions which appear

cheapest on a unit basis if overall production can become so high as to

distort the underlying supply industries, resulting in price increases in

basic components.
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Finally, economic calculations do not take into account important

classes of social costs. The production of industrial materials and

components is a major source of emissions affecting public heath and the

environment. When, as in the past, energy production did not place large

demands on the material resources of society, these costs were borne

because they were perceived as small when compared with improvements in

personal and social well-being due to increased availability of goods and

services. If production of materials and components must be devoted

increasingly to the production of energy--which, after all, is itself an

input to the production of consumable goods and services--then social

costs will tend to concentrate at intermediate stages, with a smaller

percentage of resources available for final goods with perceived social

benefits. Thus, if photovoltaics does involve very much larger

quantities of materials than current energy technologies, it is possible

that the associated net social costs will offset, at least in part, the

lower direct social costs involved in actual electricity generation. The

comparative evaluation of energy technologies thus involves subtle issues

of industrial structure and the demands of different energy technologies

on it.

Energy

The production of a photovoltaic array, or a coal or nuclear plant

and its fuel, requires an appreciable input of energy, energy which must

come from pre-existing sources. For a new technology such as

photovoltaics, most of this input energy must come from conventional

sources--oil, coal, natural gas, and nuclear power--thus incurring an

energy debt which must eventually be repaid by the new energy-producing
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device. Since conventional sources of energy involve social costs,

ranging from health and environmental impacts to national security risks,

the new technology also incurs a social cost debt. In a period of rapid

growth in deployments of the new technology it is possible that more

energy from conventional sources will be used than will be produced

during that period by the new devices already deployed. The result,

during this growth phase, can thus be a temporary aggravation of energy

supply problems and of energy-related social costs.

These observations suggest that two classes of issues need to be

considered in greater detail. The first concerns the demands which a

given increment of photovoltaic capacity would place on existing energy

supplies and what the social consequences of this might be. The second

concerns the longer-term strategy to be pursued in developing and

deploying photovoltaics as a way of improving the allocation of energy

supplies and social costs and benefits over time. The first issue can be

characterized in specific microstructural terms (whether economic or

social). The second, requiring consideration of important economic and

non-economic factors of larger significance to overall social welfare, is

generally beyond the scope of this study, though the inexorable need to

shift to renewable energy sources suggests the wisdom of making

considerable early efforts to understand and guide this transition.

To a first approximation, the energy required to produce a

photovoltaic (or other energy-producing) device is usefully characterized

by the time it takes that device to repay its original energy debt--the

payback time. Present estimates for photovoltaic system payback times

range from about two to more than ten years, depending on the cell

technology assumed and on what is assumed about panel and support
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structures. As indicated in the discussion above, materials requirements

for panel and support structures are relatively large on a unit of energy

output basis, due to the need to cover large areas; the energy needed to

produce these materials may account for one to three years of the total

payback time, depending on design and on cell efficiency.* These energy

requirements would be difficult to reduce.** Energy used to produce

photovoltaic cells accounts for the remainder of the payback time. Cell

production today requires large amounts of energy, due to the

energy-intensiveness of particular process steps and inefficiencies in

using energy-intensive materials.

Energy investments in silicon cells, using currently available large

ingot wafer technology, are especially large. Reports by the Solarex

Corporation (which makes such cells) indicate a payback time for cells

alone of about five years [15]. However, the assumptions used introduce

considerable uncertainties, some of which may lead to over-estimates of

payback time and some of which may lead to underestimates. For example,

indirect energy investments (embodied in materials or equipment) are

computed by using average relationships between dollar costs and energy

investments. This procedure may err if the materials or equipment

*For example, a one GWe central station plant of the Lockheed design
would require 8 x 105 tonnes of steel with an energy content of about 4
x 109 kwhe (or 12 x 109 kwht). To repay this energy debt with
electricity from the photovoltaic plant would require more than two
years. While energy inputs and outputs are of different quality, it is
evident that some designs do not offer striking net energy advantages.

**Clearly, the easiest way to reduce energy investments in supports
or panels is to use structures which would exist for other reasons as
supports and to make panels serve double duty. This naturally leads to
the use of roofs as supports and to the use of panels as roofing. The
flexible photovoltaic shingle is perhaps the most elegant expression of
this idea.
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involved in photovoltaics (e.g., aluminum) requires more than the average

amount of energy per dollar of output--a very likely possibility for

items used in photovoltaic systems.* An independent and much lower

payback projection has been made by an American Physical Society group

[16]. On the expectation that energy input to cell production can be cut

by a factor of three (and only 20 kwhe/m2 are needed for panel

materials and panel fabrication), the APS group projects a payback period

of only about 1.2 years. The high variance in such estimates appears due

to inherent uncertainties about technological possibilities. Resolution

of such uncertainties-as in the case of economic uncertainties--is a key

goal for research and development efforts.

The largest energy investment for current silicon cells is in the

refining of metallurgical-grade to semiconductor-grade silicon, amounting

to about 3.2 years payback, according to Solarex [15]. This, and the

high economic cost of refining, encourage the development of solar cells

using a less pure "solar-grade" silicon (and refining processes to

produce such material) or more efficient ways to produce cells using

semiconductor-grade silicon. The prospects for the latter appear rather

limited.

*Solarex [15] assumes that only 2 percent of the price of any item
or material is for energy--an underestimate for materials like aluminum,
steel or copper and for things made from them. To compute the equivalent
amount of energy an average price of 3 mills per kilowatt-hour
(apparently thermal equivalent) was used, resulting in an energy/price
intensity of 6.67 kwht/$. For manufactured goods, other analysts
commonly use a figure of about 15 kwht/$. For comparison, it is
interesting to note that sheet aluminum may be purchased for less than 2
per kilogram but requires about 80 kwht to produce. Using a baseload
power cost of 16 mills/kwhe or about 5 mills per kwht, one finds that
about 20 percent of the price of sheet aluminum (or 40 percent that of
bulk aluminum) is for energy. While present long-term hydroelectric
contracts for power for aluminum production have lower energy prices, it
is inappropriate to assume that this will be the case for new production
in the long term.
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Payback times for thin-film cadmium sulfide and gallium arsenide

appear to be considerably smaller than for current silicon cells, though

careful evaluations appear to be lacking. The crucial question to be

confronted in analyses of this type is what a reasonable lower bound on

energy payback might be. We believe this value to be greater than one

year, simply because of the need to cover substantial areas with

energy-intensive materials (aluminum, glass, copper, etc.) and perhaps

less than four years. It should be noted that reducing the energy

investment in silicon cells, or using low-efficiency thin films, may

result in a need for larger areas of cells and arrays and thus larger

overall energy investments. The analytical basis for projecting ultimate

payback times deserves much more careful attention.

It is useful to compare prospective energy investments in

photovoltaic systems with those of nuclear plants (which, in turn, are

larger than those of coal plants). Energy investments in nuclear power

production fall into two categories: those associated with the plant

itself and those required for fuel. Unlike photovoltaics, energy

investments in producing nuclear fuel (primarily electricity for

enriching uranium) are considerable. The mining, transportation and

crushing of coal (and possibly cleaning it) involves smaller but still

significant amounts of energy. However, energy costs in producing coal

and nuclear fuel are incurred primarily after plant operation has begun,

making for shorter lag between energy expenditure and its repayment.

In Table VII-6 we show primary energy inputs for a nuclear plant and

its fuel. We have separated energy investments for fuel manufactured

prior to the beginning of plant operation. The initial energy investment

is about 3.11x109 kwhe and the plant requires about 0.32x10 kwhe

________1_1_1111__1_1111__ --- _ II I
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Table VII-6

DIRECT AND INDIRECT ENERGY

INVESTMENTS FOR A (1000 Me) NUCLEAR PLANT (1 )

Kwhe Thermal Total(2)

(x 109) (10o2Btu) (109 kwhe)
Plant 0.46 18.14 2.05
Fuel Prior to
Operation(3) 0.93 1.43 1.06

1.39 19.57 3.1
1

Annual Fuel 0.28 0.43 0.32
(Each year of Operation)

(1)Includes direct energy use (as for enriching uranium) plus indirect
energy involved in materials and construction of components. Derived
from ERDA [17].

(2)Thermal inputs converted to electricity at the rate of 11,400
Btu/kwhe--thus assuming that instead of being used to construct the plant
the original Btus had been used to generate electricity.

(3)Assumes 10 percent of lifetime fuel requirements--first core plus
first and second reloads.
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each year during its life for fuel. Plant output, at 60 percent average

capacity factor, is 5.3x109 kwhe or about 5x109 kwhe annually when

fuel production requirements are subtracted. The payback time is thus

about seven months,* considerably less than for photovoltaic systems.

It is important to realize that the magnitude of the energy

investment in a photovoltaic device does not completely characterize the

role of that device even in the energy economy, let alone in a larger

social context. A photovoltaic system may provide kilowatt-hours at

point of use and at, or near, peak demand periods. For these or other

reasons, kilowatt-hours from photovoltaics may be valued more highly than

the energy used to manufacture the device, which may be produced at a

remote point and off-peak. The fact that not all units of energy have

the same human utility is the source of most objections to net energy

analyses, especially by economists who see price as providing a more

comprehensive measure of value. However, energy flow calculations can be

*One must be careful in converting electrical and thermal inputs to
a common basis. We have chosen to convert thermal inputs to electrical
units as if they had been used to generate electricity (11,400 Btu being
used to make 1 kwhe). It is also possible to consider how many Btus were
used to make electrical inputs for the plant (at 11,400 Btu per kwhe),
add thermal inputs, and to compare this Btu input with the electrical
output of the plant as if it were converted to Btus (at the low
efficiency, say in resistance heating, of 3412 Btu from each kwhe). This
second calculation gives very different results from the first and is the
source of a long-standing controversy between nuclear proponents and
opponents. On the Btu basis, about 35.4x1012 Btu are required to start
up the plant; net output (assuming a kwhe is only worth 3412 Btu) is
about 14.5x1012 Btu annually. By this calculation then, the payback
time is about 2-5 years, considerably greater than for the calculation in
the text. The first calculation is the more reasonable: society should
only build a nuclear plant if it is interested in having electricity and
values it more highly than thermal energy; if so, the original Btus used
to build the plant should be evaluated as if they had been used to
generate electricity (instead of building the plant) and the output of
the plant valued as electricity and not as if it were to be degraded
directly into heat.
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useful in assessing a number of the impacts of technological change

including those affecting long-term energy supply strategies.

One important use of energy analysis can be to help evaluate the

flow of indirect social costs associated with energy and with changes in

energy technology, especially when those social costs are not

internalized in economic assessments or decisions. The energy invested

in producing solar arrays carries with it a social cost debt. The nature

of the social costs depends on the mix of energy sources used at the time

the array is produced--a mix overwhelmingly dominated by fossil and

nuclear fuels until the era when renewable resources provide a

substantial fraction of energy supply. The magnitude of the debt can be

characterized by the payback time.

For example, a photovoltaic array may require several years of

operation to return the coal-generated electricity used in its

manufacture. If the life of the array were only equal to the payback

period, the total social cost of using coal would not be reduced; rather

the initial kilowatt-hour would be returned from a different source

somewhat later in time and accompanied by the additional social costs

involved in making and using the array. However, if the lifetime of the

device is greater than the payback time, and if the social costs of

photovoltaics are smaller than those of coal, then the use of

photovoltaics can result in a reduction of the average social costs of

electricity. Thus, if the lifetime of an array is 15 years, and there

are no direct social costs associated with the array, its use can reduce

the average social cost of electricity by a factor of three or more,

depending on the payback period. However, as we have seen, there are

direct and indirect social costs involved in the production and use of



136

photovoltaic systems. The result is that a photovoltaic device will

reduce the social costs of energy appreciably only if the lifetime of the

device can be made considerably greater than the energy payback time and

if direct and other (nonenergy) indirect social costs can be made small.

Alleviation of the social costs associated with conventional energy

sources through the use of a new energy technology is particularly

difficult during the growth phase of the new technology. It is possible

that deployment rates can be so high as to put a net burden on energy

supplies, and thus increase the social costs due to energy, during the

period of rapid growth. This occurs if the time constant characterizing

the growth of deployments of the new technology is less than the energy

payback time.* The current DoE goals, for example, call for a production

capacity of 500 MWe-peak annually in 1986 and production of 10 to 20

GWe-peak per year in 2000. The time constant of photovoltaic capacity

growth during the intervening years is then between 2.7 and 3.0 years.

In order for photovoltaics to make a significant net contribution to

energy supply, or to reduce the average social cost of energy, before the

year 2000, the payback time must be considerably less than the 2.7 to 3.0

year time constant implicit in the DoE goals.

It is thus very unlikely that photovoltaics can do anything to

alleviate problems of energy supply or energy-related social costs in the

*We use an exponential growth pattern where the capacity is C(t) =
Ae t , where g is the time constant for growth. The DoE goals imply a
total PV capacity in 2000 of between 38 and 68 GWe-peak. The
relationship between time constant and payback time is a somewhat
idealized rule, valid only if energy investments are made precisely on
the date the device is deployed and if no devices reach the end of their
useful life during the period in question. In practice, energy
investments must be made prior to service and some devices will reach the
end of their service life. The result is that the net contribution to
energy supply can be negative even for growth time constants greater than
the payback time.
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next two decades. The goal of deploying enough photovoltaics to make it

even a relatively small component of electrical capacity in 2000* is

incompatible with any alleviation of supply or social cost problems

during this period. In fact, such near-term problems ould be aggravated

by photovoltaic deployments.** The photovoltaics program must therefore

be seen as a long-term effort to change the mix of energy supply

technologies. There are important reasons for doing this, but these

reasons cannot include the alleviation of energy supply problems faced by

this generation.

*Assuming a 5 percent growth in electricity production, from the
present 2 trillion kwh per year, photovoltaic growth meeting the higher
DoE goal would account for only 1.5 percent of year 2000 electrical
output (of course, more than this output might have to go into making
more PV arrays).

**Assuming a 5 percent growth in electrical production overall,
deployment of photovoltaic power systems--at the rate targeted by DoE (20
GWe capacity production in 2000) and with a 6 year energy payback
time--would consume about 0.6 percent of all the electricity generated
between 1986 and 2000. This is the net energy cost of the program: the
total amount used to make PV systems minus any output from systems
deployed before the end of the period.
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VIII. CONCLUSIONS

Our analysis indicates that there are potentially significant

hazards--as well as benefits--associated with the manufacture and use of

photovoltaic technologies. Risks are present in three of the categories

examined: occupational and public health and the environment. These

social costs are somewhat different for the three specific technologies

analyzed: silicon-based photovoltaics appears to involve the least

potential risk. However, for all technologies, even worst-case

assumptions about releases and practices indicate a clear superiority of

photovoltaics over electric power from coal, on a unit-of-power basis.*

Despite their superiority, the existence of serious potential risks

in photovoltaics implies a need for early attention to foresee and

eliminate possible barriers to the successful use of photovoltaic

systems. The greatest and most direct risk appears to result from the

release of toxic or carcinogenic materials to the workplace or to the

environment. For photovoltaic technologies in which this is potentially

a problem--more so for cadmium or gallium arsenide than for silicon--very

stringent restrictions on releases must be anticipated; government

regulation is bound to become increasingly strict in the future,

especially for proven or suspected carcinogens. Restrictions on

occupational exposures will likely come first, followed by standards

limiting releases potentially affecting the public. An example is the

*The superiority of photovoltaics to coal is not quite so clear in
the area of indirect costs: if photovoltaics demanded much greater
quantities of input factors of production (energy, materials, etc.) than
for coal it is possible that the social costs (including opportunity
costs) associated with these inputs could collectively exceed the direct
and indirect costs due to coal. But this large factor input would alsomean that photovoltaics was far from being economically competitive and
thus unlikely to be pursued on a large scale.
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recent fifty-fold reduction in limits o occupational exposures to

inorganic arsenic compounds on the basis of carcinogenicity. Similar

actions are possible for cadmium; environmental limits are soon likely

for both cadmium and inorganic arsenic. For all technologies, there is

the possibility of increasingly stringent regulation of the dozens of

chemical compounds used to clean, etch, dope or otherwise treat

photovoltaic cells.

These observations are extremely important to he success of

photovoltaic technology-programs: unless such hazards--and the attendant

regulatory regimes--are anticipated, there is serious threat to the

future viability of photovoltaic options. As yet, there is not

sufficient appreciation of this problem. Technology proponents, much

like their predecessors in the nuclear power industry, speak of zero

releases and zero risks, potentially blinding themselves to the need for

attention and creating false expectations in the public mind. It is

likely that the best solutions to emission problems are to be found early

in the development process (perhaps even involving choices between

technologies); while it may be possible to make technical fixes that

reduce emissions to whatever level is required later, such fixes are

likely to be expensive and could well threaten the economic viability of

photovoltaics at a critical stage of development. Optimal long-term

decisions about photovoltaic programs will thus require foresight about

potential hazards.

Because government is so deeply involved in the research,

development, demonstration and diffusion of photovoltaic technology--and

because it bears ultimate responsibility for safety and health-it is

appropriate that government program decisions reflect the concerns
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indicated above. Functionally, one can envision two governmental roles:

first, insistence on the gathering of detailed information about exposure

levels in any project in which government is a partner

(instrumentation, data collection and analysis and reporting are

frequently absent); and, second, choices between alternative development

paths on the basis of facts and realistic expectations about potential

hazards.

Beyond these important qualifications, there are reasons to be

optimistic about the ability of photovoltaics to improve the balance of

social costs and benefits in the energy sector. The control problems we

have discussed are similar to those already being resolved in other

industries and do not pose essential objections as long as enough early

attention is devoted to them. The same cannot be said of the potential

of CO2 emissions from fossil fuel combustion or, perhaps, the risk of

nuclear weapons proliferation associated with the spread of nuclear power

technology, where technical or institutional remedies are difficult

indeed.
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APPENDIX

In this appendix we first give a general description of the model

used in this study to estimate the public exposures to hazardous

substances due to coal combustion and various steps in the production and

use of three types of photovoltaic devices. We then discuss the

application of the model to these processes and give the results in terms

of (1) ground level concentrations at different distances from the

facility under several sets'of atmospheric conditions; and (2) the number

of persons exposed to each concentration level.

Release and Transport Model

As noted in the text, this study employs a simple three-dimensional

Gaussian diffusion model* for the atmospheric dispersion of a general

pollutant. Given the conditions of release and general atmospheric

concentrations, this model gives the average concentration of material at

any point downwind of the source. The conditions which must be specified

*The distribution used is given by Eisenbud [1]

R -h2 2
X(x,y) auexp -

2Z y

where X(x,y) = groundlevel concentration (g/m3) at point (x,y)
x,y = downwind and crosswind distances
R = release (g/sec)

ay o = crosswind and vertical plume standard deviations (both
functions of x and weather stability class).

u = mean wind speed
h = effective height of release (stack height plus initial

plume rise due to heat).

Unless otherwise noted, wind speed is 4 mi/hr. Additional details of
calculations are given in Durand [2].
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include effective height of release, average wind speed, rate of release,

and crosswind and vertical dispersion parameters. This model ignores

plume depletion due to deposition and the effects of surface

irregularities, shielding and so forth.

Typical centerline (directly downwind) ground-level distributions of

material under simplified atmospheric conditions for a cold ground-level

release are shown in Figure A-1. The concentration is clearly greatest

near the source. Many releases, however, will occur at some elevation

above ground level-due to the presence of an exhaust stack or other

conditions discussed below. In this case, ground-level concentrations

near the source may be very small and, depending on wind speed, maximum

concentrations will occur some distance from the source. For example, at

200 meters from the source, an emission rate of 10 gm/minute and wind

speed of 4 mph, ground-level concentrations are 83 mg/m3; 12 g/m3; and

0.0083 g/m3 for release heights of Om; 30m; and 100m respectively.

The height at which dispersion begins--the effective release

height--is determined not only by the elevation of the source (a roof or

stack) but also by the heat of release and by atmospheric conditions. At

relatively low wind speeds and with a uniform atmospheric temperature

profile (dropping about 10°C for each 100 meters of elevation) a hot

release (e.g., from an arc furnace or a coal plant) will rise, expanding

adiabatically and cooling, until it reaches thermal equilibrium with the

atmosphere. Dispersion then occurs from this effective release height.

However, if there is a high wind or a temperature inversion, the

effective release height may be very different. An inversion can in

effect put a lid on vertical dispersion of pollutants, greatly increasing

concentrations close to the ground (dispersion cannot occur above the
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lid); such inversions are common in valleys, near bodies of water and at

night. At higher wind speeds (on the order of 20 mph or 10 m/sec), even

hot releases can be trapped in the downwind wake of buildings. This not

only poses an immediate hazard due to very high concentrations, but

subsequent dispersion occurs as if there had been a cold ground-level

release. This may be especially important for fires affecting

residential applications of some photovoltaic systems. A final condition

which can affect concentrations is atmospheric instability (due, say, to

surface heating by the sun) in which turbulent mixing can also result in

higher concentrations (perhaps two orders of magnitude difference several

kilometers away) than would be expected under idealized conditions. None

of these conditions is unusual; indeed, in many areas non-ideal

conditions will be the rule rather than the exception. Where possible,

we take at least some of these effects into account in what follows. The

assumptions involved in arriving at the presumed rates of release at each

process step are discussed in the text.

Silicon

Coal emissions generally occur (for new plants) from a 300 meter

stack while silicon refining emissions may be from a stack height of 30

meters or less. Under neutral atmospheric conditions with a 4 mph wind,

releases will rise about 300 meters additional for the coal plant, and 70

meters for the silicon plant, before lateral diffusion occurs. The

center line ground-level concentrations of all particulates (not just

submicron) downwind from both plants are shown in Figure A-2. Also shown

(dashed lines) are the concentrations under unstable weather conditions,

with an inversion at maximum plume height. For the unstable weather

�_��_ �__IIIIII_____P·_l_____�
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situation, coal particulate concentrations exceed those of silicon at

every given distance from the plant. Under neutral conditions, coal

particulate concentrations are greater at every distance beyond 104

meters; within a 104-meter radius of the plant, particulate levels are

higher for silicon than for coal. In this case, the maximum

concentration of silicon particulates--approximately 5x10-6 g/m3--is very

similar to the maximum concentration of coal particulates. The coal

maximum occurs at a greater distance from the plant, and thus over a

larger area. The reason for this is that the greater height for coal

releases results in significant dilution and carrying under neutral

conditions, but this has much less effect under unstable conditions with

an inversion. While different locations will experience different mixes

of weather conditions, unstable or inversion conditions will generally

prevail only a few hours a day in most areas. However, concentrations

during this short period may be sufficiently high as to be the dominant

source of exposure.

In order to evaluate possible effects on populations we have used

this same model to compute the number of individuals exposed to different

concentrations of particulates in the vicinity of each plant. Figure A-3

shows these distributions* for the weather conditions described above and

*The population distributions shown in Fig. A-3, and in subsequent
figures in this appendix, are smooth curves drawn through histograms
showing the number of people exposed to concentrations in certain
ranges. The intervals chosen were 2.5xlO-a to 7.5x 10-a and
7.5x10-a to 2.5x10-a+1; it is necessary to specify these intervals in
order to interpret properly the population figures shown. The
populations were determined by computer analysis in which the area around
a facility was broken down into a fine grid; the computer was then asked
how many grid points fell into each of the ranges above; finally, the
number of grid points in each range was multiplied by the number of
people associated with a single grid unit.
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for a population density of 1000 persons/mi2.* The distributions can

be adjusted for different population densities simply by scaling the

vertical axis; changes in emission rates (e.g., to adjust to the fraction

of particulates in the submicron range, to take into account changes in

control technology, or to adjust to other plant sizes) can be

accommodated by scaling the horizontal axis.

Cadmium Sulfide

Releases from cadmium recovery in zinc smelters can be modeled in a

way entirely analogous to that used to describe silicon releases in the

preceding section. Centerline concentrations downwind from a smelter

with a capacity adequate to provide for the production of 200 MWe peak

capacity per year are shown in Figure A-4. It should be noted that

actual smelters may be of somewhat larger capacities (the average is

about twice as large as that in our model) and may thus result in higher

concentrations. It should also be noted that the 200 MWe capacity chosen

as a normalization allowing comparison with coal or nuclear plant output

assumes a 15-year average life, approximately three times the estimated

life of present cadmium sulfide cells. If lifetimes cannot be increased

substantially the impact of cell production, per unit of energy

ultimately delivered, will be considerably higher than computed here. Of

course, greater cell life is also a condition for economic viability.

Assuming the parameters above, and a (low) population density of 100

persons/mi2 (equivalent to about one person per 6 acres), it is

*The national average population density is about 70 persons/mi2
and that of the entire eastern seaboard about 300/mi2. However, urban
area densities as high as 25,000/mi2 are not unusual. Suburban areas
generally have densities in the range 1000 - 10,000/mi2 (0.5 - 5
persons per acre) on the average.
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possible to compute the number of persons exposed to given levels of

concentration of cadmium at ground level under various weather

conditions. With a wind speed of 4 mph, neutral conditions and an

effective release height of 100 meters (e.g. 30m stack plus 70m rise due

to heat of release), the 50 metric tons per year (90 g/min)'release from

our model cadmium recovery facility would result in the exposure levels

shown in Figure A-5. Only a few people would be exposed to

concentrations in excess of 1 g/m3; such concentrations first occur

about 1 kilometer from the source. However, relatively large numbers of

people are potentially exposed to concentrations of order 0-1 g/m3 .

Under unstable weather conditions, with an inversion at maximum plume

rise, concentrations of cadmium near the smelter can be much higher, as

shown in Figure A-4. In this case, however, relatively few people are

affected by the higher concentration since it occurs over a small area

near the smelter, as may be seen from Figure A-5.

Since weather conditions vary considerably over time, average

concentrations at any given point will generally be smaller than those

shown. It is interesting to note that cadmium concentrations near

existing zinc and lead smelters average 0.03 to 5 g/m3 [3], depending

on distance and averaging period. However, population densities near

existing facilities are generally low. Annual average urban

concentrations of cadmium, as of 1969, ranged from less than 0.001

pg/m3 to about 0.03 g/m3 for a number of cities; an exception was El

Paso, Texas (which has a large lead smelter nearby) with an annual

average of 0.1 g/m3, and a 24-hour maximum of 0.73 g/m3. The

higher urban figures are greater than can be explained by cadmium

releases from coal, which are usually well below 0.1 .g/m3, according
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to our model. Low total human exposures from smelters would be due to

the remoteness of such smelters from high population densities, rather

than low emission rates.

As noted in the text above, it is possible to argue that cadmium

emissions of zinc smelters are independent of PV use; however, this is

not the case with subsequent process steps. Releases from refining and

conversion of CdO to CdS appear to be a significant fraction of those

involved in zinc smelting (14 tonnes versus 50 under current conditions).

Centerline concentrations and numbers of persons affected at various

levels are shown in Figures A-6 and A-7. Because the average population

density in the area around the conversion facility (1000/mi2) is

assumed higher than that around smelters, the total human exposure due to

conversion is comparable to that of smelting. Small particulates of

cadmium oxide are released in both cases.

Releases during cell manufacture are more problematic: losses may

occur during handling of CdS powder or in the form of CdO/CdS mixtures

released following vapor deposition (contact with air of hot CdS may

promote conversion to CdO). As noted in the text, plant ventilation

solutions to high workplace concentrations could result in significant

external public exposures. While there is no basis in current industrial

experience on which to evaluate such impacts, an impression of the

potential severity of the problem, and of the need for care in designing

and regulating cell-manufacturing facilities, can be gained from Figures

A-8 and A-9. Both assume a continuous cold ground-level release of 1

percent of the cadmium throughput. Figure A-9 assumes a population

density of 1000/mi2. Unless measures to reduce, dissipate, or isolate

emissions are taken, large numbers of people could be exposed routinely

___ I __
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concentrations of cadmium compounds exceeding 1 g/m3. Measures to

reduce concentrations in populated areas include basic confinement

(including closed process lines), high stacks or heating of exhausts, and

remote siting.

The final mode of public impact from cadmium is through fires in

arrays. Assuming an instantaneous release of 10 percent of the cadmium

in a 5 kw residential array, representative exposures downwind

(centerline) of a single house fire under various weather conditions can

be projected, as shown in Figure A-10. These are maximum values and, in

general, individuals will receive smaller doses due to shifting wind

patterns. Unlike the continuous exposures due to smelters and

manufacturing facilities, fires are episodic, with concentrations of

cadmium rising rapidly and then falling off as releases dissipate. The

exposures shown in Figure A-10 are thus sums over concentrations

multiplied by the time which each concentration persists. The result is

a time-integrated exposure, expressed in gram-minutes/m3. For example,

exposure to 1 g/m3 for one hour would give a total exposure of 60

Pg-min/m 3. To convert this to an individual dose, one multiplies by a

breathing rate (in m3/minute) and by a bodily retention factor.

The exposures in Figure A-10 must thus be multiplied by 7 to 15 x

10-3m3/minute and by a retention factor of 0.1 to 0.4 to obtain

individual doses. The largest exposures occur under unstable or downwash

conditions and range from 10-5 to 10-3 g-min/m3. The corresponding

individual doses could thus be as high as 6 g retained. Only a few

individuals would experience such doses. Indeed such an individual

exposure would result only under downwash conditions during a fire

affecting a neighboring house upwind. The probability of a given
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individual experiencing such an exposure is only of order 10-4 per

annum, assuming that downwash conditions occur about 10 percent of the

time. The number of people experiencing each exposure is shown in Figure

A-11,* assuming a residential population density of 5000/mi2 (about

that of Los Angeles or many residential suburbs).

To compute impacts which can be compared directly with our coal

plant, it is necessary to add up the effects of the 200 fires which might

occur annually in the 600,000 residential installations providing as much

total electricity as the coal plant. To do this, one simply multiplies

the numbers of people exposed to each concentration by 200.

Gallium Arsenide

For purposes of comparison with subsequent process steps, the

ambient centerline exposure levels associated with a (hypothetical)

smelter/production plant releasing 5 percent of arsenic throughput and

producing enough arsenic for 200 MWe of capacity are shown in Figure

A-12. In principle, a reduction of about a factor of ten in this release

rate may be possible, though lack of information on how arsenic emissions

actually occur (some arsenic may be emitted as a vapor which could only

be controlled by providing appropriate adsorptive surfaces) does not

allow precision in such estimates. Also shown are exposure levels due to

arsenic releases from coal combustion. Figure A-13 shows the number of

persons exposed, as a function of concentration, for a uniform population

density of 100 persons/mi2 near the smelter. For smelters located near

*The maximum dose resulting from each exposure--assuming 40 percent
retention and a breathing rate of 20 m3/day--can be obtained by
multiplying the exposure by 5.6x10-3.
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higher populations, the curve should be displaced to the right. Also

shown is the population exposure due to a coal plant, assuming 1000

persons/mi2. Coal plant emission effects greatly exceed those of

smelters except in the immediate vicinity of the smelter.

For the As reduction and purification step, centerline exposure

levels under various weather conditions are those shown in Figure A-14*

for an emission rate of 1 percent throughput. Total population exposure

levels are shown in Figure A-15. No individuals appear to be exposed to

concentrations exceeding 1 g/m3.

The concentrations and public exposures associated with the gallium

arsenide compounding step will be similar to those of reduction and

purification as shown in Figures A-14 and A-15. However, the emissions

from cell manufacture and array assembly will present a different

dispersion picture, since temperature and height of release (as well as

the nature of the potential emission itself) will probably be unlike

those prevailing at earlier production steps. If 1 percent of arsenic

throughput is lost to the atmosphere at this manufacturing stage, the

concentrations shown in Figure A-16 could occur. Within 1 kilometer of

the plant, concentrations range from 1 to 100 g/m3. The numbers of

individuals exposed at each level are shown in Figure A-17 for a

population density of 1000 persons/mi2.

As with cadmium, the final mode of public impact from gallium

arsenide technology is through fires in arrays. In Figure A-18 we show

total exposures as a function of distance from a fire resulting in the

release of 70 percent of the arsenic (as the trioxide) in a residential

*We assume a 30 m stack.
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array, under three different weather conditions. Total exposures are in

gram-minutes per cubic meter-a quantity which may be though of as an

exposure to a certain amount of arsenic per cubic meter for some period

of time (e.g., 100 pg-minutes/m3 can be thought of as a ten-minute

exposure to 10 g/m3). To obtain a human dose, one must multiply by a

breathing rate (e.g., 10-20 m3/day and a bodily retention factor (e.g.,

10 percent). In Figure A-19 we show the total number of persons

receiving each exposure, assuming a population density of 5,000/mi2.

It is apparent from Figure A-19 that individual exposures on the

order of 100 g-min/m3 could occur for significant numbers of people.

With a breathing rate of 10 m3/day, a person exposed to 100 g-min/m 3

would inhale about 10-7 grams of arsenic; the retention factor does not

appear to be known. It is unclear whether this results in any

significant individual cancer risk. We have summed up the individual

exposures and find, according to our simple model, that the total amount

of arsenic inhaled by people per house fire ranges from 0.01 gram to

0.065 gram. These are probably upper bounds.* To compare with a coal

plant, for which about 30 grams of arsenic are inhaled per year (see

Figure A-13), it is necessary to multiply by the number of fires

occurring in arrays giving the same electrical output per year as the

coal plant. With an estimated 200 fires per year, the total annual

inhalation due to array fires ranges from about 10 to 50 percent that of

coal combustion for the same amount of electricity generated.

*Roughly one million persons are involved in the summation, based on
the population density assumed. Presumably, this overstates the
population actually involved. However, it should be noted, we have
neglected long-term suspension and resuspension of small particulates.
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It is-also of interest to ask how array fires might alter existing

average ambient concentrations of arsenic. For this purpose we assume a

universal neighborhood with a uniform population density of 5000

persons/mi2.* Array fire incidence is then about 1/2 per mi2 per

year. Using the groundlevel population exposures in Figure A-19, the

average individual amount of arsenic inhaled per year is about 1-6 g

(the range being due to weather conditions). This is equivalent to

exposure to a continuous ambient concentration of about 0.0003 to 0.002

ug/m3-values which could be compared with prevailing urban

concentrations (most below the limit of detection of 0.001 g/m3).

Thus, fires in gallium arsenide arrays would not grossly affect average

ambient levels as presently measured, except under adverse weather

conditions.

*As above, the universal neighborhood model is a simple way to
account for effects which may otherwise be difficult to bookkeep-the
simplification comes from the fact that any airborne material leaving any
limited region is compensated for exactly by an inflow of material from
similar regions nearby.
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