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Pindyck, R.S.--Uncertainty and Exhaustible Resource Markets

ABSTRACT

Demand and reserve uncertainty are included in a simple model of an

exhaustible resource market by allowing the demand function and the reserve

level to fluctuate via continuous-time stochastic processes. Thus, producers

always know current demand and reserves, but do not know what demand and

reserves will be in the future. We show that demand uncertainty has no

effect on the expected dynamics of market price, while reserve uncertainty

shifts the expected rate of change of price only if extraction costs are

nonlinear in reserves. However if the demand function is nonlinear, both

demand and reserve uncertainty affect the dynamics of production, whatever

the character of extraction costs. The model is also extended to include

exploration, first as a means of reducing uncertainty, and second as a

means of accumulating reserves, with uncertainty over the future response

of discoveries to exploratory effort.



Uncertainty and Exhaustible Resource Markets

1. Introduction

This paper examines the effects of two sources of uncertainty on the be-

havior of exhaustible resource markets: uncertainty over the future demand for

the resource, and uncertainty over the reserve base that will ultimately be

available for exploitation. These uncertainties are likely to be present in

most exhaustible resource markets because of the inherent long-run dynamics

involved in resource production. Our concern here is with the implications of

these uncertainties for market price evolution, for the optimality of the compet-

itive market, and for the role and value of exploration.

Our characterization of uncertainty is quite different from the usual one in

which some parameter or variable is taken to be unknown. We model demand uncer-

tainty by assuming that the market demand function shifts randomly but

continuously through time according to a stochastic process. Thus, although

today's demand is known exactly, future demand may be larger or smaller, and has

a variance that increases with the time horizon. Similarly, we model reserTe un-

certainty by assuming that available reserves shift upwards or downwards, again

according to a stochastic process. Thus, as exploitation proceeds over time,

resource producers may find that more or less reserves are available for pro-

duction than originally expected.

In such a world the observed market price will be a random process, but there

are a number of questions to be asked about the behavior of the market in expected

value terms. First, should the expected price behave differently in the presence

of such uncertainty than in its absence? For example, should the presence of un-

certainty cause producers -- in competitive or monopolistic markets -- to be more

or less conservationist than they would be otherwise? Second, does the competitive
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market exploit the resource at a rate that is socially optimal in the presence of

uncertainty? Finally, what are the implications of uncertainty for exploration,

either as a means of reducing the uncertainty itself, or simply to accumulate

additional reserves?

We show in this paper that with constant extraction costs and risk-neutral

firms, neither demand nor reserve uncertainty (as characterized here) affect the

expected price dynamics in competitive or monopolistic markets, and Hotelling's

(1931) r-percent rule still applies. (The dynamics of output may, however, change

in the presence of uncertainty.) We will see that when extraction costs are a

function of the level of reserves, demand uncertainty still has no effect on the

expected behavior of price, although reserve uncertainty will affect price. In

both cases, however, the rate of production in a competitive market is still

socially optimal.2

We next extend the model to include exploration. Exploration has two

functions -- to obtain information, and to actually increase reserves. We

separate these two functions by introducing exploratory effort as a second policy

variable in two different ways. First we treat exploratory effort as an input to

the production of a stock of "knowledge," with the variance of reserve fluctuations

declining as that stock increases. Here we find that exploratory effort is non-

zero (and there is a value to information) only if extraction costs depen on

reserves. Second, we treat exploratory effort as an input to the production of

reserve discoveries, with uncertainty over the future response of discoveries to

exploratory effort. We show that this uncertainty, introduced through a parameter
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in the discoveries function that evolves according to a stochastic process, has

no effect on the expected dynamics of market price, and will affect the expected

dynamics of exploratory effort only if the discoveries function is nonlinear in

the stochastic parameter.

This paper can be viewed as one of a series of papers of the "cake eating"

genre that have appeared over the past few years. (In this paper both the size

of the cake and the consumer's appetite are changing randomly as the cake is

being eaten.) In related papers, Kemp (1976), Loury (1978), Gilbert (1978),

Heal (1978) and Hoel (1978) examine resource exploitation when the level of re-

serves is unknown. (Heal also considers the case of known reserves with an

additional discovery of unknown size occurring at some discrete unknown time in

the future, and Long (1975) examines the case of known reserves that may be

expropriated at some time in the future.)

For most resources, however, the greatest uncertainty is over how reserves

will change in the future - that is, what effective recoverable reserves will be

over the lifetime of resource use. If a known reserve level changes randomly but

continuously over time, then as we will see the optimal rate of resource use and

the behavior of the market price will differ considerably from the case where the

reserve level is simply unknown, or where it is known but discrete changes in

reserves (such as a new discovery in the paper by Heal (1978) or expropriation

in the paper by Long (1975))occur at discrete times.

Similarly, Dasgupta and Heal (1974) and Dasgupta and Stiglitz (1978)

examine the effects of demand uncertainty on the pattern of resource use. In

their models, changes in demand of discrete size occur at discrete and unknown

future times as the result of an invention of a substitute for the resource.

But the sudden invention and commercialization of a competitive substitute is

rare, and it is more common to witness gradual changes in technologies, factor
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prices, other economic variables, and environmental restrictions that cause gradual

changes (sometimes upwards) in the costs of substitutes, and thus gradual changes

in resource demand. Again, we will see that random but continuous changes in

demand over time lead to a different pattern of resource use than do discrete

changes in demand.

In the next section we describe our treatment of uncertainty in more detail,

and set forth the basic model. The solution to this model is obtained in Section

3, and discussed in Section 4. Section 5 examines the use of exploration as a

means of reducing uncertainty, and Section 6 examines the optimal use of explora-

tion for reserve accumulation under uncertainty. The results are summarized in

the concluding section.

2. The Basic Model

Our model of the resource market includes rising extraction costs, and is

straightforward except that the market demand function and the reserve level are

driven by stochastic processes with independent increments (Ito processes). We

first describe the dynamics of demand and the reserve level, and then state the

firm's production problem, which is solved using stochastic dynamic programming.3

The market demand function has the form

p = p(q,t) = y(t)f(q) (1)

with f'(q) < 0, and y(t) a stochastic process of the form

y adt + dz = adt + a 1 ( t) d (2)

where E1(t) is a serially uncorrelated normal random variable with zero mean and
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unit variance (i.e., dzl describes a Wiener process).

Equation (2) implies that uncertainty about demand grows with the time

horizon,5 and that fluctuations in demand occur continuously over time. No

jumps in dy/y are possible, and *(t) is continuous with probability 1 (although

over any finite time period any change in dy/y of finite size is possible). We

stress this point because it distinguishes our characterization of demand uncer-

tainty. In Dasgupta and Heal (1974) and Dasgupta and Stiglitz (1978), for example,

changes in demand are discontinuous (a large negative change occurs at some un-

certain time).

Reserves are also assumed to fluctuate randomly over time, according to the

stochastic process:

dR = -qdt + 2dz2 = -qdt + 22(t 3)

where q is the rate of production. Initial reserves R is known exactly (i.e.

if there were no capacity constraint, a volume up to R0 could be produced at

the initial time). Similarly, actual reserves in place at any particular time

is known at that time. However, when production begins we do not know what the

effective reserves ultimately available for production will be. Effective re-

serves, given by

T T
R Jo q(t)dt = R + 2 f0 dz2 (4)

is a random variable with mean R and variance o2T. Also, because effective reserves

is unknown and because demand fluctuates randomly, the terminal time T (the end of

the planning period defined as the time when average profit first becomes zero)

is also a random variable.

In physical terms, reserves in this model are closest in nature to the

published estimates (for oil and natural gas) of "proved reserves," as long as
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we remember that estimated "proved reserves" are in fact revised regularly.

In the model the current reserve estimate R0 represents the volume of resource

that could be produced today if there were no capacity constraints on the

rate of production. This estimate will change v;er time as a result of new

geological surveys that extend known reservoirs, as a result of the information

that comes about from exploratory activity, or as a result of the production

process itself (e.g., a drop in reserves occurring as water seeps into a reservior).

We can now state the production problem as one of stochastic optimization.

Producers must determine the rate of production q(t) over time so that at each

point in time the expected value of the sum of discounted profits to go is maximized.

Initially, at t = 0, the problem is thus

T rtT
max E0 f [y(t)f(q) - C(R)]qe dt = E Jo d(t)dt (5)

where C1(R) is average production cost, with C(R) < 0. In the competitive case

each producer solves the problem assuming that f(q) = f is an exogenous parameter

independent of that producer's production. (In addition, we ignore the common

access problem in the competitive case.) In the monopoly case the single producer

recognizes that f(q) is a function of his own production.

The maximization in (5) is subject to the stochastic differential equations

(2) and (3), with R > 0, and t = T when d(t)/q = 0. We also make the important

assumption that the stochastic processes driving demand and reserves are independent

i.e., that E[el(t)e 2(t)] = 0 for all t.

3. Solution f the Model

We use stochastic dynamic programming to obtain the (expected) optimal price

and production trajectories: Define the optimal value function:

T

J = J(y,R~t) = max E f 0 d()dT (6)
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Note that J is a function of the stochastic processes y(t) and R(t), and since

E(£1s2) = 0, the fundamental equation of optimality is:

0 = max [I (t) + 'l/dt)E dJ]
q t

- max MId(t) + Jt - qJ + yJ + y 2 Rd l Ry y + yy 2JRR]

Maximlozation with respect to q gives:

DHd/aq = JR (8)

i.e., the shadow price of the resource should equal the incremental profit that

could be obtained by selling an additional unit. Note that in the competitive

case equation (7) is linear in q. Producers will therefore produce at maximum

capacity if d/q > JR and will produce nothing if ld/q < JR, so that market

learing implies TId/q = JR '

Equation (8) could be substituted back into equation (7) to yield a partial

differential equation for J(y,R,t). Theoretically, one could solve that equation

for J and then determine the optimal production trajectory q*(t) explicitly from

(8). In practice, however, the solution of such a partial differential equation

is usually not feasible. Instead, we try to obtain a solution by eliminating J

from the problem.

First, differentiate equation (7) with respect to R:

Dd 1 2 2 1 2
R + JRt - qJRR + YJRy + - 1Y JRyy + 2 RRR (9)

Now using Ito's Lemma note that (9) can be re-written as:

aTd/aR + (l/dt)Etd(J R ) = O (10)

We cannot differentiate both sides of equation (8) with respect to time since both

Id and J are functions of stochastic processes, so their time derivatives do not

exist. However, we can use Ito's Lemma and apply the differential operator
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(l/dt)Etd( ) to both sides of the equation:

(1/dt)Etd(Hd/aq) = (l/dt)Etd(J R ) (11)

We can combine equations (10) and (11) to eliminate J and obtain:

(1/dt)Et d(3Td/aq) = -ai (12)

Equation (12) is a stochastic version of the well-known Euler equation from

the calculus of variations.7 The equation is easiest to interpret in its integral

form (using the boundary condition that d(T) = 0):

and(t) -T and(T)
__ _E dalr ('(12')

aq -Et aR d

which says that the marginal profit from selling 1 unit of reserves should just

equal the expected sum of all discounted future increases in profit that would

result from holding that unit in the ground (thereby reducing production costs).

We can now use equation (12) to determine the expected price dynamics. Con-

sider first the competitive case, for which aHtd/q = Hd/q = [p(q,t) - C -(R)le

Substitute this into (12) and divide through by e :

-r[p-C1 (R)] + (l/dt)Etdp - (/dt)EtdCL (R )= -(and/aR)ert = qC;(R) (13)

Now expand dC1(R) using Ito's Lemma:

dC (R) = C;(R)dR + 1 (R)(dR)2 (14)

2 2
Substituting this into (13), and using Et(dR) = -qdt and Et[(dR) ] = a2dt, (from

equation (3)) we obtain:

(l/dt)Etdp = r[p - C1(R)] + 2C I (R ) (15)

In the monopoly case aId/aq = - C (R)]e t Substituting this into

(12) we find

(l/dt)EtdMR = r[MR - C(R)] + d20I (R) (16)it 1 !G2 1~~~~~~~~~~~~(6
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We will also want to examine the social optimality of the competitive

solution. Considering only reserve uncertainty (note that Oadocs not appear in

(15) or (16)), and replacing (5) with

T Tmax T -rt t

max E o [u(q) - C(R)qje dt = E0 f 0 Ud(t)dt (5')

with u' > 0, u" < 0, it is easy to show b applying (12) that the expected rate

of change of marginal utility u' (q) = J is

(l/dt)Etd4 = r[ - C1(R)] + o2 (R ) (17)

4. The Effects of Uncertainty

Although production and price will fluctuate stochastically in this model,

we see from equation (15) that the expected rate of change of the competitive price

will differ from the certainty case onl, if production cost C1(R) is non-linear.

This deviation from the certainty case occurs for a simple reason. Suppose

C1"(R) > 0, and random increases and decreases in reserves occur that balance

each other out, leaving effective reserves Re unchanged. Clearly, these fluctua-

tions will have the net effect of raising average production cost, since each

decrease in R will raise C1(R) more than an equal increase in R lowers C1(R).

Since fluctuations occur continuously over time, there is an incentive for pro-

ducers to speed up the rate of production, thereby reducing this course of increased

cost. This in indeed what occurs; the last term in equations(15), (16) and (17)

is positive (when C1"(R) > 0), so that relative to the fixed reserve case, price

begins lower and rises more rapidly.

What is more interesting is that if average production cost is constant

(or linear in R), the expected rate of change of price is the same as in the

certainty case. This may seem strange at first, and contradictory to the results

of other studies. It is easier to understand if we keep in mind the difference

in the nature of the uncertainties in our model from those in the models of other
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studies.

In Kemp (1976), Gilbert (1978), Loury (1978) and Heal (1978), for example,

reserve uncertainty is characterized by a level of reserves that is simply not

known, so that the resource product-r (or social planner) may suddenly find the

stock depleted. Like the driver of a car without a gas gauge, he is likely to

adopt a more "cautionary" rate of resource use, In our model, on the other hand,

the current reserve level is known exactly at each moment of time, and with a

finite production rate it is impossible for that level to drop to zero instantane-

ously. Since the stochastic component of reserves is continuous in time and the

reserve level can be monitored, the rate of resource use can be continuously

adapted to the changing reserve level, and thus the expected rate of change of

the value of the resource is unaffected by uncertainty.

To use a distinction introduced by Merton (1973), in our model there is

no "current" uncertainty, but only "future" uncertainty, Using this analogy,

holding an exhaustible resource asset in our model -- whether by a competitor,

a monopolist, or a social planner -- is like continually reinvesting in very short-

term bonds as interest rates fluctuate stochastically, so that the return from the

asset over the next "instant" is known with certainty. In the other studies cited,

the return over any period, however small, is uncertain, as the resource holder

can suddenly find his reserves exhausted,

It is interesting to note that even with average cost constant, the expected

rate of change of production can differ from that in the certainty case -- even

though the expected rate of change of price is the same as the certainty case.

The expected rate of change of production is found by recognizing that the optimal

rate of production is a function of the state variables y and R, i.e., q = q*(y,R),

and then expanding the differentials dq and dp using Ito's Lemma. We do this is

Appendix A, and show that in the competitive case (with constant average cost),
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1 (r-a)p - rk - Y(al, U2)

- tdq = yf'(q)

This deviates from dq/dt in the deterministic case by the factor y,

22 1 , , 22(2 22
¥(O , O2 ) = Yy qf'(q) + yf" (q)[clyy q + 2qR (19)

where qy and qR are the derivatives of the optimal rate of production with respect

to y and R.

We show in the Appendix that qy > 0, so that y < 0 if f"(q) < 0, but is of

undetermined sign if f"(q) > 0. The effects of demand and reserve fluctuations

are easiest to see by considering the two components of y - the term in f' and

the term in f" -- separately. The term in f' (q) tends to increase the rate at

which q falls, and therefore raises the initial q (and lowers PC). This occurs

because given any value of , a larger value of 1 causes the demand curve to

rotate downwards over time (in expected value terms) at a faster rate (see footnote

4). Given the r-percent rule for the rate of growth of price, this accelerates

the rate at which q falls and requires a larger initial q for the terminal con-

dition (that expected reserves and expected demand become zero simultaneously)

to hold.

The term in f"(q) tends to reduce the rate at which q falls and lower qO

if f" > 0. The reason is that fluctuations in p of mean zero imply a net increase

(decrease) in q if f" > (<) 0. Thus equation (15) for p together with the terminal

condition requires a slower rate of decline of q (and lower q and higher p) if

there are fluctuations in either demand or reserves.

The effects of uncertainty n production are similar in the case of a

monopolist, except that the rate of change of q will depend on f"' as well as f".
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Results for this case are given in Appendix A.

We also show in Appendix A that the expected rate of production under

social welfare maximization is the same as with a competitive market as long as

producers are (as we have so far assumed) risk-neutral. Risk-averse producers

will under-conserve, with p beginning lower and rising more rapidly than in

equation (1;).

5. The Use of Exploration to Reduce Uncertainty

We have seen that demand and reserve uncertainty will alter the rate of

resource production, and if production cost is a nonlinear function of reserves,

will alter the expected rate of change of price as well. A question that natur-

ally arises is what expense would producers be willing to incur to reduce this

uncertainty?

In this section we introduce exploration as a means of reducing stochastic

fluctuations in reserves by extending the basic model in a simple way. 10 Pro-

ducers now adjust two policy variables over time, production q and the level of

exploratory activity w, to maximize:

T T
max E f0 [p(q)q - C(R)q - C2 (w)]e-rtdt = E 0 d(t)dt (20)
q,w

subject to dR = -qdt + a(K)dz (21)

and dK = g(w)dt (22)

with q,w,R,K > 0. Here K is a stock of "knowledge" that is "produced" by explora-

tory activity. The value of K (if any) is that it reduces the variance of the

stochastic fluctuations in R, i.e., '(K) < 0. C2 is the cost of exploratory
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activity. We assume that C' > 0, C" > 0, g' > 0, g" < 0, that marginal discovery2 C2

cost C' (w)/g'(w) increases with w, and C (0)/g'(0) = 0.

Our objective is to determine the dynamics of exploratory activity, and

in particular to determine under what conditions w will be non-zero, so that there

is value to increasing K. The solution to the above optimization problem follows

much the same approach as in Section 3, and is presented in Appendix B. There we

show that for risk-neutral competitive producers the expected rate of change of

price is again given by equation (15), and the expected rate of change of w is

given by

rM(w) - o(K)w(w) G2(wM +w) + '(K)O(K)C (R )
__2 R
E dw M'(w) (23)

dt t M'(w)

12where M(w) = C2 (w)/g'(w), i.e., is marginal "discovery" cost.

We show in Appendix B that w = 0 always if C1(R) = O (or, of course, if

1U'(K) = 0). In fact, a unit of knowledge K has value onlyif C' (R) < 0 As

shown in the Appendix, the value of K comes about if C < because stochastic

fluctuations in R will, over the planning horizon, increase production costs.

A reduction in (K) through exploratory activity will reduce these costs by allow-

ing producers to better allocate production intertemporally - i.e., to allocate

more production to periods when R is relatively large. (The allocation results

in a smaller expected stream of profits, of course, the less is known about

the future trajectory of R.)

Note from equation (23) that if M"(w) is negative or positive but small, w will

(on average) rise over the planning horizon (falling discontinuously to zero at t = T).

Discounted exploration costs are reduced by postponing exploration (so that the term

rM(w) in (23) tends to push w into the future). Further, as can be seen by equating

(B.4) and (B.7), the two expressions for the shadow price of K given in Appendix B,

the marginal benefit of a unit of K rises as R falls to Ri (R Ri n as d/q + 0
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and q + 0), so that marginal cost M(w) should rise and w should rise over the horizon.

(This pattern of rising w is partly counteracted by the term in M"(w); w should

be distributed more evenly over time if M(w) rises more and more sharply with w.)13

6. The Use of Exploration to Accumulate Reserves

We now turn to the use of exploration as a means of discovering new

reserves, but with uncertainty in the exploration-discovery relationship. Sto-

chastic models of resource exploration have recently been developed by Arrow and

Chang (1978) and Deshmukh and Pliska (1978) in which discrete increments of

reserve discoveries occur stochastically (e.g., via a Poisson process) in proportion

to the level of exploratory activity. Here we follow a different tack and assume

that the response of discoveries to exploratory activity is known today but becomes

increasingly uncertain in the future.

An earlier paper by this author (1978b) examined the linkage between re-

source exploration and production through a deterministic model in which reserves

can be maintained or increased through exploration, and production costs vary

inversely with the reserve level.l4 Here we extend that model by introducing into

the discoveries function a parameter that follows a stochastic process. We

examine the effects of uncertainty by comparing our results here with those of the

earlier paper.

As before, producers in this model determine production q and the level of

exploratory effort w. The rate of reserve discoveries depends on w, on cumulative

discoveries x, and on a parameter that follows a stochastic process -- that is,

x = f(w,x,O), with f > 0 and f < 0. Thus, as exploration and discovery proceed
it becomes more and more difficult to make new discoveries. We make

over time, it becomes more and more difficult to make new discoveries. We make
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no assumption now about the way affects the discovery rate except that f be

smooth in , but we specify the dynamics of as

dO = a(O)dz = (e6)e(t)/d , (24)

so that E[dO] = 0. Thus, (given w and x) the rate of discoveries today is known

exactly, but we cannot know what the rate will be in the future.l5

The producer's problem is:

T T
max Ef 0 [qp - C(R)q - C2(w)]e-dt = E0 O d(t)dt (25)
q,w

subject to R = x - q (26)

= f(w,x,0) (27)

dO = o(O)dz (28)

and R, q, w, x > 0. We again assume that C(R) < 0, C(w) > 0, C(w) > 0, and
1 2 216

that marginal discovery cost C(w)/f increases with w.16
2 W

The solution of this problem again follows the approach used in Section 3,

and is presented in Appendix C. There we show that the dynamics of price is given

by:

(1/dt)Etdp = rp - rC1(R) + C(R)f(w,x,0) (29)

under competition, and by

(l/dt)Et dR = rMR - rC1(R) + C(R)f(w,x,O) (30)

under monopoly, while the dynamics of exploratory effort is given by

C,(w)[(fwx/f - f r + r 2 (O)f w( /fw ] +.C1(R)qf w

(l/dt)E dw = (31)
~~~t C"(w) - C(w) (fJfw
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under both competition and monopoly.1 7

Equations (29), (30), and (31) can be compared to Equations (9), (15), and

(13) in Pindyck (1978b). We can see from this that uncertainty as modeled here

has no effect on the expected rate of change of market price, but will have an

effect on the expected rate of change of exploratory effort, and therefore on

the expected level of market price.

The effect of uncertainty depends on the nonlinearity of f with respect to

0, and works in much the same way that reserve uncertainty affected price in our

model without exploration. If fwee > 0 and f < 0, uncertainty will make
wee ww

(1/dt)E dw larger (and the initial value of w smaller). For example, in the

certainty case, if R is initially very small, w will begin high, with < 0.18

We see from equation (31) that if fwee > 0, (l/dt)Etdw will be larger, so that w

will begin at a lower level and fall less rapidly. However, this does not imply

a reduction in the rate of reserve accumulation. With fwee > 0 any increase in e

will raise the marginal physical product of exploratory effort more than an equal

decrease in will lower it. Zero-mean fluctuations in will on average increase

the productivity of exploratory effort, thereby reducing the amount of exploration

currently needed in the intertemporal trade-off between the gain from postponing

exploration (and discounting its cost) and the loss from higher current production

costs resulting from a smaller reserve base. Similarly, in the certainty case if

R is initially large, w will be initially small, with w > 0 at first, and < 0

later. With fe > 0, fluctuations in will make w still smaller at first,

and (1/dt)Etdw larger (although w and q will fall to zero later ecause of the

increase in productivity).
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A simple example of a discovery function is f(w,x) = Aw e .9 We can

see that linear shifts of this function, for example f(w,x,O) = AOwe - x, with

dO = o0dz, will have no effect on the expected level of exploratory effort.

Although the future discovery rate is unknown, the current rate is known, and

producers can continuously adjust to random changes in that rate. It is only

where stochastic fluctuations in on average raise (lower) the marginal product

of exploration that the initial w is decreased (increased). For example, the

initial w is reduced if f(w,x,O) = Awae x , or Aw e 0x, with dO = 0dz in both

cases.
These results also provide some insight into the measurement of resource

scarcity. Resource "rent," i.e. price net of extraction cost (or marginal

revenue net of extraction cost in monopolistic markets),can be shown to be a

useful measure of in situ scarcity, but it is not clear how rent itself should

be estimated.2 0

Devarajan and Fisher (1979) have raised the issue of whether marginal

discovery cost can be used to measure rent if there is uncertainty.21

In our model, marginal discovery cost differs from rent whenever the shadow

price of cumulative discoveries is non-zero. As can be seen from equations (C.2),

(C.3), and (C.7') in the Appendix, undiscounted rent is:

C'(w) rt TdC
JRe = P - C1(R) = f + e E I d 2f=fe-rTd (32)

i.e., the sum of marginal discovery cost and the undiscounted shadow price of

cumulative discoveries. As long as depletion locwers the productivity of exploration

this last term will be positive, so that rent must be measured by subtracting
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extraction costs from the observed price, or from some estimate of what the price

would be in a free market.

7. Concluding Remarks

The major results of this paper are summarized for the competitive market in

Table I. These results are easier to understand if we remember that ou~

characterization of uncertainty is different from that in most other studies

of resource use. Here uncertainty --- whether over demand for

the resource, the reserve level, or a parameter affecting the response of dis-

coveries to exploratory effort -- pertains to the future value of the variable in

question. Producers in our model have complete information about the current

status of the resource market; what they do not know is what the values of demand,

reserves, etc. will be in the future. However, since stochastic fluctuations occur

continuously over time, producers (or social planners) can adapt to these fluctua-

tions continuously. As a result stochastic fluctuations alter the expected rate

of change of price or exploratory activity only to the extent that the average cost

of production or productivity of exploration is changed through nonlinearity in a

fluctuating variable.
[Insert Table I]

Thus we find that with average production cost constant, price will rise

according to Hotelling's r-percent rule. However, even with C1 constant, the

rate at which production falls, and the initial values of production and price,

are affected by uncertainty. This occurs first because demand fluctuations cause

rotational shifts in the demand function, and second because if demand is non-

linear, zero-mean fluctuations in price imply a net change in production for

market clearing.

We also examined the use of exploration, first as a means of gathering

information, and second to accumulate reserves. We found that exploration should

be used for information-gathering (i.e. to reduce the variance of stochastic re-

serve fluctuations) only if production costs vary with reserves. If C(R) < 0,
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ex ante knowledge of the terminal time T and the distribution of R over time permit

production costs to be reduced on average by allocating more production to periods

when R is (known to be) larger.

We found that when exploration is used to accumulate reserves, the time-

profile of exploratory activity is altered if a stochastically fluctuating para-

meter enters the discoveries function noilinearly. However this occurs not because

the future response of discoveries to exploration is not known, but rather because

fluctuations can change the average productivity of exploratory effort, and thus

shift the optimal level of exploration.

We must ask whether real-world uncertainty in resource markets can be

well approximated by the continuous stochastic processes used in this paper.

We have argued that the major uncertainties over demand and reserves have more

to do with the future values of those variables, with random changes usually

occurring more or less continuously over time. Of course resource markets are

also affected by other types of uncertainty (several of the oil-exporting countries

might suddenly cut production, for example), and our results in this paper should

therefore not be taken too literally. We have only examined the effects of a

particular type of uncertainty on resource markets.



APPENDIX

A. Dynamics of Production in the Basic Model

To obtain the expected dynamics of production under competition, monopoly,

and utility maximization, remembe: that q = q*(y,R) along the optimal trajectory.

Now expand the differential dq using Ito's Lemma:

1 2 1
dq = qydy + qRdR + 2yy(dy) + qRR(dR)- + qyRdydR (A.1)

Use equations (2) and (3) for dy and dR, and recall that E(dzldz 2) = 0 by assump-

tion, so that

2 2 2 2 2
Et [(dq)2 = aly dt + y2qRdt + o(t) (A.2)

where o(t) represents terms that vanish as dt + 0. Also note that

22
Et[dqdy] = oly qydt + o(t) (A.3)

Now, to determine the dynamics of production in the competitive case (with

constant average production cost), expand dp = d[y(t)f(q)]:

dp = yf'(q)dq + f(q)dy + yf"(q)(dq) + f'(q)dqdy (A.4)

Take expectations, divide through by dt, substitute in equations (15) (for Etdp),

(A.2) and (A.3) and re-arrange to yield equations (18) and (19).

The sign of Y(al,a2) in equation (19) depends in part on the sign of qy.

Consider an icrease in y, so that the demand curve rotates to the right. Now

suppose qy < 0. p rises according to equation (15), so as long as C1 > 0, q will

fall to zero before reserves are exhausted. Thus with C1 > (=) 0, the terminal

conditions can be satisfied only if qy > (=) 0.

To determine the dynamics of production in the monopoly case, expand

dMR = d(yf + qyf'(q)), take expectations, divide through by dt, substitute in

equations (16), (A.2) and (A.3), and re-arrange, to yield:

1 (r-a)MR - rk - B(a 1 ,a 2 )
d-Etd q = R (A.5)MR' (q)
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2 1 2 2 2 2 2
with B(ao1, 2) = alyqyMR' (q) + y [f"(q) + qf"'(q)][ayY qy + 2qR] (A.6)

The behavior of q can be somewhat more complicated than in the competitive case

insofar as f"' (q) might change sign as q falls. Thus q might at first fall more

rapidly, but later more slowly than in the certainty case.

The dynamics of production under social welfare maximization is found by

expanding d[u'(q)] and then following the same steps as in the competitive and

monopoly cases above. The reader can easily demonstrate that equations (18) and

(19) will again apply, so that the competitive market exploits the resource at

the socially optimal rate.

This is not the case, however, if the competitive producers are risk-

averse. If the integrand in equation (5) is replaced by Ud = U(n)e rt with

n = (p-C1)q, and U' > 0 and U" < 0, then the dynamics of price is found by replacing

Id with Ud in the stochastic Euler equation (12). Doing this (assuming for

simplicity C1 constant and only reserve uncertainty) yields:

22 2
1 dp = r(p-C1 )U' () - o2qR[p'(q)] U") ((A7)

z- dp (A.7)
dt t U'(I) + (p-C1)U"(ll)

Since U < 0, p will rise faster and begin lower the greater is a2, so that

producers under-conserve.

B. Exploration to Reduce Uncertainty

Here we show that equations (15) and (23) describe the dynamics of price

and exploration for the model of Section 5. As usual we define the optimal value

function

J J(R,K,t) = max Et f TI d()dT (B.1)
q,w 0

The fundamental equation of optimality is:

-= max [d(t) + Jt qJ + g()JK + KJ B2
Qiw~~~~~~~O(KJR
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Maximization with respect to q implies:

alId/alq = JR (B.3)

as before. Maximization with respect to w implies

ald/aW = -g' (w)JK (B.4)

so that J , the shadow price of a unit of "knowledge", is equal to e 'C(w)/g'(w),
C2

the discounted marginal cost of "finding" that unit.

To see that equation (15) again describes the dynamics of price, note that

equation (10) results from differentiating (B.2) with respect to R and re-writing

using Ito's Lemma, and equation (11) again results from applying the differential

operator (l/dt)Etd( ) to both sides of (B.3). Combining equations (10) and (11)

again gives equation (12), and (15) follows from this.

To determine the dynamics of exploration, differentiate (B.2) with respect

to K, and, noting from (B.3) that JRR = a 2nd/Raq, re-write as:

(l/dt)Etd(JK) + a' (K)a(K)3 Id/aR3q = 0 (B.5)

Now apply the differential operator to both sides of (B.4) and then combine with

(B.5) to eliminate JK and yield:

(l/dt)Etd[e rtC(w)/g'(w)] = a' (K)O(K)C (R)e (B.6)

Equation (23) follows by expanding the left-hand side of (B.6) using Ito's Lemma

2 2 2
and noting that w = w*(R,K), so that Et (dw) = a w dt.

Besides yielding equation (23), equation (B.6) can be interpreted to show

the value of information. Using (B.4) for the shadow price of information JK,

write (B.6) in integral form as follows:

1 2(K)C (R)eT d (B.7)
K -KEtft V (K) C(R)e

Note that K has value only if C1' < 0. If C(R) < 0 and the distribution of reserves1 1
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over time is known for all time, production costs can on average be reduced by

22
allocating more production to periods when R is relatively large. Stochastic

fluctuations add to production costs by reducing the ability to make this

optimal allocation of production oer time. If '(R) = 0 (or if o'(K) = 0),

J = 0 C(w)/g' (w) = 0, and therefore w = 0.
JK , C2

C. Exploration to Accumulate Reserves

Here we show that equations (29) and (31) describe the dynamics of price

and exploration for the model of Section 6 under competition, and (30) and (31)

describe the dynamics under monopoly. The fundamental equation of optimality is

now:

0 = max Ild(t) + Jt + [f(w,x,8) - q]JR + f(w,x,8)Jx + 2 ( ) JO ] (C.1)

Maximization with respect to q (and market clearing in the competitive case) again

gives:

ald/aq = JR (C.2)

and maximization with respect to w gives:

a3d/3w = -f (JR + Jx) (C.3)

Note that (JR + Jx) is the "net" shadow price of a unit of reserve discoveries, i.e.,

the value of increasing the reserve base by 1 unit plus the (negative) value of

increasing cumulative discoveries by 1 unit, thereby increasing the cost of all

future discoveries. Since 3 d/3w = -C2 (w)e , this net shadow price is just.

equal to the discounted marginal cost of a unit of discoveries (an in equation (B.4)

previously).
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Differentiate (C.1) with respect to R, and re-write as:

a3rd/aR + (/dt)Etd(JR) = (C.4)

Apply the.differential operator (/dt)Etd( ) to both sides of (C.2), and combine

the resulting equation with (C.4) to yield:

(1/dt)Etd(Md/3q) = - d/3R (C.5)

Note that this is the same as equation (12) in Section 3, and is used to obtain

the equilibrium price trajectory.

Now differentiate (C.1) with respect to x, and noting that d/ 3x 0,

use Ito's Lemma to re-write the resulting equation as:

(l/dt)Etd(J x) = - fx(J P. x (C.6)

Combine this with equation (C.3) to yield:

(l/dt)Etd(Jx) = (fx/fw)al d/aw (C.7)

If we write (C.7) in integral form we see that it boils down to the definition of

the shadow price of cumulative discoveries, J 

-J = Et (f/fw)C2(w)e-r dT = Et f=f* e-rTd (C.7')
t t

i.e., -Jx is just the sum of all discounted future increases in discovery costs

(evaluated at the optimal discovery rate) brought about by a 1-unit increase in

cumulative discoveries.

Now apply the differential operator (l/dt)Etd( ) to both sides of (C.3):

1 d 1 1 1
Etd( f ---Etd(JR)- f dtd(J ) (JR+ x ) - E (f ) (C.8)

dt t w wt ( wtdt wR xdtt x

Substitute equations (C.3), (C.4) and (C.7) into (C.8) to eliminate the derivatives

of J:

1 td(w ) =d a d d ad+ ( ad 1
E d ) - fw _-Wt + . (C.9)dt t aw w R X aw + (l fw~aw / td(
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The dynamics of price and exploratory effort can now be obtained from

Equations (C.5) and (C.9) respectively. For risk-neutral competitive producers,

3ad/Dq = [p - C(R)]e , while in the monopolistic market, d/aq = [MR - C(R)]e-rt

Substitution into (C.5) yields equations (29) a (30) respectively. To obtain

equation (31) substitute ad/aw = - C2(w)ert into (C.9), expand the differential

operators, and re-organize.
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Of course, when extraction costs are not constant, the r-percent rule no

longer applies even in the deterministic case. See Levhari and Liviatan

(1977) and Pindyck (1978a).

2Weinstein and Zeckhauser (1975) examined demand uncertainty using a

discrete-time model similar to the one in this paper, where current de-

mand is known but demands in future periods are unknown (but are revealed

at the beginning of each period). They also found that (with zero ex-

traction costs and risk-neutral firms) the expected competitive market

price will rise at the rate of interest, and the competitive market

equilibrium is socially optimal. Here we extend the Weinstein-Zeckhauser

results to the continuous-time case.

3The paper makes use of Ito's differentiation rule for functionsof stochastic

processes as well as stochastic dynamic programming. For a brief intro-

duction to these techniques, see Chow (1979) or the Appendix of Fischer (1975).

Kushner (1967) provides a detailed treatment. Applications to problems

in economics can be found in Merton (1969, 1971, 1973) and Fischer (1975).

4Equation (2) is the limiting form as h 0 of the discrete-time difference

equation (t + h) - y(t) = h + ol1 l(t)/h, and E[dy/y] = adt, and Var[dy/y] =

2 Y(t) 1 
Oldt. Note that y(t) is log-normally distributed, with E [log( = (a -1 2 )t,

so that the expected value of demand remains stationary if a = 1/2. In

general we would expect a > 42/2 so that demand has some positive deterministic



drift as a result, say, of economic growth. For an introduction to stochastic

processes of the form of (2), see Karlin and Taylor (1975).

5Note that Var[log(y(t)/y(O))] = o2t.

6We use the notation JR = aJl/R, etc. (l/dt)E d( ) is Ito's differential operator.

For a discussion, see Dreyfus (1965), Kushner (1967), Merton 1971) or Chow (1979).

7A clear discussion of the connection between deterministic dynamic programming

and the calculus of variations, and a clear derivation of the fundamental equation

or optimality in stochastic dynamic programming are provided by Dreyfus (1965).

8Thus the presence of the term in f'(q) results because the stochastic component

of demand is multiplicative (and log-normally distributed) rather than additive.

This term would not be present were the demand function of the form p(q,t) = f(q)

+ y(t).

9Weinstein and Zeckhauser (1975) obtain the same result for their iscrete-time

characterization of demand uncertainty.

1We could also introduce a "market research" activity to reduce demand uncertainty,

but this would complicate the analysis without adding marginally valuable insights.

1 1Note that we could have written g = g(w,K), with gK < 0. Again, the additional

algebra that results outweighs the insights obtained. Note also that we are

ignoring problems associated with common access, and most important, the appro-

priability of the stock of "knowledge."

12The monopoly case leads to similar results and is not presented here.

13 *
The reader can show (by expanding dq = d[q (R,K)] to obtain (1/dt)Etdq) that

in this context exploratory activity has no effect on the dynamics of production.

The expected rate of change of q is again given by equations (18) and (19) (but

with o = 0).

1 4That paper shows that if the reserve level is initially very small, the equilibrium

price trajectory will be U-shaped in both competitive and monopolistic markets.

1 5While this characterization of uncertainty may not seem realistic for an individual

I



(small) producer, it is quite reasonable as a way of thinking about a resource

market as a whole. Taking oil exploration in the United States as an example,

the aggregate discoveries likely to result from a given total level of exploratory

activity this year can be assessed with limited uncertainty. The uncertainty

becomes much greater, however, s we try to assess the discoveries likely t'

result in future years.

Note that there is no demand uncertainty in the model. Demand uncertainty, as

specified in Section 2, is easily shown to have no effect on the dynamics of

price and exploration as long at it is uncorrelated with fluctuations in . We

therefore ignore it for simplicity.

This does not mean that the expected pattern of exploratory activity is the

same in the competitive and monopoly cases. q will be initially lower for the

monopolist, so that (l/dt)Etdw will be larger, since C1(R) is negative. Thus,

the monopolist will initially undertake less, but later more exploratory activity

than the competitive industry.

See Pindyck (1978b).

19See Uhler (1976) and the Appendix of Pindyck (1978b) for a discussion of the

empirical supportability of this function.

20
A measure of resource scarcity should reflect the present value of all current

and future sacrifices required to obtain a unit of the resource. Rent provides

such a measure in an in situ context, and is independent of such things that

affect prices as technology-based changes in extraction costs, most taxes, govern-

ment price controls, etc. For a discussion of this issue, see Fisher(1979),

Brown and Field (1978), and Pindyck (1978b).

21Devarajan and Fisher work with a two-period model in which there is current un-

certainty over the returns from exploration. In the context of that model they

show that rent can deviate from marginal discovery cost even if the shadow price

of cumulative discoveries is zero.



22To interpret (B.7), consider, for any reserve level R, the expected rate of

additions to marginal production cost resulting only from random fluctuations 
(as

opposed to extraction itself). This is found by setting q = 0O expanding dC1 using

1 2 "

Ito's Lemma as in equation (14), thereby obtaining: (l/dt)EtdC1 = (K)C (R)

This is the expected rate of flow of additions to marginal cost. 
The expected

rate of flow of additions to total production cost is found by integrating this

equation over all reserves from 0 to R. This yields the integrand in (B.7). Thus

JK is just the expected reduction in the discounted sum of these additional 
costs

resulting from 1 extra unit of K.
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