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ABSTRACT

Demand and reserve uncertainty are included in a simple model of an
exhaustible resource market by allowing the demand function and the reserve
level to fluctuate via continuous-time stochastic processes. Thus, producers
always know current demand and reserves, but do not know what demand and
reserves will be in the future. We show that demand uncertainty has no
effect on the expected dynamics of market price, while resérve uncertainty
shifts the expected rate of change of price only if extraction costs are
nonlinear in reserves. However if the demand function is nonlinear, both
demand and reserve uncertainty affect the dynamics of production, whatever

the character of extraction costs. The model is also extended to include

exploration, first as a means of reducing uncertainty, and second as a

means of accumulating reserves, with uncertainty over the future response

of:discoveries to exploratory effort.



Uncertainty and Exhaustible Resource Markets

1. Introduction

This paper examines the effects of two sources of uncertainty on the be-
havior of exhaustible resource markets: uncertainty over the future demand for
the resource, and uncertainty over the reserve base that will ultimately be
avaiiable for exploitation. These uncertainties are likely to be present in
most exhaustible resource markets because of the inherent long-run dynamics
involved in resource production. Our concern here is with the implications of
these uncertainties for market price evolution, for the optimality of the compet-
itive market, and for the role and value of exploration.

Our characterization of uncertainty is quite different from the usual one in
which some parameter or variable is taken to be unknown. We model demand uncer-
tainty by assuming that the market demand function shifts gandomly buf
continuously through time according to a stochastic process. Thus, although
today's demand is known exactly, future demand may be larger or smaller, and has
a variance that increases with the time horizon. Similarly, we model reserve un-
certainty by assuming that available reserves shift upwards or downwards, again
according to a stochastic process. Thus, as exploitation proceeds over time,
resource producers may find that more or less reserves are available for pro-
duction than originally expected.

In such a world the observed market price will be a random process, but there
are a number of qﬁestions to be acked about the behavior of the market in expected
value terms. First, should the expected price behave differently in the presence
of such uncertainty than in its absence? For exaﬁple, should the presence of un-
certainty cause producers -- in competitive or monopolistic markets -- to be more

or less conservationist than they would be otherwise? Second, does the competitive



market exploit the resource at a rate that is socially optimal in the presence of
uncertainty? Finally, what are the implications of uncertainty for exploration,
either as a means of reducing the uncertainty itself, or simply to accumulate
additional reserves?

We show in this paper that with constant extraction costs and risk-neutral
firms, neither demand nor reserve uncertainty (as characterized here) affect the
expected price dynamics in competitive or monopolistic markets, and Hotelling's
(1931) r-percent rule still applies. (The dynamics of output may, however, change
in the presence of uncertainty.) We will see that when extraction costs are a
function of the level of reserves, demand uncertainty still has no effect on the
expected behavior of price, although reserve uncertainty will affect price.1 In
both cases, however, the rate of production in a comﬁetitive market is still
socially optimal.2

We next extend the model to include exploration. Exploration has two
functions -- to obtain information, and to actually increase reserves. We
separate these two functions by introducing exploratory effort as a second policy
variable in two differeqt ways. First we treat exploratory effort as an input to
;he production of a stock of "knowledge," with the variance of reserve fluctuations
declining as that stock increases. Here we find tﬁat exploratory effort ig non-
zero (and there is a value to information) only if extraction costs depernd on
reserves. Second, we treat explorafory effort as an input to the production of
reserve discoveries, with uncertainty over the future response of discoveries to

exploratory effort. We show that this uncertainty, introduced through a parameter



in the discoveries function that evelves according to a stochastic process, has

no effect on the expected dynamics of market price, and will affect the expected
dynamics of exploratory effort only if the discoveries function is nonlinear in

the stochastic parameter.

This paper can be viewed as one of a series of papers of the "cake eating"
genre that have appeared over the past few years. (In this paper both the size
of the cake and the consumer's appetite are changing randomly as the cake is
being eaten.) In related papers, Kemp (1976), Loury (1978), Gilbert (1978),

Heal (1978) and Hoel (1978) examine resource exploitation when the level of re-
serves is unknown. (Heal also considerslthe case of known reserves with an
additional discovery of unknown size occurring at some discrete unknown time in
the future, and Long (1975) examines the case of known reserves that may be
expropriated at some time in the future.)

For most resources, however, the greatest uncertainty is over how reserves

will change in the future — that is, what effective recoverable reserves will be

over the lifetime of resource use. If a known reserve level changes randomly but

continuously over time, then as we will see the optimal rate of resource use and

the behavior of the market priée will differ considerably from the case where the
reserve level is simply unknown, or where it is known but discrete changes in
reserves (such as a new discovery in the paper by Heal (1978) or expropriation

in the paper by long (1975))occur at discrete times.

Similarly, Dasgupta and Heal (1974) and Dasgupta and Stiglitz (1978)
examine the effects of demand uncertainty on the pattern of resource use. In
their models, changes in demand of discrete size occur at discrete and unknown
future times as the result of an invention of a substitute for the resource.

But the sudden invention and commercialization of a competitive substitute is

rare, and it is more common to witness gradual changes in technologies, facter



prices, other economic variables, and environmental restrictions that cause gradual
changes (sometimes upwards) in the costs of substitutes, and thus gradual changes
in resource demand. Again, we will see that random but continuous changes in
demand over time lead to a different pattern of resource use than do discrete
changes in demand.

In the next section we describe our treatﬁent of uncertainty in more detail,
and set forth the basic model. The solution to this model is obtained in Section
3, and discussed in Section 4. Section 5 examines the use of exploration as a
means of reducing uncertainty, and Section 6 examines the optimal use of explora-

tion for reserve accumulation under uncertainty. The results are summarized .in

_the concluding section.

2. The Basic Model

Our model of the resource market includes rising extraction costs, and is
straightforward except that the market demand function and the reserve level are
driven by stochastic processes with independent increments (Ito processes). We
first describe the dynamics of demand and the reserve level, and then state the
firm's production problem, which is solved using stochastic dynamic programming.

The market demand function has the form
p = plg,t) = y(t)f(q) (D

with f'(q) < 0, and y(t) a stochastic process of the form |,

-dl t -
y = odt +0ydz; = ade + 0,€,(£)¥de (2)

where-el(t) is a serially uncorrelated normal random variable with zero mean and



unit variance (i.e., dzl describes a Wiener process).
Equation (2) implies that uncertainty about demand grows with the time

. 5 . . . .
horizon,” and that fluctuations in demand occur continuously over time. No

jumps in dy/y are possible, and +(t) is continuous with probability 1 (although
over any finite time period any change in dy/y of finite size is possible). We
stress this point because it distinguishes our characterization of demand uncer-
tainty. In Dasgupta and Heal (1974) and Dasgupta and Stiglitz (1978), for example,
changes in demand are discontinuous (a large negative change occurs at some un-

certain time).

Reserves are also assumed to fluctuate randomly over time, according to the

stochastic process:

dR = ~-qdt + 0,dz, = -qdt + 0., (t)/dt | (3)
2772 272
where q is the rate of production. Initial reserves RO is known exactly (di.e.

if there were no capacity constraint, a volume up to R, could be produced at

0

the initial time). Similarly, actual reserves in place at any particular time

is known at that time. However, when production begins we do not know what the

effective reserves ultimately available for production will be. Effective re-

serves, given by

T T
R = fo q(t)dt = Ry + 0, [ o dz, | (%)

is a random variable with mean R0 and variance GgT. Also, because effective reserves
is unknown and because demand fluctuates randomly, the terminal time T (the end of
the planning period defined as the time when average profit first becomes zero)

is also a random variable.

In physical terms, reserves in this model are closest in nature to the

published estimates (for oil and natural gas) of "proved reserves," as long as



we remember that estimated 'proved reserves" are in fact revised regularly.

In the model the current reserve estimate Ro represents the volume of resource

that could be produced today if there were no capacity constraints on the

rate of production. This estimate will change over time as a result of new

geological surveys that extend known reservoirs, as a result of the information

that comes about from exploratory activity, or as a result of the production .

process itself (e.g., a drop in reserves occurring as water seeps into a reservior).
We can now state the production problem as one of stochastic optimization.

Producers must determine the rate of production q(t) over time so that at each

point in time the expected value of the sum of discounted profits to go is maximized.

Initially, at t = 0, the problem is thus

T T
max I [, @ - cl(a)]qe'rtdt = By [, Ty(0)de (5)

where CléR) is average production cost, with CH(R) < 0. In the competitive case
each producer solves the problem assuming that f(q) = f is an exogenous parameter
independenf of that producer's production. (In addition, we ignore the common
access problem in the competitive case.) In the monopoly case the single producer
recognizes that f(q) is-a function of his own production.

The maximization in (5) is subject to the stochastic differential equations
(2) and (3), with R > 0, and t = T when Hd(t)/q - 0. We also make the important
assumption that the stocﬁastic processes driving demand and reserves are independent

i.e., that E[el(t)ez(t)] = 0 for all t.

3. Solution of the Model

We use stochastic dynamic programming to obtain the (expected) optimal price

and production trajectories: Define the optimal value function:

T
J= J(y,g,t) = max Et‘fo Hd(T)dT . (6)



Note that J is a function of the stochastic processes y(t) and R(t), and since

E(slez) = 0, the fundamental equation of optimality 15:6

0 = max [I[,(t) + {1/dt)E_4J]
q d t
. 122 12
= mgx [T, (e) + Jo - alp any + 507y Jyy + 5050001 )]
Maximization with respect to q gives:
BHd/Bq = JR (8)

i.e., the shadow price of the resource should equal the incremental profit that
could be obtained by selling an additional unit. Note that in the competitive
case equation (7) is linear in q. Producers will therefore produce at maximum

capacity if Hd/q > JR’ and will produce nothing if Hd/q < J_, so that market

R
¢learing implies Hd/q =Jp -

Equation (8) could be substituted back into equation (7) to yield a partial
differential equation for J(y,R,t). Theoretically, one could solve that equation
for J and then determine the optimal production trajectory q*(t) explicitly from
(8). 1In practice, however, the solution of such a partial differential equation
is usually not feasible. Instead, we try to obtain a solution by eliminating J

from the problem.

First, differentiate equation (7) with respect to R:

2 2 12
+ 59)prR =

Bﬂd

5 + JRt - qJ

oR 0 (9)

1
+ ayJRy +~§Uly JRyy

RR
Now using Ito's Lemma note that (9) can be re-written as:

BHd/GR + (1/dt)Etd(JR) = (10)
We cannot differentiate both sides of equation (8) with respect to time since both

Hd and J are functions of stochastic processes, so their time derivatives do not

exist. However, we can use Ito's Lemma and apply the differential operator



(lldt)Etd( ) to both sides of the equation:
(lldt)Etd(BHdlaq) = (l/dt)Etd(JR) (11)
We can combine equations (10) and (11) to eliminate J and obtain:

(1/dt)Etd(3Hd/3q) = —BHdISR (i2)

Equation (12) is a stochastic version of the well-known Euler equation from
the calculus of variations.7 The equation is easiest to interpret in its integral

form (using the boundary condition that Hd(T) = 0):

Al (t) T BII (T)
-E, [ (12')

which says that the marginal profit from selling 1 unit of reserves should just
equal the expected sum of all discounted future increases in profit that would
result from holding that unit in the ground (thereby reducing produc.tion costs).

We can now use equation (12) to determine the expected price dynamics. Con-~
sider first the competitive case, for which and/aq = Hd/q = [p(q,t) - Cl(R)]e_rt.

Substitute this into (12) and divide through by e Tt

-r[p-C;(R)] + (1/dD)E dp - (1/dt)E dC, (R) = - (3 d/BR)ert = qCl® (13

Now expand dCl(R) using Ito's Lemma:

o 1 . 2 _
dCl(R) = Cl(R)dR + Ecl(R)(dR) (14)
Substituting this into (13), and using Et(dR) = -qdt and Et[(dR)Z] = cgdt, (from

equation (3)) we obtain:
(lldt)Etdp =r[p - C;(R)] + c" (R) - (15)

In the monopoly case BHd/Bq = [MR - Cl(R)]e_rt . Substituting this into
(12) we find

(L/4E MR = TR - ¢ R)] + 305C) (R) © (16)



We will also want to examine the social optimality of the competitive
solution. Considering only reserve uncertainty (note that cidocs not appear in

(15) or (16)), and replacing (5) with
T ™
max £, fo (@) - ¢ (R)aje "Tdt = g f, U (D)t (")

with u' > 0, u" < 0, it is easy to show bv applying (12) that the expected rate

of change of marginal utility u'(q) = ¢ is

12 "
(U/ADE @ = x[ - € (R)] + 50,01 (R) an

4. The Effects of Uncertainty

Although production and price will fluctuate stochastically in this model,
we see from equation (15) that the expected rate of change of the competitive price
will differ from the certainty case onl, if production cost Cl(R) is non-linear.
This deviation from the certainty case occurs for a simple reason. Suppose
Cl"(R) > 0, and random increases and decreases in reserves occur that balance
each other out, leaving effective reserves Re unchanged. Clearly, these fluctua-
tions will have the net effect of raising average production cost, since each
decrease in R will raise Cl(R) more than an equal increase in R lowers Cl(R).

Since fluctuations occur continuously over time, there is an incentive for pro-
ducers to speed up the rate of production, thereby reducing this course of increased
cost. This in indeed what occurs; the laét term in equations (15), (16) and (17)

is positive (when Cl"(R) > 0), so that relative'to the fixed reserve case, price
begins lower and rises more rapidly.

What is more interesting is that if average production cost is constant
(or linear in R), the expected rate of change of price is the same as in the
certainty case. This may seem strange at first, and contradictory to the results
of other studies. It is easier to understand if we keep in mind the difference

in the nature of the uncertainties in our model from those in the models of other



studies.

In Kemp (1976), Gilbert (1978), Loury (1978) and Heal (1978), for example,
reserve uncertainty is characterized by a level of reserves that is simply not
known, so that the resource producer (or social planner) may suddenly find the
stock depleted. Like the driver of a car without a gas gauge, he is likely to
adopt a more "cautionary" rate of resource use. In cur model, on the other hand,
the current reserve level is known exactly at each moment of time, and with a
finite production rate it is impossible for that level to drop to zero instantane~
ously, Since the stochastic component of reserves is continuous in time and the
reserve level can be monitored, the rate of resource use can be continuously
adapted to the changing reserve level, and thus the expected rate of change of

the value of the resource is unaffected by uncertéinty.

To use a distinction introduced by Merton (1973), in our modél there is
- ,
no "current" uncertainty, but only "future" uncertainty, Using this analogy,
holding an exhaustible resource asset in our model -~ whether by a competitor,

a moﬁopolist, or a social planner -- is like continually reinvesting in very short-

term bonds as interest rates fluctuate stochastically, so that the return from the

asset over the next "instant" is known with certainty. In the other studies cited,

the return over any period, however small, is uncerLain, as the resource holder
can suddenly find his reserves eihausted.

It is interesting to note that even with average cost constant, the expected
rate of change of production can differ from that in the certainty case -- even
though the expected rate of change of price is the same as the certainty case.

The expected rate of change of production is found by recognizing that the optimal
rate cf production is a function of the state variables y and R, i.e., q = q*(y,R),
and then expanding the differentials dq and dp using Ito's Lemma. We do this is

Appendix A, and show that in the competitive case (with constant average cost),
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(r-o)p - tk - Y(0,, 0.,)
%EEtdq = L2 (18)
yE' (q)

This deviates from dq/dt in the deterministic case by the factor v,

22 1 ., 222 2 2.
Y(Gl, 02) =0,y qyf (@) +5yf" (@) [o]y 1, + 0,41 (19)

where qy and qp are the derivatives of the optimal rate of production with respect
to y and R.

We show in the Appendix that qy > 0, so that y < 0 if f"(q) < 0, but is of
undetermined sign if f'"(q) > 0. The effects of demand and reserve fluctuations
are easiest to see by considering the two components of Yy — the term in f' and
the term in f" -- separately. The term in f'(q) tends to increase the rate at
which q falls, and therefore raises the initial dq (and lowers pC). This occurs

because given any value of a, a larger value of 0, causes the demand curve to

1
rotate downwards over time (in expected value terms) at a faster rate (see footnote
4). Given the r-percent rule for the rate of growth of price, this accelerates
the rate at which g fallé and requires a larger initial d for the terminal con-
dition (that expected reserves and expected demand become zero simultaneously)
to hold.8

The term in f"(q) tends to reduce the rate at which q falls and lower q,
if f" > 0. The reason is that fluctuations in p of mean zero imply a net increase
(decrease) in q if f" > (<) 0. Thus equation {15) for p together with the terminal
condition requires a slower rate of decline of q (and lower 9 and higher Py if
there are fluctuations in either demand or reserves.

The effects of uncertainty ~n production are similar in the case of a

monopolist, except that the rate of change of q will depend on f"' as well as f".
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Results for this case are given in Appendix A.

We also show in Appe;dix A that the expected rate of production under
soclal welfare maximization is the same as with a competitive market as long as
producers are (as we have so far assumed) risk-neutral. Risk-averse producers

will under-conserve, with p beginning lower and rising more rapidly than in

equation (13).9

S, The Use of Exploration to Reduce Uncertainty

We have seen that demand and reserve uncertainty will alter the rate of
resource production, and if production cost is a nonlinear function of reserves,
will alter the expected rate of change of price as well. A question that natur-
ally arises is what expense would producers be willing to incur to reduce this
uncertainvy?

In this section we introduce exploration as a means of reducing stochastic
fluctuations in reserves by extending the basic model in a simple way.10 Pro-
ducers now adjust two policy variables over time, production q and the level of

exploratory activity w, to maximize:

T T
' -rt,
2::13; Eq o [P(@)q - C;(R)g - C (w)]e  Tdt “\Eo [ Ty(t)dt (20)
" Bubject to dR = -qdt + o(K)dz _ (21)
and dk = g(w)dt (22)

with q,w,R,K > 0. Here K is a stock of "knowledge" that is "produced" by explora-
tory activity. The value of K (if any) is that it reduces the variance of the

stochastic fluctuations in R, i.e., ¢'(K) < O. c, is the cost of exploratory
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activity. We assume that Ci > 0, CE.Z 0, g' >0, g" < 0, that marginal discovery
cost Cé(w)/g'(w) increases with w, and Cé(O)/g'(O) = 0.11

Our objective is to determine the dynamics of explo}atory activity, and
in particular to determine under what conditions w will be non-zero, so that there
is value to increasing K. The solution to the above optimization problem follows
much the same approach as in Section 3, and is presented in Appendix B. There we
show that for risk-neutral competitive producers the expected rate of change of
price_is again given by equation (15), and the expected rate of change of w is
given by

) = 307 @A W) + ot Qe EIC ®)

EEEtdw'é” M (w)

(23)

14

where M(w) = Cé(w)/g'(w), i.e., is marginal "discovery" cost.12
We show in Appendix B that w = 0 always if Ci(R) = 0 (or, of course, if

0'(K) = 0). In fact, a unit of knowledge K has value only if Ci(R) < 0. As

shown in the Appendix, the value of K comes about if Ci < 0 because stochastic
fluctuations in R will, over the planning horizon, increase production costs.
A reduction in u(K) through exploratory activity will reduce these costs by allow-
ing producers to better allocate production intertemporally - i.e., to allocate
more production to periods when R is relativély 1afge. (The allocation results
in a smaller expected stream of profits, of course, the less is known about
the future trajectory of R.)

Note from equation (23) that if M"(w) is negative or positive but small, w will
(on average) rise over the planning horizon (falling discontinuously to zero at t = T).
Discounted exploration costs are redﬁced by postponing exploration (so that the term

M(w) in (23) tends to push w into the future). Further, as can be seen by equating

(B.4) and (B.7), the two expressions for the shadow price of K given in Appendix B,

»

~ the marginal benefit of a unit of K rises as R falls to Rmin (R > Rmin as Hd/q -0
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~and q »* O),so that marginal cost M(w) should rise and w should rise over the horizon.
(This pattern of rising w is partly counteracted by the term in.M"(w); w should

be distributed more evenly over time if M(w) rises more and more sharply with w.)13

6. The Use of Exploration to Ancumulate Reserves

We now turn to the use of exploration as a means of discovering new
reserves, but with uncertainty in the exploration-discovery relationship. Sto-
chastic models of resource exploration have recently been developed by Arrow and
Chang (1978) and Deshmukh and Pliska (1978) in which discrete increments of
reserve discoveries occur stochastically (e.g., via a Poisson pfocess) in proportion
to the level of exploratory activity. Here we follow a different tack and assume
that the response of discoveries to exploratory activity is known today but becomes
increasingly uncertain in the future.

An earlier paper by this author (1978b) examined the linkage between re-
source exploration and production through a deterministic model in which reserves
can be maintained or increased through exploration, and production costs vary
inversely with the reserve level.14 Here we extend that model by introducizng into
__the discoveries function a parametér that follows a stochastic process. We
examine the effects of uncertainty by comparing our results here with those of the
earlier paper.

As before, producérs in this model determine production q and the level of
exploratory effort w. The rate of reserve diécoveries depends on w, on cumulative
discoveries x, and on a parameter 6 that follows a stochastic process -~ that is,

x = f(w,x,0), with fw > 0 and fx < 0. Thus, as exploration and discovery proceed

over time, it pecomes mOore and more difficult to make new discoveries. We make
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no assumption now about the way € affects the discovery rate except that f be

smooth in 6, but we specify the dynamics of 6 as

deé

o(8)dz = o(8)e(t)Vdt , (24)

so that E[d6] 0. Thus, (given w and x) the rate of discoveries today is known
exactly, but we cannot know what the rate will be in the future.15

The producer's problem is:

T _ T : ‘
max Eyf o [ap - ¢ R)q - Cy()]e it = Egf o Ty(0)dt (25)
subject to R = x - q (26)
x = £(w,x,0) (27)
do = o(8)dz (28)

and R, q, w, x > 0. We again assume that Ci(R) <0, Cé(w) >0, C;(w) > 0, and
that marginal discovery cost Cé(w)/fw increases with w.l6
The solution of this problem again follows the approach used in Section 3,

and is presented in Appendix C. There we show that the dynamics of price is given

by: .
(lldt)Etdp = rp - rCl(R) + Ci(R)f(w,x,e) (29)

under competition, and by
(1/dt)E dMR = rMR - rCy(R) + C] (R)£(w,x,0) (30)

under monopoly, while the dynamics of exploratory effort is given by
t - _:!-_ 2 '
Cz(w)[(fwx/f“)f £ +r+350 (e)fwee/f‘g +.Ci(R)qf

C;(w) - Cé(w) (fww/fw)

(1/dt)Etdw = (31)
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under both competition and monopoly.1

Equations (29), (30), and (31) can be compared to Equations (9), (15), and
(13) in Pindyck (1978b). We can see from this that uncertainty as modeled here
has no effect on the expected ratz of change of market price, but will have an
effect on the expected rate of change of exploratory effort, and therefore on
the expected level of market price.

The effect of uncertainty depends on the nonlinearity of f with respect to
0, and works in much the same way that reserve uncertainty affected price in our
model without exploration. If fWee > 0 and fww < 0, uncertainty will make
(lldt)Etdw larger (and the initial value~of w smaller). For example, in the
certainty case, if R is initially very small, w will begin high, with & < 0.18
We see from equation (31) that if fwee > 0, (1/dt)Etdw will be larger, so that w
will begin at a lower level and fall less rapidly. However, this does not imply
a reduction in the rate of reserve accumulation. With fWee > 0 any increase in 6
will raise the marginal physical product of exploratory effort more than an equal
decrease in 6 will lower it. Zero-mean fluctuations in 6 will on average increase
the productivity of exploratory effort, thereby reducing the amount of exploration
currently needed in the intertemporal trade-off be;ween the gain from postponing
exploration (and discounting its cost) and the loss from higher current production
costs resultin; from a smaller reserve base. Similarly, in the certainty case if
R is initially large, w will be initially small, with w>0 at first, and < 0
léter. With fwee > 0, fluctuations in 6 will make w still smaller at first,
and (l/dt)EtdW larger (although w and q will fall to zero later tecause of the

increase in productivity).
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a -Bx 19 .
A simple example of a discovery function is f(w,x) = Aw g . We can

’ o —-Bx
see that linear shifts of this function, for example f(w,x,0) = ABw e ",

with

d0 = 08dz, will have no <ffect on the expected level of exploratory effort.

Althongh the future discovery rate is unknown, the current rate is known, and

producers can continuously adjust to random changes in that rate. It is only

where stochastic fluctuations in 8 on average raise (lower) the marginal product

of exploration that the initial w is decreased (increased). For example, the
af ~Bx o ~-B6x

initial w is reduced if f(w,x,0) = Aw e ", or Aw e , with d0 = 08dz in both

cases.
these results also provide some insight into the measurement of resource

scarcity. Resource "rent," i.e. price net of extraction cost (or marginal
revenue net of extraction cost in monopolistic markets), can be shown to be a

useful measure of in situ scarcity, but it is not clear how rent itself should

be estimated.20

Devarajan and Fisher (1979) have raised the issue of whether marginal
discovery cost can be used to measure rent if there is uncertainty.21
In our model, marginal discovery cost differs from rent whenever the shadow
p?ice of cumuiative discoveries is non-zero. As can be seen from equations (c.2),

(c.3), and (C.7") in the Appendix, undiscounted rent is:

C!(w T dC
w) rt 2 -rT
+ e E -
f t
W t

J et = P - Cl(R) =

. dt (32)

~dx f=f*e

i.e., the sum of marginal discovery cost and the undiscounted shadow price of
cumulative discoveries. As long as depletion lcwers the productivity of exploration

this last term will be positive, so that rent must be measured by subtracting

R,
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extraction costs from the observed price, or from some estimate of what the price

would be in a free market.

7. Concluding Remarks

The major results of this paper are summarized for the competitive market in
Table I. These results are easier to understand if we remember that ouc
characterization of uncertainty is different from that in most other studies

of resource use. Here uncertainty --- whether over demand for

the resource, the reserve level, or a parameter affecting the response of dis-
coveries to exploratory effort -- pertains to the future value of the variable in
question. Producers in our model have complete information about the current
status of the resource market; what they do not know is what the vélues of demand,
reserves, etc. will be in the future. However, siﬁce stochastic fluctuations occur
continuously over time, producers (or social planners) can adapt to these fluctua-
tions continuously. As a result stochastic fluctuations alter the expected rate

of chénge of price or exploratory activity only to the extent that the average cost
of production or productivity of exploration is changed through nonlinearity in a

fluctuating variable.
' [Insert Table I}

Thus we find that with average production cost constant, price will rise
according to Hotelling's r-percent rule. However, even with Cl constant, the
rate at which production falls, and the initial values of production and price,
are affected by uncertainty. This occurs first because demand fluctuations cause
rotational shifts in the demand function, and second because if demand is non-
linear, zero-mean fluctuations in price imply a net change in production for
market clearing.

We also examined the use of exploration, first as a means of gathering
information, and second to accumulate reserves. We found that exploration should
be used for information-gathering (i.e. to reduce the variance of stochastic re—~

serve fluctuations) only if production costs vary with reserves. If CJ(R) < O,
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ex ante knowledge of the terminal time T and the distribution of R over time permit
production costs to be reduced on average by allocating more production to periods
when R is (known to be) larger.

We found that when exploration is used to accumulate reserves, the time-
profile of exploratory activity is altered if a stochastically fluctuating para—
meter enters the discoveries function noulinearly. However this occurs not because
the future response of discoveries to exploration is not known, but rather because
fluctuations can change the average productivity of exploratory effort, and thus
shift the optimal level of exploration.

We must ask whether real-world uncertainty in resource markets can be
well approximated by the continuous stochastic processes used in this paper.

We have aréued that the major uncertainties over demand and reserves havevmore

to do with the future values of those variables, with random changes usually
occurring more or less continuously over time. Of course resource markets are

also affected by other types of uncertainty (several of the oil-exporting countries
might suddenly cut production, for example), and our results in this paper should
therefore not be taken too literally. We have only examined the effects of a

particular type of uncertainty on resource markets.



APPENDIX

A. Dynamics of Production in the Basic Model

To obtain the expected dynamics of production under competition, monopoly,
and utility maximization, remembe: that q = q*(y,R) along the optimal trajecicory.

Now expand the differential dq using Ito's Lemma:
dq = q dy + q.dR + +q_ (dy)2 + 2q_ (ar)? + q__dydr (A.1)
y R iqyy 2°RR yR

Use equations (2) and (3) for dy and dR, and recall that E(dzldzz) = 0 by assump-

tion; so that

224¢ + o(t) (A.2)

2 222
Et[(dq) ] = Giy qydt + GZqR

where o(t) represents terms that vanish as dt - 0. Also note that .
E [dqdy] = o2y>q dt + o{t) | . (A.3)
t 1V Vy o

Now, to determine the dynamics of production in the competitive case (with

constant average production cost), expand dp = d[y(t)f(q)]:

dp = y£' (@)dq + £(@)dy + 7y£"(9) (d)” + £' (q)dady (A.4)

Take expectatiors, divide through by dt, substitute in equations (15) (for Etdp),
(A.2) and (A.3) and re-arrange to yield equations (18) and (19).

The sign of Y(Gl,cz) in equation (19) depends in part on the sign of qy-

Consider an increase in y, so that the demand curve rotates to the right. Now

suppose qy < 0. p rises according to equation (15), so as long as C, > 0, q will

1

fall to zero before reserves are exhausted. Thus with Cl > (=) 0, the terminal
conditions can be satisfied only if_qy > (=) 0.

To determine the dynamics of production in the monopoly case, expand
dMR = d(yf + qyf'(q)), take expectations, divide tﬂrough by dt, substitute in
equations (16),‘(A.2) and (A.3), and re-arrange, to yield:

(r-¢)MR - rk - B<°1’°2)
MR' (q)

(A.5)
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2 1 222 22
with B(0;,0,) = GlyquR' (@) +5y[f"(q) + qf"'(q)licly 1 + quR] (A.6)

The behavior of q can be somewhat more complicated than in the competitive case
insofar as f"'(q) might change sign as q falls. Thus q might at first fall more
rapidly, but later more slowly thap in the certainty case.

The dynamics of production under social welfare maximization is found by
expanding d[u'(q)] and then following the same steps as in the competitive and
monopoly cases above. The reader can easily demonstrate that equations (18) and
(19) will again apply, so that the competitive-market exploits the resource at
the socially optimal rate.

This is not the case, however, if the competitive producers are risk-

averse. If the integrand in equation (5) is replaced by U, = U(H)e-rt, with

d
Il = (p—Cl)q,and U' > 0 and U" < 0, then the dynamics of price is found by replacing
Hd With-Ud in the stochastic Euler equation (12). Doing this (assuming for
simplicity Cl constant and only reserve uncertainty) yields:
' 2 2. , 2

L r(p-C)U' () - o5a2lp’ ()1°0" (M)

___E =

ar P T+ (-0 (D

(A.7)

Since U" < 0, p will rise faster and begin lower the greater is Oy, SO that

producers under-conserve,

B. Exploration to Reduce Uncertainty

Here we show that equations (15) and (23) describe the dynamics of price
and exploration for the model of Section 5. As usual we define the optimal value

function

J = J(R,K,t) = max E_ f'g I (1)dT (8.1)
q,w ) d

The fundamental equation of optimality is:

12
0= 2f§ [Hd(t) +J,. - adp +-g(w)JK + 350 KX)J (B.2)

-~
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Maximization with respect to q implies:

and/aq = JR (B.3)
as before. Maximization with respect to w implies
— ot .
3Hd/3w = -g (W)JK (B.4)

‘ s0 that’JK, the shadow price of a unit of "knowledge', is equal to e-rtci(w)/g'ﬁw),
the discounted marginal cost of "finding" that unit.

To see that equation (15) again describes the dynamics of price, note that
equation (10) results from differentiating (B.2) with respect to R and re-writing
using Itp's Lemma, and equation (11) again results from applying the differential
operator (l/dt)Etd( ) to both sides of (B.3). Combining_equations (10) and (11)
again givés equation (12), and (15) follows from this.

To determine the dynamics of exploration, differentiate (B.2) with respect

to K, and, noting from (B.3) that JRR = 82Hd/BR3q, re-write as:
(1/d0)E4(I) + o' (R)o(R)°T /3Rdq = O (B.5)

Now apply the differential operator to both sides of (B.4) and then combine with

(B.5) to eliminate JK and yield:
(1/a£)E d[e " ch () /g' (D] = o' (WoK)C (R T (B.6)

Equation (23) follows by expanding the left-hand side of (B.6) using Ito's Lemma

2wzdt.

and noting that w = w*(R,K), so that Et(dw)2 = 0 W

Besides yielding equation (23), equation (B.6) can be interpreted to show

the value of information. Using (B.4) for the shadow price of information J

K’
write (B.6) in integral form as follows:
T .
=3 12 ' -t
JK = 3K Et t‘EU (K)Cl(R)e dt (B.7)

'< 0. If Ci(R) < 0 and the distribution of reserves

Note that K has value only if C1
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over time is known for all time, production costs can on average be reduced by

allocating more production to periods when R is relatively 1arge.22 Stochastic
fluctuations add to production costs by reducing the ability to make this

optimal allocation of production over time. If Ci(R) = 0 (or if o'(X) = 0),
JK =0, Cé(w)/g'(w) = 0, and therefore w = 0.

C. Exploration to Accumulate Reserves

Here we show that equations (29) and (31) describe the dynamics of price
and exploration for the modei of Section 6 under competition, and (30) and (31)
describe the dynamics under monopoly. The fundamental equation of optimality is

nows:

B 12
0= ﬁfﬁ [, () + I, + [£00,x,0) - qlJp + £(w,x,0)I_+ 50 ©)J

g6] (c.1)

Maximization with respect to q (and market clearing in the competitive case) again
gives: ) | _
aﬂdlaq = Jp (Cc.2)
and maximization with respect to w gives:

and/aw = —fw(JR + Jx) o (c.3)

Note that (JR + Jx) is the '"net" shadow price of a unit of reserve.discoveries, i.e.,
the value of increasing the reserve base by 1 unit plus the (negative) value of
increasing cumulative discoveries by 1 unit, thereby increasing the cost of a;l-
future discoveries. Since 3Hd/8w = —C'z(w)e_rt , this net shadow price is jugfc
equal to the discounted marginal cost of a unit of discoveries (an in equation (B.4)

previously).
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Differentiate (C.l) with respect to R, and re-write as:
BHdlaR + (lldt)Etd(JR) =0 (C.4)

Apply the differential operator (lldt)Etd( ) to both sides of (£.2), and corbine

the resulting equation with (C.4) to yield:
(lldt)Etd(BHdlaq) = — and/aR (c.5)

Note that this is the same as equation (12) in Section 3, and is used to obtain
the equilibrium price trajectory.
Now differentiate (C.1l) with respect to x, and noting that SHd/BX = 0,

use Ito's Lemma to re-write the resulting equation as:

(lldt)Etd(Jx) = - fx(JR + Jx) (c.6)
Combine this with equation (C.3) to yield:

(1/dt)Etd(Jx) = (fx/fw)BHd/BW (c.7)

1f we write (C.?) in integral form we see that it boils down to the definition of

the shadow price of cumulative discoveries, Jx:
T dC

2 I -rT
dx

» T
- = l ! -rt = '
Jx E, Jt (fx/fw)Cz(w)e dt = E, J fugx © AT (c.7")

i.e., -Jx is just the sum of all discounted future increases in discovery costs
(evaluated at the optimal discovery rate) brought about by a l-unit increase in

cumulative discoveries.

Now apply the differential operator (1/dt)Etd(_) to both sides of (C.3):

BH ’
1 1
dt tdé—;—) £ arbedWR) = £ qefdG) - (Jp#d )EEEt“(f ) (c.8)

Substitute equations (C.3), (C.4) and (C.7) into (C.8) to eliminate the derivatives

of J:

M T and a1
Lrach -t -1, Wi O GO E 4R, (c.9)



-25-~

The dynamics of price and exploratory effort can now be obtained from
Equations (C.5) and (C.9) respectively. For risk-neutral competitive producers,
SHdlaq = [p - Cl(R)]e-rt, while in the monopolistic market, BHdlaq = [MR - Cl(R)}e~rt.
Substitution into (C.5) yields equations (29) apni (30) respectively. To obtain
equation (31) substitute and/aw = - Cé(w)e_rt into (C.9), expand the differential

operators, and re-organize.
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1Of course, when extraction costs are not constant, the r-percent rule no
longer applies even in the deterministic case. See Levhari and Liviatan
(1977) and Pindyck (1978a).

2Weinstein and Zeckhauser (1975) examined demand uncertainty using a
discrete-time model similar to the one in this paper, where current de-
mand is known but demands in future periods are unknown (but are revealed
at cthe beginning of each period). They also found that (with zero ex-
traction costs and risk-neutral firms) the expected competitive market
price will rise at the rate of interest, and the competitive market
equilibrium is socially optimal. Here we extend the Weinstein-Zeckhauser
results to the continuous-time case.

3The paper makes use of Ito's differentiation rule for functionsof stochastic
processes as well as stochastic dynamic programming. For a brief intro-
duction to these techniques, see Chow (1979) or the Appendix of Fischer (1975).
Kushner (1967) provides a detailed treatment. Applications to problems
in economics can be found in Merton (1969, 1971, 1973) and Fischer (1975).

4Equation (2) is the limiting form as h* 0 of the discrete-time difference

y(t + h) - y(t)

equation ) = oh + Olzl(t)/ﬁ, and E[dy/y] = adt, and Var[dy/y] =
, : 12
Oidt. Note that y(t) is log-normally distributed, with Eo[logg%%%] = (@ - Egl)t’

. 2
so that the expected value of demand remains stationary if o = 01/2. In

general we would expect o > Ui/Z so that demand has some positive deterministic



drift as a result, say, of economic growth. For an introduction to stochastic

processes of the form of (2), see Karlin and Taylor (1975).

5Note that Var[log(y(t)/y(0))] = oit.
6We use the notation JR = 3J/3R, etc. (lldt)Etd( ) is Ito's differential operator.

For a discussion, see Dreyfus (1965), Kushner (1967), Merton (1971) or Chow (1979).
7A clear discussion of the connection bgtween deterministic dynamic programming
and the calculus of variations, and é clear derivaticﬁ of the fundamental equation
or optimality in stochastic dynamic programming are provided by Dreyfus (1965).
8Thds the presence of the term in f'(q) results because the stochastic component
of demand is multiplicative (and log-normally distribufed) rather than additive.
This term would not be present were the demand function of the form plq,t) =.f(q)
+ y(t).
9Weinstein and Zeckhauser (1975) pbtain the same result for their uiscrete-time
characterization of demand unceriainty.
loWe could also introduce a "market research" activity. to reduce demand uncertainty,
but this would complicate the anal&éis without adding marginally valuable insights.
1lNote that we cﬁuld have written g = g(w,K), with 8 < 0., Again, the additional
algebra that results outweighs the insighté obtained. Note also that we are
’ignoring problems associated with common access,»and_most important, the appro-
priability of the stock of fknowledge." |
2The monopoly case leads to similar results and is not presented here.
13The reader can show (by eipanding dq - d[q*(R,K)] to obtain (l/dt)Etdq) that
in this context exploratory activity has no effect on the dynamics of production.
The expected_rate of change of q is again given by equations (18) and (19) (but
with 0, = 0).
14That paper shows that if the reserve level is initially very small, the equilibrium
price‘trajectory will be U-shaped in both competitive and monopolistic markets.

15While this characterization of uncertainty may not seem realistic for an individual



(small) producer, it is quite reasonable as a way of thinking a2bout a resource
market as a whole. Taking oil exploration in the United States as an example,

the aggregate discoveries likely to result from a given total level of exploratory
activity this year can be assessed with limited uncertainty. The uncertainty
becomes much greatér, howe&er, #s we try to assess the discoveries likely tu

result in future years.

16

17

Note that there is no demand uncertainty in the model. Demand uncertainty, as
specified in Section 2, is easily shown to have no effect on the dynamics of
price and exploration as long at it is uncorrelated with fluctuations in 6. We
therefore ignore it for simplicity.

This does not mean that the expected péttern of exploratory activity is the

same in the competitive and monopoly cases. q will be initially lower for the
monopolist, so that (1/dt)Etdw will be.larger, since Ci(R) is negative. Thus,
the monopolist will initially undertake less, but later more exploratory activity

than the competitive industry.

18See Pindyck (1978b).
19

20

See Uhler (1976) and the Appendix of Pindyck (1978b) for a discussion of the
empirical supportability of this function.
. A measure of resource scarcity should reflect the present value of all éurrent

and future sacrifices required to obtain a unit of the resource. Rent p;ovides
such a measuve in an in situ context, and is independent of such things that
affect prices as technology-based changes in extraction costs, most taxes, govern-
ment price controls, etc. For a discussion of this issﬁe, see Fisher(1979),

Brown and Field (1978), and Pindyck (1978b).

21Devarajan and Fisher work with a two-period model in which there is current un-

certainty over the returns from explorationm. In the context of that model they
show that rent can deviate from marginal discovery cost even if the shadow price

~of .cumulative discoveries is zero.



To interpret (B.7), consider, for any reserve level R, the expected rate of

additions to marginal production cost resulting only from random fluctuations (as

opposed to extraction itself). This is found by setting q = 0. expanding dC1 using
Ito's Lemma as in equation (14), thereby obtaining: (l/dt)EtdC1 = %GZ(K)C;(R)

This is the expected rate of flow of additioms to marginal cost. The expected

rate of flow of additions to total production cost is found by integrating this
equation over all reserves from C to R. This yields the integrand in (B.7). Thus

JK is just the expected reduction in the discounted sum of these additional costs

resulting from 1 extra unit of K.
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