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A Monte Carlo Primer 
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How Many Words Do I Know ? 

• Well, I could count them 
• Systematically, using a dictionary 
• What about using only a few pages (good, 

but how many ?) 
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Do I Really Know How to 
Communicate ? 

• Many words are useless – sort of, unless you are 
into the poetry stuff 

• A good usage (vs prescriptive) dictionary should 
rate how common/useful the words are 

• Now, I need a lot of pages before getting any 
accuracy 

• What about biasing my random sampling (e.g. 
using the Boston Globe) ? 
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Numerical Integration 
(rectangular) 
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Errors 
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Let’s Measure π 

π=3.141592653589793238462643383279 
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Srinivasa Ramanujan 
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(roughly 8 decimal places for each term…) 
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Let’s take a Zen attitude 
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The Stochastic Approach 



Slide 10 


Let’s Try… 

http://www.daimi.aau.dk/~u951581/pi/MonteCarlo/ 
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Buffon’s Needle 

http://www.angelfire.com/wa/hurben/images 
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Why Bother ? 

• Multidimensional integrals 
• Try calculating the volume of an 

hypersphere in 20 dimensions… 
• Systems with a large number of degrees of 

freedom 
– Many atoms in a gas, liquid, solid (partition 

function) 
– Many electrons in an atom (wavefunctions) 
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Stochastic Integration (hit/miss) 
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An Integral Is Just an Average 
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Central Limit Theorem 

n1I = ∑ f (xi )n i=1 

We can consider fi=f(xi) as a random variable – then, for large n, we 
have that the variance of I is 1/N the variance of f 
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The Variance of f 
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Excellent Scaling Properties ! 

•The uncertainty in the estimate of the integral 
scales as 

•For numerical integration, the error is 

Where D is the dimensionality, and k is related 
to the algorithm (Simpson, trapezoidal…) 
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Importance Sampling 

• If the variance of the function that we have 
to integrate is 0, the variance on our integral 
is 0 

• Try to integrate functions with reduced 
variance 
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Importance Sampling 
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If x is not uniformly distributed, but distributed as p(x), then 
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Example 

( dxxF ∫ −= 
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0 

2exp )
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Good enough for Mathematica… 

In order to integrate a function over a complicated domain D, Monte Carlo integration picks 
random points over some simple domain which is a superset of D, checks whether each point is 
within D, and estimates the area of D (volume, n-D content, etc.) as the area of D’multiplied by 
the fraction of points falling within D’. Monte Carlo integration is implemented in Mathematica 

as Nintegrate[f,…,Method->MonteCarlo]. 
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