

How Many Words Do I Know ?

- Well, I could count them
- Systematically, using a dictionary
- What about using only a few pages (good, but how many ?)

Do I Really Know How to Communicate ?

- Many words are useless sort of, unless you are into the poetry stuff
- A good usage (vs prescriptive) dictionary should rate how common/useful the words are
- Now, I need a lot of pages before getting any accuracy
- What about biasing my random sampling (e.g. using the Boston Globe) ?

Errors

TABLE 10.1 Rectangular approximation estimates of the integral of $\cos x$ from x = 0 to $x = \pi/2$ as a function of n, the number of intervals. The error Δ_n is the difference between the rectangular approximation and the exact result of unity. Inspection of the n-dependence of Δ_n indicates that Δ_n decreases approximately as n^{-1} .

n	F_n	Δ_n
2	1.34076	0.34076
4	1.18346	0.18346
8	1.09496	0.09496
16	1.04828	0.04828
32	1.02434	0.02434
64	1.01222	0.01222
128	1.00612	0.00612
256	1.00306	0.00306
512	1.00153	0.00153
1024	1.00077	0.00077

Let's Try...

http://www.daimi.aau.dk/~u951581/pi/MonteCarlo/

Slide 11

Buffon's Needle

http://www.angelfire.com/wa/hurben/images

Why Bother?

- Multidimensional integrals
- Try calculating the volume of an hypersphere in 20 dimensions...
- Systems with a large number of degrees of freedom
 - Many atoms in a gas, liquid, solid (partition function)
 - Many electrons in an atom (wavefunctions)

Slide 17

Excellent Scaling Properties !

•The uncertainty in the estimate of the integral scales as 1

$$\sigma_I = \frac{1}{\sqrt{N}}$$

•For numerical integration, the error is

$$\sigma_{I} = \frac{1}{n^{\frac{k}{D}}}$$

Where D is the dimensionality, and k is related to the algorithm (Simpson, trapezoidal...)

Importance Sampling

- If the variance of the function that we have to integrate is 0, the variance on our integral is 0
- Try to integrate functions with reduced variance

Importance Sampling $F = \int_{a}^{b} f(x)dx = (b-a) \int_{n}^{1} \sum_{i=1}^{n} f(x_{i})$ $\int_{a}^{b} p(x)d(x) = 1 \qquad F = \int_{a}^{b} \left[\frac{f(x)}{p(x)}\right] p(x)dx$ If x is not uniformly distributed, but distributed as p(x), then $F = (b-a) \frac{1}{n} \sum_{i=1}^{n} \frac{f(x_{i})}{p(x_{i})}$

Exar	nnle	
LAU	iipic	
$F = \int_{0}^{1} \exp$	$p(-x^2)a$	lx
TABLE 10.4 Monte Carlo estimate	es of the integral (1	0.48) using the
TABLE 10.4 Monte Carlo estimate uniform probability density $p(x)$: sity $p(x) = Ae^{-x}$. The normalize p(x) is normalized on the unit in gral is approximately 0.7468. Th and the probable error $p/1/2$ a shown for comparison only and a running True BASIC.	es of the integral (1 = 1 and non-unifor ation constant A is terval. The exact v e estimates Fn, sta re shown. The CPU was found on a Ma	0.48) using the m probability den- chosen such that alue of the inte- indard deviation σ , J time (seconds) is cintosh computer
TABLE 10.4 Monte Carlo estimati uniform probability density $p(x)$: sity $p(x) = Ae^{-x}$. The normaliz p(x) is normalized on the unit in gral is approximately 0.7468. Th and the probable error $or /n^{1/2}$ a shown for comparison only and v running True BASIC.	es of the integral (1 = 1 and non-unifor ation constant A is terval. The exact v, e estimates F_n , sta re shown. The CPI was found on a Ma p(x) = 1 20000	0.48) using the m probability den- chosen such that alue of the inte- indard deviation σ , J time (seconds) is cintosh computer $p(x) = Ae^{-x}$ 1000
TABLE 10.4 Monte Carlo estimati uniform probability density $p(x)$: sity $p(x) = Ae^{-x}$. The normaliz p(x) is normalized on the unit in gral is approximately 0.7468. Th and the probable error $or /n^{1/2}$ a shown for comparison only and or running True BASIC.	es of the integral (1 = 1 and non-unifor ation constant A is terval. The exact v e estimates F_n , ste re shown. The CPI was found on a Ma p(x) = 1 20000 0.7452 0.2009	0.48) using the m probability den- chosen such that alue of the inte- indard deviation σ , J time (seconds) is cintosh computer $p(x) = Ae^{-x}$ 1000 0.7482 0.0544
TABLE 10.4 Monte Carlo estimati uniform probability density $p(x)$: sity $p(x) = Ae^{-x}$. The normaliz p(x) is normalized on the unit in gral is approximately 0.7468. Th and the probable error $or /n^{1/2}$ a shown for comparison only and w running True BASIC.	es of the integral (1 = 1 and non-unifor lation constant A is terval. The exact v e estimates F_n , site re shown. The cPit was found on a Ma p(x) = 1 20000 0.7452 0.2009 0.0016 0.0017	0.48) using the m probability den- chosen such that alue of the inte- indard deviation σ , J time (seconds) is cintosh computer $p(x) = Ae^{-x}$ 1000 0.7482 0.0544 0.0017 0.0280

Good enough for Mathematica...

In order to integrate a function over a complicated domain D, Monte Carlo integration picks random points over some simple domain which is a superset of D, checks whether each point is within D, and estimates the area of D (volume, n-D content, etc.) as the area of D'multiplied by the fraction of points falling within D'. Monte Carlo integration is implemented in Mathematica as Nintegrate[f,...,Method->MonteCarlo].

References

- <u>http://www.npac.syr.edu/users/paule/lecture</u> s/montecarlo/
- Koonin, Computational Physics
- Press, Teukolsky, Vetterling, Flannery, *Numerical Recipes*