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Quantum Mechanics: the Practice
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Reminder: Electrons As Waves

Wavelength « momentum = Planck
Aep=h (h=6.6x103]s)

The wave is an excitation (a vibration): We
need to know the amplitude of the excitation
at every point and at every instant

WY =Y(r,t)
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Stationary Schroedinger’s equation

N B}
@ |3 V) W) = By
A=f+p=-t 4y

(b)  HY(r)=EY(r)
*[t’s not proven — it’s postulated, and it is confirmed experimentally

*[t’s an eigenvalue equation

*Boundary conditions (and regularity) must be specified
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Interpretation of the Quantum Wavefunction
- 2 . . :
LIJ 1% t is the probability of finding an electron
D) inr7and ¢

If V=V(r) , it’s separable: W(7, 1) = (F) f (1) = Y(7) exp(—%Ef)

Remember the free particle, and the principle of indetermination:if
the momentum is perfectly known, the position is perfectly unknown

W(F, 1) = Aexpli(k * 7 — ar)]
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Infinite Square Well
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Figure 4,10 (a) The first four &l
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Finite Square Well
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A Central Potential (e.g. the Nucleus)
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Solutions in a
Coulomb
Potential: the
Radial

Wavefunctions
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Solutions in a Coulomb Potential:
the Periodic Table

http://www.orbitals.com/orb/orbtable.htm

5 d orbital
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<Bra|kets>
Y=yr)=y>

<@y, >= @ Fw,F)dF =3,

<y, |11y, >=wa(f){—f—m+V(F)}w,(f) di = E,
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Variational Principle

<@ H|p>
Eld = ¢ H|g

<¢lp>

Eld 2 E,
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Electrons and Nuclei
H=T,+V,_ +V,  +V.,
Hw(ﬁ,..., 17;1) — Etotgﬂ(ﬁ,...,l_";)

*We treat only the electrons as quantum particles, in the
field of the fixed (or slowly varying) nuclei

*This is generically called the adiabatic or Born-
Oppenheimer approximation
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Two-electron atom
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Energy of a collection of atoms

V' electrostatic nucleus-nucleus repulsion

+ T,: quantum kinetic energy of the electrons

* V_: electrostatic electron-nucleus attraction

(electrons in the field of all the nuclei)

V... electron-electron interactions

%Zﬂf - :Z[ZV(E, —Fi)} V=2,

i i ij>i|;';‘_’7"
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Mean-field approach

* Independent particle model (Hartree): each
electron moves in an effective potential,
representing the attraction of the nuclei and
the AVERAGE EFFECT of the repulsive
interactions of the other electrons

+ This average repulsion is the electrostatic

repulsion of the average charge density of
all other electrons
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Hartree Equations

Y VR )+ S [10,6)F i, |8,0) = 68,6

J#i |’_A;_’7,‘

(@5 h) =9(7) 9, (R) -8, (1)

*The Hartree equations can be obtained directly from the
variational principle, once the search is restricted to the many-body
wavefunctions that are written — as above — as the product of single
orbitals (i.e. we are working with independent electrons)
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The self-consistent field

* The single-particle Hartree operator is self-
consistent ! L.e., it depends in itself on the
orbitals that are the solution of all other
Hartree equations

* We have n simultaneous integro-differential
equations for the n orbitals

* Solution is achieved iteratively
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Iterations to self-consistency

Initial guess at the orbitals
Construction of all the operators

Solution of the single-particle pseudo-
Schrodinger equations

With this new set of orbitals, construct the
Hartree operators again

Iterate the procedure until it (hopefully)
converges
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Spin-Statistics

+ All elementary particles are either fermions
(half-integer spins) or bosons (integer)

* A set of identical (indistinguishable)
fermions has a wavefunction that is
antisymmetric by exchange

WG Foseeos T Fareaos ) = = (F s T Ty seees e Fy)

» For bosons it is symmetric
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Slater determinant

* An antisymmetric wavefunction is constructed via a
Slater determinant of the individual orbitals (instead
of just a product, as in the Hartree approach)

¢a(ﬁ) ¢ﬁ(ﬁ) ¢v(ﬁ)
WG R ) = 1 ¢a$rz) ¢,8:(r2) ¢ufr2)

S

$.(1) 9,0) - 8,()
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Pauli principle

 Iftwo states are identical, the determinant
vanishes (I.e. we can’t have two electrons in
the same quantum state)
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Hartree-Fock Equations

*The Hartree-Fock equations are, again, obtained from the variational principle: we
look for the minimum of the many-electron Schroedinger equation in the class of all
wavefunctions that are written as a single Slater determinant

HD? YR, —a)}mw

1
|7 =7

[Z j¢;<a)¢y(a>dﬂ¢a<a>—

Z{J ¢;<f,>1¢ﬂ<a>df,}¢,,@) =£0,(7)
U

\’7,/_’71'|

WY(F.... F,) = |Slater|
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Density-functional Theory

» Conceptually very different from Hartree-Fock —
variational principle on the charge density

* In practice, equations have the same form, but for
the exchange energy — obtained from the density,
not the wavefunctions

+ It’s exact in principle, but approximate in practice:
different forms for the exchange-correlation
density: LDA, GGA, hybrids (Hartree-Fock
exchange + density-functional correlations)




