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Quantum Mechanics: the Practice
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Reminder: Electrons As Waves

The wave is an excitation (a vibration): We 
need to know the amplitude of the excitation 
at every point and at every instant

),( trrΨ=Ψ

Wavelength • momentum = Planck
?

λ • p = h ( h = 6.6 x 10-34 J s )
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Wave Mechanics
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Stationary Schroedinger’s equation
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•It’s not proven – it’s postulated, and it is confirmed experimentally

•It’s an eigenvalue equation

•Boundary conditions (and regularity) must be specified
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Interpretation of the Quantum Wavefunction

Remember the free particle, and the principle of indetermination:if 
the momentum is perfectly known, the position is perfectly unknown

2),( trrΨ is the probability of finding an electron 
in r and t

)](exp[),( trkiAtr ω−•=Ψ rrr
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Infinite Square Well
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Finite Square Well
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A Central Potential (e.g. the Nucleus)
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Solutions in a 
Coulomb 

Potential: the 
Radial 

Wavefunctions
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Solutions in a Coulomb Potential: 
the Periodic Table

http://www.orbitals.com/orb/orbtable.htm

5 d orbital
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Variational Principle
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Electrons and Nuclei

NeNNeee VVVTH −−− +++= ˆˆˆˆˆ

•We treat only the electrons as quantum particles, in the 
field of the fixed (or slowly varying) nuclei

•This is generically called the adiabatic or Born-
Oppenheimer approximation
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Two-electron atom
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Energy of a collection of atoms

• VN-N: electrostatic nucleus-nucleus repulsion
• Te: quantum kinetic energy of the electrons
• Ve-N: electrostatic electron-nucleus attraction 

(electrons in the field of all the nuclei)
• Ve-e: electron-electron interactions
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Mean-field approach

• Independent particle model (Hartree): each 
electron moves in an effective potential, 
representing the attraction of the nuclei and 
the AVERAGE EFFECT of the repulsive 
interactions of the other electrons

• This average repulsion is the electrostatic 
repulsion of the average charge density of 
all other electrons 
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Hartree Equations
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•The Hartree equations can be obtained directly from the 
variational principle, once the search is restricted to the many-body 
wavefunctions that are written – as above – as the product of single 
orbitals (i.e. we are working with independent electrons)
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The self-consistent field

• The single-particle Hartree operator is self-
consistent ! I.e., it depends in itself on the 
orbitals that are the solution of all other 
Hartree equations

• We have n simultaneous integro-differential 
equations for the n orbitals

• Solution is achieved iteratively
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Iterations to self-consistency

• Initial guess at the orbitals
• Construction of all the operators
• Solution of the single-particle pseudo-

Schrodinger equations
• With this new set of orbitals, construct the 

Hartree operators again
• Iterate the procedure until it (hopefully) 

converges
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Spin-Statistics

• All elementary particles are either fermions
(half-integer spins) or bosons (integer)

• A set of identical (indistinguishable) 
fermions has a wavefunction that is 
antisymmetric by exchange

• For bosons it is symmetric
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Slater determinant

• An antisymmetric wavefunction is constructed via a 
Slater determinant of the individual orbitals (instead 
of just a product, as in the Hartree approach)
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Pauli principle

• If two states are identical, the determinant 
vanishes (I.e. we can’t have two electrons in 
the same quantum state)
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Hartree-Fock Equations

)()()(
||

1)(

)()(
||

1)(

)()(
2
1

*

*

2

iijj
ij

j

ijj
ij

j

ii
I

Ii

rrrdr
rr

r

rrdr
rr

r

rrRV

rrrr
rr

r

rrr
rr

r

rrr

λ
µ

µλµ

λµµ
µ

λ

ϕεϕϕϕ

ϕϕϕ

ϕ

=












−

−












−

+






 −+∇−

∑ ∫

∫∑

∑

Slaterrr n =),...,( 1
rrψ

•The Hartree-Fock equations are, again, obtained from the variational principle: we 
look for the minimum of the many-electron Schroedinger equation in the class of all 
wavefunctions that are written as a single Slater determinant
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Density-functional Theory

• Conceptually very different from Hartree-Fock –
variational principle on the charge density

• In practice, equations have the same form, but for 
the exchange energy – obtained from the density, 
not the wavefunctions

• It’s exact in principle, but approximate in practice: 
different forms for the exchange-correlation 
density: LDA, GGA, hybrids (Hartree-Fock 
exchange + density-functional correlations)

 
 

 
 


