Introduction to Modeling and Simulation,

MIT - 1.992, 2.993, 3.04, 10.94, 18.996, 22.091

Spring 2002

Instructor: Franz-Josef ULM

Water Filling of a Gravity Dam We consider a gravity dam of triangular shape (Height H, Top angle α) clamped on its base OA (zero displacement prescribed), see figure below. The down-stream surface AB is stress free. The upstream wall OB is subjected to the water pressure (body force $\rho_w g$) over a height OB' = mH, where $m \in [0, 1]$. The remaining surface B'B is stress free. For the purpose of analysis, we assume that the gravity dam is composed of a linear isotropic elastic material $(E, \nu \text{ or } \lambda, \mu)$ with volume mass ρ_d . With regard to the dimension of the gravity dam in the Oz-direction, the problem can be treated as a plane strain problem with regard to the plane parallel to Oxy.

We want to evaluate the displacement of the dam along the upstream wall OB with water filling $m \in [0, 1]$.

1. First approximation (In CLASS): We consider a displacement field of the form:

$$\boldsymbol{\xi}' = a_0 \frac{y}{H} \mathbf{e}_x + b \frac{y}{H} \mathbf{e}_y$$

Using the displacement based variational method, give a first approximation of the displacement along OB. Show that the displacement based variational approach can be recast in the format of the finite element method:

$$k_{ij}q_j = F_j$$

where k_{ij} are the components of the stiffness matrix, q_j are the unknown nodal displacements, and F_j are nodal forces. Determine k_{ij} and F_j for the given approximation of the displacement $\boldsymbol{\xi}'$ in the gravity dam.

2. **Finite Element Approximation**: Consider m=1, and $\rho_d=0$. By using finite elements, show that the horizontal displacement solution converges with increasing number of elements. To this end, normalize the obtained displacement at y=H by:

$$\Xi = \frac{\xi_x(x=0, y=H)}{\left(\frac{\rho_w g H^2}{3\mu \tan \alpha}\right)}$$

with μ the shear modulus. Represent your results in form of a graph giving Ξ as a function of the number of elements over OB.