Optimization Modeling and Computational Issues in Radiation Therapy

(lecture developed in collaboration with Peng Sun)

February 5, 2002

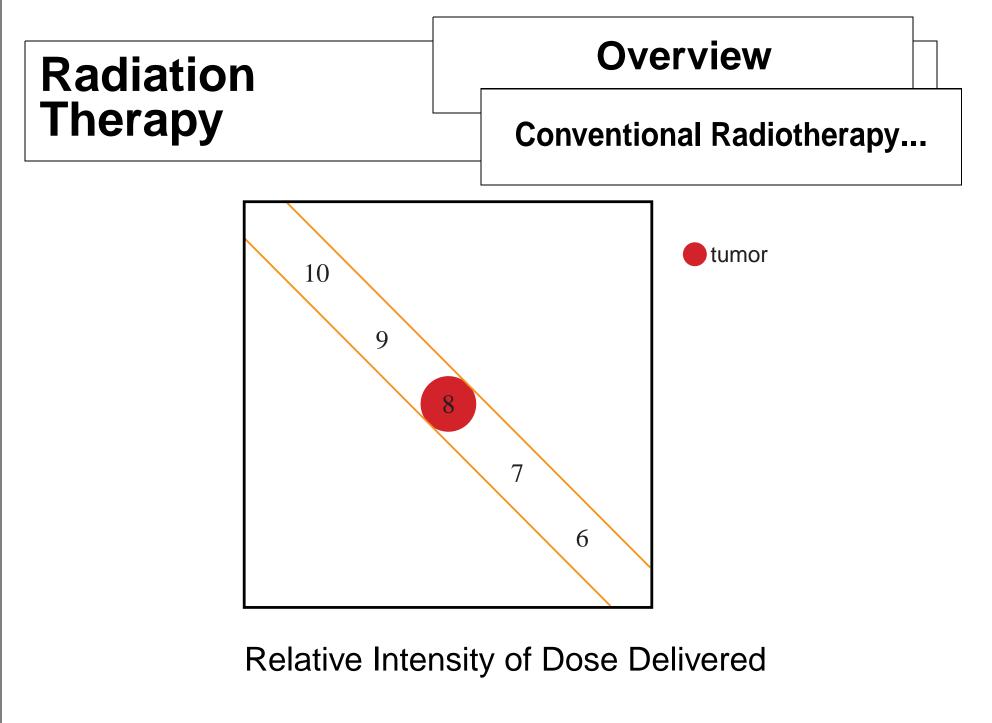
Outline

- 1. Radiation Therapy
- 2. Linear Optimization Models
- 3. Computation
- 4. Nonlinear and Mixed-Integer Models
- 5. Looking Ahead to the Course

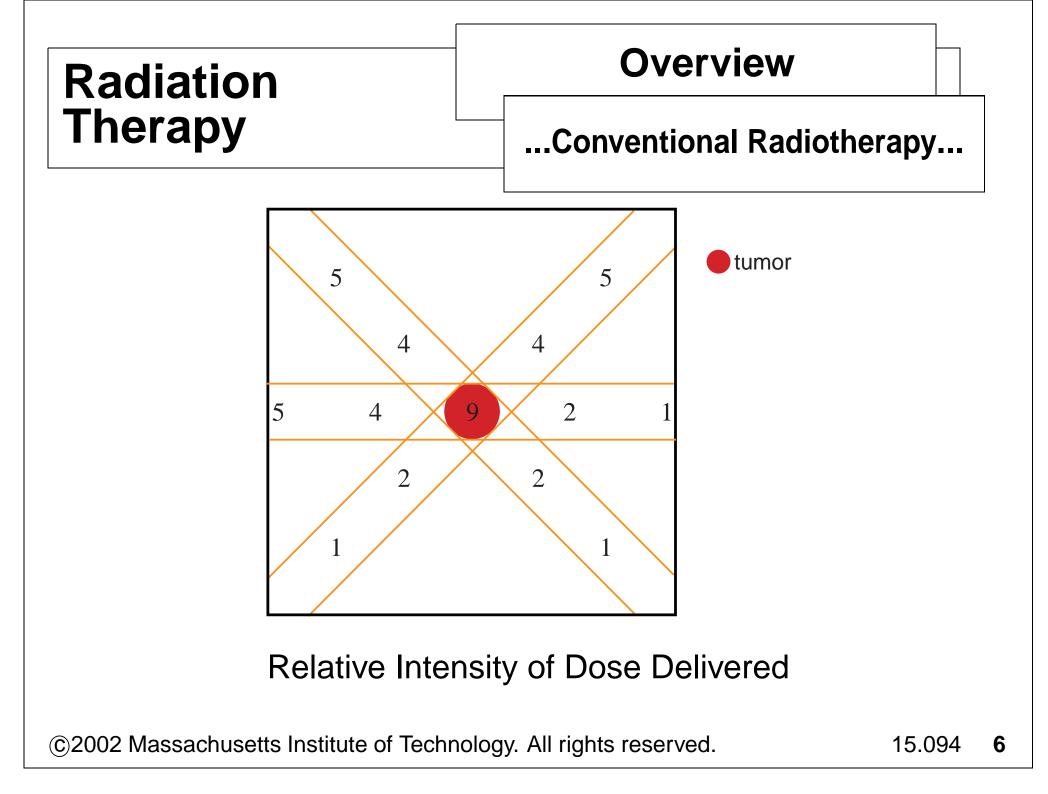
- This year, 1,200,000 Americans will be diagnosed with cancer
- 600,000+ patients will receive radiation therapy
 - beam(s) of radiation delivered to the body in order to kill cancer cells
- Sadly, only 67% of "curable" patients will be cured

- High doses of radiation (energy/unit mass) can kill cells and/or prevent them from growing and dividing
 - true for cancer cells and normal cells
- Radiation is attractive because the repair mechanisms for cancer cells is less efficient than for normal cells

- Recent advances in radiation therapy now make it possible to:
 - -map the cancerous region in greater detail
 - aim a larger number of different "beamlets" with greater specificity
- Spawned the new field of *tomotherapy*
- "Optimizing the Delivery of Radiation Therapy to Cancer Patients," by Shepard, Ferris, Olivera, and Mackie, SIAM Review, Vol. 41, pp. 721–744, 1999.



©2002 Massachusetts Institute of Technology. All rights reserved.



Overview

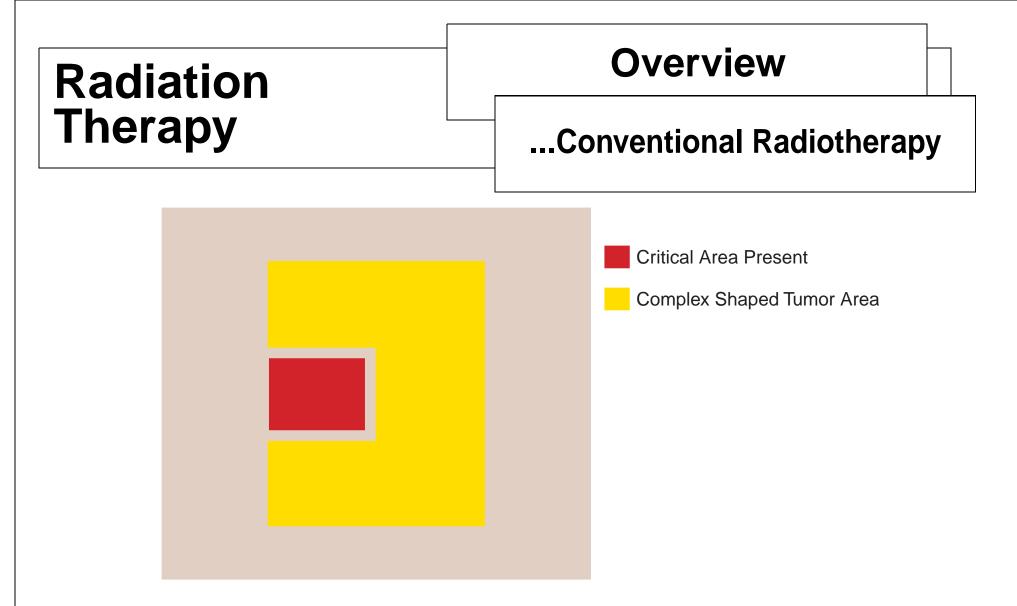
...Conventional Radiotherapy...

In conventional radiotherapy

-3 to 7 beams of radiation

 radiation oncologist and physicist work together to determine a set of beam angles and beam intensities

 determined by manual "trial-anderror" process



With only a small number of beams, it is difficult/impossible to deliver required dose to tumor without impacting the critical area.

Recent Advances...

- More accurate map of tumor area
 - -CT Computed Tomography
 - -MRI Magnetic Resonance Imaging
- More accurate delivery of radiation
 - -IMRT: Intensity Modulated Radiation Therapy
 - Tomotherapy

Overview

...Recent Advances

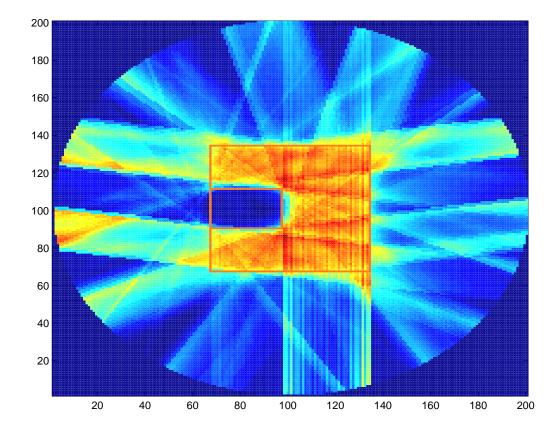
©2002 Massachusetts Institute of Technology. All rights reserved.

Formal Problem Statement...

- For a given tumor and given critical areas
- For a given set of possible beamlet origins and angles
- Determine the weight on each beamlet such that:
 - -dosage over the tumor area will be at least a target level γ_L
 - –dosage over the critical area will be at most a target level γ_U

Overview

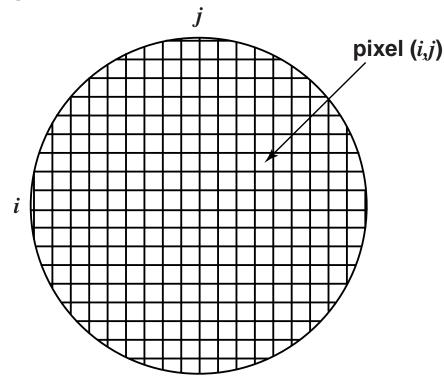
...Formal Problem Statement



©2002 Massachusetts Institute of Technology. All rights reserved.

Discretize the Space

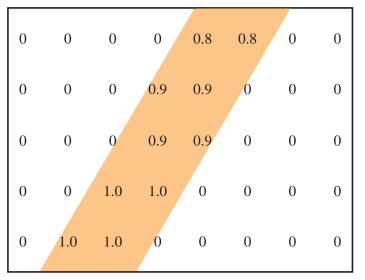
Divide up region into a 2-dimensional (or 3-dimensional) grid of pixels



Create Beamlet Data

Create the beamlet data for each of $p = 1, \ldots, n$ possible beamlets.

 D^p is the matrix of unit doses delivered by beam p .



 D_{ij}^p = unit dose delivered to pixel (i, j) by beamlet p.

Decision variables $w = (w_1, \ldots, w_n)$

 $w_p =$ intensity weight assigned to beamlet p,

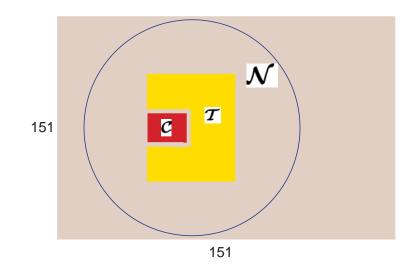
$$p=1,\ldots,n$$
.

$$D_{i\,j}:=\sum_{p=1}^n \, D_{i\,j}^p \, w_p$$
 (":=" denotes "by definition") $D:=\sum_{p=1}^n \, D^p \, w_p$

is the matrix of the integral dose (total delivered dose)

n

Definitions of Regions



 \mathcal{T} is the target area \mathcal{C} is the critical area \mathcal{N} is normal tissue $\mathcal{S} := \mathcal{T} \cup \mathcal{C} \cup \mathcal{N}$

Ideal Linear Model

$$egin{aligned} & \min_{w,D} & \sum_{(i,j)\in\mathcal{S}} D_{i\,j} \ \mathrm{s.t.} & D_{i\,j} = \sum_{p=1}^n D_{i\,j}^p \, w_p & (i,j)\in\mathcal{S} \ & w\geq 0 \ & D_{i\,j}\geq\gamma_L & (i,j)\in\mathcal{T} \ & D_{i\,j}\leq\gamma_U & (i,j)\in\mathcal{T} \end{aligned}$$

Ideal Linear Model

$$egin{aligned} ext{minimize} & & \sum\limits_{(i,j)\in\mathcal{S}} D_{i\,j} \ ext{s.t.} & D_{i\,j} = \sum\limits_{p=1}^n D_{i\,j}^p \, w_p & (i,j)\in\mathcal{S} \ & w\geq 0 \ & D_{i\,j}\geq\gamma_L & (i,j)\in\mathcal{T} \ & D_{i\,j}\leq\gamma_U & (i,j)\in\mathcal{T} \end{aligned}$$

- Unfortunately, this model is typically infeasible.
- Cannot deliver dose to tumor without some harm to critical area(s).

Engineered Approaches

$$egin{aligned} ext{minimize} & eta_{\mathcal{T}} \sum_{(i,j)\in\mathcal{T}} D_{i\,j} + eta_{\mathcal{C}} \sum_{(i,j)\in\mathcal{C}} D_{i\,j} + eta_{\mathcal{N}} \sum_{(i,j)\in\mathcal{N}} D_{i\,j} \ ext{s.t.} & D_{i\,j} = \sum_{p=1}^n D_{i\,j}^p \, w_p \quad (i,j)\in\mathcal{S} \ & w\geq 0 \ & \gamma_{i\,j}^L \leq D_{i\,j} \ & \leq \ & \gamma_{i\,j}^U \quad (i,j)\in\mathcal{T} \ & w_m \leq rac{lpha}{n} \sum_{p=1}^n w_p \quad m=1,\ldots,n \ & ext{(typicallyuse } lpha=5) \end{aligned}$$

Engineered Approaches

Some other possible objective functions:

Let $(Target)_{ij}$ be the target prescribed dose to be delivered to pixel (i, j)

$$egin{aligned} & \max_{(i,j)\in\mathcal{S}} & |D_{i\,j}-(\operatorname{Target})_{i\,j}| \ & \mathrm{s.t.} & D_{i\,j} = \sum_{p=1}^n & D_{i\,j}^p \, w_p \quad (i,j)\in\mathcal{S} \ & w \geq 0 \end{aligned}$$

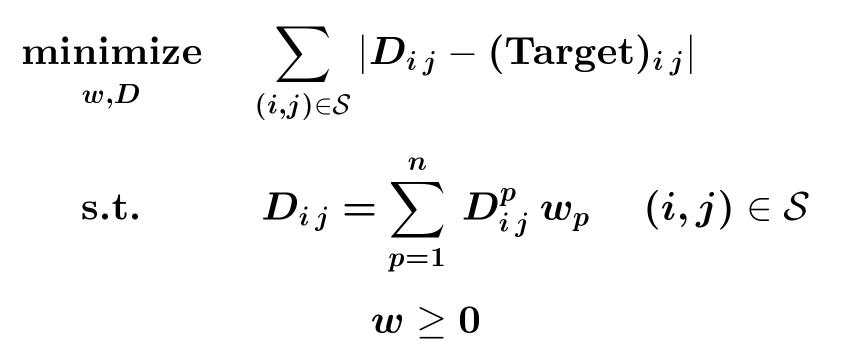
Engineered Approaches

This is the same as: minimize $\mu_{w,D,\mu}$

$$egin{aligned} ext{s.t.} & -\mu \leq D_{i\,j} - (ext{Target})_{i\,j} \leq \mu \quad (i,j) \in \mathcal{S} \ & D_{i\,j} = \sum_{p=1}^n \, D_{i\,j}^p \, w_p \qquad (i,j) \in \mathcal{S} \ & w \geq 0 \end{aligned}$$

Engineered Approaches

Here is another model:



Engineered Approaches

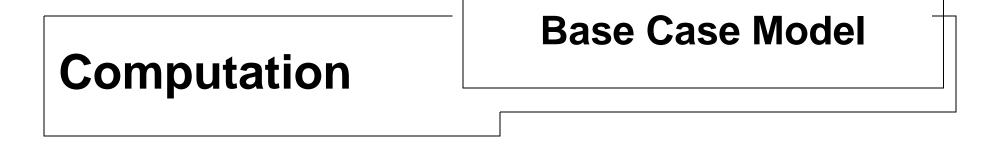
This is the same as:

$$\sum_{i,j)\in\mathcal{S}}\Delta_i$$

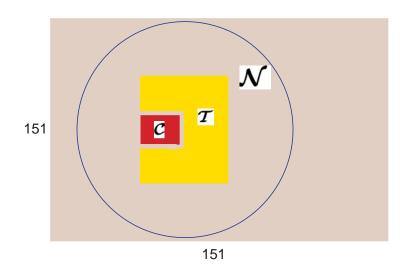
j

s.t.
$$D_{i\,j} = \sum_{p=1}^n \, D_{i\,j}^p \, w_p \qquad (i,j) \in \mathcal{S}$$
 $w \geq 0$

$$-\Delta_{i\,j} \leq D_{i\,j} - (ext{Target})_{i\,j} \leq \Delta_{i\,j} \quad (i,j) \in \mathcal{S}$$



Consider the "base case" example problem:

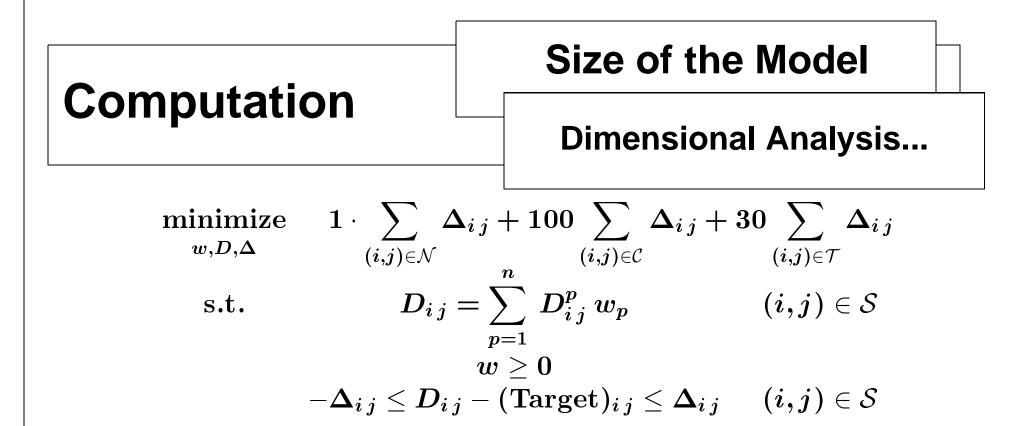


 $egin{arget} &(ext{Target})_{i\,j} = \mathbf{16}, \, (i,j) \in \mathcal{T} \ &(ext{Target})_{i\,j} = \mathbf{0}, \ \ (i,j) \in \mathcal{C} \ &(ext{Target})_{i\,j} = \mathbf{0}, \ \ (i,j) \in \mathcal{N} \end{aligned}$

Base Case Model

Computation

$$egin{aligned} & \min_{w,D,\Delta} & 1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i\,j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i\,j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i\,j} \ & ext{s.t.} & D_{i\,j} = \sum_{p=1}^n D_{i\,j}^p \, w_p & (i,j) \in \mathcal{S} \ & w \geq 0 \ & -\Delta_{i\,j} \leq D_{i\,j} - (ext{Target})_{i\,j} \leq \Delta_{i\,j} & (i,j) \in \mathcal{S} \end{aligned}$$



Dimensional Analysis:

 $egin{aligned} & ext{number of pixels} = 31, 397 (pprox \pi * 100^2) \ & ext{number of beamlets} = 564 & (n) \ & |\mathcal{T}| = 3,859; \quad |\mathcal{C}| = 630; \quad |\mathcal{N}| = 26,908 \ & |\mathcal{S}| = 31,397 \end{aligned}$

Computation Size of the Model ...Dimensional Analysis...

$$egin{aligned} & \min_{w,D,\Delta} & 1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i\,j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i\,j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i\,j} \ & ext{s.t.} & D_{i\,j} = \sum_{p=1}^n D_{i\,j}^p \, w_p & (i,j) \in \mathcal{S} \ & w \geq 0 \ & -\Delta_{i\,j} \leq D_{i\,j} - (ext{Target})_{i\,j} \leq \Delta_{i\,j} & (i,j) \in \mathcal{S} \end{aligned}$$

Decision Variables	Number
D_{ij}	31, 397
w	564
Δ_{ij}	31, 397
Total	63,358

©2002 Massachusetts Institute of Technology. All rights reserved.

Computation

Size of the Model

...Dimensional Analysis

$$egin{aligned} ext{minimize} & 1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i\,j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i\,j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i\,j} \ ext{s.t.} & D_{i\,j} = \sum_{p=1}^n D_{i\,j}^p \, w_p & (i,j) \in \mathcal{S} \ & w \geq 0 \ -\Delta_{i\,j} \leq D_{i\,j} - (ext{Target})_{i\,j} \leq \Delta_{i\,j} & (i,j) \in \mathcal{S} \end{aligned}$$

©2002 Massachusetts Institute of Technology. All rights reserved.

Size of the Model

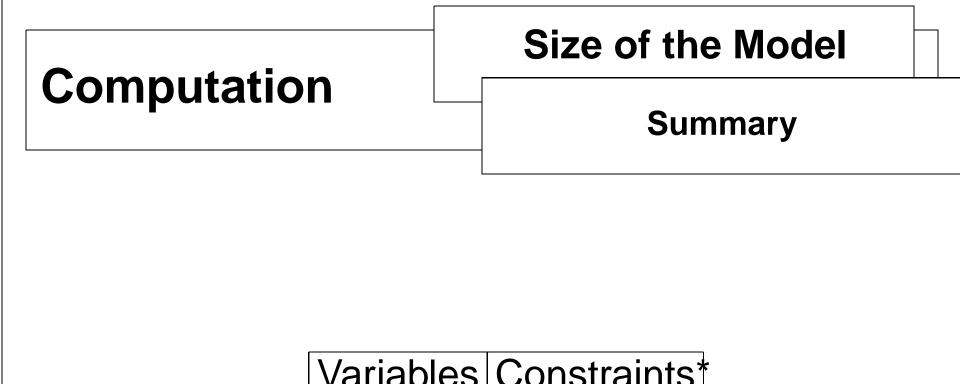
Number of Constraints

Simple Variables Upper/Lower Bounds	Number
$w \ge 0$	564
Total	564

Other Constraints*	Number
$D_{ij} =$	31 , 397 $ $
$\leq D_{ij} - (ext{Target})_{ij} \leq$	$\left \begin{array}{c} 62,794 \end{array} \right $
Total	$\fbox{94,191}$

*We usually exclude simple variable upper/lower bounds when counting constraints.

©2002 Massachusetts Institute of Technology. All rights reserved.



Vanabioo	Constants
63,358	94, 191

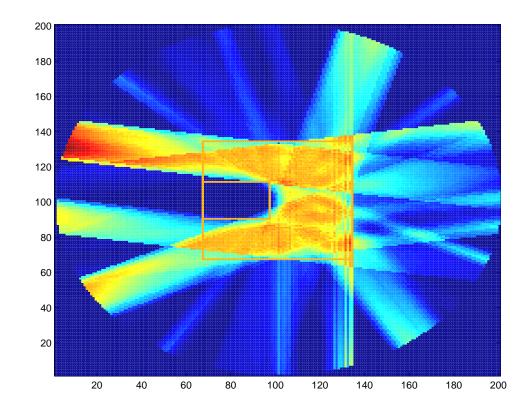
*Excludes variable upper/lower bounds.

©2002 Massachusetts Institute of Technology. All rights reserved.

Computation

Base Case Model

Optimal Solution

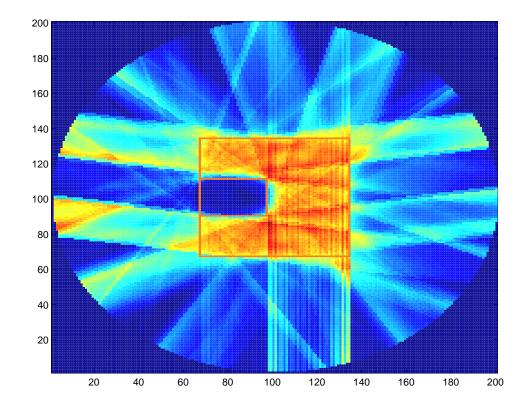


Base Case Model Solution

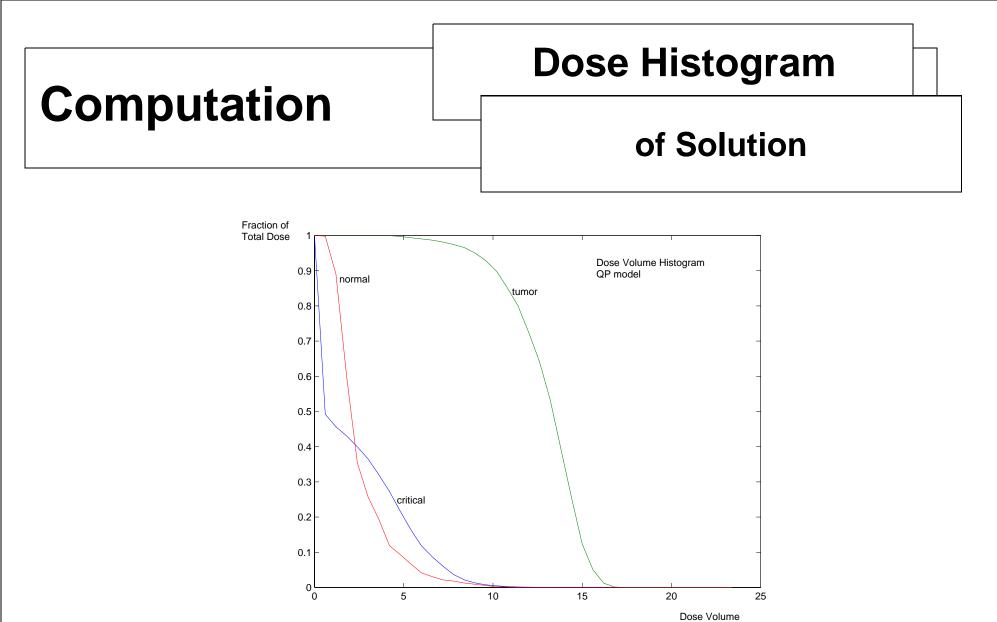
©2002 Massachusetts Institute of Technology. All rights reserved.

Another Model Solution

Computation

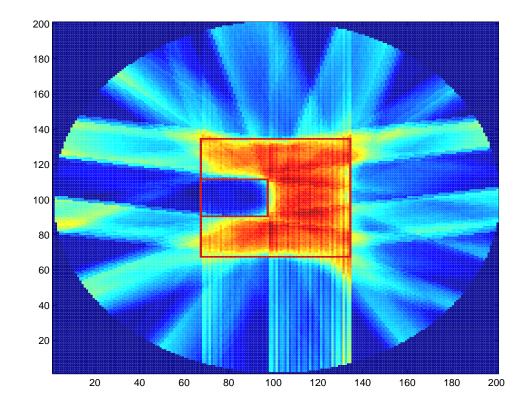


Solution of a nonlinear model.



Another Model Solution

Computation



Solution of a nonlinear model, where $\theta_{\mathcal{N}} = \theta_{\mathcal{C}} = \theta_{\mathcal{T}} = 1$.

Computational Issues

Software/Algorithms

- Software codes:
 - -CPLEX simplex (pivoting method)
 - -CPLEX barrier
 - -LOQO
- Algorithms:
 - -Simplex method ("pivoting" method)
 - -Interior-point method (IPM) ("barrier" method)

Computational Issues

Counting Iterations

- Iteration Counts:
 - -Number of pivots for simplex method
 - -Number of Newton steps for IPM

Computational Issues

Issues in Running Times

- Running time will be affected by:
 - number of constraints
 - number of variables
 - software code
 - type of algorithm (simplex or IPM)
 - properties of linear algebra systems involved
 - * density/patterns of nonzeroes of matrix systems to be solved
 - other problem characteristics specific to problem
 - idiosyncratic influences
 - pre-processing heuristics

Base Case

No Pre-Processing

- Base Case Model
- No Pre-Processing

			Running Time	
Code	Algorithm	Iterations	CPU	Wall (minutes)
			(sec)	(minutes)
CPLEX	Simplex	183,530	440	250
CPLEX	Barrier	49	13	37

Some Generic Rules

Computation

1. The simplex algorithm is designed to handle variables with lower bounds and upper bounds:

$$egin{array}{c} \min & c^T x \ x & Ax = b \ \ell \leq x \leq u \end{array}$$

where $\ell_j = -\infty$ and/or $u_j = +\infty$ is allowed.

2. We say x_j has no bounds if $\ell_j = -\infty$ and $u_j = +\infty$. Otherwise x_j is a bounded variable.

Some Generic Rules

Computation

$$egin{array}{c} \min & c^T x \ x & Ax = b \ \ell \leq x \leq u \end{array}$$

- 3. For the simplex method, the work per pivot generally depends on the number of nonzeros in A.
- 4. If A is very sparse (its density of nonzero elements is low), then the work per pivot will be low.
- 5. The number of simplex pivots in a "good" model is roughly between m and 10n.

$$egin{array}{c} \min {x} & c^T x \ A x = b \ \ell \leq x \leq u \end{array}$$

5. The work per iteration of an interior-point method generally depends on the structure of the matrix

$$K = egin{pmatrix} I & A^T \ A & 0 \end{pmatrix}$$
 .

Some Generic Rules

Computation

$$K = egin{pmatrix} I & A^T \ A & 0 \end{pmatrix}.$$

6. The structure of K is often (but not always) related to the structure of the matrix AA^T because the following two matrices are "similar":

$$K = egin{pmatrix} I & A^T \ A & 0 \end{pmatrix} \quad P = egin{pmatrix} I & A^T \ 0 & -AA^T \end{pmatrix}.$$

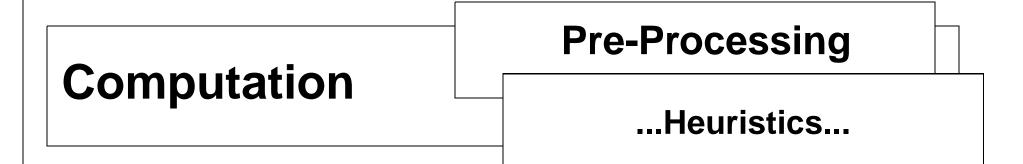
7. The number of interior-point method iterations is typically 25-80 (*independent* of m and/or n).

Heuristics...

Pre-Processing Heuristics in Commercial-Grade Software

Designed to Eliminate Constraints and/or Variables
Example:

$$egin{array}{rll} -5x &+3y &+z &=17\ 0\leq x\leq 4 & 0\leq y\leq 2 & 10\leq z\leq 40 \end{array}$$



- Example:
- -5x +3y +z =17

$$oldsymbol{0} \leq x \leq 4$$
 $oldsymbol{0} \leq y \leq 2$ $oldsymbol{10} \leq z \leq 40$

$$ullet z = 17 + 5x - 3y \geq 17 + 5(0) - 3(2) = 11 \geq 10$$

- $ullet z = 17 + 5x 3y \le 17 + 5(4) 3(0) = 37 \le 40$
- Therefore we can eliminate the bounds on z
- Therefore we can treat z as a free variable
- Therefore we can eliminate z from our model altogether.

Pre-Processing

...Heuristics

- Base Case Model
- With Pre-Processing

			Running Time		
Code	Algorithm	Iterations	CPU	Wall	
			(sec)	(minutes)	
CPLEX	Simplex	18,428	4.3	4	
CPLEX	Barrier	16	130	133	

Equivalent Formulation

"Small" Model...

Equivalent Formulation: (eliminate D_{ij})

"Small" Model:

$$egin{aligned} & \min_{w,\Delta} & 1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i\,j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i\,j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i\,j} \ & ext{s.t.} & -\Delta_{i\,j} \leq \sum_{p=1}^n D_{i\,j}^p \, w_p - (ext{Target})_{i\,j} \leq \Delta_{i\,j} \quad (i,j) \in \mathcal{S} \ & w \geq 0 \end{aligned}$$

Equivalent Formulation

..."Small" Model...

	Base Case Model	Small Model
Variables	63,358	31,961
Constraints*	94, 191	62,794

*always excludes simple variable upper/lower bounds

©2002 Massachusetts Institute of Technology. All rights reserved.

15.094 **47**

Equivalent Formulation

..."Small" Model

Small Model

			Running Time	
Code	Algorithm	Iterations	CPU	Wall
			(sec)	(minutes)
CPLEX	Simplex	171,656	390	216
CPLEX	Barrier	57	80	31

Comparisons

Computation

			Running Time
Code	Algorithm	Model	Wall
		meder	(minutes)
CPLEX	Simplex	Base Case	250
		Pre-Processed	4
		Small Model	216
CPLEX	Barrier	Base Case	37
		Pre-Processed	133
		Small Model	31

Nonlinear Optimization

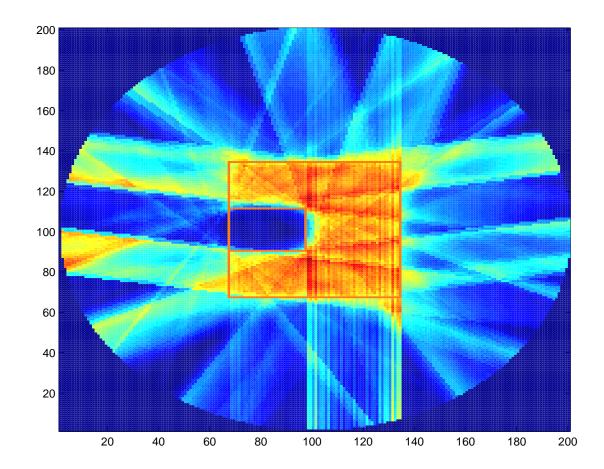
Quadratic Model

$$egin{aligned} QP\colon & ext{minimize} \quad 1\cdot \sum_{(i,j)\in\mathcal{N}} [D_{i\,j}- ext{Target}_{i\,j}]^2 \ &+ 100\sum_{(i,j)\in\mathcal{C}} [D_{i\,j}- ext{Target}_{i\,j}]^2 \ &+ 30\sum_{(i,j)\in\mathcal{T}} [D_{i\,j}- ext{Target}_{i\,j}]^2 \ & ext{s.t.} \qquad D_{i\,j} = \sum_{p=1}^n D_{i\,j}^p \, w_p \qquad (i,j)\in\mathcal{S} \ &w\geq 0 \end{aligned}$$

Nonlinear Optimization

Quadratic Model

Quadratic Model Output



Nonlinear Optimization

Quadratic Model

Computational Results

				Running Time
Modol	Code	Algorithm	Iterations	CPU
MOUCI				(sec)
Base Case QP Model	LOQO	Barrier	31	82.7
Small QP Model	LOQO	Barrier	32	149.0

Mixed Integer Optimization

Limiting the Number of Beamlets

$$egin{aligned} & \min_{w,D,\Delta} & 1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i\,j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i\,j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i\,j} \ & \mathrm{s.t.} & D_{i\,j} = \sum_{p=1}^n D_{i\,j}^p \, w_p & (i,j) \in \mathcal{S} \ & w \geq 0 \ -\Delta_{i\,j} \leq D_{i\,j} - (\mathrm{Target})_{i\,j} \leq \Delta_{i\,j} & (i,j) \in \mathcal{S} \ & w_p \leq 100 y_p & p = 1, \ldots, n \ & y_p \in \{0,1\} & p = 1, \ldots, n \ & \sum_{p=1}^n y_p \leq 15. \end{aligned}$$

Mixed Integer Optimization

Computation

CPLEX MIP Solver

		Running Time		
MIP Gap	Simplex	CPU	Wall	
(%)	Pivots	(seconds)	(minutes)	
20	11,646	7	4	
15	11,646	7	4	
12	11,646	5	4	
10	14,538	9	6	
7	14,538	7	6	
5	14,538	10	6	
4	14,538	7	6	
3	14,538	5	6	
2	3,655,445	1,700	25.3 hours	

Partial Volume Constraints

55

Partial Volume Constraints:

"No more than 20% of the critical region can exceed a dose of $30G_y$."

"No more than 5% of the critical region can exceed a dose of $50G_y$."

Approach #1 (Integer Programming Model)

Let M be a very large number,

$$egin{aligned} D_{i\,j} &\leq 30 + M \cdot y_{i\,j}, \quad y_{i\,j} \in \{0,1\}, & (i\,j) \in \mathcal{C} \ D_{i\,j} &\leq 50 + M \cdot z_{i\,j}, \quad z_{i\,j} \in \{0,1\}, & (i\,j) \in \mathcal{C} \ & \sum_{(i\,j) \in \mathcal{C}} y_{i\,j} \leq |\mathcal{C}| imes 0.20 \ & \sum_{(i\,j) \in \mathcal{C}} z_{i\,j} \leq |\mathcal{C}| imes 0.05 \end{aligned}$$

Partial Volume Constraints

Partial Volume Constraints

Approach #2 (Error Function Approach)

The error function, or sigmoid function, is of the form:

$$\mathrm{err} f(x) = rac{1}{1+e^{-lpha x}}$$

 $\mathrm{err} f(x) = rac{1}{2} ext{ at } x = 0$
 $\mathrm{err} f(x)
ightarrow 1 ext{ as } x
ightarrow \infty$
 $\mathrm{err} f(x)
ightarrow 0 ext{ as } x
ightarrow -\infty$

15.094 **57**

Partial Volume Constraints

Instead of integer variables, we use

$$egin{aligned} &\sum_{(i\,j)\in\mathcal{C}} \ \mathbf{err}f(m{D}_{i\,j}-m{30}) \,\leq\, |\mathcal{C}| imes m{0.20} \ & \ &\sum_{(i\,j)\in\mathcal{C}} \ \mathbf{err}f(m{D}_{i\,j}-m{50}) \,\leq\, |\mathcal{C}| imes m{0.05} \end{aligned}$$

Looking Ahead

Modeling Languages

Used in the Course

- Modeling languages and software used in the course
 - -OPL Studio
 - * linear and mixed-integer programming
 - * solver is CPLEX simplex and/or CPLEX barrier
 - * first half of course
 - -AMPL
 - * linear and nonlinear programming
 - * solver is LOQO
 - * second half of course

Looking Ahead

Modeling Tools

and Issues

- "Column Generation" (week 3)
 - -generates new decision variables "on the fly"
- Exact optimization and exact feasibility
 - -in models
 - in algorithms
- Computational Issues in LP (next lecture)
 - -simplex method with upper/lower bounds
 - -methods for updating the basis inverse