
1  MATH FACTS 

1.1  Vectors 

1.1.1  Definition 

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, 
in three-space, we write 

 
The elements of a vector have a graphical interpretation, which is particularly easy to see in two or 
three dimensions. 

 

1. Vector addition is pointwise. 

 

Graphically, addition is stringing the vectors together head to tail. 

2. Scalar multiplication is pointwise.  

 

1.1.2  Vector Magnitude 

The total length of a vector of dimension , its Euclidean norm, is given by 

 
this scalar is commonly used to normalize a vector to length one. 

1.1.3  Vector Dot Product 



The dot product of two vectors is the sum of the products of the elements: 

 
The dot product also satisfies 

 
where is the angle between the vectors. 

1.1.4  Vector Cross Product 

The cross product of two three-dimensional vectors is another vector, , whose  

1. direction is normal to the plane formed by the two vectors,  
2. direction is given by the right-hand rule, rotating from to ,  
3. magnitude is the area of the parallelogram formed by the two vectors - the cross product of 

two parallel vectors is zero - and  

4. (signed) magnitude is equal to , where is the angle between the two vectors, 
measured from to .  

The schoolbook formula is 

 

1.2  Matrices 

1.2.1  Definition 

A matrix, or array, is equivalent to a set of row vectors, arranged side by side, say 

 
This matrix has three rows ( ) and two columns ( ); a vector is a special case of a matrix 
with one column. Matrices, like vectors, permit pointwise addition and scalar multiplication. We 
usually use an upper-case symbol to denote a matrix. 

1.2.2  Multiplying a Vector by a Matrix 

If denotes the element of matrix in the 'th row and the 'th column, then the multiplication 
is constructed as: 

 
where is the number of columns in . will have as many columns as has rows ( ). Note that 
this multiplication is well-defined only if has as many rows as has columns; they have consistent 
inner dimension . The product would be well-posed only if had one row, and the proper 
number of columns. There is another important interpretation of this vector multiplication: Let the 
subscript indicate all rows, so that each is the 'th column vector. Then 

 
We are multiplying column vectors of by the scalar elements of . 

1.2.3  Multiplying a Matrix by a Matrix 

The multiplication is equivalent to a side-by-side arrangement of column vectors 
, so that 

 



where is the number of columns in matrix . The same inner dimension condition applies as noted 
above: the number of columns in must equal the number of rows in . Matrix multiplication is: 

1. Associative. .  

2. Distributive. , .  

3. NOT Commutative. , except in special cases.  

1.2.4  Common Matrices 

Identity 

. The identity matrix is usually denoted , and comprises a square matrix with ones on the diagonal, 
and zeros elsewhere, e.g., 

 
The identity always satisfies . 

Diagonal Matrices 

. A diagonal matrix is square, and has all zeros off the diagonal. For instance, the following is a 
diagonal matrix: 

 
The product of a diagonal matrix with another diagonal matrix is diagonal, and in this case the 
operation is commutative. 

1.2.5  Transpose 

The transpose of a vector or matrix, indicated by a superscript results from simply swapping the 
row-column indices of each entry; it is equivalent to ``flipping'' the vector or matrix around the 
diagonal line. For example, 

 
A very useful property of the transpose is 

 

1.2.6  Determinant 

The determinant of a square matrix is a scalar equal to the volume of the parallelepiped enclosed 
by the constituent vectors. The two-dimensional case is particularly easy to remember, and 
illustrates the principle of volume: 

 



 
In higher dimensions, the determinant is more complicated to compute. The general formula allows 
one to pick a row , perhaps the one containing the most zeros, and apply 

 
where is the determinant of the sub-matrix formed by neglecting the 'th row and the 'th 
column. The formula is symmetric, in the sense that one could also target the 'th column: 

 
If the determinant of a matrix is zero, then the matrix is said to be singular - there is no volume, 
and this results from the fact that the constituent vectors do not span the matrix dimension. For 
instance, in two dimensions, a singular matrix has the vectors colinear; in three dimensions, a 
singular matrix has all its vectors lying in a (two-dimensional) plane. Note also that 

. If , then the matrix is said to be nonsingular. 

1.2.7  Inverse 

The inverse of a square matrix , denoted , satisfies . Its computation 
requires the determinant above, and the following definition of the adjoint matrix: 

 
Once this computation is made, the inverse follows from 

 
If is singular, i.e., , then the inverse does not exist. The inverse finds common 
application in solving systems of linear equations such as 

 

1.2.8  Trace 

The trace of a matrix is simply the sum of the diagonals: 

 

1.2.9  Eigenvalues and Eigenvectors 

A typical eigenvalue problem is stated as 
 

where is an matrix, is a column vector with elements, and is a scalar. We ask for what 
nonzero vectors (right eigenvectors), and scalars (eigenvalues) will the equation be satisfied. 

Since the above is equivalent to , it is clear that . This observation 
leads to the solutions for ; here is an example for the two-dimensional case: 



 
Thus, has two eigenvalues, and . Each is associated with a right eigenvector . In 
this example,  

 

 
Eigenvectors have arbitrary magnitude and sign; they are often normalized to have unity 
magnitude, and positive first element (as above). A set of eigenvectors is always linearly 

independent. The condition that indicates that there is only one 
eigenvector for the eigenvalue . If the left-hand side is less than this, then there are multiple 
unique eigenvectors that go with . 
The above discussion relates only the right eigenvectors, generated from the equation . 

Left eigenvectors, also useful for many problems, pertain to the transpose of : . and 
share the same eigenvalues , since they share the same determinant. Example: 

 

 

1.2.10  Modal Decomposition 

The right and left eigenvectors of a particular eigenvalue have unity dot product, that is , 
with the normalization noted above. The dot product of a left eigenvector with the right eigenvector 
of a different eigenvalue is zero. Thus, if 

 
then we have 

 
Next, construct a diagonal matrix of eigenvalues: 



 
it follows that  

 
Hence can be written as a sum of modal components.1 

1.2.11  Singular Value 

Let be an , possibly complex matrix. The singular value decomposition (SVD) computes 
three matrices satisfying 

 
where is , is , and is . The star notation indicates a complex-conjugate 
transpose. The matrix is diagonal, with the form 

 
where . Each nonzero entry on the diagonal is a real, positive singular value, 
ordered such that . The notation is common that , the maximum singular 
value, and , the minimum singular value. The auxiliary matrices and are unitary, i.e., 
they satisfy . Like eigenvalues, the singular values of are related to projections. 
represents the Euclidean size of the matrix along the 'th singular vector: 

 
Other properties of the singular value include:  

  .  

  .  

  .  

  .  

  .  

1.3  Laplace Transform 

1.3.1  Definition 

The Laplace transform converts time-domain signals into a frequency-domain equivalent. The signal 

has transform defined as follows: 

 
where is an unspecified complex number; is considered to be complex as a result. Note that 

the Laplace transform is linear, and so it is is distributive: will 
hold throughout. The following table gives a list of some useful transform pairs and other 
properties, for reference. 
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The last two properties are of special importance: for control system design, the differentiation of a 
signal is equivalent to multiplication of its Laplace transform by ; integration of a signal is 

equivalent to division by . The other terms that arise will cancel if , or if is finite, so 
they are usually ignored. 

1.3.2  Convergence 

We note first that the value of affects the convergence of the integral. For instance, if , 

then the integral converges only for , since the integrand is in this case. Convergence 
issues are not a problem for evaluation of the Laplace transform, however, because of analytic 
continuation. This result from complex analysis holds that if two complex functions are equal on 
some arc (or line) in the complex plane, then they are equivalent everywhere. This fact allows us to 
always pick a value of for which the integral above converges, and then by extension infer the 
existence of the general transform. 

1.3.3  Convolution Theorem 

One of the main points of the Laplace transform is the ease of dealing with dynamic systems. As 
with the Fourier transform, the convolution of two signals in the time domain corresponds with the 

multiplication of signals in the frequency domain. Consider a system whose impulse response is 

, being driven by an input signal ; the output is . The Convolution Theorem is 



 
Here's the proof given by Siebert: 

 
When is the impulse response of a dynamic system, then represents the output of this 

system when it is driven by the external signal . 

1.3.4  Solution of Differential Equations by Laplace Transform 

The Convolution Theorem allows one to solve (linear time-invariant) differential equations in the 
following way:  

1. Transform the system impulse response into , and the input signal into , 
using the transform pairs. 

2. Perform the multiplication in the Laplace domain to find . 

3. Ignoring the effects of pure time delays, break into partial fractions with no powers of 
greater than 2 in the denominator.  

4. Generate the time-domain response from the simple transform pairs. Apply time delay as 
necessary. 

Specific examples of this procedure are given in a later section on transfer functions. 
 

1 By carrying out successive multiplications, it can be shown that has its eigenvalues at , and 
keeps the same eigenvectors as . 
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