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19.1  Introduction 

In the previous section, we derived the linear quadratic regulator as an optimal solution for the full-
state feedback control problem. The inherent assumption was that each state was known perfectly. 
In real applications, the measurements are subject to disturbances, and may not allow 
reconstruction of all the states. This state estimation is the task of a model-based estimator having 
the form: 

 
The vector represents the state estimate, whose evolution is governed by the nominal and 
matrices of the plant, and a correction term with the estimator gain matrix . operates on the 
estimation error mapped to the plant output , since . Given statistical properties of real 
plant disturbances and sensor noise, the Kalman Filter designs an optimal . 

19.2  Problem Statement 

We consider the state-space plant model given by: 

 
There are states, inputs, and outputs, so that has dimension , is , and is 
. The plant subject to two random input signals, and . represents disturbances to the plant, 
since it drives directly; denotes sensor noise, which corrupts the measurement .  
An important assumption of the Kalman Filter is that and are each vectors of unbiased, 

independent white noise, and that all the channels are uncorrelated. Hence, if denotes the 
expected value, 

 
Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and 

is an diagonal matrix of intensities. 
The estimation error may be defined as . It can then be verified that 

 
The eigenvalues of the matrix thus determine the stability properties of the estimation 
error dynamics. The second term above, is considered an external input. 
The Kalman filter design provides that minimizes the scalar cost function 

 
where is an unspecified symmetric, positive definite weighting matrix. A related matrix, the 
symmetric error covariance, is defined as 

 
There are two main steps for deriving the optimal gain . 



19.3  Step 1: An Equation for  

The evolution of follows from some algebra and the convolution form of . We begin with 

 
The last term above can be expanded, using the property that 

 
We have 

 
To get from the first right-hand side to the second, we note that the initial condition is 

uncorrelated with . The fact that and are uncorrelated leads to the third line, 
and the final result follows from  

 
i.e., the written integral includes only half of the impulse. 

The final expression for is symmetric, and therefore appears in Equation 205 
twice, leading to 

 
This equation governs propagation of the error covariance. It is independent of the initial condition 

, and depends on the (as yet) unknown estimator gain matrix . 

19.4  Step 2: as a Function of  

We now make the connection between (a matrix) and (a scalar). The 
trace of a matrix is the sum of its diagonal elements, and it can be verified that 

 
We now introduce an auxiliary cost function defined as 

 
where is an matrix of zeros, and is an matrix of unknown Lagrange multipliers. Note 
that since is zero, , so minimizing solves the same problem. Lagrange multipliers provide 
an ingenious mechanism for drawing constraints into the optimization; the constraint we invoke is 
the evolution of , Equation 206: 

 
If is an optimal cost, it follows that , i.e., the correct choice of achieves an 
extremal value. We need the following lemmas, which give the derivative of a trace with respect to 
a constituent matrix: 
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Proofs of the first two are given at the end of this section; the last lemma uses the chain rule, and 
the previous two lemmas. Next, we enforce , since the values are arbitrary. Then the 

condition leads to 

 
Hence the estimator gain matrix can be written as a function of . Inserting this back into 
Equation 206, we obtain 

 
Equations 210 and 211 represent the practical solution to the Kalman filtering problem, which 
minimizes the squared-norm of the estimation error. The evolution of is always stable, and 

depends only on the constant matrices . Notice also that the result is independent of 
the weighting matrix , which might as well be the identity.  

19.5  Properties of the Solution 

The solution involves a matrix Riccati equation, like the LQR, suggesting a duality with the LQR 
problem. This is in fact the case, and the same analysis and numerical tools can be applied to both 
methodologies.  
The steady-state solution for is valid for time-invariant systems, leading to a more common MARE 
form of Equation 211: 

 
The Kalman Filter is guaranteed to create a stable nominal dynamics , as long as the plant 
is fully state-observable. This is dual to the stability guarantee of the LQR loop, when the plant is 
state-controllable. Furthermore, like the LQR, the KF loop achieves 60  phase margin, and infinite 
gain margin, for all the channels together or independently. 

Duality of Linear Quadratic Regulator and Kalman Filter  
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The qualitative dependence of the estimator gain on the other parameters can be 
easily seen. Recall that is the intensity matrix of the plant disturbance, is the intensity of the 
sensor noise, and is the error covariance matrix. 

  A large uncertainty creates large , placing emphasis on the corrective action of the 
filter.  

  A small disturbance , and large sensor noise creates a small , weighting the model 
dynamics more.  

  A large disturbance , and small sensor noise creates a large , so that the filter's 
correction is dominant.  

http://ocw.mit.edu/13/13.49/f00/lecture-notes/
http://ocw.mit.edu/13/13.49/f00/lecture-notes/
http://ocw.mit.edu/13/13.49/f00/lecture-notes/
http://ocw.mit.edu/13/13.49/f00/lecture-notes/


The limiting closed-loop poles of the Kalman filter are similar, and dual to those of the LQR: 

  : good sensors, large disturbance, , dual to cheap-control problem. Some 
closed-loop poles go to the stable plant zeros, or the mirror image of unstable plant zeros. 
The remaining poles follow a Butterworth pattern whose radius increases with increasing 

.  
  : poor sensors, small disturbance, small, dual to expensive-control problem. 

Closed-loop poles go to the stable plant poles, and the mirror images of the unstable plant 
poles.  

19.6  Combination of LQR and KF 

An optimal output feedback controller is created through the use of a Kalman filter coupled with an 
LQR full-state feedback gain. This combination is usually known as the Linear Quadratic Gaussian 
design, or LQG. For the plant given as  

 
we put the Kalman Filter and controller gain together as follows: 

 

 
There are two central points to this construction: 

1. Separation Principle: The eigenvalues of the nominal closed-loop system are made of up 

the eigenvalues of and the eigenvalues of , separately. See proof 
below. 

2. Output Tracking: This compensator is a stand-alone system that, as written, tries to drive 

its input to zero. It can be hooked up to receive tracking error as an 
input instead, so that it is not limited to the regulation problem alone. In this case, no 
longer represents an estimated state, but rather an estimated state tracking error. We use 
the output error as a control input in the next section, on loopshaping via loop transfer 
recovery.  

19.7  Proofs of the Intermediate Results 

19.7.1  Proof that  

 
the transpose of being valid since it is symmetric. Now consider the diagonal elements of the 
product : 



 

19.7.2  Proof that  

 
where the second form is a sum over of the 'th elements. Now 

 

19.7.3  Proof that  

 
where the last form is a sum over the 'th elements. It follows that 

 

19.7.4  Proof of the Separation Principle 

Without external inputs and , the closed-loop system evolves according to 

 
Using the definition of estimation error , we can write the above in another form: 

 
If represents this compound -matrix, then its eigenvalues are the roots of . 
However, the determinant of an upper triangular block matrix is the product of the determinants of 

each block on the diagonal: , and hence 
the separation of eigenvalues follows. 
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