
16  MODAL ANALYSIS 

16.1  Introduction 

The evolution of states in a linear system occurs through independent modes, which can be driven 
by external inputs, and observed through plant output. This section provides the basis for modal 
analysis of systems. Throughout, we use the state-space description of a system with = 0: 

 

16.2  Matrix Exponential 

16.2.1  Definition 

In the instance of an unforced response to initial conditions, consider the system 

 
In the scalar case, the response is , giving a decaying exponential if . The same 
notation holds for the case of a vector , and matrix : 

 
is usually called the matrix exponential. 

16.2.2  Modal Canonical Form 

Introductory material on the eigenvalue problem and modal decomposition can be found in the 
MATH FACTS section. This modal decomposition of leads to a very useful state-space 
representation. Namely, since , a transformation of state variables can be made, 

, leading to 

 
This is called the modal canonical form, since the states are simply the modal amplitudes. These 
states are uncoupled in , but may be coupled through the input ( ) and output ( ) 
mappings. The modal form is numerically robust for computations. 

16.2.3  Modal Decomposition of Response 

Now we are ready to look at the matrix exponential in terms of its constituent modes. Employing 
the above form for , we find that 

 
In terms of the response to an initial condition , we have 

 
The product is a scalar, the projection of the initial conditions onto the 'th mode. If is 
perpendicular to , then the product is zero and the 'th mode does not respond. Otherwise, the 
'th mode does participate in the response. The projection of the 'th mode onto the states is 
through the right eigenvector . 



For stability of the system, the eigenvalues of , that is, , must have negative real parts; they are 
in fact the poles of the equivalent transfer function description. 

16.3  Forced Response and Controllability 

Now consider the system with an external input : 

 
Taking the Laplace transform of the system, taking into account the initial condition for the 
derivative, we have 

 
Thus can be recognized as the Laplace transform of the matrix exponential . In the 
time domain, the second term then has the form of a convolution of the matrix exponential and the 
net input : 

 

Suppose now that there are inputs, such that . Then some rearrangement will 
give 

 

The product , a scalar, represents the projection of the 'th control channel onto the 'th mode. 
We say that the 'th mode is controllable from the 'th input if the product is nonzero. If a given 

mode has for all input channels , then the mode is uncontrollable. 
In normal applications, controllability for the entire system is checked using the following test: 
Construct the so-called controllability matrix: 

 
This matrix has size , where is the number of input channels. If has rank , then the 
system is controllable, i.e., all modes are controllable. 

16.4  Plant Output and Observability 

We now turn to a related question: can the complete state vector of the system be observed given 
only the output measurements , and the known control ? The response due to the external input 
is easy to compute deterministically, through the convolution integral. Consider the part due to 
initial conditions . We found above 

 
The observation is (  channels of output), and writing  

 
the 'th channel of the output is 

 
The 'th mode is observable in the 'th output if the product . We say that a system is 
observable if every mode can be seen in at least one output channel. The usual test for system 
observability requires computation of the observability matrix: 

 
This matrix has size ; the system is observable if has rank . 

 


	16  MODAL ANALYSIS
	16.1  Introduction
	16.2  Matrix Exponential
	16.2.1  Definition
	16.2.2  Modal Canonical Form
	16.2.3  Modal Decomposition of Response
	16.3  Forced Response and Controllability
	16.4  Plant Output and Observability


