
9  SLENDER-BODY THEORY 

9.1  Introduction 

Consider a slender body with , that is mostly straight. The body could be asymmetric in 
cross-section, or even flexible, but we require that the lateral variations are small and smooth along 
the length. The idea of the slender-body theory, under these assumptions, is to think of the body as 
a longitudinal stack of thin sections, each having an easily-computed added mass. The effects are 
integrated along the length to approximate lift force and moment. Slender-body theory is accurate 

for small ratios , except near the ends of the body. 

As one example, if the diameter of a body of revolution is , then we can compute , where 
the nominal added mass value for a cylinder is  

 
The added mass is equal to the mass of the water displaced by the cylinder. The equation above 
turns out to be a good approximation for a number of two-dimensional shapes, including flat plates 
and ellipses, if is taken as the width dimension presented to the flow. Many formulas for added 
mass of two-dimensional sections, as well as for simple three-dimensional bodies, can be found in 
the books by Newman and Blevins. 

9.2  Kinematics Following the Fluid 

The added mass forces and moments derive from accelerations that a fluid particles experience 
when they encounter the body. We use the notion of a fluid derivative for this purpose: the operator 

indicates a derivative taken in the frame of the passing particle, not the vehicle. Hence, this 
usage has an indirect connection with the derivative described in our previous discussion of rigid-
body dynamics. 
For the purposes of explaining the theory, we will consider the two-dimensional heave/surge 
problem only. The local geometry is described by the location of the centerline; it has vertical 

location (in body coordinates) of , and local angle . The time-dependence indicates 
that the configuration is free to change with time, i.e., the body is flexible. Note that the curvilinear 
coordinate is nearly equal to the body-reference (linear) coordinate . 

The velocity of a fluid particle normal to the body at is : 

 
The first component is the time derivative in the body frame, and the second due to the deflection 
of the particle by the inclined body. If the body reference frame is rotated to the flow, that is, if 

, then will contain . For small angles, , and we can write 

 
The fluid derivative operator in action is as follows: 

 

9.3  Derivative Following the Fluid 

A more formal derivation for the fluid derivative operator is quite simple. Let represent some 
property of a fluid particle. 

 
The second equality can be verified using a Taylor series expansion of : 

 
and noting that . The fluid is convected downstream with respect to the body.  



9.4  Differential Force on the Body 

If the local transverse velocity is , then the differential inertial force on the body here is the 
derivative (following the fluid) of the momentum: 

 
Note that we could here let the added mass vary with time also - this is the case of a changing 

cross-section! The lateral velocity of the point in the body-reference frame is 

 
such that 

 
Taking the derivative, we have 

 
We now restrict ourselves to a rigid body, so that neither nor may change with time. 

 

9.5  Total Force on a Vessel 

The net lift force on the body, computed with strip theory is 

 
where represents the coordinate of the tail, and is the coordinate of the nose. Expanding, we 
have 

 
We made use here of the added mass definitions 

 
Additionally, for vessels with pointed noses and flat tails, the added mass at the nose is zero, so 
that a simpler form occurs: 

 
In terms of the linear hydrodynamic derivatives, the strip theory thus provides 

 
It is interesting to note that both and depend on a nonzero base area. In general, however, 
potential flow estimates do not create lift (or drag) forces for a smooth body, so this should come as 
no surprise. The two terms are clearly related, since their difference depends only on how the body 
coordinate system is oriented to the flow. Another noteworthy fact is that the lift force depends only 
on at the tail; could take any value(s) along the body, with no effect on . 

9.6  Total Moment on a Vessel 

A similar procedure can be applied to the moment predictions from slender body theory (again for 
small ): 



 
Then we make the further definition 

 
(note that ) and use integration by parts to obtain 

 
The integral above contains the product , which must be calculated if changes along the 
length. For simplicity, we now assume that is in fact constant on the length, leading to 

 
Finally, the linear hydrodynamic moment derivatives are 

 
The derivative is closely-related to the Munk moment, whose linearization would provide 

. The Munk moment (an exact result) may therefore be used to make a 
correction to the second term in the slender-body approximation above of . As with the lift force, 

and are closely related, depending only on the orientation of the body frame to the flow. 

9.7  Relation to Wing Lift 

There is an important connection between the slender body theory terms involving added mass at 

the tail ( ), and low aspect-ratio wing theory. The lift force from the latter is of the form 

, where , the product of chord (long) and span (short). 
The lift coefficient slope is approximated by (Hoerner) 

 
where is the aspect ratio. Inserting this approximation into the lift formula, we obtain 

 
Now we look at a slender body approximation of the same force: The added mass at the tail is 

, and using the slender-body estimate for , we calculate for lift: 

 
Slender-body theory is thus able to recover exactly the lift of a low-aspect ratio wing. Where does 

the slender-body predict the force will act? Recalling that , and since 
for a front-back symmetric wing, the estimated lift force acts at the trailing edge. This 

location will tend to stabilize the wing, in the sense that it acts to orient the wing parallel to the 
incoming flow. 

9.8  Convention: Hydrodynamic Mass Matrix  

Hydrodynamic derivatives that depend on accelerations are often written as components of a mass 

matrix . By listing the body-referenced velocities in the order , we write 



, where is the mass matrix of the material vessel and is a generalized force. 
Therefore , , and so on. 
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