
5  SIMILITUDE 

5.1  Use of Nondimensional Groups 

For a consistent description of physical processes, we require that all terms in an equation must 
have the same units. On the basis of physical laws, some quantities are dependent on other, 
independent quantities. We form nondimensional groups out of the dimensional ones in this section, 
and apply the technique to maneuvering. 
The Buckingham -theorem provides a basis for all nondimensionalization. Let a quantity be 
given as a function of a set of other quantities: 

 
There are variables here, but suppose also that there are only independent ones; is equivalent 
to the number of physical unit types encountered. The theorem asserts that there are 
dimensionless groups that can be formed, and the functional equivalence is reduced to 

 
Example. Suppose we have a block of mass resting on a frictionless horizontal surface. At time 

zero, a steady force of magnitude is applied. We want to know , the distance that the block 

has moved as of time . The dimensional function is , so . The (MKS) 
units are 

 
and therefore . There is just one nondimensional group in this relationship; assumes only a 

constant (but unknown) value. Simple term-cancellation gives , not far at all 

from the known result that ! 
Example. Consider the flow rate of water from an open bucket of height , through a drain nozzle 
of diameter . We have  

 
where the water density is , and its absolute viscosity ; is the acceleration due to gravity. No 
other parameters affect the flow rate. We have , and the (MKS) units of these quantities are: 

 
There are only three units that appear: [length, time, mass], and thus . Hence, only three 
non-dimensional groups exist, and one is a unique function of the other two. To arrive at a set of 
valid groups, we must create three nondimensional quantities, making sure that each of the original 
(dimensional) quantities is represented. Intuition and additional manipulations come in handy, as 
we now show. 

Three plausible first groups are: , , and . Note that all six 
quantities appear at least once. Since and have the same units, they could easily change places 
in the first two groups. However, is recognized as a Reynolds number pertaining to the orifice 
flow. is more awkward, but products and fractions of groups are themselves valid groups, and we 

may construct to nondimensionalize Q with a pressure velocity, and then 

to establish an orifice Reynolds number independent of . We finally have 
the useful result 

 



The uncertainty about where to use and , and the questionable importance of as a group are 

remnants of the theorem. Intuition is that is immaterial, and the other two terms have a nice 
physical meaning, e.g., is a Reynolds number. 
The power of the -theorem is primarily in reducing the number of parameters which must be 
considered independently to characterize a process. In the flow example, the theorem reduced the 
number of independent parameters from five to two, with no constraints about the actual physics 
taking place.  

5.2  Common Groups in Marine Engineering 

One frequently encounters the following groups in fluid mechanics and marine engineering: 

1. Froude number:  

 

where is the speed of the vessel, is the acceleration due to gravity, and is the waterline 
length of the vessel. The Froude number appears in problems involving pressure boundary 
conditions, such as in waves on the ocean surface. Roughly speaking, it relates the vessel 
speed to water wave speeds of wavelength ; the phase speed of a surface wave is 

, where is the wavelength.  

2. Cavitation number:  

 

where represents the ambient total pressure, the vapor pressure of the fluid, and 
the propeller inlet velocity. A low cavitation number means that the Bernoulli pressure loss 
across the lifting surface will cause the fluid to vaporize, causing bubbles, degradation of 
performance, and possible deterioration of the material. 

3. Reynolds number: 

 

where is velocity, is absolute viscosity, and is density. Since appears in many 
applications, represents one of many length scales. Reynolds number is a ratio of fluid 
inertial pressures to viscous pressures: When is high, viscous effects are negligible. 
can be used to characterize pipe flow, bluff body wakes, and flow across a plate, among 
others. 

4. Weber number: 

 

where is the surface tension of a fluid. Given that (MKS), normalizes 
pressure, and normalizes length. The Weber number indicates the importance of surface 
tension.  



To appreciate the origins of these terms from a fluid particle's point of view, consider a box having 
side lengths [ ]. Various forces on the box scale as  

 
Thus the groups listed above can be written as 

 
When testing models, it is imperative to maintain as many of the nondimensional groups as possible 
of the full-scale system. This holds for the geometry of the body and the kinematics of the flow, the 
surface roughness, and the all of the relevant groups governing fluid dynamics. Consider the 
example of nozzle flow from a bucket. Suppose that we conduct a model test in which is 
abnormally large, i.e., the viscous effects are negligible. Under inviscid conditions, the flow rate is 

. This rate cannot be achieved for lower-  conditions because of fluid drag in the 
orifice, however. 
In a vessel, we write the functional relationship for drag as a starting point: 

 
First, since is large, is very large, and hence surface tension plays no role. Next, we look at 

and , both of which are important for surface vessels. Suppose that 
, so that usually ; additionally, we set , i.e., the model and the 

true vessel operate in the same gravity field. 

Froude number similitude requires . Then Reynolds number scaling implies 

directly . Unfortunately, few fluids with this property are workable in a large 
testing tank. As a result, accurate scaling of for large vessels to model scale is quite difficult. 
For surface vessels, and submarines near the surface, it is a routine procedure to employ turbulence 
stimulators to achieve flow that would normally occur with ship-scale . Above a critical value 

, is not sensitive to . With this achieved, one then tries to match closely.  

5.3  Similitude in Maneuvering 

The linear equations of motion for the horizontal yaw/sway problem are: 

 
These equations can be nondimensionalized in a standard way, by using the quantities [ ]: 
these three values provide the necessary units of length, time, and mass, and furthermore are 
readily accessible to the user. First, we create nondimensional states, denoted with a prime symbol: 



 
We follow a similar procedure for the constant terms as follows, including a factor of with , for 
consistency with our previous expressions: 

 

Note that every force has been normalized with , and every moment with ; time has 

been also nondimensionalized with . Thus we arrive at a completely equivalent set of 
nondimensional system equations, 

 
Since fluid forces and moments generally scale with , the nondimensionalized description holds 
for a range of velocities. 

5.4  Roll Equation Similitude 



Certain nondimensional coefficients may arise which depend explicitly on , and therefore require 
special attention. Let us carry out a similar normalization of the simplified roll equation 

 
For a surface vessel, the roll moment is based on metacentric stability, and has the form 

, where is the displaced fluid volume of the vessel, and is the metacentric 
height. The nondimensional terms are 

 
leading to the equivalent system 

 
Note that the roll angle was not nondimensionalized. The Froude number has a very strong 
influence on roll stability, since it appears explicitly in the nondimensional righting moment term, 

and also has a strong influence on . 
In the case of a submarine, the righting moment has the form , where is the buoyant 
force, and is the righting arm. The nondimensional coefficient becomes 

 
again depends strongly on , since and are fixed; this needs to be maintained in model 

tests. 
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