
18 LINEAR QUADRATIC REGULATOR

18.1 Introduction

The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO)
plants, which are characterized by transfer matrices instead of transfer functions.
The notion of optimality is closely tied to MIMO control system design. Optimal controllers, i.e.,
controllers that are the best possible, according to some figure of merit, turn out to generate only
stabilizing controllers for MIMO plants. In this sense, optimal control solutions provide an automated
design procedure - we have only to decide what figure of merit to use. The linear quadratic
regulator (LQR) is a well-known design technique that provides practical feedback gains.

18.2 Full-State Feedback

For the derivation of the linear quadratic regulator, we assume the plant to be written in state-space
form , and that all of the states are available for the controller. The feedback gain

is a matrix , implemented as . The system dynamics are then written as:

represents the vector of desired states, and serves as the external input to the closed-loop

system. The ``A-matrix'' of the closed loop system is , and the ``B-matrix'' of the
closed-loop system is . The closed-loop system has exactly as many outputs as inputs: . The
column dimension of equals the number of channels available in , and must match the row

dimension of . Pole-placement is the process of placing the poles of in stable, suitably-
damped locations in the complex plane.

18.3 Dynamic Programming

There are at least two conventional derivations for the LQR; we present here one based on dynamic
programming, due to R. Bellman. The key observation is best given through a loose example:
Suppose that we are driving from Point A to Point C, and we ask what is the shortest path in miles.
If A and C represent Los Angeles and Boston, for example, there are many paths to choose from!
Assume that one way or another we have found the best path, and that a Point B lies along this
path, say Las Vegas. Let X be an arbitrary point east of Las Vegas. If we were to now solve the
optimization problem for getting from only Las Vegas to Boston, this same arbitrary point X would
be along the new optimal path as well.
The point is a subtle one: the optimization problem from Las Vegas to Boston is easier than that
from Los Angeles to Boston, and the idea is to use this property backwards through time to evolve
the optimal path, beginning in Boston.

Example: Nodal Travel. We now add some structure to the above experiment. Consider now
traveling from point A (Los Angeles) to Point D (Boston). Suppose there are only three places to
cross the Rocky Mountains, , and three places to cross the Mississippi River, .3
By way of notation, we say that the path from to is . Suppose that all of the paths (and
distances) from to the -nodes are known, as are those from the -nodes to the -nodes, and
the -nodes to the terminal point . There are nine unique paths from to .
A brute-force approach sums up the total distance for all the possible paths, and picks the shortest
one. In terms of computations, we could summarize that this method requires nine additions of
three numbers, equivalent to eighteen additions of two numbers. The comparison of numbers is
relatively cheap.

http://ocw.mit.edu/13/13.49/f00/lecture-notes/

The dynamic programming approach has two steps. First, from each -node, pick the best path to
. There are three possible paths from to , for example, and nine paths total from the -level

to . Store the best paths as . This operation involves nine additions of
two numbers.
Second, compute the distance for each of the possible paths from to , constrained to the optimal

paths from the -nodes onward: , , or . The
combined path with the shortest distance is the total solution; this second step involves three sums
of two numbers, and total optimization is done in twelve additions of two numbers.
Needless to say, this example gives only a mild advantage to the dynamic programming approach
over brute force. The gap widens vastly, however, as one increases the dimensions of the solution
space. In general, if there are layers of nodes (e.g., rivers or mountain ranges), and each has

width (e.g., river crossing points), the brute force approach will take additions, while the

dynamic programming procedure involves only additions. In the case of ,
, brute force requires 6250 additions; dynamic programming needs only 105.

18.4 Dynamic Programming and Full-State Feedback

We consider here the regulation problem, that is, of keeping . The closed-loop system
thus is intended to reject disturbances and recover from initial conditions, but not necessarily follow
-trajectories. There are several necessary definitions. First we define an instantaneous penalty

function , which is to be greater than zero for all nonzero and . The cost associated
with this penalty, along an optimal trajectory, is

i.e., the integral over time of the instantaneous penalty. Finally, the optimal return is the cost of the
optimal trajectory remaining after time :

.
We have directly from the dynamic programming principle

The minimization of is made by considering all the possible control inputs in the time

interval . As suggested by dynamic programming, the return at time is constructed from

the return at , and the differential component due to . If is smooth and has no explicit
dependence on , as written, then

Now control input in the interval cannot affect , so inserting the above and
making a cancellation gives

We next make the assumption that has the following form:

where is a symmetric matrix, and positive definite.45 It follows that

We finally specify the instantaneous penalty function. The LQR employs the special quadratic form

where and are both symmetric and positive definite. The matrices and are to be set by the
user, and represent the main ``tuning knobs'' for the LQR. Substitution of this form into the above
equation, and setting the derivative with respect to to zero gives

http://ocw.mit.edu/13/13.49/f00/lecture-notes/

The gain matrix for the feedback control is thus . Inserting this solution back into
equation 194, and eliminating in favor of , we have

All the matrices here are symmetric except for ; since , we can make its
effect symmetric by letting

leading to the final matrix-only result

This equation is the matrix algebraic Riccati equation (MARE), whose solution is needed to
compute the optimal feedback gain . The MARE is easily solved by standard numerical tools in
linear algebra.

18.5 Properties and Use of the LQR

Static Gain. The LQR generates a static gain matrix , which is not a dynamical system. Hence,
the order of the closed-loop system is the same as that of the plant.

Robustness. The LQR achieves infinite gain margin: , implying that the loci of (scalar

case) or (MIMO case) approach the origin along the imaginary axis. The LQR also
guarantees phase margin degrees. This is in good agreement with the practical guidelines for
control system design.
Output Variables. In many cases, it is not the states which are to be minimized, but the output

variables . In this case, we set the weighting matrix , since , and the auxiliary

matrix weights the plant output.

Behavior of Closed-Loop Poles: Expensive Control. When , the cost function is
dominated by the control effort , and so the controller minimizes the control action itself. In the
case of a completely stable plant, the gain will indeed go to zero, so that the closed-loop poles
approach the open-loop plant poles in a manner consistent with the scalar root locus.
The optimal control must always stabilize the closed-loop system, however, so there should be
some account made for unstable plant poles. The expensive control solution puts stable closed-loop
poles at the mirror images of the unstable plant poles.

Behavior of Closed-Loop Poles: Cheap Control. When , the cost function is
dominated by the output errors , and there is no penalty for using large . There are two groups of
closed-loop poles. First, poles are placed at stable plant zeros, and at the mirror images of the
unstable plant zeros. This part is akin to the high-gain limiting case of the root locus. The remaining
poles assume a Butterworth pattern, whose radius increases to infinity as becomes smaller and
smaller.
The Butterworth pattern refers to an arc in the stable left-half plane, as shown in the figure. The

angular separation of closed-loop poles on the arc is constant, and equal to . An angle

separates the most lightly-damped poles from the imaginary axis.

http://ocw.mit.edu/13/13.49/f00/lecture-notes/

3 Apologies to readers not familiar with American geography.
4 Positive definiteness means that for all nonzero , and if .
5 This suggested form for the optimal return can be confirmed after the optimal controller is derived.

http://ocw.mit.edu/13/13.49/f00/lecture-notes/
http://ocw.mit.edu/13/13.49/f00/lecture-notes/
http://ocw.mit.edu/13/13.49/f00/lecture-notes/

	18 LINEAR QUADRATIC REGULATOR
	18.1 Introduction
	18.2 Full-State Feedback
	18.3 Dynamic Programming
	18.4 Dynamic Programming and Full-State Feedbac
	18.5 Properties and Use of the LQR

