
18  LINEAR QUADRATIC REGULATOR 

  

18.1  Introduction 

The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) 
plants, which are characterized by transfer matrices instead of transfer functions. 
The notion of optimality is closely tied to MIMO control system design. Optimal controllers, i.e., 
controllers that are the best possible, according to some figure of merit, turn out to generate only 
stabilizing controllers for MIMO plants. In this sense, optimal control solutions provide an automated 
design procedure - we have only to decide what figure of merit to use. The linear quadratic 
regulator (LQR) is a well-known design technique that provides practical feedback gains. 

18.2  Full-State Feedback 

For the derivation of the linear quadratic regulator, we assume the plant to be written in state-space 
form , and that all of the states are available for the controller. The feedback gain 

is a matrix , implemented as . The system dynamics are then written as: 

 
represents the vector of desired states, and serves as the external input to the closed-loop 

system. The ``A-matrix'' of the closed loop system is , and the ``B-matrix'' of the 
closed-loop system is . The closed-loop system has exactly as many outputs as inputs: . The 
column dimension of equals the number of channels available in , and must match the row 

dimension of . Pole-placement is the process of placing the poles of in stable, suitably-
damped locations in the complex plane. 

18.3  Dynamic Programming 

There are at least two conventional derivations for the LQR; we present here one based on dynamic 
programming, due to R. Bellman. The key observation is best given through a loose example: 
Suppose that we are driving from Point A to Point C, and we ask what is the shortest path in miles. 
If A and C represent Los Angeles and Boston, for example, there are many paths to choose from! 
Assume that one way or another we have found the best path, and that a Point B lies along this 
path, say Las Vegas. Let X be an arbitrary point east of Las Vegas. If we were to now solve the 
optimization problem for getting from only Las Vegas to Boston, this same arbitrary point X would 
be along the new optimal path as well.  
The point is a subtle one: the optimization problem from Las Vegas to Boston is easier than that 
from Los Angeles to Boston, and the idea is to use this property backwards through time to evolve 
the optimal path, beginning in Boston.  

Example: Nodal Travel. We now add some structure to the above experiment. Consider now 
traveling from point A (Los Angeles) to Point D (Boston). Suppose there are only three places to 
cross the Rocky Mountains, , and three places to cross the Mississippi River, .3 
By way of notation, we say that the path from to is . Suppose that all of the paths (and 
distances) from to the -nodes are known, as are those from the -nodes to the -nodes, and 
the -nodes to the terminal point . There are nine unique paths from to . 
A brute-force approach sums up the total distance for all the possible paths, and picks the shortest 
one. In terms of computations, we could summarize that this method requires nine additions of 
three numbers, equivalent to eighteen additions of two numbers. The comparison of numbers is 
relatively cheap. 
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The dynamic programming approach has two steps. First, from each -node, pick the best path to 
. There are three possible paths from to , for example, and nine paths total from the -level 

to . Store the best paths as . This operation involves nine additions of 
two numbers. 
Second, compute the distance for each of the possible paths from to , constrained to the optimal 

paths from the -nodes onward: , , or . The 
combined path with the shortest distance is the total solution; this second step involves three sums 
of two numbers, and total optimization is done in twelve additions of two numbers. 
Needless to say, this example gives only a mild advantage to the dynamic programming approach 
over brute force. The gap widens vastly, however, as one increases the dimensions of the solution 
space. In general, if there are layers of nodes (e.g., rivers or mountain ranges), and each has 

width (e.g., river crossing points), the brute force approach will take additions, while the 

dynamic programming procedure involves only additions. In the case of , 
, brute force requires 6250 additions; dynamic programming needs only 105. 

18.4  Dynamic Programming and Full-State Feedback 

We consider here the regulation problem, that is, of keeping . The closed-loop system 
thus is intended to reject disturbances and recover from initial conditions, but not necessarily follow 
-trajectories. There are several necessary definitions. First we define an instantaneous penalty 

function , which is to be greater than zero for all nonzero and . The cost associated 
with this penalty, along an optimal trajectory, is  

 
i.e., the integral over time of the instantaneous penalty. Finally, the optimal return is the cost of the 
optimal trajectory remaining after time : 

 
. 
We have directly from the dynamic programming principle 

 
The minimization of is made by considering all the possible control inputs in the time 

interval . As suggested by dynamic programming, the return at time is constructed from 

the return at , and the differential component due to . If is smooth and has no explicit 
dependence on , as written, then  

 
Now control input in the interval cannot affect , so inserting the above and 
making a cancellation gives 

 
We next make the assumption that has the following form: 

 
where is a symmetric matrix, and positive definite.45 It follows that  

 
We finally specify the instantaneous penalty function. The LQR employs the special quadratic form 

 
where and are both symmetric and positive definite. The matrices and are to be set by the 
user, and represent the main ``tuning knobs'' for the LQR. Substitution of this form into the above 
equation, and setting the derivative with respect to to zero gives 
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The gain matrix for the feedback control is thus . Inserting this solution back into 
equation 194, and eliminating in favor of , we have 

 
All the matrices here are symmetric except for ; since , we can make its 
effect symmetric by letting 

 
leading to the final matrix-only result 

 
This equation is the matrix algebraic Riccati equation (MARE), whose solution is needed to 
compute the optimal feedback gain . The MARE is easily solved by standard numerical tools in 
linear algebra. 

18.5  Properties and Use of the LQR 

Static Gain. The LQR generates a static gain matrix , which is not a dynamical system. Hence, 
the order of the closed-loop system is the same as that of the plant.  

Robustness. The LQR achieves infinite gain margin: , implying that the loci of (scalar 

case) or (MIMO case) approach the origin along the imaginary axis. The LQR also 
guarantees phase margin degrees. This is in good agreement with the practical guidelines for 
control system design.  
Output Variables. In many cases, it is not the states which are to be minimized, but the output 

variables . In this case, we set the weighting matrix , since , and the auxiliary 

matrix weights the plant output.  

Behavior of Closed-Loop Poles: Expensive Control. When , the cost function is 
dominated by the control effort , and so the controller minimizes the control action itself. In the 
case of a completely stable plant, the gain will indeed go to zero, so that the closed-loop poles 
approach the open-loop plant poles in a manner consistent with the scalar root locus.  
The optimal control must always stabilize the closed-loop system, however, so there should be 
some account made for unstable plant poles. The expensive control solution puts stable closed-loop 
poles at the mirror images of the unstable plant poles. 

Behavior of Closed-Loop Poles: Cheap Control. When , the cost function is 
dominated by the output errors , and there is no penalty for using large . There are two groups of 
closed-loop poles. First, poles are placed at stable plant zeros, and at the mirror images of the 
unstable plant zeros. This part is akin to the high-gain limiting case of the root locus. The remaining 
poles assume a Butterworth pattern, whose radius increases to infinity as becomes smaller and 
smaller. 
The Butterworth pattern refers to an arc in the stable left-half plane, as shown in the figure. The 

angular separation of closed-loop poles on the arc is constant, and equal to . An angle 

separates the most lightly-damped poles from the imaginary axis. 
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3 Apologies to readers not familiar with American geography. 
4 Positive definiteness means that for all nonzero , and if . 
5 This suggested form for the optimal return can be confirmed after the optimal controller is derived. 
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