
17  CONTROL SYSTEMS - LOOPSHAPING 

17.1  Introduction 

This section formalizes the notion of loopshaping for linear control system design. The loopshaping 
approach is inherently two-fold. First, we shape the open-loop transfer function (or matrix) 

, to meet performance and robustness specifications. Once this is done, then the 

compensator must be computed, from from knowing the nominal product , and the 

nominal plant .  
Most of the analysis here is given for single-input, single-output systems, but the link to 
multivariable control is not too difficult. In particular, absolute values of transfer functions are 
replaced with the maximum singular values of transfer matrices. Design based on singular values is 
the idea of -control, or LQG/LTR, to be presented in the next lectures. 

17.2  Roots of Stability - Nyquist Criterion 

We consider the SISO feedback system with reference trajectory and plant output , as given 

previously. The tracking error signal is defined as , thus forming the negative 
feedback loop. The sensitivity function is written as  

 
where represents the plant transfer function, and the compensator. The closed-loop 

characteristic equation, whose roots are the poles of the closed-loop system, is , 

equivalent to , where the underline and overline denote the denominator 
and numerator, respectively. The Nyquist criterion allows us to assess the stability properties of a 

system based on only. This method for design involves plotting the complex loci of 

for the range . There is no explicit calculation of the closed-loop poles, and 
in this sense the design approach is quite different from the root-locus method (see Ogata). 

17.2.1  Mapping Theorem 

We impose a reasonable assumption from the outset: The number of poles in exceeds the 
number of zeros. It is a reasonable constraint because otherwise the loop transfer function could 
pass signals with infinitely high frequency. In the case of a PID controller (two zeros) and a second-
order zero-less plant, this constraint can be easily met by adding a high-frequency rolloff to the 
compensator, the equivalent of low-pass filtering the error signal. 

Let . The heart of the Nyquist analysis is the mapping theorem, which 
answers the following question: How do paths in the -plane map into paths in the -plane? We 
limit ourselves to closed, clockwise(CW) paths in the -plane, and the remarkable result of the 
mapping theorem is 

Every zero of enclosed in the -plane generates exactly one CW encirclement of the origin in 

the -plane. Conversely, every pole of enclosed in the -plane generates exactly one CCW 

encirclement of the origin in the -plane. Since CW and CCW encirclements of the origin may 
cancel, the relation is often written . 
The trick now is to make the trajectory in the -plane enclose all unstable poles, i.e., the path 
encloses the entire right-half plane, moving up the imaginary axis, and then proceeding to the right 
at an arbitrarily large radius, back to the negative imaginary axis. 

Since the zeros of are in fact the poles of the closed-loop transfer function, e.g., , stability 

requires that there are no zeros of in the right-half -plane. This leads to a slightly shorter form 
of the above relation: 

 
In words, stability requires that the number of unstable poles in is equal to the number of CCW 
encirclements of the origin, as sweeps around the entire right-half -plane. 



17.2.2  Nyquist Criterion 

  

The Nyquist criterion now follows from one translation. Namely, encirclements of the origin by 

are equivalent to encirclements of the point by , or . Then the stability 

criterion can be cast in terms of the unstable poles of , instead of those of : 

 
This is in fact the complete Nyquist criterion for stability. It is a necessary and sufficient condition 

that the number of unstable poles in the loop transfer function must be matched by an 

equal number of CCW encirclements of the critical point .  
There are several details to keep in mind when making Nyquist plots:  

  If neither the plant nor the controller have unstable modes, then the loci of must 
not encircle the critical point at all. 

  Because the path taken in the -plane includes negative frequencies (i.e., the negative 

imaginary axis), the loci of occur as complex conjugates - the plot is symmetric 
about the real axis. 

  The requirement that the number of poles in exceeds the number of zeros means 

that at high frequencies, always decays such that the loci go to the origin. 
  For the multivariable (MIMO) case, the procedure of looking at individual Nyquist plots for 

each element of a transfer matrix is unreliable and outdated. Referring to the multivariable 

definition of , we should count the encirclements for the function 

instead of . The use of gain and phase margin in design 
is similar to the SISO case. 

17.2.3  Robustness on the Nyquist Plot 

The question of robustness in the presence of modelling errors is central to control system design. 
There are two natural measures of robustness for the Nyquist plot, each having a very clear 
graphical representation. The loci need to stay away from the critical point; how close the loci come 
to it can be expressed in terms of magnitude and angle. 

  When the angle of is , the magnitude should not be near one.  

  When the magnitude , its angle should not be .  

These notions lead to definition of the gain margin and phase margin for a design. As the figure 

shows, the definition of is different for stable and unstable . Rules of thumb are as 
follows. For a stable plant, and ; for an unstable plant, and . 

17.3  Design for Nominal Performance 



Performance requirements of a feedback controller, using the nominal plant model, can be cast in 
terms of the Nyquist plot. We restrict the discussion to the scalar case in the following sections. 

Since the sensitivity function maps reference input to tracking error , we know that 
should be small at low frequencies. For example, if one-percent tracking is to be maintained for all 

frequencies below , then . This can be formalized by writing 

 
where is a stable weighting function of frequency. To force to be small at low , 

should be large in the same range. The requirement is equivalent to 

, and this latter condition can be interpreted as: The loci of must 

stay outside the disk of radius , which is to be centered on the critical point . The 
disk is to be quite large, possibly infinitely large, at the lower frequencies. 

17.4  Design for Robustness 

It is a ubiquitous observation that models of plants degrade with increasing frequency. For example, 
the DC gain and slow, lightly-damped modes or zeros are easy to observe, but higher-frequency 
components in the response may be hard to capture or even excite repeatably. Higher-frequency 
behavior may have more nonlinear properties as well. 
The effects of modeling uncertainty can be considered to enter the nominal feedback system as a 
disturbance at the plant output, . One of the most useful descriptions of model uncertainty is the 
multiplicative uncertainty: 

 

Here, represents the nominal plant model used in the design of the control loop, and is the 

actual, perturbed plant. The perturbation is of the multiplicative type, , where 

is an unknown but stable function of frequency for which . The weighting function 

scales with frequency; should be growing with increasing frequency, since the 

uncertainty grows. However, should not grow any faster than necessary, since it will turn out 
to be at the cost of nominal performance. 

In the scalar case, the weight can be estimated as follows: since , it will suffice to 

let .  

Example: Let , where is in the range 2-5. We need to create a nominal model 

, with the smallest possible value of , which will not vary with frequency in this 
case. Two equations can be written using the above estimate, for the two extreme values of , 

yielding , and .  
For constructing the Nyquist plot, we observe that  

. The path of the perturbed plant could be anywhere on a 

disk of radius , centered on the nominal loci . The robustness condition is 
that this disk should not intersect the critical point. This can be written as 

 
where is the complementary sensitivity function. The last inequality is thus a condition for robust 
stability in the presence of multiplicative uncertainty parametrized with . 

17.5  Robust Performance 

The condition for good performance with plant uncertainty is a combination of the above two 

conditions. Graphically, the disk at the critical point, with radius , should not intersect the disk 

of radius , centered on the nominal locus . This is met if  

 



The robust performance requirement is related to the magnitude at different frequencies, as 
follows: 

1. At low frequency, , since is large. This leads directly to the 

performance condition in this range. 

2. At high frequency, , since is small. We must therefore have 

, for robustness.  

17.6  Implications of Bode's Integral 

The loop transfer function cannot roll off too rapidly in the crossover region. The simple reason 
is that a steep slope induces a large phase loss, which in turn degrades the phase margin. To see 

this requires a short foray into Bode's integral. For a transfer function , the crucial relation is 

 
where . The integral is hence taken over the log of a frequency normalized with . It 

is not hard to see how the integral controls the angle: the function is nonzero only 

near , implying that the angle depends only on the local slope . Thus, if the slope 
is large, the angle is large. 

Example: Suppose , i.e., it is a simple function with poles at the origin, and no 

zeros; is a fixed constant. It follows that , and , so that 

. Then we have just 

 
This integral is trivial to look up or compute. Each pole at the origin clearly induces of phase 
loss. In the general case, each pole not at the origin induces of phase loss for frequencies above 
the pole. Each zero at the origin adds phase lead, while zeros not at the origin at of phase 
lead for frequencies above the zero. In the immediate neighborhood of these poles and zeros, the 
phase may vary significantly with frequency. 
The Nyquist loci are clearly susceptible to these variations is phase, and the phase margin can be 
easily lost if the slope of at crossover (where the magnitude is unity) is too steep. The slope can 

safely be first-order ( , equivalent to a single pole), and may be second-order  

( ) if an adequate phase angle can be maintained near crossover. 

17.7  The Recipe for Loopshaping 

In the above analysis, we have extensively described what the open loop transfer function 
should look like, to meet robustness and performance specifications. We have said very little about 
how to get the compensator , the critical component. For clarity, let the designed loop transfer 
function be renamed, . We will use concepts from optimal linear control for the MIMO case, 
but in the scalar case, it suffices to just pick 

 
This extraordinarily simple step involves a plant inversion. 
The overall idea is to first shape as a stable transfer function meeting the requirements of stability 
and robustness, and then divide through by the plant.  

  When the plant is stable and has stable zeros (minimum-phase), the division can be made 
directly.  

  One caveat for the well-behaved plant is that lightly-damped poles or zeros should not be 
cancelled verbatim by the compensator, because the closed-loop response will be sensitive 
to any slight change in the resonant frequency. The usual procedure is to widen the notch 
or pole in the compensator, through a higher damping ratio. 

  Non-minimum phase or unstable behavior in the plant can usually be handled by 
performing the loopshaping for the closest stable model, and then explicitly considering the 
effects of adding the unstable parts. In the case of unstable zeros, we find that they impose 



an unavoidable frequency limit for the crossover. In general, the troublesome zeros must 
be faster than the closed-loop frequency response. 

In the case of unstable poles, the converse is true: The feedback system must be faster 
than the corresponding frequency of the unstable mode. 

When a control system involves multiple inputs and outputs, the ideas from scalar loopshaping can 
be adapted using the singular value. We list below some basic properties of the singular value 
decomposition, which is analogous to an eigenvector, or modal, analysis. Useful properties and 
relations for the singular value are found in the section MATH FACTS. 
The condition for MIMO robust performance can be written in many ways, including a direct 
extension of our scalar condition 

 
The open-loop transfer matrix should be shaped accordingly. In the following sections, we use the 
properties of optimal state estimation and control to perform the plant inversion for MIMO systems. 
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