
24  PROBLEMS 

Many of the following problems use data presented by Fossen and in Principles of Naval 
Architecture. 

1. Inertial dynamics. The gas generator turbine of a LM-2500 marine engine rotates at 
(revolutions per minute), and has a mass of approximately . The 

following question pertains to the inertial forces experienced by this spinning rigid body, 
with . 

Because of high rotational speed, the turbine is exceedingly sensitive to lateral balancing. 
Estimate the net force that the radial bearings would have to support for a mass 
imbalance, say, with respect to the spin axis. 

2. Kinematics. Although dead-reckoning is not recommended as a method for long-term 
navigation, it can be quite useful for pre-planning trajectories. For example, consider a 
surface vessel heading profile as follows: 

  

  

  

  

  

  
 

 

4.  
5. What is the total distance traveled in the Cartesian direction during these five minutes? 

You may assume that the forward speed of the vessel is , and that there is no 
significant sideslip. Hint: Break the trajectory up into three parts, which can be evaluated 
separately. 

6. Coefficients and system modeling. Consider a weather vane in a wind of velocity . If 
is the angle of the vane with respect to the wind direction, 

1. Write the single-degree of freedom ( ) linearized equations of motion about the 
fixed axis 0. 

2. Write , , and in terms of , , , etc.. 
3. If we consider the differential equation 

 

the condition for stability is that , , and must have the same sign. Express 
this requirement in terms of the derivatives in the previous question. Give physical 
interpretations for what would make such a device stable or unstable. 



4. Create a numerical model of this system, using the MATLAB ODE solver ode45. 
The system equation can be written as two first-order equations: 

 

Simulate the system response to nonzero initial conditions (e.g., 

). Discuss, using several examples, response sensitivity to and 
, which are related to the aerodynamic coefficients. For example, look at the 

range . 

 

7.  
8. Hydrodynamics. The figure below shows some characteristic fluid force curves versus a 

motion parameter. Give the linear hydrodynamic coefficient at two different operating 
conditions, origin and : is it zero, small, finite positive, finite negative? 

 

9.  
10. Second-order system. Consider the vibration of a mass-spring-dashpot system: 

 

wherein all the coefficients are positive and real (i.e., physical). 

1. Set , and find two solutions for in terms of , , and , using the 
quadratic formula. The solution pairs depend on whether exceeds a critical value: 
what is the critical value and how do the solutions change? 

2. From the initial condition , and , find the coefficients for the 
general solution 

 



in terms of , , and . What do you think will happen when ? 

3. Write this for sub-critical (that is, complex ) in terms of the standard 
parameters 

 

Give your answer in terms of a real exponential multiplied by a single sine or 
cosine, and make a sketch. 

4. Sketch the response for supercritical , i.e., both are real, for the same initial 
conditions. What happens when the roots are far apart vs. when they are close 
together? 

5. Consider now the case where an input acts to drive the mass from zero initial 
conditions: 

 

This equation defines a system, with input , and output . Using the Laplace 
transform, write the transfer function for this system, i.e., the impulse response, 
both in frequency (Laplace) space, and in the time-domain. Make a sketch of the 
time-domain result. Be sure to cover both the sub-critical and super-critical 
damping cases. 

6. What is the step response of this system, in both the subcritical and super-critical 
damping cases? Include sketches. 

11. Submarine roll dynamics and control. A submarine has weight 1200  (tons) and the 
center of gravity is 0.5  above the center of buoyancy (What can you conclude?). The 
rolling motion can be assumed to be decoupled from the other motions. This submarine has 
anti-rolling fins to ensure stability. The control hydrodynamic derivative is per 

degree of fin rotation , at a forward speed of 5 . 
1. Write the equation of motion for roll (K).  
2. If the automatic control law is used, where is the roll angle, what range 

of ensures stability?  

3. If the speed suddenly drops to 2.5 , how does the range of stabilizing change?  
12. Steering. Draw curves of rudder angle vs. yaw rate for a dynamically stable surface 

vessel, and then for an unstable vessel. Indicate areas where the vessel turns against the 
rudder action. 

13. Submarine pitch/heave dynamics. Consider a submarine moving forward at speed , 
and restricted to small motions in the vertical ( ) plane. Assume that: 

o The submarine is symmetric in the plane and . The submarine is not 
symmetric in the plane due to the sail, etc., but assume it is nearly 
symmetric, so that you can omit certain hydrodynamic terms. 

o At rest, the submarine is neutrally buoyant and stable with the and axes 
horizontal. What does this tell us about the magnitude of the buoyant force and 
where it acts with respect to the center of weight?  

3. Derive the equations of motion for the submarine moving at speed .  
4. Derive the hydrostatic, restoring pitch moment for small pitch .  
5. Linearize the inertial terms in the equations of motion.  
6. Expand the fluid forces and moments in terms of the motions. Omit nonlinear and 

memory effects, and be sure to include the hydrostatic moment. Explain your 
choices.  



7. Write out the complete linearized equations of motion. Does surge decouple from 
pitch and heave? Write out the coupled equations in matrix form.  

8. Can the submarine be stable in pitch without feedback control? Can the submarine 
be stable in depth without feedback control? 

14. Submarine stability via slender body theory.  
0. An underwater vehicle hull has the shape of a circular cylinder, except at the very 

ends, where it rapidly tapers down to a point. If the radius is , length is , 

and speed is , use slender-body theory to express the following coefficients: 
, , and , all referenced to the body midpoint. 

1. It turns out that in order to match the lift and moment of the hull in experiments, a 
flat tail of radius has to be included in the slender-body estimate. Determine 
the corrected value for , and in addition compute . Where is the aerodynamic 
center with respect to the center of the hull, and is this hull stable in pitch? Recall 
that the aerodynamic center is the equivalent location of the observed lift force 
that creates the observed moment. 

2. A fin with pre-determined lift slope of is to be applied at the tail to make 
the device just stable in pitch. How big is the required fin area that brings the net 

to zero, as desired? 
15. Lifting surfaces. Using the lifting surface formulas, estimate the coefficient of a 

submarine sail as shown below, for .  

 

16.  
17. Slender body theory. Consider a long ellipsoidal body of length and diameter .  

0. With , approximate the cross-body added mass, using slender-body 
theory, and compare it with the exact results from the table below (Blevins).  

1. Perform the slender body calculation also for a sphere, and compare again to the 
exact result. 

2. What is the added mass in the in-line direction?  

Sphere added mass:   

Ellipsoid cross-body added mass:   

where :   

:   

:   

:   

:   

:   



:   

:   

:   

Ellipsoid longitudinal added mass:  

where :   

:   

:   

:   

:   

:   

:   

:   

:   

  
  

 

19. Submarine pitch stability with various methods. We will calculate the pitch derivative 
due to an angle of attack, , for a small submarine, using several different methods. 

The submarine is a rotationally symmetric ellipsoid with , . We fix the 
body origin to the midpoint as shown below. The body is appended with two fins as shown 
in the figure: each has an area of 1 , geometric aspect ratio of , and has its longitudinal 
center of action forward of the body stern. 

0. Apply wing theory to characterize due to the fins alone. 
1. Apply slender body theory to estimate for the body alone. 
2. Linearize the Munk moment, and give a corrected slender-body value for of the 

body. 
3. Apply Jorgensen's approximate formulas to estimate for the body; make 

linearizations where necessary. 
4. Use the experimental data from Hoerner (p. 13.2) below to estimate for the 

body. 
5. Use the Hoerner result and your result from wing theory to write a net for the 

body plus fins. 
6. What is the location of the net aerodynamic center? If it has an unstable location 

forward of the midpoint, what increase in fin area would bring it back to the 
midpoint? 

7. What is the diameter of a flat stern that will allow the slender body theory to give 
the same moment as the Hoerner (experimental) data, for the body alone? 

8. What is the diameter of a flat stern that allows the approximate formulas of 
Jorgensen to give the same moment as the Hoerner data, for the body alone? 



Hoerner p. 13.2: 

Symmetric body of revolution with . 
Force and moment referenced to body midpoint: 

. . 

. . DESTABILIZING 

 

20. Cable dynamics. A towing cable is steel-jacketed, with diameter , an effective 

extensibility of , and a density of . The vehicle it tows is 
streamlined, and has negligible mass ( ). If we are towing at low speed and 
depth, 

0. Calculate , the first undamped natural frequency in heave, with . 
1. If the vessel heaves with a amplitude and a 4.5-second period, what is the 

dynamic tension amplitude at the top ( ) of the cable? The formula for this 

dynamic tension (with ) is , where is the 

cross-sectional area of the cable, , and is the cable mass per unit 
length. 

2. Taking into account the static tension induced by in-water weight, does the cable 
unload at the surface, for the heaving conditions above? 

21. Cable mechanics (hard!). You are asked to assess the operational envelope of a 
cable/vehicle system which has been installed on a vessel. The cable is steel-jacketed, with 

diameter , an effective extensibility of , and a density of . The 
vehicle is streamlined, and has a mass (material plus added) of 100 . 

0. The towing angle at the vessel cannot exceed 25  from vertical, for reasons of 
deck and crane geometry. If this angle is considered equal to the critical angle , 
what is the maximum speed for the system? Assume the normal drag coefficient of 
the cable is .  

1. Considering the undamped, uncoupled axial dynamics, express the natural 
frequency as a function of the vehicle depth, and sketch the curve. If the fastest 
waves that the surface vessel responds to have period , what is the ``threshold'' 
operating depth? 

2. The undamped, uncoupled lateral dynamics follow the equation 

 

where is the added mass of the cable per unit length, and is the in-water 

weight of the cable. Separation of variables gives 

 

where . Simplify this expression by writing (the 

vehicle weight effect is small), (the cable is nearly vertical), and then use 

the substitution to arrive at the Bessel equation 



 

The derivatives can be transformed from to coordinates via the chain rule: 

 

3. The equation above has a solution of the form , where is a constant to 

be found, and is the zero'th order Bessel function of the first kind. If 

, that is, we impose a harmonic input at the top, find in terms of 

and . What condition makes blow up, indicating a resonance frequency 
? 

4. Recalling that strumming occurs when , construct a graph of towing 
velocities vs. deployment depths for which the strumming would be centered. 
Include at least the three lowest modes in your sketch, and discuss the trends for 

the higher modes. for for , especially 
when is large. You should find that strumming is hard to avoid in deep towing 
applications! 

22. Vessel heading control. We consider the yaw/sway dynamics of a high-speed container 
ship. All the calculations below are to be made in nondimensional coordinates, so you do 
not need to perform any transformations in this question. 

0. The nondimensional system with states evolves according to 

, where 

 

If the output is yaw rate , i.e., , write the transfer function 

. Use matrix inversion for the matrix , 
perform the matrix multiplications, and then use the quadratic formula if necessary 
to express your answer as 

 

where is a constant gain, is the zero (there is one real zero), and [ , ] 
are the two poles of the second-order system. Are both poles stable? 

1. For the purposes of autopilot design, the transfer function is crucial. 

Fortunately, all you have to do is divide by another factor of to account 

for the fact that . Sketch all the poles and zeros of the plant transfer 

function on a root locus plot.  

2. A PID controller will work to stabilize the heading angle, and brings to 

one additional pole at the origin, and two arbitrary zeros. Demonstrate a 
rough PID design by devising two controller zero locations that will attract the 
closed-loop poles into the left-half plane. Draw the path that you expect each 
closed-loop pole to follow, as the control gain increases from zero to very large 
values.  



You do not need to calculate the PID gains that go with your proposed zero 
locations. 

23. Full-state feedback of a submarine. The coefficients governing the pitch/heave 
dynamics of a Deep Submergence Rescue Vehicle (DSRV) are given below. They are 

nondimensionalized as in the lecture notes, using the factors , , and . 

   

   

   

   

   

   

   
 

24.  
0. Write the linearized (nondimensional) dynamics in the matrix form , 

where the input , and the state vector is . here is the 
elevation of the vehicle in inertial coordinates; your approximation for should 
include both and . 

1. Is the DSRV vehicle open-loop stable, that is, without control action ? You can 
assess this either by finding the eigenvalues of your -matrix above, or by 
computing the stability parameter . 

2. In preparation for controller design, create a simulation using Matlab. Make a graph 
of the open-loop step response, showing all the dimensional state variables versus 
dimensional time. 

3. Assuming that all the states can be measured accurately, a full-state controller 
can be used, where is a gain matrix. Under this control, the 

system dynamics are governed by , so that if has all 
negative eigenvalues, the system is stable.  

Use the Matlab function place to put the four closed-loop poles at 

and , . Demonstrate that your closed-loop 
design is stable against nonzero initial conditions. What are the effects of 
increasing or decreasing ? 

Note that the pole locations suggested above are with respect to the dimensional 
system, i.e., using dimensional time. 

25. Nyquist stability. The inverted pendulum shown below is often used as a simple model for 
rocket flight, and can also illustrate the dynamic behavior of an unstable ocean vessel which 
is propelled from the stern, e.g., a barge being pushed by a tugboat. 

For this problem, we assume that all of the mass ( ) is concentrated at the distal end of an 
arm of length ; a high-performance positioning system sets the horizontal position of the 
cart . 



 

A Lagrangian derivation of the dynamics gives: 

 

Note that the acceleration of the cart is now considered to be the input to the plant, e.g., 
. 

0. If the observation is taken to be the angle of the bar , i.e., , write the state-
space representation of the dynamics linearized about the point . 

1. Show that this plant is fully state observable and controllable. 
2. Now make the assumption that , and (it can be achieved through a 

proper nondimensionalization) What is the transfer function of the plant, ? Use 
this plant model for the rest of this question. 

3. Where are the plant poles and zeros, if any? 
4. A stabilizing controller is not hard to find, and a suggested one is: 

 

Create a rough Nyquist plot of the loci of , for the frequencies 

. These three frequencies are all that you need to sketch the 
overall shape; there are no hidden loops or other features. In the case of , 
for which you will need to make explicit calculations, you may find the following 
identity useful: 

 

Be sure to include the complex-conjugate points for on your plot. 

5. Invoke the Nyquist stability criterion to confirm that the closed-loop system is 
stable. 

6. About how many degrees of phase margin does this design provide? What 
reduction in low-frequency gain can be tolerated? Is it a reasonable design? 

26. Root locus and loopshaping. The parameters governing the surface maneuvering of a 
high-speed container ship are given below for reference: 



      

      

      

      

      

      
 

27. Note that the center of vessel mass is located aft of the origin; for this model, the origin 
coincides with the center of added mass, so that . The nondimensional system 

with states evolves according to , where 

28.  
29. The relevant output is yaw rate: and . For the purposes of autopilot 

design, however, the transfer function is needed. 
30. The following steps create two heading autopilots, using the root-locus and loopshaping 

techniques. In addition to the Matlab commands listed below, you will find very useful the 
convolution function conv() which can be used to combine systems, e.g., for numerators, 
numPC = conv(numP,numC);. Also, be sure that you equalize axis scaling for your plots 
in the complex-plane, by using axis('equal');. 

0. Use the Matlab command tf(), or ss(), to create a system model of the open-

loop transfer function , using the plant above and a PID-type controller: 

 

The actual numerical values for , , and are to be found in the next step. 

1. Using and as suggested values, use the Matlab command rlocus() 

and then rlocfind() to select a controller gain , that puts the three slow poles 
in the following sector: 1) minimum undamped frequency (nondimensional) of 0.3, 
2) maximum frequency of 0.5, and 3) minimum damping ratio 0.7. Give a root 
locus plot, with your pole locations clearly marked on top of the trajectories taken 
as varies. You don't need to show the fourth, fast pole, which will be quite far to 
the left. 

2. Apply the you selected to , and then use the Matlab functions 
feedback() to create the resulting feedback system, and step() to plot the 
closed-loop system response to a step input in desired heading. 

3. Use the Matlab command nyquist() to make a Nyquist plot of for your 
design. Make a visual estimate of the gain and phase margins. 

4. An alternate approach for controller design of this stable plant is loopshaping: For 

the open-loop function , where , invert the plant to come up 

with a compensator: . This design has infinite gain margin and 
90 degrees phase margin. 

5. As above, create the feedback system, and plot the closed-loop step response. 
6. The loopshaping control is not quite a PID-controller; how does it differ, and what 

would have to contain to make it a PID? 
7. The controllers you just designed are in nondimensional time coordinates; give the 

P,I, and D gains for use on a real time scale, for the root-locus design. 
31. LQR. Consider the state-space system and LQR design: 



 

The plant is an undamped oscillator with undamped poles at . Note that the plant output 
is position for this problem.  

0. What is the control gain in terms of ? Hints: There are two solutions for ; 
choose the positive one. Also, the expression for is messy; luckily, you won't 
need to use it. 

1. Determine the limiting approximations for with very small and very large - 
these are the cheap control and expensive control problems. 

2. Derive the limiting closed-loop pole locations for , giving the frequency and 
damping ratio of the Butterworth pattern in terms of . You can get the 

characteristic equation for the poles as , and then make 

it fit the form .  
32. LQR. Consider the first-order, unstable system governed by , for which the 

output is . The state-space matrices are . 

0. Solve the LQR Riccati equation for , for the case and . Your 
answer should give a positive as a function of alone. 

1. Consider the cheap-control problem, with . Write the leading-term 
approximations for and then , and compute the eigenvalue (there is only one) 

of the closed-loop system. Note that , if is a scalar instead of a 
matrix. 

2. Now look at the expensive-control problem, with . Again, write the 
approximations for and , and find the closed-loop system eigenvalue.  

33. LQG/LTR. For the inverted pendulum plant (see previous question) with state-space 
matrices  

 

the KF Riccati equation yields , for the choices , and 
. 

0. Compute the open-loop transfer function for the Kalman filter loop: 

.  

1. Even though this is unstable, its magnitude plot confirms that it is a reasonable 

loopshaping design. What is the low-frequency gain for this , and what kind of 
tracking performance should we expect from the associated LTR design?  

2. Now consider the closed-loop transfer function, which you can write as 

(the sensitivity). What is the characteristic equation for the 
closed-loop system, and about what damping ratio has the Kalman filter provided?  

34. LQG/LTR design. The parameters for the linearized sway/yaw motions of a swimmer 
delivery vehicle are given below. 

35. % Parameters, all nondimensional except [U,L] 
36.  
37. U =              4.0 ; % m/s 
38.  
39. L =              5.3 ; % m 
40.  
41. Izz =            0.006326 ; 



42.  
43. m =              0.1415 ; 
44.  
45. xg =             0. ; 
46.  
47. Yv =            -0.1 ; 
48.  
49. Yr =             0.03 ; 
50.  
51. Nv =            -0.0074 ; 
52.  
53. Nr =            -0.016 ; 
54.  
55. Ydelta =         0.027 ; 
56.  
57. Yvdot =         -0.055 ; 
58.  
59. Yrdot =          0. ; 
60.  
61. Nvdot =          0. ; 
62.  
63. Nrdot =         -0.0034 ; 
64.  
65. Ndelta =        -0.013 ; 
66.  

You are asked to develop an LQG/LTR controller for this plant, and it is suggested that you 
compose a single Matlab script to perform the steps in sequence. Please make sure you 
answer all the questions, and include a listing of your code. This entire design is made in 
nondimensional coordinates. 

0. Plant Modeling and Characteristics 
1. Construct a state-space plant model, to take rudder angle as an input and 

give heading angle as an output. Please provide the numerical values for 
the matrices. There should be three states in your model, with one 
input channel and one output channel.  

2. Compute and list the controllability and observability matrices; is the plant 
state-controllable and state-observable? 

3. Where are the poles of your plant model? Is this model stable? 
4. Show a plot of your plant's step response.  

1. LQR and KF Designs 
1. Using the Matlab command lqr(), you can compute the LQR feedback 

gain , for given , , , and matrices. With the choices , 
and , list and plot the closed-loop step responses for the choices 

. How do the gains and step responses change as 
you make smaller and smaller? 

Note that the fundamental closed-loop LQR system is  

 

i.e., the input to the closed-loop system is and the output is . Your 
plot should show specifically the output , for an input of 

. This compression can be 
achieved in one step by premultiplying the system by , and post-
multiplying it by : 

 



2. The Matlab command lqe() can be used to generate the Kal-man filter 
gain , given design matrices , , , and . For the choices 
and , compute , and make a plot of the closed-loop step 
response. Be sure to give the numerical values of . 

Note that the lqe() command asks for a disturbance gain matrix ; you 
should set this to . The closed-loop KF system is as follows: 

 

i.e., the input is the measurement and the output is an estimated version 
of it, .  

2. Loop Transfer Recovery 

The LQG compensator is a combination of the KF and LQR designs above. With 

normal negative feedback, the compensator has the following state space 
representation: 

 

so that the input to the compensator is the tracking error , and its output 
is the control action to be applied as input to the plant. The total open-loop 

transfer function is the ; in Matlab, you may simply multiply the systems, 
e.g., sysPC = sysP * sysC ;. 

1. Make a log(magnitude) plot of the KF open-loop transfer function 

, versus log(frequency). You may find the Matlab 

command freqresp() helpful. should be large at low frequencies, 
and small at high frequencies, consistent with the rules of loopshaping. 

2. As , the product . Demonstrate this by computing 

for the three different values of above, and overlaying the 

respective over the plot of part 3a). 
3. Make a closed-loop step response plot for the smallest value of . How 

does it compare with the KF step response of part 2b)? 

In real LTR applications, the particular values of and can be picked to control the low-
frequency gain, and crossover frequency of the open-loop KF system 

. 

67. Inertial navigation. A triaxial accelerometer package is aligned with the [x,y,z] (fwd, 
port, up) axes of an underwater vehicle. At a particular instant in time, the three raw 

accelerations from the strain guages are meters/second. 
Note that under the influence of gravity alone, this sensor will always report that the 
vehicle is accelerating upwards. 

0. Ignoring the coupling of Euler small angles, what estimates can you give for the roll 
and pitch angles? I suggest that you draw the measurement vector in the 
coordinates of the vehicle frame, and then consider the orientation of the body 
which would lead to it. 

1. Given that the acceleration due to gravity is 9.81 , how do we know that these 
are reasonable (but not foolproof!) angle calculations to make?  
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