
3 VESSEL INERTIAL DYNAMICS 

 
 

Figure 2:  Convention for the body-referenced coordinate system on a vessel: is forward, is sway to the left, 
and is heave upwards. Looking forward from the vessel bridge, roll about the axis is positive 
counterclockwise, pitch about the -axis is positive bow-down, and yaw about the -axis is positive turning left.  

We consider the rigid body dynamics with a coordinate system affixed on the body. A common 
frame for ships, submarines, and other marine vehicles has the body-referenced -axis forward, -
axis to port (left), and -axis up. This will be the sense of our body-referenced coordinate system 
here. 

3.1  Momentum of a Particle 

Since the body moves with respect to an inertial frame, dynamics expressed in the body-referenced 
frame need extra attention. First, linear momentum for a particle obeys the equality 

 
A rigid body consists of a large number of these small particles, which can be indexed. The 
summations we use below can be generalized to integrals quite easily. We have 

 
where is the external force acting on the particle and is the net force exerted by all the other 
surrounding particles (internal forces). Since the collection of particles is not driven apart by the 
internal forces, we must have equal and opposite internal forces such that 

 
Then summing up all the particle momentum equations gives 

 
Note that the particle velocities are not independent, because the particles are rigidly attached. 
Now consider a body reference frame, with origin 0, in which the particle resides at body-
referenced radius vector ; the body translates and rotates, and we now consider how the 
momentum equation depends on this motion. 

3.2  Linear Momentum in a Moving Frame 

The expression for total velocity may be inserted into the summed linear momentum equation to 
give 

 
where , and . Further defining the center of gravity vector such that  



 
we have  

 
Using the expansion for total derivative again, the complete vector equation in body coordinates is 

 
Now we list some conventions that will be used from here on: 

 
The last term in the previous equation simplifies using the vector triple product identity 

 
and the resulting three linear momentum equations are 

 
Note that about half of the terms here are due to the mass center being in a different location than 

the reference frame origin, i.e., . 

3.3  Example: Mass on a String 

Consider a mass on a string, being swung around around in a circle at speed , with radius . The 
centrifugal force can be computed in at least three different ways. The vector equation at the start 
is 

 

3.3.1  Moving Frame Affixed to Mass 

Affixing a reference frame on the mass, with the local oriented forward and inward towards the 
circle center, gives  

 
such that 

 
The force of the string pulls in on the mass to create the circular motion. 

3.3.2  Rotating Frame Attached to Pivot Point 

Affixing the moving reference frame to the pivot point of the string, with the same orientation as 
above but allowing it to rotate with the string, we have  



 
giving the same result: 

 

3.3.3  Stationary Frame 

A frame fixed in inertial space, and momentarily coincident with the frame on the mass (3.3.1), can 
also be used for the calculation. In this case, as the string travels through a small arc , vector 
subtraction gives  

 

Since , it follows easily that in the fixed frame , as before. 

3.4  Angular Momentum 

For angular momentum, the summed particle equation is  

 
where is an external moment on the particle . Similar to the case for linear momentum, summed 
internal moments cancel. We have 

 
The summation in the first term of the right-hand side is recognized simply as , and the first 
term becomes  

 
The second term expands as (using the triple product) 

 
Employing the definitions of moments of inertia, 
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the second term of the angular momentum right-hand side collapses neatly into . The third 
term can be worked out along the same lines, but offers no similar condensation: 

 

Letting be the total moment acting on the body, i.e., the left side of Equation 28, 
the complete moment equations are 

 

3.5  Example: Spinning Book 
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Consider a homogeneous rectangular block with and all off-diagonal moments of 
inertia are zero. The linearized angular momentum equations, with no external forces or moments, 
are 

 
We consider in turn the stability of rotations about each of the main axes, with constant angular 
rate . The interesting result is that rotations about the and axes are unstable, while rotation 
about the axis is not. 

3.5.1  -axis 

In the case of the -axis, , , and , where the prefix indicates a small value 
compared to . The first equation above is uncoupled from the others, and indicates no change in 

, since the small term can be ignored. Differentiate the second equation to obtain 

 
Substitution of this result into the third equation yields 

 
A simpler expression is , which has response , when . 
For spin about the -axis, both coefficients of the differential equation are positive, and hence 

. The imaginary exponent indicates that the solution is of the form , that 
is, it oscillates but does not grow. Since the perturbation is coupled, it too oscillates. 

3.5.2  -axis 

Now suppose : differentiate the first equation and substitute into the third equation to 
obtain 

 
Here the second coefficient has negative sign, and therefore . The exponent is real now, and 

the solution grows without bound, following . 

3.5.3  -axis 

Finally, let : differentiate the first equation and substitute into the second equation to 
obtain 

 
The coefficients are positive, so bounded oscillations occur. 

3.6  Parallel Axis Theorem 

Often, the mass center of an body is at a different location than a more convenient measurement 
point, the geometric center of a vessel for example. The parallel axis theorem allows one to 
translate the mass moments of inertia referenced to the mass center into another frame with 
parallel orientation, and vice versa. Sometimes a translation of coordinates to the mass center will 

make the cross-inertial terms small enough that they can be ignored; in this case 
also, so that the equations of motion are significantly reduced, as in the spinning book example. 
The formulas are: 



 
where represents an MMOI in the axes of the mass center, and , for example, is the translation 
of the -axis to the new frame. Note that translation of MMOI using the parallel axis theorem must 
be either to or from a frame resting exactly at the center of gravity.  

3.7  Basis for Simulation 

Except for external forces and moments and , we now have the necessary terms for writing a 
full nonlinear simulation of a rigid body, in body coordinates. There are twelve states, comprising 
the following components: 

  , the vector of body-referenced velocities.  
  , body rotation rate vector.  
  , location of the body origin, in inertial space.  

  , Euler angle vector.  

The derivatives of body-referenced velocity and rotation rate come from Equations 27 and 32, with 
some coupling which generally requires a matrix inverse. The Cartesian position propagates 
according to 
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