
6.170 Quiz Review 
  

Topics: 
 

1. Decoupling 
2. Data Abstraction 
3. AF & RI 
4. Iteration Abstraction & Iterators 
5. OMs and Invariants 
6. Equality, Copying, Views 
7. Dynamic Analysis 
8. Design Patterns  
9. Subtyping  
10. Case Studies 

 
Decoupling 

L2, L3, Ch 1, Ch 13:1-3, Ch 2 
Decomposition 
Division of Labor 
Reuse 
Modular Analysis 
Localized Change 

  
Top Down Design vs. Modularization 
 

Decoupling 
L2: Uses, Dependencies, Specifications, MDDs 

Uses Diagram: Trees, Layers, Cycles 
Reasoning 
Reuse 
Construction Order 
 
Dependencies & Specifications; MDDs for 

� Weakened assumptions 
� Evaluating changes 
� Communication 
� Multiple implementations 

Decoupling 
 L2: MDDs, Techniques 

MDDs 
� Specification parts 
� Implementation parts 
� Meets, depends, weak depends relationships 

 
Techniques 

� Façade: new implementation part between two sets of parts 
� Hiding representation: avoid mentioning how data is represented 



� Polymorphism: ‘many shaped’ 
� Callbacks: runtime reference to a procedure 

 
Decoupling 

 L3: Java Namespace, Access Control 
Java Namespace 

� Packages Æ {Interfaces, Classes} Æ {methods, named fields} 
Access Control 

� public: accessed from anywhere 
� protected: accessed within package or by subclass outside of package 
� default: accessed within package 
� private: only within the class 

Decoupling 
 L3: Safe Languages, Interfaces 

Safe Languages 
� One part should only depend on another if it names it 
� Strong typing: access of type t in program text is guaranteed at runtime  
� Check types at compile time: ‘static typing’ 

  
Interfaces: more flexible subtyping 

� Express pure specification 
� Allows several implementation parts to one specification part 

 
Decoupling  

 L3: Instrumenting a Program 
�Abstraction by parameterization 
�Decoupling with interfaces 
�Interfaces vs. Abstract Classes 
�Static Fields 

Data Abstraction 
L4, L5, Ch 3-5, Ch 9 

Specifications 
Pre-condition (requires) 

Obligation on the client (caller of the method) 
Omitted: true; requires nothing 

Post-condition (effects) 
Obligation on implementer 
Cannot be omitted 

Frame condition (modified) 
Describes which small state is modified 
Omitted: modifies nothing 

Data Abstraction 
L4: Specification 

 
�Operational specification: series of steps the method performs 
�Declarative specification: do not give details of intermediate steps 
(preferable) 



�Exceptions & Preconditions (decisions) 
� Preconditions: cost of check, scope of method 
� Check via runtime assertions 
� If violated, throw unchecked exception (not mentioned in specification) 

 
Data Abstraction 

L4: Specifications 
�Shorthands 

o Returns: modifies nothing, and returns a value 
o Throws: condition and exception both given in throws clause; 

modifies nothing 
��SSppeecciiffiiccaattiioonn  OOrrddeerriinngg::    AA  ssppeecciiffiiccaattiioonn  AA  iiss  aatt  lleeaasstt  aass  ssttrroonngg  aass  aa  ssppeecciiffiiccaattiioonn  
BB  iiff  

oo  AA’’ss  pprreeccoonnddiittiioonn  iiss  nnoo  ssttrroonnggeerr  tthhaann  BB’’ss  
o A’s postcondition is no weaker than B’s, for the states that satisfy B’s 

precondition 
o (can always weaken the precondition; can always strengthen the 

postcondition) 
 

Data Abstraction 
L4: Specifications 

� Judging specifications 
o Coherent 
o Informative 
o Strong enough 
oo  WWeeaakk  eennoouugghh  

� Crucial firewall between implementer and client 
  

Data Abstraction 
L5: Abstract Types 

 
• Data abstraction: type is characterized by the operations you can perform 

on it 
• Mutable: can be changed; provide operations which when executed cause 

results of other operations on the same object to give different results 
(Vectors) 

• Immutable: cannot be changed (Strings) 
 

Data Abstraction 
L5: Abstract Types 

 
�Operations (T = abstract type, t = some other type) 

o Constructors: t Æ T 
o Producers: T, t Æ T 
o Mutators: T, t Æ void 
o Observers: T, t Æ t 

�List example 



Data Abstraction 
L5: Abstract Types 

�Designing an Abstract Type 
o Few, simple operations that can be combined in powerful ways 
o Operations should have well-defined purpose, coherent behavior 
o Set of operations should be adequate 
o Type may be generic (list, set, graph) or domain specific (street map, 

employee db, phone book), but not both 
 

Data Abstraction 
L5: Abstract Types 

 
�Representation: class that implements an abstract type provides a 
representation 
�Representation Independence 

o Ensuring that use of an abstract type is independent of representation 
o Changes in representation should not affect using code 

�Representation Exposure 
o Representation is passed to the client 
o Client is allowed direct access to representation 
o Need careful programming discipline 

 
Data Abstraction 
L5: Abstract Types 

 
�Language Mechanisms 

o private fields: prevent access to representation 
o interfaces: rep. Independence (List Æ ArrayList, Linked List) 

� No non-static fields allowed 
� Cannot have constructors 

  
Data Abstraction 

L6: Abstraction Functions & Rep Invariants 
�Rep Invariant 

o Constraint that characterized whether an instance of an ADT is well-
formed (representation point of view) 

o RI: Object Æ Boolean 
o Some properties of OM not in RI (eg. sharing/multiplicities) 
o Some properties of RI not in OM (eg. primitives) 

 
Data Abstraction 

L6: Abstraction Functions & Rep Invariants 
 
�Inductive Reasoning 

o Rep Invariant: makes modular reasoning possible 
o Constructor creates an object that satisfies the invariant 
o Producer preserves the invariant 



o Mutator: if RI holds at beginning, must hold at end 
o Observer does not modify, so RI should hold 

 
Data Abstraction 

L6: Abstraction Functions & Rep Invariants 
 
�Abstraction function: interprets representation 

o Concrete objects: actual objects of the implementation 
o Abstract objects: mathematical objects that correspond to the way the 

specification of the abstract type describes its values 
o Function between concrete and abstract realms is the abstraction 

function  
o May be partial 
o Different representations have different abstraction functions 

 
Data Abstraction 

L6: Abstraction Functions & Rep Invariants 
�Benevolent side-effects: allow observers to mutate the rep as long as abstract 
value is preserved 
�RIs: 

o Modular reasoning 
o Helps catch errors 

�AF: specifies how representation of an ADT is interpreted as an abstract value 
 

Data Abstraction 
L7: Iteration Abstraction and Iterators 

 
o Rep Exposure: have remove() throw UnsupportedOperationException 
o Refer to Ch. 6 of text. 
 

Object Models & Invariants 
L8, Ch 12:1 

 
�Object model: description of collection of configurations 

o Classification of objects 
o Relationships between objects  
o Subset (implements, extends) 
o Relationships & labels 
o Multiplicity: how many objects in one class can be related to a given 

object in another class 
o Mutability: how states may change 

 
Object Models & Invariants 

�Multiplicity symbols: 
o * (>= 0) 
o + (>= 1) 
o ? (0 or 1) 
o ! (exactly 1) 



 
�Source Æ Target 

o End of the arrow: how many targets are associated with each source? 
o Beginning of arrow: how many sources can be mapped to the target? 

�Instance diagrams 
Object Models & Invariants 

�Program object models 
�Abstract & Concrete viewpoints 

o AF: can show how values of concrete are interpreted as abstract values 
o RI: object model is a type of RI—a constraint that holds during the 

lifetime of a program 
o Rep Exposure: ADT provides direct access to one of the objects within 

the rep invariant contour 

 
Equality, Copying, Views 

L9, Ch5:5-7 
�Object Contract 

o equals() 
o hashCode() 

�Equality Properties (Point and ColorPoint) 
o Reflexivity 
o Symmetry 
o Transitivity 

�Hashing: if two objects are equal() Æ must have same hashCode() 
 

Equality, Copying, Views 
�Copying 

o Shallow: fields point to the same fields as old object 
o Deep 

�Cloneable interface 
�Element and Container equality 

o Liskov solution:  
� Equals – behaviorally equivalent 
� Similar – observationally equivalent 

 
Equality, Copying, Views 

�Rep exposure: contour includes element class (LinkedList example) 
o Mutating hash keys 

�Views 
o Distinct objects that offer different kind of access to the underlying 

data structure 
o Both view and underlying structure modifiable  

 
Dynamic Analysis 
L10, L11, Chapter 10 

�Executing program and observe it’s behavior 
�Dijkstra: “Testing can reveal the presence of errors but never their absence” 



�Cannot depend on dynamic analysis alone – need good specifications and 
design 

 
Dynamic Analysis 

L10: Defensive Programming 
�Guidelines 

o Inserting redundant checks – runtime assertions 
o As you are writing the code 
o Where? 

� At the start of a procedure (precondition) 
� End of a complicated procedure (postcondition) 
� When an operation may have an external effect 

 
Dynamic Analysis 

L10: Defensive Programming 
�Catching Common Exceptions 

o NullPointerException 
o ArrayIndexOutOfBoundsException 
o ClassCastException 

�Check the Rep Invariant 
o public void repCheck() throws (runtime expn) 

�Assertion framework 
o public static void assert(boolean b, String loc) 
o Assert.assert( … , “MyClass.myMethod”); 

 
Dynamic Analysis 

L10: Defensive Programming 
�Assertions in Subclasses 
�Responding to Failure 

o Fix: complicated, more bugs, if you know the cause Æ you could have 
avoided it anyway? 

o Execute special actions: depends on the system Æ hard to determine 
set of actions 

o Abort execution: depends on the program; compiler vs. word processor 

 
Dynamic Analysis 

L11: Testing 
�Testing Considerations 

o Properties you want to test (problem domain, program knowledge) 
o Modules you want to test (critical, complex, most likely to malfunction) 
o How to generate test cases 
o How to check results 
o When you know you are done 

 



Dynamic Analysis 
L11: Regression Tests 

�Tests suites that can be re-executed 
�Test-first programming: construction of regression tests before application 
code is written (part of extreme programming) 

 
Dynamic Analysis 

L11: Criteria 
�S(t, P(t)) = false; t is a failing test case 
�C: Suite, Program, Spec Æ boolean 
�C: Suite, Spec Æ boolean is specification-based criterion; black box 
�C: Suite, Program Æ boolean is a program-based criterion; glass box 

 
Dynamic Analysis 

L11: Subdomains 
�Subdomains: input space divisions 

o Determine if test suites are good enough 
o Drive testing in to regions where there are most likely bugs 

�Revealing subdomain 
 

Dynamic Analysis 
L11: Subdomain Criteria 

 
o Statement Coverage: every statement must be executed at least once 
o Decision Coverage: every edge in the control flow graph must be executed 
o Condition Coverage: boolean expressions to be evaluated to both true & 

false; MCDC 
o Boundary testing: boundary cases for each conditional 
o Specification based criteria: only in terms of subdomains  

� Empty set, non-empty & contains element, non-empty & not contains element 
 

Dynamic Analysis 
L11: Feasibility & Practicalities 

 
o Criterion is feasible if it is possible to satisfy it. 
o Use specification based criteria to guide development of test suite. 
o Program based criteria to evaluate it.  (Measure code coverage). 
 

Design Patterns 
L12, L13, L14, Chapter 15 

�So far: 
o Encapsulation (data hiding) 
o Subclassing (inheritance) 
o Iteration 
o Exceptions 



�Don’t use design patterns prematurely 
�Complex, decrease understandability 
 

Design Patterns 
L12: Creational Patterns 

�Factories 
o Factory method: method that manufactures an object of a 

particular type 
o Factory object: object that encapsulates factory methods 
o Prototype: object can clone() itself, object is passed in to a 

method (instead of a factory object) 
 

Design Patterns 
L12: Creational Patterns 

�Sharing 
o Singleton: only one object of a class exists 
o Interning: reuses object instead of creating new ones; correct for 

immutable objects only 
o Flyweight: (generalization of interning), can be used if most of the 

object is immutable 
�Intrinsic vs. extrinsic states 
�Only used if space is a critical bottleneck 

 
Design Patterns 

L13: Behavioral Patterns 
�Multi-way Communication 

o Observer: maintain a list of observers (that follow a particular 
interface) to be notified when state changes; needs add and remove 
observer methods 

o Blackboard: (generalizes Observer pattern); multiple data sources and 
multiple viewers; asynchronous 
� Repository of messages which is readable and writable by all 

processes 
� Interoperability; well understood message format 

o Mediator: (intermediate between Observer and Blackboard); decouples 
information, but not control, synchronous 

 
Design Patterns 

L13: Traversing Composites 
 
� Support many different operations 
� Perform operations on subparts of a composite 
  
� Interpreter: groups together operations for a particular type of object 
� Procedural: groups together all code that implements a particular operation 
� Visitor: depth-first traversal over a hierarchical structure; Nodes accept 

Visitors; Visitors visit Nodes 



 
Design Patterns 

L14: Structural Patterns 
� Wrappers 
     Pattern   Functionality  Interface 
� Adaptor    Same   Different 
 (interoperability) 
� Decorator  Different  Same 
 (extends) 
� Proxy   Same   Same 
 (controls or limits) 
 

Design Patterns 
L14: Structural Patterns 

� Implementation of Wrappers 
� Subclassing 
� Delegation: stores an object in a field; preferred implementation for wrappers 

� Composite 
� Allows client to manipulate a unit or collection of units in the same way 

 
Subtyping 

L15, Ch 7 
�MDDs 
�Substitution principle 

o Signatures 
o Methods 

� requires less/contravariance 
� guarantees more/covariance 

o Properties  
�Java Subclasses vs. subtypes 
�Interface  

o Guarantee behavior w/o sharing code 
o Multiple inheritance 

 
Case Study: Java Collections API 

�Type Hierarchy 
o Interfaces: Collection, Set, SortedSet, List 
o Skeletal implementations: AbstractCollection,  AbstractSet, 

AbstractList, AbstractSequentialList 
o Concrete implementations: TreeSet, HashSet, ArrayList, LinkedList 

� Parallel structure 
� Interfaces vs. abstract classes 
 

Case Study: Java Collections API 
L16, Ch 13, Ch 14 

�Optional Methods: throws UnsupportedOperationException 



�Polymorphism 
�Skeletal implementations (‘template methods’ and ‘hook methods’) 
�Capacity, allocation, garbage collection 
�Copies, Conversions, Wrappers 
�Sorted Collections: Comparable vs. Comparator 
�Views 

 
Case Study: JUnit 

L17 
�MDD: fully connected 
�Design Patterns 

o Template Method 
o Command 
o Composite 
o Observer 

�TestSuite using Java Reflection 
 

Case Study: Tagger 
L18 

�Design Aspects  
o Actions 
o Cross references 
o Property maps 
o Autonumbering 
o Style sheet view 
o Type-safe enums 

� Quality needs 
� Pattern density 

  
Conceptual Object Models 

L19, Ch 11-12 
�Atom: 

o Indivisible 
o Immutable 
o Uninterpreted 

�Set: collection of atoms 
o Domains: sets without supersets 
o Relation: relates atoms 
o Transpose: ~relation 
o Transitive closure: +relation 

�Reflexive closure: *relation 
  

Conceptual Object Models 
�Ternary relations 
�Indexed relation 
�Examples 



o Java Types: Object, Var, Type 
o Meta Model: graphical object modeling notation 
o Numbering: Tagger 

 
Design Strategy 

L20 
�Development Process 

o Program analysis (OMs and operations) 
o Design (code OM, MDD, module specs) 
o Implementation 

�Testing 
o Regression tests 
o Runtime assertions 
o Rep Invariants 

Design Strategy 
Design Properties 

�Extensibility 
o OM sufficiency 
o Locality and decoupling 

�Reliability 
o Careful modeling 
o Review, analysis, testing 

�Efficiency 
o OM 
o Avoid bias 
o Optimization 
o Choice of Reps 

Design Strategy 
 OM Transformations 

 
o Introducing a generalization (subsets) 
o Inserting a collection 
o Reversing a relation 
o Moving a relation 
o Relation to table 
o Adding redundant state 
o Factoring out mutable relations 
o Interpolating an interface 
oo  EElliimmiinnaattiinngg  ddyynnaammiicc  sseettss  
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