
6.170 Quiz Review

Topics:

1. Decoupling
2. Data Abstraction
3. AF & RI
4. Iteration Abstraction & Iterators
5. OMs and Invariants
6. Equality, Copying, Views
7. Dynamic Analysis
8. Design Patterns
9. Subtyping
10. Case Studies

Decoupling

L2, L3, Ch 1, Ch 13:1-3, Ch 2
Decomposition
Division of Labor
Reuse
Modular Analysis
Localized Change

Top Down Design vs. Modularization

Decoupling
L2: Uses, Dependencies, Specifications, MDDs

Uses Diagram: Trees, Layers, Cycles
Reasoning
Reuse
Construction Order

Dependencies & Specifications; MDDs for

� Weakened assumptions
� Evaluating changes
� Communication
� Multiple implementations

Decoupling
 L2: MDDs, Techniques

MDDs
� Specification parts
� Implementation parts
� Meets, depends, weak depends relationships

Techniques

� Façade: new implementation part between two sets of parts
� Hiding representation: avoid mentioning how data is represented

� Polymorphism: ‘many shaped’
� Callbacks: runtime reference to a procedure

Decoupling

 L3: Java Namespace, Access Control
Java Namespace

� Packages Æ {Interfaces, Classes} Æ {methods, named fields}
Access Control

� public: accessed from anywhere
� protected: accessed within package or by subclass outside of package
� default: accessed within package
� private: only within the class

Decoupling
 L3: Safe Languages, Interfaces

Safe Languages
� One part should only depend on another if it names it
� Strong typing: access of type t in program text is guaranteed at runtime
� Check types at compile time: ‘static typing’

Interfaces: more flexible subtyping

� Express pure specification
� Allows several implementation parts to one specification part

Decoupling

 L3: Instrumenting a Program
�Abstraction by parameterization
�Decoupling with interfaces
�Interfaces vs. Abstract Classes
�Static Fields

Data Abstraction
L4, L5, Ch 3-5, Ch 9

Specifications
Pre-condition (requires)

Obligation on the client (caller of the method)
Omitted: true; requires nothing

Post-condition (effects)
Obligation on implementer
Cannot be omitted

Frame condition (modified)
Describes which small state is modified
Omitted: modifies nothing

Data Abstraction
L4: Specification

�Operational specification: series of steps the method performs
�Declarative specification: do not give details of intermediate steps
(preferable)

�Exceptions & Preconditions (decisions)
� Preconditions: cost of check, scope of method
� Check via runtime assertions
� If violated, throw unchecked exception (not mentioned in specification)

Data Abstraction

L4: Specifications
�Shorthands

o Returns: modifies nothing, and returns a value
o Throws: condition and exception both given in throws clause;

modifies nothing
��SSppeecciiffiiccaattiioonn OOrrddeerriinngg:: AA ssppeecciiffiiccaattiioonn AA iiss aatt lleeaasstt aass ssttrroonngg aass aa ssppeecciiffiiccaattiioonn
BB iiff

oo AA’’ss pprreeccoonnddiittiioonn iiss nnoo ssttrroonnggeerr tthhaann BB’’ss
o A’s postcondition is no weaker than B’s, for the states that satisfy B’s

precondition
o (can always weaken the precondition; can always strengthen the

postcondition)

Data Abstraction
L4: Specifications

� Judging specifications
o Coherent
o Informative
o Strong enough
oo WWeeaakk eennoouugghh

� Crucial firewall between implementer and client

Data Abstraction
L5: Abstract Types

• Data abstraction: type is characterized by the operations you can perform

on it
• Mutable: can be changed; provide operations which when executed cause

results of other operations on the same object to give different results
(Vectors)

• Immutable: cannot be changed (Strings)

Data Abstraction
L5: Abstract Types

�Operations (T = abstract type, t = some other type)

o Constructors: t Æ T
o Producers: T, t Æ T
o Mutators: T, t Æ void
o Observers: T, t Æ t

�List example

Data Abstraction
L5: Abstract Types

�Designing an Abstract Type
o Few, simple operations that can be combined in powerful ways
o Operations should have well-defined purpose, coherent behavior
o Set of operations should be adequate
o Type may be generic (list, set, graph) or domain specific (street map,

employee db, phone book), but not both

Data Abstraction
L5: Abstract Types

�Representation: class that implements an abstract type provides a
representation
�Representation Independence

o Ensuring that use of an abstract type is independent of representation
o Changes in representation should not affect using code

�Representation Exposure
o Representation is passed to the client
o Client is allowed direct access to representation
o Need careful programming discipline

Data Abstraction
L5: Abstract Types

�Language Mechanisms

o private fields: prevent access to representation
o interfaces: rep. Independence (List Æ ArrayList, Linked List)

� No non-static fields allowed
� Cannot have constructors

Data Abstraction

L6: Abstraction Functions & Rep Invariants
�Rep Invariant

o Constraint that characterized whether an instance of an ADT is well-
formed (representation point of view)

o RI: Object Æ Boolean
o Some properties of OM not in RI (eg. sharing/multiplicities)
o Some properties of RI not in OM (eg. primitives)

Data Abstraction

L6: Abstraction Functions & Rep Invariants

�Inductive Reasoning

o Rep Invariant: makes modular reasoning possible
o Constructor creates an object that satisfies the invariant
o Producer preserves the invariant

o Mutator: if RI holds at beginning, must hold at end
o Observer does not modify, so RI should hold

Data Abstraction

L6: Abstraction Functions & Rep Invariants

�Abstraction function: interprets representation

o Concrete objects: actual objects of the implementation
o Abstract objects: mathematical objects that correspond to the way the

specification of the abstract type describes its values
o Function between concrete and abstract realms is the abstraction

function
o May be partial
o Different representations have different abstraction functions

Data Abstraction

L6: Abstraction Functions & Rep Invariants
�Benevolent side-effects: allow observers to mutate the rep as long as abstract
value is preserved
�RIs:

o Modular reasoning
o Helps catch errors

�AF: specifies how representation of an ADT is interpreted as an abstract value

Data Abstraction
L7: Iteration Abstraction and Iterators

o Rep Exposure: have remove() throw UnsupportedOperationException
o Refer to Ch. 6 of text.

Object Models & Invariants
L8, Ch 12:1

�Object model: description of collection of configurations

o Classification of objects
o Relationships between objects
o Subset (implements, extends)
o Relationships & labels
o Multiplicity: how many objects in one class can be related to a given

object in another class
o Mutability: how states may change

Object Models & Invariants

�Multiplicity symbols:
o * (>= 0)
o + (>= 1)
o ? (0 or 1)
o ! (exactly 1)

�Source Æ Target

o End of the arrow: how many targets are associated with each source?
o Beginning of arrow: how many sources can be mapped to the target?

�Instance diagrams
Object Models & Invariants

�Program object models
�Abstract & Concrete viewpoints

o AF: can show how values of concrete are interpreted as abstract values
o RI: object model is a type of RI—a constraint that holds during the

lifetime of a program
o Rep Exposure: ADT provides direct access to one of the objects within

the rep invariant contour

Equality, Copying, Views

L9, Ch5:5-7
�Object Contract

o equals()
o hashCode()

�Equality Properties (Point and ColorPoint)
o Reflexivity
o Symmetry
o Transitivity

�Hashing: if two objects are equal() Æ must have same hashCode()

Equality, Copying, Views
�Copying

o Shallow: fields point to the same fields as old object
o Deep

�Cloneable interface
�Element and Container equality

o Liskov solution:
� Equals – behaviorally equivalent
� Similar – observationally equivalent

Equality, Copying, Views

�Rep exposure: contour includes element class (LinkedList example)
o Mutating hash keys

�Views
o Distinct objects that offer different kind of access to the underlying

data structure
o Both view and underlying structure modifiable

Dynamic Analysis
L10, L11, Chapter 10

�Executing program and observe it’s behavior
�Dijkstra: “Testing can reveal the presence of errors but never their absence”

�Cannot depend on dynamic analysis alone – need good specifications and
design

Dynamic Analysis

L10: Defensive Programming
�Guidelines

o Inserting redundant checks – runtime assertions
o As you are writing the code
o Where?

� At the start of a procedure (precondition)
� End of a complicated procedure (postcondition)
� When an operation may have an external effect

Dynamic Analysis

L10: Defensive Programming
�Catching Common Exceptions

o NullPointerException
o ArrayIndexOutOfBoundsException
o ClassCastException

�Check the Rep Invariant
o public void repCheck() throws (runtime expn)

�Assertion framework
o public static void assert(boolean b, String loc)
o Assert.assert(… , “MyClass.myMethod”);

Dynamic Analysis

L10: Defensive Programming
�Assertions in Subclasses
�Responding to Failure

o Fix: complicated, more bugs, if you know the cause Æ you could have
avoided it anyway?

o Execute special actions: depends on the system Æ hard to determine
set of actions

o Abort execution: depends on the program; compiler vs. word processor

Dynamic Analysis

L11: Testing
�Testing Considerations

o Properties you want to test (problem domain, program knowledge)
o Modules you want to test (critical, complex, most likely to malfunction)
o How to generate test cases
o How to check results
o When you know you are done

Dynamic Analysis
L11: Regression Tests

�Tests suites that can be re-executed
�Test-first programming: construction of regression tests before application
code is written (part of extreme programming)

Dynamic Analysis

L11: Criteria
�S(t, P(t)) = false; t is a failing test case
�C: Suite, Program, Spec Æ boolean
�C: Suite, Spec Æ boolean is specification-based criterion; black box
�C: Suite, Program Æ boolean is a program-based criterion; glass box

Dynamic Analysis

L11: Subdomains
�Subdomains: input space divisions

o Determine if test suites are good enough
o Drive testing in to regions where there are most likely bugs

�Revealing subdomain

Dynamic Analysis
L11: Subdomain Criteria

o Statement Coverage: every statement must be executed at least once
o Decision Coverage: every edge in the control flow graph must be executed
o Condition Coverage: boolean expressions to be evaluated to both true &

false; MCDC
o Boundary testing: boundary cases for each conditional
o Specification based criteria: only in terms of subdomains

� Empty set, non-empty & contains element, non-empty & not contains element

Dynamic Analysis
L11: Feasibility & Practicalities

o Criterion is feasible if it is possible to satisfy it.
o Use specification based criteria to guide development of test suite.
o Program based criteria to evaluate it. (Measure code coverage).

Design Patterns
L12, L13, L14, Chapter 15

�So far:
o Encapsulation (data hiding)
o Subclassing (inheritance)
o Iteration
o Exceptions

�Don’t use design patterns prematurely
�Complex, decrease understandability

Design Patterns
L12: Creational Patterns

�Factories
o Factory method: method that manufactures an object of a

particular type
o Factory object: object that encapsulates factory methods
o Prototype: object can clone() itself, object is passed in to a

method (instead of a factory object)

Design Patterns
L12: Creational Patterns

�Sharing
o Singleton: only one object of a class exists
o Interning: reuses object instead of creating new ones; correct for

immutable objects only
o Flyweight: (generalization of interning), can be used if most of the

object is immutable
�Intrinsic vs. extrinsic states
�Only used if space is a critical bottleneck

Design Patterns

L13: Behavioral Patterns
�Multi-way Communication

o Observer: maintain a list of observers (that follow a particular
interface) to be notified when state changes; needs add and remove
observer methods

o Blackboard: (generalizes Observer pattern); multiple data sources and
multiple viewers; asynchronous
� Repository of messages which is readable and writable by all

processes
� Interoperability; well understood message format

o Mediator: (intermediate between Observer and Blackboard); decouples
information, but not control, synchronous

Design Patterns

L13: Traversing Composites

� Support many different operations
� Perform operations on subparts of a composite

� Interpreter: groups together operations for a particular type of object
� Procedural: groups together all code that implements a particular operation
� Visitor: depth-first traversal over a hierarchical structure; Nodes accept

Visitors; Visitors visit Nodes

Design Patterns

L14: Structural Patterns
� Wrappers
 Pattern Functionality Interface
� Adaptor Same Different
 (interoperability)
� Decorator Different Same
 (extends)
� Proxy Same Same
 (controls or limits)

Design Patterns
L14: Structural Patterns

� Implementation of Wrappers
� Subclassing
� Delegation: stores an object in a field; preferred implementation for wrappers

� Composite
� Allows client to manipulate a unit or collection of units in the same way

Subtyping

L15, Ch 7
�MDDs
�Substitution principle

o Signatures
o Methods

� requires less/contravariance
� guarantees more/covariance

o Properties
�Java Subclasses vs. subtypes
�Interface

o Guarantee behavior w/o sharing code
o Multiple inheritance

Case Study: Java Collections API

�Type Hierarchy
o Interfaces: Collection, Set, SortedSet, List
o Skeletal implementations: AbstractCollection, AbstractSet,

AbstractList, AbstractSequentialList
o Concrete implementations: TreeSet, HashSet, ArrayList, LinkedList

� Parallel structure
� Interfaces vs. abstract classes

Case Study: Java Collections API
L16, Ch 13, Ch 14

�Optional Methods: throws UnsupportedOperationException

�Polymorphism
�Skeletal implementations (‘template methods’ and ‘hook methods’)
�Capacity, allocation, garbage collection
�Copies, Conversions, Wrappers
�Sorted Collections: Comparable vs. Comparator
�Views

Case Study: JUnit

L17
�MDD: fully connected
�Design Patterns

o Template Method
o Command
o Composite
o Observer

�TestSuite using Java Reflection

Case Study: Tagger
L18

�Design Aspects
o Actions
o Cross references
o Property maps
o Autonumbering
o Style sheet view
o Type-safe enums

� Quality needs
� Pattern density

Conceptual Object Models

L19, Ch 11-12
�Atom:

o Indivisible
o Immutable
o Uninterpreted

�Set: collection of atoms
o Domains: sets without supersets
o Relation: relates atoms
o Transpose: ~relation
o Transitive closure: +relation

�Reflexive closure: *relation

Conceptual Object Models
�Ternary relations
�Indexed relation
�Examples

o Java Types: Object, Var, Type
o Meta Model: graphical object modeling notation
o Numbering: Tagger

Design Strategy

L20
�Development Process

o Program analysis (OMs and operations)
o Design (code OM, MDD, module specs)
o Implementation

�Testing
o Regression tests
o Runtime assertions
o Rep Invariants

Design Strategy
Design Properties

�Extensibility
o OM sufficiency
o Locality and decoupling

�Reliability
o Careful modeling
o Review, analysis, testing

�Efficiency
o OM
o Avoid bias
o Optimization
o Choice of Reps

Design Strategy
 OM Transformations

o Introducing a generalization (subsets)
o Inserting a collection
o Reversing a relation
o Moving a relation
o Relation to table
o Adding redundant state
o Factoring out mutable relations
o Interpolating an interface
oo EElliimmiinnaattiinngg ddyynnaammiicc sseettss

	6.170 Quiz Review
	

	Topics:
	Decoupling
	Data Abstraction
	AF & RI
	Iteration Abstraction & Iterators
	OMs and Invariants
	Equality, Copying, Views
	Dynamic Analysis
	Design Patterns
	Subtyping
	Case Studies

	Decoupling�L2, L3, Ch 1, Ch 13:1-3, Ch 2
	Decomposition
	Division of Labor
	Reuse
	Modular Analysis
	Localized Change
	

	Top Down Design vs. Modularization

	Decoupling�L2: Uses, Dependencies, Specifications, MDDs
	Uses Diagram: Trees, Layers, Cycles
	Reasoning
	Reuse
	Construction Order

	Dependencies & Specifications; MDDs for
	Weakened assumptions
	Evaluating changes
	Communication
	Multiple implementations

	Decoupling� L2: MDDs, Techniques
	MDDs
	Specification parts
	Implementation parts
	Meets, depends, weak depends relationships

	Techniques
	Façade: new implementation part between two sets�
	Hiding representation: avoid mentioning how data is represented
	Polymorphism: ‘many shaped’
	Callbacks: runtime reference to a procedure

	Decoupling� L3: Java Namespace, Access Control
	Java Namespace
	Packages ({Interfaces, Classes} ({methods, named fields}

	Access Control
	public: accessed from anywhere
	protected: accessed within package or by subclass outside of package
	default: accessed within package
	private: only within the class

	Decoupling� L3: Safe Languages, Interfaces
	Safe Languages
	One part should only depend on another if it names it
	Strong typing: access of type t in program text is guaranteed at runtime
	Check types at compile time: ‘static typing’

	
	Interfaces: more flexible subtyping
	Express pure specification
	Allows several implementation parts to one specification part

	Decoupling� L3: Instrumenting a Program
	Abstraction by parameterization
	Decoupling with interfaces
	Interfaces vs. Abstract Classes
	Static Fields

	Data Abstraction�L4, L5, Ch 3-5, Ch 9
	Specifications
	Pre-condition (requires)
	Obligation on the client (caller of the method)
	Omitted: true; requires nothing

	Post-condition (effects)
	Obligation on implementer
	Cannot be omitted

	Frame condition (modified)
	Describes which small state is modified
	Omitted: modifies nothing

	Data Abstraction�L4: Specification
	Operational specification: series of steps the method performs
	Declarative specification: do not give details of intermediate steps (preferable)
	Exceptions & Preconditions (decisions)
	Preconditions: cost of check, scope of method
	Check via runtime assertions
	If violated, throw unchecked exception (not mentioned in specification)

	Data Abstraction�L4: Specifications
	Shorthands
	Returns: modifies nothing, and returns a value
	Throws: condition and exception both given in throws clause; modifies nothing

	Specification Ordering: A specification A is at least as strong as a specification B if
	A’s precondition is no stronger than B’s
	A’s postcondition is no weaker than B’s, for the
	(can always weaken the precondition; can always strengthen the postcondition)

	Data Abstraction�L4: Specifications
	Judging specifications
	Coherent
	Informative
	Strong enough
	Weak enough

	Crucial firewall between implementer and client

	Data Abstraction�L5: Abstract Types
	Data abstraction: type is characterized by the operations you can perform on it
	Mutable: can be changed; provide operations which when executed cause results of other operations on the same object to give different results (Vectors)
	Immutable: cannot be changed (Strings)

	Data Abstraction�L5: Abstract Types
	Operations (T = abstract type, t = some other type)
	Constructors: t (T
	Producers: T, t (T
	Mutators: T, t (void
	Observers: T, t (t

	List example

	Data Abstraction�L5: Abstract Types
	Designing an Abstract Type
	Few, simple operations that can be combined in powerful ways
	Operations should have well-defined purpose, coherent behavior
	Set of operations should be adequate
	Type may be generic (list, set, graph) or domain specific (street map, employee db, phone book), but not both

	Data Abstraction�L5: Abstract Types
	Representation: class that implements an abstract type provides a representation
	Representation Independence
	Ensuring that use of an abstract type is independent of representation
	Changes in representation should not affect using code

	Representation Exposure
	Representation is passed to the client
	Client is allowed direct access to representation
	Need careful programming discipline

	Data Abstraction�L5: Abstract Types
	Language Mechanisms
	private fields: prevent access to representation
	interfaces: rep. Independence (List (ArrayList, Linked List)
	No non-static fields allowed
	Cannot have constructors

	

	Data Abstraction�L6: Abstraction Functions & Rep Invariants
	Rep Invariant
	Constraint that characterized whether an instance of an ADT is well-formed (representation point of view)
	RI: Object (Boolean
	Some properties of OM not in RI (eg. sharing/multiplicities)
	Some properties of RI not in OM (eg. primitives)

	Data Abstraction�L6: Abstraction Functions & Rep Invariants
	Inductive Reasoning
	Rep Invariant: makes modular reasoning possible
	Constructor creates an object that satisfies the invariant
	Producer preserves the invariant
	Mutator: if RI holds at beginning, must hold at end
	Observer does not modify, so RI should hold

	Data Abstraction�L6: Abstraction Functions & Rep Invariants
	Abstraction function: interprets representation
	Concrete objects: actual objects of the implementation
	Abstract objects: mathematical objects that correspond to the way the specification of the abstract type describes its values
	Function between concrete and abstract realms is the abstraction function
	May be partial
	Different representations have different abstraction functions

	Data Abstraction�L6: Abstraction Functions & Rep Invariants
	Benevolent side-effects: allow observers to mutate the rep as long as abstract value is preserved
	RIs:
	Modular reasoning
	Helps catch errors

	AF: specifies how representation of an ADT is interpreted as an abstract value

	Data Abstraction�L7: Iteration Abstraction and Iterators
	Rep Exposure: have remove() throw UnsupportedOperationException
	Refer to Ch. 6 of text.

	Object Models & Invariants�L8, Ch 12:1
	Object model: description of collection of configurations
	Classification of objects
	Relationships between objects
	Subset (implements, extends)
	Relationships & labels
	Multiplicity: how many objects in one class can be related to a given object in another class
	Mutability: how states may change

	Object Models & Invariants
	Multiplicity symbols:
	* (>= 0)
	+ (>= 1)
	? (0 or 1)
	! (exactly 1)

	Source (Target
	End of the arrow: how many targets are associated with each source?
	Beginning of arrow: how many sources can be mapped to the target?

	Instance diagrams

	Object Models & Invariants
	Program object models
	Abstract & Concrete viewpoints
	AF: can show how values of concrete are interpreted as abstract values
	RI: object model is a type of RI—a constraint tha
	Rep Exposure: ADT provides direct access to one of the objects within the rep invariant contour

	Equality, Copying, Views�L9, Ch5:5-7
	Object Contract
	equals()
	hashCode()

	Equality Properties (Point and ColorPoint)
	Reflexivity
	Symmetry
	Transitivity

	Hashing: if two objects are equal() (must have same hashCode()

	Equality, Copying, Views
	Copying
	Shallow: fields point to the same fields as old object
	Deep

	Cloneable interface
	Element and Container equality
	Liskov solution:
	Equals – behaviorally equivalent
	Similar – observationally equivalent

	Equality, Copying, Views
	Rep exposure: contour includes element class (LinkedList example)
	Mutating hash keys

	Views
	Distinct objects that offer different kind of access to the underlying data structure
	Both view and underlying structure modifiable

	Dynamic Analysis�L10, L11, Chapter 10
	Executing program and observe it’s behavior
	Dijkstra: “Testing can reveal the presence of err
	Cannot depend on dynamic analysis alone – need go

	Dynamic Analysis�L10: Defensive Programming
	Guidelines
	Inserting redundant checks – runtime assertions
	As you are writing the code
	Where?
	At the start of a procedure (precondition)
	End of a complicated procedure (postcondition)
	When an operation may have an external effect

	Dynamic Analysis�L10: Defensive Programming
	Catching Common Exceptions
	NullPointerException
	ArrayIndexOutOfBoundsException
	ClassCastException

	Check the Rep Invariant
	public void repCheck() throws (runtime expn)

	Assertion framework
	public static void assert(boolean b, String loc)
	Assert.assert\(… , “MyClass.myMethod”\);

	Dynamic Analysis�L10: Defensive Programming
	Assertions in Subclasses
	Responding to Failure
	Fix: complicated, more bugs, if you know the cause (you could have avoided it anyway?
	Execute special actions: depends on the system (hard to determine set of actions
	Abort execution: depends on the program; compiler vs. word processor

	Dynamic Analysis�L11: Testing
	Testing Considerations
	Properties you want to test (problem domain, program knowledge)
	Modules you want to test (critical, complex, most likely to malfunction)
	How to generate test cases
	How to check results
	When you know you are done

	Dynamic Analysis�L11: Regression Tests
	Tests suites that can be re-executed
	Test-first programming: construction of regression tests before application code is written (part of extreme programming)

	Dynamic Analysis�L11: Criteria
	S(t, P(t)) = false; t is a failing test case
	C: Suite, Program, Spec (boolean
	C: Suite, Spec (boolean is specification-based criterion; black box
	C: Suite, Program (boolean is a program-based criterion; glass box

	Dynamic Analysis�L11: Subdomains
	Subdomains: input space divisions
	Determine if test suites are good enough
	Drive testing in to regions where there are most likely bugs

	Revealing subdomain

	Dynamic Analysis�L11: Subdomain Criteria
	Statement Coverage: every statement must be executed at least once
	Decision Coverage: every edge in the control flow graph must be executed
	Condition Coverage: boolean expressions to be evaluated to both true & false; MCDC
	Boundary testing: boundary cases for each conditional
	Specification based criteria: only in terms of subdomains
	Empty set, non-empty & contains element, non-empty & not contains element

	Dynamic Analysis�L11: Feasibility & Practicalities
	Criterion is feasible if it is possible to satisfy it.
	Use specification based criteria to guide development of test suite.
	Program based criteria to evaluate it. (Measure code coverage).

	Design Patterns�L12, L13, L14, Chapter 15
	So far:
	Encapsulation (data hiding)
	Subclassing (inheritance)
	Iteration
	Exceptions

	Don’t use design patterns prematurely
	Complex, decrease understandability

	Design Patterns�L12: Creational Patterns
	Factories
	Factory method: method that manufactures an object of a particular type
	Factory object: object that encapsulates factory methods
	Prototype: object can clone() itself, object is passed in to a method (instead of a factory object)

	Design Patterns�L12: Creational Patterns
	Sharing
	Singleton: only one object of a class exists
	Interning: reuses object instead of creating new ones; correct for immutable objects only
	Flyweight: (generalization of interning), can be used if most of the object is immutable
	Intrinsic vs. extrinsic states
	Only used if space is a critical bottleneck

	Design Patterns�L13: Behavioral Patterns
	Multi-way Communication
	Observer: maintain a list of observers (that follow a particular interface) to be notified when state changes; needs add and remove observer methods
	Blackboard: (generalizes Observer pattern); multiple data sources and multiple viewers; asynchronous
	Repository of messages which is readable and writable by all processes
	Interoperability; well understood message format

	Mediator: (intermediate between Observer and Blackboard); decouples information, but not control, synchronous

	Design Patterns�L13: Traversing Composites
	Support many different operations
	Perform operations on subparts of a composite
	
	Interpreter: groups together operations for a particular type of object
	Procedural: groups together all code that implements a particular operation
	Visitor: depth-first traversal over a hierarchical structure; Nodes accept Visitors; Visitors visit Nodes

	Design Patterns�L14: Structural Patterns
	Wrappers
	PatternFunctionalityInterface
	Adaptor SameDifferent
	(interoperability)
	DecoratorDifferentSame
	(extends)
	ProxySameSame
	(controls or limits)

	Design Patterns�L14: Structural Patterns
	Implementation of Wrappers
	Subclassing
	Delegation: stores an object in a field; preferred implementation for wrappers

	Composite
	Allows client to manipulate a unit or collection of units in the same way

	Subtyping�L15, Ch 7
	MDDs
	Substitution principle
	Signatures
	Methods
	requires less/contravariance
	guarantees more/covariance

	Properties

	Java Subclasses vs. subtypes
	Interface
	Guarantee behavior w/o sharing code
	Multiple inheritance

	Case Study: Java Collections API
	Type Hierarchy
	Interfaces: Collection, Set, SortedSet, List
	Skeletal implementations: AbstractCollection, AbstractSet, AbstractList, AbstractSequentialList
	Concrete implementations: TreeSet, HashSet, ArrayList, LinkedList

	Parallel structure
	Interfaces vs. abstract classes

	Case Study: Java Collections API�L16, Ch 13, Ch 14
	Optional Methods: throws UnsupportedOperationException
	Polymorphism
	Skeletal implementations \(‘template methods’ an
	Capacity, allocation, garbage collection
	Copies, Conversions, Wrappers
	Sorted Collections: Comparable vs. Comparator
	Views

	Case Study: JUnit�L17
	MDD: fully connected
	Design Patterns
	Template Method
	Command
	Composite
	Observer

	TestSuite using Java Reflection

	Case Study: Tagger�L18
	Design Aspects
	Actions
	Cross references
	Property maps
	Autonumbering
	Style sheet view
	Type-safe enums

	Quality needs
	Pattern density
	

	Conceptual Object Models�L19, Ch 11-12
	Atom:
	Indivisible
	Immutable
	Uninterpreted

	Set: collection of atoms
	Domains: sets without supersets

	Relation: relates atoms
	Transpose: ~relation
	Transitive closure: +relation
	Reflexive closure: *relation
	

	Conceptual Object Models
	Ternary relations
	Indexed relation
	Examples
	Java Types: Object, Var, Type
	Meta Model: graphical object modeling notation
	Numbering: Tagger

	Design Strategy�L20
	Development Process
	Program analysis (OMs and operations)
	Design (code OM, MDD, module specs)
	Implementation

	Testing
	Regression tests
	Runtime assertions
	Rep Invariants

	Design Strategy�Design Properties
	Extensibility
	OM sufficiency
	Locality and decoupling

	Reliability
	Careful modeling
	Review, analysis, testing

	Efficiency
	OM
	Avoid bias
	Optimization
	Choice of Reps

	Design Strategy� OM Transformations
	Introducing a generalization (subsets)
	Inserting a collection
	Reversing a relation
	Moving a relation
	Relation to table
	Adding redundant state
	Factoring out mutable relations
	Interpolating an interface
	Eliminating dynamic sets

