
MIT Sloan School of Management

Working Paper 4424-03
July 2003

SweetDeal: Representing Agent Contracts With Exceptions
using XML Rules, Ontologies, and Process Descriptions

Benjamin N. Grosof and Terrence C. Poon

© 2003 by Benjamin N. Grosof and Terrence C. Poon. All rights reserved.
Short sections of text, not to exceed two paragraphs, may be quoted without

explicit permission, provided that full credit including © notice is given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract=442040

 - - 1

SweetDeal: Representing Agent Contracts

with Exceptions using XML Rules, Ontologies,

and Process Descriptions

Working Paper submitted to journal, Version of July 12, 2003; extended and

revised from Proc. WWW-2003 (which was in turn revised from Proc. ISWC Rules

Workshop June 2002)

Benjamin N. Grosof

MIT Sloan School of Management

50 Memorial Drive, Cambridge, MA 02142, USA; +01 617 253 8694

bgrosof@mit.edu ; http://ebusiness.mit.edu/bgrosof

Terrence C. Poon*

Oracle Corporation

500 Oracle Parkway, Redwood Shores, CA 94065, USA; +01 650 506 7000

tpoon@alum.mit.edu; * work done while at MIT

 2

Abstract:

SweetDeal is a rule-based approach to representation of business contracts that enables

software agents to create, evaluate, negotiate, and execute contracts with substantial

automation and modularity. It builds upon the situated courteous logic programs knowl-

edge representation in RuleML, the emerging standard for Semantic Web XML rules.

Here, we newly extend the SweetDeal approach by also incorporating process knowledge

descriptions whose ontologies are represented in DAML+OIL (the close predecessor of

W3C’s OWL, the emerging standard for Semantic Web ontologies), thereby enabling

more complex contracts with behavioral provisions, especially for handling exception

conditions (e.g., late delivery or non-payment) that might arise during the execution of

the contract. This provides a foundation for representing and automating deals about ser-

vices – in particular, about Web Services, so as to help search, select, and compose them.

We give a detailed application scenario of late delivery in manufacturing supply chain

management (SCM). In doing so, we draw upon our new formalization of process ontol-

ogy knowledge from the MIT Process Handbook, a large, previously-existing repository

used by practical industrial process designers. Our system is the first to combine emerg-

ing Semantic Web standards for knowledge representation of rules (RuleML) with on-

tologies (DAML+OIL/OWL) with each other, and moreover for a practical e-business

application domain, and further to do so with process knowledge. This also newly

fleshes out the evolving concept of Semantic Web Services. A prototype (soon public) is

running.

 - - 3

Keywords:

Electronic contracts, electronic commerce, XML, Semantic Web, Web Services, Seman-

tic Web Services, knowledge representation, intelligent software agents, rules, logic pro-

grams, ontologies, business process automation, process descriptions, process knowledge,

RuleML, RDF, Description Logic, DAML+OIL, OWL, knowledge-based, declarative.

1. INTRODUCTION

A key challenge in e-commerce is to specify the terms of the deal between buyers and

sellers, e.g., pricing and description of goods/services. In previous work [1] [2], we have

developed an approach that automates (parts or all of) such business contracts by repre-

senting and communicating them as modular sets of declarative logic-program rules.

This approach enables software agents to create, evaluate, negotiate, and execute con-

tracts with substantial automation and modularity. It enables a high degree of reuse of

the contract description for multiple purposes in the overall process of contracting: dis-

covery, negotiation, evaluation, execution, and monitoring. That approach, now called

SweetDeal, builds upon our situated courteous logic programs (SCLP) knowledge repre-

sentation in RuleML [3], the emerging standard for Semantic Web XML rules that we

 4

(first author) co-lead. SweetDeal also builds upon our SweetRules prototype system for

rules inferencing and inter-operability in SCLP RuleML [4].1

In this paper, we newly extend the SweetDeal approach by also incorporating process

knowledge descriptions whose ontologies are represented in DAML+OIL [5]. OWL

[30], the emerging Semantic Web standard for ontologies from the World Wide Web

Consortium (W3C), is based very closely on DAML+OIL; their fundamental knowledge

representation is Description Logic (DL), an expressive fragment of first-order logic, and

both encode this syntactically in Resource Description Framework (RDF) [33]. RDF is a

somewhat cleaner, simpler, and more expressive language for labeled directed graphs

than basic XML, and is itself in turn easily encoded in XML. We chose DAML+OIL

because it was more stable during the period we performed this work; indeed, when we

began this work, OWL did not yet exist.

Our extension of the SweetDeal approach to incorporate such process descriptions en-

ables more complex contracts with behavioral provisions, especially for handling excep-

tion conditions that might arise during the execution of the contract. For example, a con-

tract can first identify possible exceptions like late delivery or non-payment. Next, it can

specify handlers to find or fix these exceptions, such as contingency payments, escrow

services, prerequisite-violation detectors, and notifications.

1 SweetDeal is fairly unique in its approach and capabilities; for related work on it, see [1]

 - - 5

Terminology: An exception is something that does not go as is normal or expected/usual.

One important category of exception is: violation of a (contract) commitment. An ex-

ception handler is a business (sub-)process which (here) is specified as part of contract.

Most of the volume of many existing contracts and business processes is devoted to ex-

ception handling. A number of idioms and proverbs in the English language refer to this

necessity, e.g.: “Murphy’s Law”, “Stuff Happens”, and even “The course of true love

never did run smooth.”

Exceptions and exception handlers are an important kind of relatively complex behavior

(i.e., behavioral provisions about business processes) that must be represented in

contracting. They are particularly vital in contracts about services.

Our rule-based representation enables software agents in an electronic marketplace to

create, evaluate, negotiate, and execute such complex contracts with substantial automa-

tion, and to reuse the same (declarative) knowledge for multiple purposes. In particular,

our approach provides a foundation for representing and automating deals about ser-

vices – including about electronic services, e.g., Web Services – so as to help search, se-

lect, and compose them. It thereby points the way to how and why to combine Semantic

Web techniques [6] with Web Services techniques [7] to create Semantic Web Services

(SWS) [29]. SWS is a topic that the DAML-Services effort [8], the Web Service Model-

[2].

 6

ling Framework (WSMF) effort [28], and the recently formed Semantic Web Services

Initiative (SWSI) [37]2 have also been addressing (although not yet much in terms of de-

scribing contractual deal aspects).

Our SweetDeal system is also the first to combine emerging Semantic Web standards for

knowledge representation of rules (RuleML) with ontologies (DAML+OIL/OWL)

knowledge for a practical e-business application domain, and further to do so with proc-

ess knowledge. The process knowledge ontology (e.g., about exceptions and handlers) is

drawn from the MIT Process Handbook [9], a previously-existing repository unique in its

large content and frequent use by industry business process designers (as well as re-

searchers). This is the first time that the MIT Process Handbook has been automated us-

ing XML, or DL logical knowledge representation, or LP logical knowledge representa-

tion. Our new formalization of the PH knowledge enables practical deep inferencing

with that knowledge using Semantic Web tools. Previously PH content was only rela-

tively shallowly automated for inferencing.

This paper is drawn from a larger effort on SweetDeal whose most recent portion (second

author’s masters thesis) defined and implemented a software market agent that creates

contract proposals in a semi-automated manner (i.e., in support of a human user) by com-

bining reusable modular contract provisions, called contract fragments, from a queryable

contract repository with process knowledge from a queryable process repository. This

2 We (first author) are an active participant in the SWSI effort.

 - - 7

addresses the negotiation process in an overall interaction architecture for an agent mar-

ketplace with such rule-based contracts. A prototype of the SweetDeal system is running.

We intend to make the prototype publicly available in the near future.

2. OVERVIEW OF THE REST OF THE PAPER

In section 3, we review our overall SweetDeal approach and its advantages, along with

the rule-based aspects that SweetDeal builds upon: SweetRules, RuleML, and Situated

Courteous Logic Programs. In section 4, we review the MIT Process Handbook (PH) [9]

[17], and Klein et al’s extension of it to treat exception conditions in contracts [18]. In

section 5, we newly show how to represent the Process Handbook’s process ontology (in-

cluding about exceptions) in DAML+OIL, giving some examples. In section 6, we de-

scribe our development of an additional ontology specifically about contracts, again giv-

ing examples in DAML+OIL. This contract ontology extends and complements the PH

process ontology. In section 7, we newly give an approach to using DAML+OIL ontol-

ogy as the predicates etc. of RuleML rules. In section 8, we newly show how to use the

DAML+OIL process ontology, including about contracts and exceptions, as the predi-

cates etc. of RuleML rules, where a ruleset represents part or all of a (draft or final) con-

tract with exceptions and exception handlers. We illustrate by giving a long-ish example

of such a contract ruleset whose rule-based contingency provisions include detecting and

penalizing late delivery exceptions, thus providing means to deter or adjudicate a late de-

livery. In section 9, we give conclusions. In section 10, we discuss directions for current

and future work.

 8

3. SWEETDEAL, RULEML, and SWEETRULES: MORE BACKGROUND

3.1. Summary of Overall SweetDeal Approach

In the overall SweetDeal approach to e-contracting:

• Contracts are represented using interoperable rules in XML. Declarative logic pro-

grams (LP) are the fundamental knowledge representation (KR) in which these rules

are expressed. This KR actually spawned RuleML, via its predecessor BRML in

IBM CommonRules. Underlying the choice of this KR is a requirements analysis for

rule KR and syntax.

• Contracts may be: partial or complete, proposed or final.

• Rules represent part or all of an overall contract. Named importable rule modules

represent portions of a contract, then are assembled by merging into a contract rule-

base (that represents part or all of the overall contract).

• Modification of a contract rulebase can be performed modularly during negotiation or

completion, e.g.: to add new contract provisions in a counterproposal; or to add price,

quantity, and buyer after an auction is completed. This modularity of modification is

enabled by using prioritized conflict handling in the rules representation. The Cour-

teous expressive extension of LP, which is tractably compileable into Ordinary LP

(i.e., LP with negation as failure), is employed to express such prioritized conflict

handling.

 - - 9

• Procedural attachments in the rules are used to perform external actions or queries, as

well as built-ins such as arithmetic operations or comparisons. The Situated expres-

sive extension of LP is employed to express such procedural attachments; it provides

a declarative abstraction of them. Thus, for example, a contract rulebase when exe-

cuted may invoke surrounding external business processes.

• Thus, overall, the approach uses the Situated Courteous LP (SCLP) KR in RuleML.

• In addition, beyond the contract rulebase which is shared between contracting par-

ties/agents, each agent also needs typically to do its own “solo” decision making /

support. “Solo” here means using some information which is not shared with the

other parties to the contract. Part or all of this solo decision making/support might be

performed by an agent in a rule-based way, using solo rules in combination with the

contract’s rules. The SweetDeal work to date, however, focuses primarily on the

shared contract rulebase and its uses, rather than upon the solo aspect.

• Previous work on the SweetDeal approach includes [1] which first gave the basic

general approach, including the Courteous LP rules KR encoded in XML and imple-

mented in the IBM CommonRules rules toolkit. Previous SweetDeal work also in-

cludes [2] which gave an approach to auctions negotiation and configuration, imple-

mented in the ContractBot system which extended U. Michigan’s AuctionBot auction

server, a leading university (electronic) auction server. Previous SweetDeal proto-

types with application pilots also included the EECOMS system (built in 1998-2000)

 10

for manufacturing supply chain collaboration, which performed negotiation [1].

EECOMS was a $ 29 Million (US) NIST ATP3 project by the CIIMPLEX consortium

including IBM (lead), Boeing, TRW, Baan, Vitria, and several universities and

smaller software companies.

Next, we summarize the advantages of the SweetDeal approach. What are the compet-

ing approaches to representing contracts? One approach is no automation beyond text

document processing – this is the way most legal contracts are handled today. Another

approach is to represent contracts in software using general code and data management

techniques. A third approach is to use an XML interchange language for e-commerce

transactions and messaging; the leading (and representative) example of this approach is

ebXML [20]. Relative to these three approaches, there are several advantages of Sweet-

Deal’s rule-based approach, based on Situated Courteous LP RuleML, to e-contracting.

SweetDeal is fairly unique in being rule-based, and quite unique in using SCLP and in us-

ing XML. There is thus no closely related work (in the sense of other competing ap-

proaches) to it. The advantages of theSweetDeal approach include:

3 NIST = National Institute of Standards and Technology, a part of the US government’s

Dept. of Commerce. ATP = Advanced Technology Program, the aim of which is to

speed research into commercialization within 3-5 years rather than the typical 10+

years.

 - - 11

• Rules (vs. general code) provide a relatively high level of conceptual abstraction.

The makes it easier for non-programmers to understand or to specify contract con-

tent.

• Rules are especially good for specifying contingent provisions of contracts

• One may automatically reason about the contract/proposal by performing inferencing

in the rule KR, for which computational tractability guarantees are available [1].

E.g., to examine hypothetical (“what-if”) scenarios, to perform testing, or to evaluate

a proposed contract’s value (in utility or money). This capability for reasoning is en-

abled by the declarativeness and expressiveness, together with the (average or worst-

case) tractability, of the rule KR. (More about the expressiveness and complexity of

the SCLP KR is discussed in the next sub-section.)

• One may communicate automatically with deep shared semantics, cf. the “Semantic

Web” vision: via RuleML which is interoperable with the same sanctioned infer-

ences, between heterogeneous commercially important kinds of rule/database sys-

tems or rule-based applications (“agents”) that use such systems.

• One may actually automatically execute the contract provisions by performing rule

inferencing, including to invoke e-business actions via Situated (LP’s) procedural at-

tachments.

• One may modify modularly, and thus relatively easily, the contract provisions: using

prioritized defaults and rule modules via Courteous (LP’s capability for) overriding.

 12

• Overall, there is a relatively high degree of automated reusability: arising from the

KR’s declarativeness, modularity, and interoperability.

Examples of contract provisions well-represented by rules in automated deal making in-

clude:

• Product descriptions, e.g., product catalogs in which properties are specified, often

conditionally upon other properties. E.g., all women’s sweaters are available in size

extra-small.

• Pricing, e.g., dependent upon delivery-date, quantity, group memberships, or um-

brella contract provisions.

• Terms & conditions (in the sense that phrase is used in contracts): e.g., refund or

cancellation timelines or deposits, lateness or low-quality penalties, ordering lead

time, shipping, credit-worthiness, business-partner qualification, service provisions.

• Trust: e.g., credit-worthiness, authorization, or required signatures.

These provisions appear not only in descriptions of seller offerings of specific products

and services, but also often in buyer requirements (e.g., RFQ, RFP4) or seller capabili-

ties (e.g., for sourcing or qualification during procurement/SCM).

4 RFQ = Request For Quotation, i.e., a price quote with description. RFP = Request For

Proposal.

 - - 13

3.2. SweetRules, RuleML, and Situated Courteous Logic Programs

SweetDeal is part of our larger effort SWEET, acronym for “Semantic WEb Enabling

Technology”, and is prototyped on top of SweetRules. Our earlier SweetRules prototype

was the first to implement SCLP RuleML inferencing and also was the first to implement

translation of (SCLP) RuleML to and from multiple heterogeneous rule systems.

SweetRules enables bi-directional translation from SCLP RuleML to: XSB, a Prolog rule

system [10]; Smodels, a forward logic-program rule engine [11]; the IBM CommonRules

rule engine, a forward SCLP system [12]; and Common Logic (formerly known as

Knowledge Interchange Format (KIF)), an emerging ISO industry standard for knowl-

edge interchange in classical logic [13].5 The latest component of SweetRules is Sweet-

Jess [14] which aims to enable bi-directional translation to Jess, a popular open-source

forward production-rule system in Java [15]. The SweetJess prototype is publicly avail-

able free for Web download.

The SCLP case of RuleML is expressively powerful. The courteous extension of logic

programs enables prioritized conflict handling and thereby facilitates modularity in speci-

fication, modification, merging, and updating. The situated extension of logic programs

enables procedural attachments for “sensing” (testing rule antecedents) and “effecting”

(performing actions triggered by conclusions). Merging and modification is important

5 SweetRules is built in Java. It uses XSLT [22] and components of the IBM CommonRules library.

 14

specifically for automated (“agent”) contracts, because contracts are often assembled

from reusable provisions, from multiple organizational sources, and then tweaked. Up-

dating is important because a contract is often treated as a template to be filled in. For

example, before an on-line auction is held a contract template is provided for the

good/service being auctioned. Then when the auction closes, the template is filled in

with the winning price and the winner’s name, address, and payment method. Indeed, in

[2] we show how to use SCLP to represent contracts in this dynamically updated manner,

for a real auction server – U. Michigan’s AuctionBot – and the semi-realistic domain of a

Trading Agent Competition about travel packages. More generally, the design of SCLP

as a knowledge representation (KR) grew out of a detailed requirements analysis [1] for

rules in automated contracts and business policies. The RuleML standards effort is being

pursued in informal cooperation with: (1) the W3C’s Semantic Web Activity, which has

now included rules in its charter along with ontologies; (2) the DARPA Agent Markup

Language Program (DAML) [16]; (3) the Joint US/EU ad hoc Agent Markup Language

Committee [31] which designed DAML+OIL; and (4) the Oasis e-business standards

body [32].

The SCLP KR has fairly attractive worst-case computational complexity [1] [14] – it is

tractable under the Datalog restriction (or, a bit more generally, when the size of the Her-

brand universe is polynomial). Let n be the size of an input (SC)LP (i.e., rulebase). Let

us assume that the number of logical variables per rule is bounded by a constant v. In

practice, this is a quite reasonable assumption, with v often being roughly 5 or 10. Under

the Datalog restriction that logical functions (of non-zero arity) are prohibited, the worst-

 - - 15

case computational complexity of computing the complete set of entailed conclusions

(i.e., ground facts) of a Horn LP is O(n^{v+1}) – which is polynomial, i.e., tractable.

The worst-case computational complexity of answering a query is no better. The heart of

SQL databases is Datalog Horn LP, with this same complexity. Adding the expressive-

ness of negation-as-failure (NAF) and the Courteous prioritized handling feature pre-

serves tractability. The effect on the worst-case bound of adding NAF (under the usual

Well Founded Semantics for it) is equivalent to replacing (v+1) above by 2(v+1). Then

adding the Courteous extension is equivalent to replacing 2(v+1) by 2(v+3). (We also as-

sume that the cost of a call to an attached procedure is constant time, again a quite rea-

sonable assumption in practice.) The complexity, and scaleability, of Datalog SCLP KR

is thus not much worse than that of SQL databases which in practice scale up very well.

Our examples of SCLP in this paper (in section 8) abide by the Datalog restriction, for

example. Going beyond the Datalog restriction, the complexity of SCLP KR is only a bit

worse than that of Prolog’s – which in practice scale up quite well.

(SC)LP (i.e., RuleML) has one main expressive limitation, as compared to First Order

Logic (FOL) – or to Description Logic: in LP one cannot conclude a disjunction (nor an

existential). However, FOL has much higher worst-case computational complexity than

LP. Entailment (even answering a single query) in general FOL is only semi-decidable.

Even in the propositional case (a stronger restriction than Datalog), FOL is intractable:

entailment (even answering a single query) is co-NP-hard. Description Logic (i.e.,

DAML+OIL/OWL) obeys the Datalog restriction and has worst-case computational

 16

complexity that is somewhat better than FOL but much worse than (Datalog) LP: it is

decidable but intractable.

As compared to SCLP, FOL -- and thus also its subset DL -- has two important expres-

sive limitations. First, FOL lack nonmonotonicity – and thus cannot express default rea-

soning. Second, FOL lacks procedural attachments – it cannot express calling external

procedures to perform side-effectful actions or to perform general queries/tests. DL has

further expressive limitations (it is a subset of FOL); intuitively, one important such limi-

tation can be described by saying that in DL one can only reason with one logical vari-

able at a time. Thus DL cannot express chaining of two different properties, for example.

4. MIT PROCESS HANDBOOK (PH)

In this section, we review the MIT Process Handbook (PH) [9] [17], and Klein et al’s ex-

tension of it to treat exception conditions in contracts [18]. Our example scenario’s proc-

ess ontologies are drawn partly from the PH.6

The MIT Process Handbook is a previously-existing knowledge repository of business

process descriptions, created in about 1995 and built up actively since then. It is primar-

ily textual and oriented to human-readability although with some useful automation for

knowledge management using taxonomic structure. It includes several thousand classes

6 The version of the PH we used was that of approximately March 2002.

 - - 17

of business processes etc. Among automated repositories of business process knowledge,

it is unique (to our knowledge) in having a large amount of content and having been fre-

quently used practically by industry business process designers from many different

companies. It also has been used for a number of research projects, as well as for teach-

ing. The PH uses a fairly conventional Object-Oriented (OO) style of taxonomic hierar-

chy, as a tool to organize part of its content for retrieval and browsing. Previous to our

work in SweetDeal, however, the PH’s content had never been automated in XML (i.e.,

not Webized), nor had that content ever been represented in Description Logic KR, Logic

Programs KR, or using Semantic Web techniques. The PH’s content was previously only

relatively shallowly automated for inferencing. A part of the PH’s kind of knowledge

had, however, been previously encoded in Process Interchange Format (PIF), which maps

straightforwardly to Knowledge Interchange Format (in classical logic) [13]; PIF export

is a capability of the PH’s software.

The Handbook describes and classifies major business processes using the organizational

concepts of decomposition, dependencies, and specialization. The Handbook models each

process as a collection of activities that can be decomposed into sub-activities, which

may themselves be processes. In turn, coordination is modeled as the management of de-

pendencies that represent flows of control, data, or material between activities. Each de-

pendency is managed by a coordination mechanism, which is the process that controls its

resource flow.

 18

Finally, processes (and many other important entities in the Handbook) are arranged into

a generalization-specialization taxonomy, with generic processes at the top and increas-

ingly specialized processes underneath. Each specialization automatically inherits the

properties of its parents, except where it explicitly adds or changes a property. This is

similar to taxonomic class hierarchies having default inheritance7, such as in many Ob-

ject-Oriented (OO) programming languages, knowledge representations (KR’s) and in-

formation modeling systems. Note that the taxonomy is not a tree, as an entity may have

multiple parents. In general, there thus is multiple inheritance. For example,

BuyAsALargeBusiness is a subclass of both Buy and ManageEntity. Figure 1 shows a

part of the taxonomy with some of the specializations for the “Sell” process. Note the

first generation of children of “Sell” are questions; these are classes used as intermediate

categories, analogous to virtual classes (or pure interfaces) in OO programming lan-

guages. Since there is multiple inheritance, it is easy to provide several such “cross-

cutting” dimensions of categories along which to organize the hierarchy.

Exception Conditions

The terms of any contract establish a set of commitments between the parties involved for

the execution of that contract. When a contract is executed, these commitments are some-

times violated. Often contracts, or the laws or automation upon which they rely, specify

how such violation situations should be handled.

7 a.k.a. “inheritance with exceptions”, a.k.a. “non-monotonic inheritance”

 - - 19

Building upon the Process Handbook, Klein et al [18] consider these violations to be co-

ordination failures – called “exceptions” – and introduces the concept of exception han-

dlers, which are processes that manage particular exceptions. We in turn build upon

Klein et al’s approach. When an exception occurs during contract execution, an excep-

tion handler associated with that exception may be invoked. Figure 2 shows some (kinds

of) exceptions that are currently in the Handbook, organized into a generalization-

specialization hierarchy.

For example, in a given contract (agreement), company A agrees to pay $50 per unit for

100 units of company B’s product, and B agrees to deliver within 15 days (commit-

ments). However, due to unforeseen circumstances, when the contract is actually per-

formed, B only manages to deliver in 20 days (exception). As a result, B pays $1000 to A

as compensation for the delay (exception handler).

There are four classes of exception handlers in [18]. For an exception that has not oc-

curred yet, one can use:

• Exception anticipation processes, which identify situations where the exception is

likely to occur.

• Exception avoidance processes, which decrease or eliminate the likelihood of the ex-

ception.

For an exception that has already occurred, one can use:

 20

• Exception detection processes, which detect when the exception has actually occurred.

• Exception resolution processes, which resolve the exception once it has occurred.

[18] extends the MIT Process Handbook with an exception taxonomy. Every process may

be associated via hasException links to its potential exceptions (zero or more), which are

the characteristic ways in which its commitments may be violated. hasException should

be understood as “has potential exception”. Similar to the process taxonomy, exceptions

are arranged in a specialization hierarchy, with generic exceptions on top and more spe-

cialized exceptions underneath. In turn, each exception is associated (via an isHandledBy

link) to the processes (exception handlers) that can be used to deal with that exception.

Since handlers are processes, they may have their own characteristic exceptions. Figure 3

shows some exception handlers in the Handbook, organized into a generalization-

specialization hierarchy.

Following the general style of (multiple) inheritance in the MIT Process Handbook, the

exceptions associated with a process are inherited by the specializations of that process.

Similarly, the handlers for an exception are inherited by the specializations of that excep-

tion.

5. REPRESENTING THE PH PROCESS ONTOLOGY IN DAML+OIL

5.1. Approach and Overview

In this section, we newly show how to represent the Process Handbook’s process ontol-

ogy (including about exceptions) in DAML+OIL, giving some examples. Our approach

has two basic aspects. The first is to represent the PH’s ontological knowledge in terms

of the fundamental Description Logic (DL) KR that underlies DAML+OIL (and OWL),

i.e., to define classes, properties, and statements about these classes and properties that

specify subclassof relationships, as well as domain, range, and other property-restriction

information. The second is to encode this syntactically in DAML+OIL’s syntax. The

basic approach to represent this knowledge instead in OWL would be quite similar, it re-

quires just a change in the syntactic encoding, since the KR features we use from DL are

the same in OWL as in DAML+OIL.

The full PH’s ontology is a quite large one, containing thousands of classes and proper-

ties, plus a very extensive body of associated textual descriptions. Our main concern in

this paper is to show how to represent this ontology in DAML+OIL, and how/why to

make use of that ontology for contracts with exception handling (and thus more generally

for Semantic Web Services).

We have developed a PH process ontology in DAML+OIL, which we have given a URI

of http://xmlcontracting.org/pr.daml, where “pr” stands for “process”. We have registered

the xmlcontracting.org domain name and are in the process of setting up the web site. So

 22

far we have represented in DAML+OIL only a few percent of the ontological knowledge

in the full PH that could be represented with our approach. This pr.daml was created

manually. Doing this manual work of representation is somewhat labor-intensive, but in

terms of knowledge/skill requires only a moderate familiarity with the PH, along with ba-

sic familiarity with DAML+OIL. In current work, however, we (first author and addi-

tional collaborators) are developing a method to automatically create the DAML+OIL

representation by automatically exporting ontological knowledge from the PH. In this

section, we give a relatively small subset (which we call pr-subset.daml) of the PH proc-

ess ontology we have so far represented.

5.2. DAML+OIL ontological axioms

We begin with some DAML+OIL headers that declare XML namespaces and that what

follows is a DAML+OIL ontology (encoded, as usual, in RDF):

<?xml version="1.0" ?>

<rdf:RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns ="pr:" >

<daml:Ontology rdf:about="">

 - - 23

 <daml:imports

rdf:resource="http://www.daml.org/2001/03/daml+oil"/>

</daml:Ontology>

Next we define some main concepts in the MIT Process Handbook as top-level classes.

For example:

<daml:Class rdf:ID="Process">

 <rdfs:comment>A process</rdfs:comment>

</daml:Class>

<daml:Class rdf:ID="Exception">

 <rdfs:comment>A violation of an inter-agent

commitment</rdfs:comment>

</daml:Class>

<daml:Class rdf:ID="ExceptionHandler">

 <rdfs:subClassOf rdf:resource="#Process"/>

 <rdfs:comment>A process that helps to manage a particular

exception</rdfs:comment>

</daml:Class>

Then we define the relations between concepts as object properties:

 24

<daml:ObjectProperty rdf:ID="hasException">

 <rdfs:comment>Has a potential exception</rdfs:comment>

 <rdfs:domain rdf:resource="#Process" />

 <rdfs:range rdf:resource="#Exception" />

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="isHandledBy">

 <rdfs:comment>Can potentially be handled, in some way or

aspect, by</rdfs:comment>

 <rdfs:domain rdf:resource="#Exception" />

 <rdfs:range rdf:resource="#ExceptionHandler" />

</daml:ObjectProperty>

The Handbook takes the approach – which we endorse – that it is typically desirable to

treat a process repository as potentially extensible, i.e., open. It is often unrealistic to ex-

pect a repository to have an exhaustive listing of all handlers for a given exception.

Specializations are expressed as subclasses8:

8 In Figure 2 (in Section 3), SystemCommitmentViolation and AgentCommitmentViola-

tion are shown as “Systemic” and “Agent”, respectively.

 - - 25

<daml:Class rdf:ID="SystemCommitmentViolation">

 <rdfs:subClassOf rdf:resource="#Exception"/>

 <rdfs:comment> Violation of a commitment made by the system

operator to create an environment well-suited to the task at

hand. </rdfs:comment>

</daml:Class>

<daml:Class rdf:ID="AgentCommitmentViolation">

 <rdfs:subClassOf rdf:resource="#Exception"/>

 <rdfs:comment> Violation of a commitment that an agents makes

to other agents.

 </rdfs:comment>

</daml:Class>

The Process Handbook expects each specialization to inherit the properties of its parent.

The DAML+OIL semantics provide this automatically since it entails monotonic (strict)

inheritance of such properties.

5.3. ADL concise syntax

The syntax of DAML+OIL, while it is reasonably human-readable, is fairly verbose,

since it is designed to facilitate automated processing as well (in this regard, it is similar

 26

to most XML or RDF syntaxes). For the sake of conciseness and easier human readabil-

ity, as an alternative for exposition, we thus next define a simple ASCII syntax for a sub-

set of DL that is sufficient for our purposes. We call this “ADL” syntax. It is defined as

follows.

";" indicates the end of a (logical) statement. "/* ... */" encloses a comment

(rdfs:comment) that is associated with the immediately preceding statement. Below, we

let C, C1, C2, D, and R stand for classes, and P stand for a property.

 C : ;

means simply that C is a class.

 P :: ;

means simply that P is a property.

 C1 : C2;

means C1 is a class that is a subclass of (class) C2.

 P :: D -~ R;

means P is a property with domain (class) D and range (class) R.

 (exists P . C)

means the DL restriction class (exists P . C). I.e., there exists a value of property P that

is in class C.

 - - 27

 (forall P . C)

means the DL restriction class (forall P . C). I.e., every value of property P is in class C.

 (card-1 . P)

means that DL restriction that P has cardinality 1, i.e., it has exactly one value.

 (mincard-1 . P)

means that DL restriction that P has minimum cardinality 1, i.e., it has at least one value.

5.4. ADL version of ontological axioms

Next, we give the ADL version of pr-subset.daml above:

Process ;

 /* A process */

Exception : ;

 /* A violation of an inter-agent commitment */

ExceptionHandler : Process;

 /* A process that helps to manage a particular exception */

hasException :: Process -~ Exception;

 /* Has a potential exception */

 28

isHandledBy :: Exception -~ ExceptionHandler;

 /* Can potentially be handled, in some way or aspect, by */

SystemCommitmentViolation : Exception;

 /* Violation of a commitment made by the system operator to

 create an environment well-suited to the task at hand. */

AgentCommitmentViolation : Exception;

 /* Violation of a commitment that an agent makes to other

agents. */

In order to give a sense of kind and size of the knowledge in the current pr.daml, using a

moderate amount of space, in Appendix A we give the ADL version of the full pr.daml

ontology, omitting most comments. For the full DAML+OIL version of pr.daml, up-

dated versions of this ontology, and pointer to the xmlcontracting.org site when it is in-

deed up, please see the first author’s website.

6. CONTRACT ONTOLOGY

In this section, we describe our development of an additional process ontology specifi-

cally about contracting concepts and relations, again giving examples in DAML+OIL.

This contract ontology extends and complements the PH process ontology. We give it the

URI http://xmlcontracting.org/sd.daml, where “sd” stands for “SweetDeal”. Like

 - - 29

pr.daml, sd.daml was created manually. In this section, we give a relatively small subset

(which we call sd-subset.daml) of the contract ontology we have so far represented.

Again we begin with some DAML+OIL header statements. These are similar to those at

the beginning of pr.daml (given in the previous section), with one addition: we also im-

port the PH process ontology pr.daml:

<daml:Ontology rdf:about="">

 <daml:imports

rdf:resource="http://www.daml.org/2001/03/daml+oil"/>

 <daml:imports

rdf:resource="http://xmlcontracting.org/pr.daml"/>

</daml:Ontology>

We view a contract as a specification for one or more processes. Accordingly, we define

the Contract class and a specFor relation that associates a contract to its process(es):

<daml:Class rdf:ID="Contract">

 <rdfs:subClassOf>

 <daml:Restriction daml:minCardinality="1">

 <daml:onProperty rdf:resource="#specFor"/>

 </daml:Restriction>

 30

 </rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="specFor">

 <rdfs:domain rdf:resource="#Contract" />

 <rdfs:range rdf:resource="pr:Process" />

</daml:ObjectProperty>

A contract represents the “terms and conditions” that the parties have agreed upon (typi-

cally) before performing the contract. E.g., they have come to agreement during a nego-

tiation before their contract commitments actually come due. We define a separate con-

cept, ContractResult, to represent the state of how the contract was actually carried out.

For example, ContractResult could describe the actual shipping date, the quality of the

received goods, the amount of payment received, etc.

<daml:Class rdf:ID="ContractResult"/>

<daml:ObjectProperty rdf:ID="result">

 <rdfs:domain rdf:resource="#Contract" />

 <rdfs:range rdf:resource="#ContractResult" />

</daml:ObjectProperty>

 - - 31

The process ontology provides the hasException relation to indicate that a process could

have a particular exception. How do we indicate that an exception has occurred during

contract execution? We define the exceptionOccurred relation on ContractResult to de-

note that the exception happened as the contract was being carried out:

<daml:ObjectProperty rdf:ID="exceptionOccurred">

 <daml:domain rdf:resource="pr:ContractResult"/>

 <daml:range rdf:resource="pr:Exception"/>

</daml:ObjectProperty>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="avoidsException">

 <daml:domain rdf:resource="pr:AvoidException"/>

 <daml:range

rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>

</daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="resolvesException">

 <daml:domain rdf:resource="pr:ResolveException"/>

 <daml:range

rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>

 32

</daml:ObjectProperty>

ADL version of contract ontology axioms: Next, we give the ADL version of sd-

subset.daml above:

sd:Contract : (mincard-1 . sd:specFor);

sd:specFor :: sd:Contract -~ pr:Process;

sd:ContractResult : ;

sd:result :: sd:Contract -~ sd:ContractResult;

sd:exceptionOccurred :: sd:ContractResult -~ pr:Exception;

There are a number of other concepts and ontological statements about contracts that we

have developed in our SweetDeal Contract Ontology. In Appendix B we give the ADL

version of the full sd.daml ontology, omitting most comments. For the full DAML+OIL

version of sd.daml, including updated versions of this ontology, please see the first au-

thor’s website.

7. INTEGRATING DAML+OIL ONTOLOGIES INTO RULEML RULES

In this section, we briefly describe the technical representational approach for the integra-

tion of the DAML+OIL ontologies into the RuleML rules, in which the RuleML rules are

specified “on top of” the DAML+OIL ontology. This same approach also applies to

OWL ontologies, if OWL is employed instead of DAML+OIL; no change is required. In

 - - 33

the next section, we give examples of RuleML contract rules that make use of

DAML+OIL process ontologies.

The high-level goal of rules “on top of” ontologies has been an important topic of discus-

sion in the Semantic Web community, including in architecting standards, since at least

1998. (However, before our work here, this had not been operationalized with a specific

technical approach.) Figure 4 shows the current (April 2002) version9 of the W3C’s Se-

mantic Web “stack” of standardization steps, annotated to indicate where RuleML and

DAML+OIL/OWL fit in. RuleML and DAML+OIL/OWL have both been pioneered

largely by/in the DAML program.

The essence of our integration approach is that RuleML rules can reference DAML+OIL

ontologies. Syntactically, the names of predicates appearing in the RuleML rules may be

URI’s that reference (i.e., denote) classes and properties in a DAML+OIL ontology.

Similarly, the names of individuals appearing in RuleML rules may be URI’s for indi-

viduals in DAML+OIL. Semantically, the referenced DAML+OIL ontological knowl-

edge base is viewed as a background theory for the rulebase (more about this below).

A DAML+OIL class is treated in RuleML as a unary predicate. A DAML+OIL property

is treated in RuleML as a binary predicate. Assertions about instances in a class are

treated as rule atoms (e.g., facts) in which the class predicate appears. Assertions about

9 http://www.w3.org/DesignIssues/diagrams/sw-stack-2002.png

 34

property links between class instances are treated as rule atoms in which the property

predicate appears. RuleML permits a predicate (or an individual) to be a URI; we make

heavy use of this capability since the names of DAML+OIL classes (and properties and

individuals) are URI’s. To our knowledge, ours10 is the first published description and

example of such integration of DAML+OIL/OWL into RuleML, and one of the first two

published descriptions and examples of combination of DAML+OIL/OWL with a non-

monotonic rule KR -- the other being [19] which was done independently.11

A natural question arises: how to define formally the semantics of such integration, i.e.,

of the hybrid KR formed by combining LP rules on top of DL ontologies (or, similarly,

by combining Horn FOL rules on top of DL ontologies). To address this question, and

motivated in large part by the work in this paper, a separate line of research has been de-

veloped 12 that addresses this question: Description Logic Programs (DLP) [27].

Description Logic Programs is a KR that captures a large subset of the expressive

10 in earlier, shorter, conference versions of this paper that were published in June 2002

and afterwards

11 We (first author) gave oral presentations of this approach in communal design discus-

sions about DAML and about RuleML since when those discussions began in summer

2000. The overall goal of rules on top of ontologies has, indeed, been a communal goal

in those discussions since then.

12 Since the first, earlier, shorter conference version of this paper was published in June

2002

 - - 35

scription Logic Programs is a KR that captures a large subset of the expressive intersec-

tion of Logic Programs and Description Logic. Figure 5 illustrates the relevant KR ex-

pressive classes and their overlaps, in the form of a Venn Diagram. Description Logic is

(equivalent to) a subset of First Order Logic (FOL). The Logic Programs KR in its full

generality of expressiveness includes two major features that are not expressible in FOL:

negation-as-failure (which is logically nonmonotonic) and procedural attachments. How-

ever, Horn Logic Programs (the Horn subset of LP) is (equivalent to) a subset of First

Order Logic. Description Logic Programs are (contained in) the expressive intersection

of Description Logic and Horn Logic Programs. DLP is thus a subset of FOL.

Defining/studying the expressive intersection of LP and DL is then a key to defining (and

enabling automated inferencing in) a large subset of the expressive union of LP and DL.

Defining this union, however, is difficult for the fully general case of full LP (especially

with nonmonotonicity and/or procedural attachments) combined with full DL; current re-

search is exploring how to increase the expressiveness covered.

What makes it challenging to define the semantics of hybridizing the LP and DL KR’s is

the potential for incompleteness or inconsistency. One may view the hybridizing through

the lens of the rule KR’s semantics and/or through the lens of the ontology KR’s seman-

tics. Knowledge specified in a set of premise rules R1 together with a set of premise DL

axioms O1 may entail knowledge O2 expressible in DL that goes beyond what was en-

tailed by O1 alone, and likewise may entail knowledge R2 expressible in LP that goes

beyond what was entailed by R1 alone. It is possible, in general, for inconsistency to

 36

arise from the combination of R1 with O1, even though each is consistent in itself. Such

inconsistency is

Such O2, R2, and potential inconsistency can all be avoided by suitably expressively re-

stricting the ontologies (or the rules) -- to be in the Description Logic Programs (DLP)

KR (i.e., expressive subset). In particular, DLP can be viewed as an “ontology sublan-

guage” within the full LP KR. If the DL ontological knowledge base is in the DLP subset

of DL, it can thus be merged (completely) into the LP KR – thereby avoiding any prob-

lems of incompleteness or inconsistency from the hybridizing. Elsewhere [27] we give

details about the DLP KR and the associated “DLP-fusion” approach to the semantics of

combining DL knowledge with LP knowledge.

A somewhat similar hybrid KR is addressed in an approach by Antoniou [19], which was

developed independently at the same time as this work. The approach in [19] is, how-

ever, quite limiting for practical purposes since it does not permit predicates defined in

the DL ontology to appear in the heads of the LP rules. As we will see in the next sec-

tion, it is quite natural and desirable to have such “ontological” predicates appear in rule

heads. [27] gives more discussion about how the approach in [19] compares to the DLP

approach.

8. RULEML CONTRACTS WITH EXCEPTIONS USING THE PROCESS AND

CONTRACT ONTOLOGIES

In this section, we newly show how to use the DAML+OIL process ontology, including

about contracts and exceptions, as the predicates etc. of RuleML rules, where a ruleset

 - - 37

represents part or all of a (draft or final) contract that has exceptions and exception han-

dlers. RuleML rules thus refer to DAML+OIL process ontologies, partly drawn from PH

content.

We illustrate by giving a long-ish example of such a contract ruleset whose rule-based

contingency provisions include detecting and penalizing late delivery exceptions, thus

providing means to deter or adjudicate a late delivery.

8.1. Outline of the Example/Scenario: Manufacturing Supply Chain Negotiation

Our example scenario refines a generic negotiation scenario that uses the SweetDeal ap-

proach. In the generic negotiation scenario, the contract ruleset is created and then

modified during the course of negotiation between a buyer and seller. Contract rulebases

are exchanged between the buyer and seller, as part of XML messages. The buyer has

some business logic, a subset of which is specified and implemented in terms of rules,

and some subset of those rules are exposed to be exchanged, and thus shared, with the

seller. Likewise, the seller has business logic, a subset of which are rules, and a subset of

those are exposed to be exchanged. The buyer and the seller may employ different rule

systems to specify and implement their rule-based representation and inferencing.

In our particular example scenario, the above generic scenario is refined as follows. The

buyer is a manufacturer and the seller is a supplier of parts. The buyer and seller applica-

tions/agents are each using a commercial rule system, but heterogeneous ones drawn that

belong to different major families of rule systems. The buyer’s is a “production rule”

 38

system (i.e., descended from the OPS5 research system) that does forward-direction in-

ferencing, e.g., Jess [15], while the seller’s is a Prolog system that does backward-

direction inferencing. The buyer and the seller exchange negotiation messages. The

early part of this sequence of exchanged messages includes a request for proposal. The

last part of the sequence of exchanged messages includes finalization and acknowledge-

ment of the agreement reached, including a purchase order. The middle part of the se-

quence of exchanged messages includes proposals and counter-proposals; this part is

what we will focus on detailing below. Figures 6 and 7 illustrate.

To begin with:

• Buyer goes shopping (a.k.a. procurement).

The next three steps are more interesting.

• Seller sends a proposed contract.

• Buyer adds an exception handling provision for late delivery penalty, and sends the

modified contract as a counter-proposal.

• Seller adds a replacement provision for late delivery risk premium (instead of a pen-

alty), and sends the again-modified contract as a final offer. This provision illustrates

that exception handling can itself be the subject of negotiation.

Later in this section, we will describe in detail the corresponding contract ruleset for each

of these last three steps. In the examples below, DAML+OIL classes and properties,

 - - 39

taken from the PH process ontology and contract (process) ontology, are used as predi-

cate symbols.

One of the interesting capabilities enabled by our approach is that one can automatically

do “what-if” (i.e.,hypothetical-case) inferencing with the rules. Such what-if reasoning is

a well-known desirable capability in contracting, and particularly in supply chain man-

agement. E.g., in the buyer’s version of the contract:

• add facts about a hypothetical delivery date in the contract result

• ⇒ infer: the delivery is late,

• ⇒ infer: … which is an exception

• ⇒ infer: a late delivery penalty is owed.

One can also execute aspects of the contract via inferencing, e.g.:

• add facts of the actual contract result

• ⇒ infer: determine net payment owed.

8.2. Notation and Syntax:

RuleML, like most XML, is fairly verbose. For ease of human-readability, as well as

save paper space, we give our RuleML examples in a Prolog-like syntax that maps

straightforwardly to RuleML. More precisely, this syntax is IBM CommonRules V3.0

 40

“SCLPfile” format, extended to support URI’s as logical predicate (and function) sym-

bols and to support names for rule subsets (i.e., “modules”). Development is currently

underway by the RuleML Initiative and the Joint Committee of a canonical RuleML hu-

man-oriented syntax – a concise ASCII string syntax to facilitate human reading and au-

thoring – based in part on our SCLPfile syntax used here. Next, we detail that syntax.

“<-“ stands for implication, i.e., “if”. “;” ends a rule statement. The prefix “?” indicates a

logical variable. “/*…*/” encloses a comment. “<…>” encloses a rule label (name) or

rule module label. “{…}” encloses a rules module. Rule labels identify rules for editing

and prioritized conflict handling, for example to facilitate the modular modification of

contract provisions. Module labels are used to manage the merging of multiple rule mod-

ules to form a contract.

For example, the following fact in SCLPfile format

price(co123,50);

, which states that the price per unit in contract co123 is $50, has the following form in

(SCLP) RuleML V0.8 XML syntax:

<fact><_head><_opr><rel>price</rel><_opr>

<tup><ind>co123</ind><ind>50</ind></tup> </_head></fact>

The following rule in SCLPfile format

payment(?R,base,?Payment) <-

 - - 41

 sd:result(co123,?R) AND

 price(co123,?P) AND quantity(co123,?Q) AND

 Multiply(?P,?Q,?Payment) ;

, which says that the base payment owed in the contract result is the price per unit multiplied by

the quantity of units, has the following form in RuleML V0.8 XML syntax:

•<imp>

• <_head> <atom> <_opr>

• <rel> payment </rel> <_opr>

• <tup> <var> R </var> <ind> base </ind> <var> Amount </var>

</tup>

• </atom> </_head>

• <_body> <andb> <atom> <_opr>

• <rel href= “http//xmlcontracting.org/sd.daml#result”/>

• </_opr>

• <tup> <ind> co123 </ind> <var> R </var>

• </tup> </atom>

 …

 42

 </andb> </_body> </imp>

We omitted showing explicitly, above, the body atoms past the first one; hence, the use of

“…”. Note that the predicate “http://xmlcontracting.org/sd.daml#result” is a URI that

references a property defined in our DAML+OIL contract ontology. In RuleML’s XML

syntax, we see the reference being made by use of the “rel” element’s “href” attribute; we

used a bigger font to flag that above:

Namespace Qualification: Since repeatedly spelling out

“http://xmlcontracting.org/sd.daml#” is undesirably verbose, in our examples below, we

instead use the prefix “sd:” to stand for that contract ontology name. In the XML syntac-

tic mechanics, this just requires declaring a namespace in the RuleML document’s header

(similar to what we saw in the DAML+OIL header shown for the PH process ontology in

section 5). Likewise, we use the prefix “pr:” to stand for

“http://xmlcontracting.org/sd.daml#”

8.3. Example 1: Supplier Proposal

Let’s begin with an example draft contract co123 where Acme is purchasing 100 units of

plastic product #425 from Plastics Etc. at $50 per unit. Acme requires Plastics Etc. to ship

 - - 43

the product no later than three days after the order is placed 13. We specify this draft con-

tract as the following rulebase (i.e., set of rules):

sd:Contract(co123);

sd:specFor(co123,co123_process);

sd:BuyWithBilateralNegotiation(co123_process);

sd:result(co123,co123_res);

buyer(co123,acme);

seller(co123,plastics_etc);

product(co123,plastic425);

shippingDate(co123,3); /*i.e. 3 days after the order is placed*/

price(co123,50);

quantity(co123,100);

/* base payment = price * quantity */

13 Here we use a relative date (e.g. 3) rather than an absolute date (e.g. 2002-04-02), for

sake of simplicity and because the rule engine that we are using in our prototype (IBM

CommonRules) does not (yet) provide convenient date arithmetic functions.

 44

payment(?R,base,?Payment) <-

 sd:result(co123,?R) AND

 price(co123,?P) AND quantity(co123,?Q) AND

 Multiply(?P,?Q,?Payment) ;

8.4. Example 2: Buyer’s Counter-Proposal, with Late Delivery Penalty

Continuing our example, suppose the buyer wants to include a contract provision to pe-

nalize late delivery. (Alternatively, the seller might want to include such a provision in

order to reassure the buyer.) This constitutes a counter-proposal during the negotiation.

First, we add some rules to declare (i.e., specify) that this contract has an exception in-

stance e1 that is an instance of the LateDelivery class from the process ontology:

pr:hasException(co123_process,e1);

pr:LateDelivery(e1);

Note that the actual occurrence of an exception is associated with a contract result, as op-

posed to its potential occurrence which is associated with the contract (agreement)’s

process. hasException specifies the potential occurrence. We will see below more about

the actual occurrence.

 - - 45

Next, we give a rules module (i.e., a set of additional rules to include in the overall draft

contract ruleset) that specifies a basic kind of exception handler process – to detect the

late delivery.

In our approach, exception handler processes themselves may be rule-based (in part or to-

tally), although in general they need not be rule-based at all. The exception handler de-

tectLateDelivery is rule-based in this example. Below, the variable ?CO stands for a

contract, ?R for a contract result, ?EI for an exception instance, ?PI for a process in-

stance, ?COD for a promised contract shipping date, and ?RD for a contract result’s ac-

tual shipping date.

<detectLateDelivery_module> {

/* detectLateDelivery is an instance of

DetectPrerequisiteViolation (and thus of DetectException,

ExceptionHandler, and Process) */

pr:DetectPrerequisiteViolation(detectLateDelivery) ;

/* detectLateDelivery is intended to detect exceptions of class

LateDelivery */

sd:detectsException(detectLateDelivery, pr:LateDelivery);

 46

/* a rule defines the actual occurrence of a late delivery in a

contract result */

<detectLateDelivery_def> sd:exceptionOccurred(?R, ?EI) <-

 sd:specFor(?CO,?PI) AND

 pr:hasException(?PI,?EI) AND

 pr:LateDelivery(?EI) AND

 pr:isHandledBy(?EI, detectLateDelivery) AND

 sd:result(?CO,?R) AND

 shippingDate(?CO,?COD) AND shippingDate(?R,?RD) AND

 greaterThan(?RD,?COD) ;

}

Then we add the following rule to the contract to specify detectLateDelivery as a handler

for e1:

<detectLateDeliveryHandlesIt(e1)> pr:isHandledBy(e1,detectLateDelivery);

 - - 47

Merely detecting late delivery is not enough; the buyer also wants to get a penalty (partial

refund) if late delivery occurs. Continuing our example, we next give a rules module to

specify a penalty of $200 per day late, via an exception handler process lateDeliveryPe-

nalty. Again, this handler is itself rule-based.

lateDeliveryPenalty_module {

/* lateDeliveryPenalty is an instance of PenalizeForContingency

(and thus of AvoidException, ExceptionHandler, and Process) */

pr:PenalizeForContingency(lateDeliveryPenalty) ;

/* lateDeliveryPenalty is intended to avoid exceptions of class

LateDelivery. */

sd:avoidsException(lateDeliveryPenalty, pr:LateDelivery);

/* penalty = - overdueDays * 200 ; (negative payment by buyer) */

<lateDeliveryPenalty_def> payment(?R,contingentPenalty, ?Penalty)

 <-

 sd:specFor(?CO,?PI) AND pr:hasException(?PI,?EI) AND

 pr:isHandledBy(?EI,lateDeliveryPenalty) AND

 sd:result(?CO,?R) AND sd:exceptionOccurred(?R,?EI) AND

 48

 shippingDate(?CO,?CODate) AND shippingDate(?R,?RDate) AND

 subtract(?RDate,?CODate,?OverdueDays) AND

 multiply(?OverdueDays, 200, ?Res1) AND

 multiply(?Res1, -1, ?Penalty) ;

}

We add a rule to specify lateDeliveryPenalty as a handler for e1:

<lateDeliveryPenaltyHandlesIt(e1)>

 pr:isHandledBy(e1,lateDeliveryPenalty);

During contract execution, if Plastics Etc. ships its product 8 days after the order is

placed (i.e. 5 days later than the agreed-upon date), then the rules about

detectLateDelivery (i.e., in the detectLateDelivery module) will entail that late deliv-

ery exception has occurred, which will trigger the lateDeliveryPenalty handler to im-

pose (i.e., entail) a penalty of $200 per day late, totaling $1000.

More precisely, suppose we represent the contract result as the ruleset formed by adding

(to the above contract) the following “result” fact:

shippingdate(co123_res, 8) ;

Then the contract result ruleset entails various conclusions, in particular

sd:exceptionOccurred(co123_res,e1) ;

 - - 49

payment(co123_res, contingentPenalty, -1000) ;

Our SweetRules prototype system, which implements SCLP RuleML inferencing, can

generate these conclusions automatically; thus so can our SweetDeal prototype system

which employs SweetRules as a component.

8.5. Example 3: Seller’s Counter-Counter-Proposal, with Late Delivery Risk

Payment instead

Next, we continue our example further. In so doing, we (relatively briefly, due to space

constraints) illustrate how to use prioritized conflict handling, enabled by the courteous

feature of SCLP RuleML, to modularly modify the contract provisions, e.g., during bilat-

eral negotiation. Suppose the seller wants to specify that the late delivery exception

should be handled instead by the handler lateDeliveryRiskPayment, which imposes an

up-front insurance-like discount to compensate for the risk of late delivery, basing risk

upon a historical average probability distribution (defined separately) of delivery late-

ness. This constitutes a counter-counter-proposal, which is, say, the seller’s final offer in

the negotiation. The risk payment provision conflicts with the penalty provision. The

prioritized conflict handling capability of the Courteous feature of SCLP enables the risk

payment provision to specified simply by adding a new module, rather than having to

modify any of the rules in the previous contract proposal. First, we define a rules module

for the risk payment handler:

lateDeliveryRiskPayment_module {

 50

/* lateDeliveryRiskPayment is an instance of AvoidException (and

thus of ExceptionHandler, and Process) */

pr:AvoidException(lateDeliveryRiskPayment) ;

/* lateDeliveryRiskPayment is intended to avoid exceptions of

class LateDelivery. */

sd:avoidsException(lateDeliveryRiskPayment, sd:LateDelivery) ;

/* penalty = - expected_lateness * 200 (negative payment by

buyer) */

<lateDeliveryRiskPayment_def>

payment(?R, contingentRiskPayment, ?Penalty) <-

 sd:specFor(?CO,?PI) AND sd:hasException(?PI,?EI) AND

 pr:isHandledBy(?EI, lateDeliveryRiskPayment) AND

 sd:result(?CO,?R) AND

 historical_probabilistically_expected_lateness(?CO,

 ?EOverdueDays) AND

 Multiply(?EOverdueDays, 200, ?Res1) AND

 Multiply(?Res1, -1, ?Penalty);

}

 - - 51

Then we add a rule to specify lateDeliveryRiskPayment as a handler for e1:

<lateDeliveryRiskPaymentHandlesIt(e1)>

 pr:isHandledBy(e1, lateDeliveryRiskPayment);

Next, we give some rules that use prioritized conflict handling to specify that late deliver-

ies should be avoided by lateDeliveryRiskPayment rather than by any other candidate

avoid-type exception handlers for the late delivery exception (here, simply, lateDeliv-

eryPenalty). We specify this using a combination of a MUTEX statement and an over-

rides statement that gives the lateDeliveryRiskPaymentHandlesIt(e1) rule higher priority

than the lateDeliveryPenaltyHandlesIt(e1) rule.

/* There is at most one avoid handler for a given exception

instance. */

/* This is expressed as a MUTual EXclusion between two potential

conclusions, given certain other preconditions. */

/* The mutex is a consistency-type integrity constraint, which is

enforced by the courteous aspect of the semantics of the rule KR.

*/

MUTEX

 pr:isHandledBy(?EI, ?EHandler1) AND

 pr:isHandledBy(?EI, ?EHandler2)

 52

GIVEN

 sd:AvoidException(?EHandler1) AND

 sd:AvoidException(?EHandler2) AND

 notEquals(?Ehandler1, ?EHandler2);

/* The rule lateDeliveryRiskPaymentHandlesIt(e1) has higher

priority than the rule lateDeliveryPenaltyHandlesIt(e1). */

overrides(lateDeliveryRiskPaymentHandlesIt(e1),

 lateDeliveryPenaltyHandlesIt(e1)) ;

Now suppose the probabilistically expected lateness of the delivery (before actual con-

tract execution) is 3 days. I.e., suppose the contract also includes the following fact.

historical_probabilistically_expected_lateness(co123, 3) ;

If upon execution the modified-contract’s result facts are as before – i.e., delivery is 5

days late – then the modified-contract’s result entails as conclusions that the late delivery

will be handled by the up-front risk payment of $600 = (3 days * $200).

payment(co123_res, contingentRiskPayment, -600) ;

The modified-contract’s result does not entail that late delivery is handled by the penalty

of $1000 – as it should not. The courteous aspect of the rules knowledge representation

 - - 53

has properly taken care of the prioritized conflict handling to enforce that the new higher-

priority contract provision about risk payment dominates the provision about penalty.

9. DISCUSSION AND FUTURE WORK

9. CONCLUSIONS: SUMMARY OF NOVEL CONTRIBUTIONS

In subsection 3.1, we summarized the overall SweetDeal approach and discussed its ad-

vantages relative to competing approaches. In this section, we focus on summarizing

what are the new contributions in this paper.

New Extensions to General Approach of SweetDeal: Rules represent exception han-

dling contract provisions, that can reference or invoke associated business processes.

Rules (in RuleML/LP) are combined with ontologies (in DL/DAML+OIL/OWL). This

combination is by reference (in this paper; however, [27] provides a deeper model-

theoretic and proof-theoretic approach). E.g., those ontologies (being combined) can be

about the business processes. These business processes may themselves be partly or

completely specified via rules (executably).

New Prototype for SweetDeal: The new prototype for SweetDeal (which is at MIT

Sloan); is relatively briefly described in this paper, for reasons of focus and space. It in-

cludes capabilities for contract authoring, communication, and inferencing/execution. It

uses the SweetRules toolset for Situated Courteous RuleML. It also includes a simple

form of queryable repositories of contract rule modules and process ontologies, as well as

 54

some relatively simple market agents (that communicate, negotiate, evaluate etc. the con-

tracts).

New Scenario for SweetDeal: A new pilot example application scenario (i.e., use case)

for SweetDeal is described in this paper: late delivery exceptions in manufacturing sup-

ply chain management (SCM), using business process ontologies partly drawn from the

MIT Process Handbook. (It is implemented using the new prototype.)

Overall Novel Contributions: To recap in more detail, the work reported in this paper

makes novel contributions in several areas:

• Represents process knowledge from the MIT Process Handbook (PH) using an

emerging Semantic Web ontology KR (DAML+OIL/OWL). The PH is a large, pre-

viously-existing repository of business process knowledge, which includes (as a frac-

tion of its content) taxonomic/hierarchical aspects and exceptions/handling. This is

the first time PH process knowledge has been represented using XML, DL KR, or LP

KR. Our approach is thus the first to enable practical deep automated inferencing

with the PH knowledge, and the first to bring it to the Semantic Web. Previously, the

PH’s content was only relatively shallowly automated for inferencing.

• Extends our previously existing SweetDeal approach to rule-based representation of

contracts in SCLP/RuleML with the ability to reference such process knowledge and

to include exception handling mechanisms. (The SweetDeal approach enables soft-

ware agents to create, evaluate, negotiate, and execute contracts with substantial

automation and modularity.)

 - - 55

• Enables thereby more complex contracts with behavioral provisions.

• Provides a foundation for representing and automating contractual deals about Web

Services (and e-services more generally), so as to help search, select, and compose

them.

• Gives a new point of convergence between Semantic Web and Web Services –

thereby newly fleshing out the evolving concept of Semantic Web Services.

• Gives a conceptual approach to specifying LP/RuleML rules “on top of”

DL/DAML+OIL/OWL ontologies (for the first time to our knowledge), via such rules

referencing the predicates (or individuals) mentioned in such ontologies. Moreover,

this is for the highly expressive SCLP case of RuleML. And this is one of the first

two published descriptions and examples of combination of DAML+OIL (or OWL)

with a non-monotonic rule KR — the other being [19] which was done independ-

ently. Our approach to rules on top of ontologies is described here first conceptually

and then by examples. The novel contribution here is primarily the concept and the

syntactic mechanism. The semantics, based on the Description Logic Programs

(DLP) KR, is overviewed here – details are in [27]. Actually, the work reported here

provided a prime motivation for developing the theory of DLP and provided the first

substantial and realistic use case for DLP. Overall, we thus show for the first time

how to combine RuleML with DAML+OIL/OWL, and how and why to do this as a

representational style.

 56

• Combines (SC)LP/RuleML with DL/DAML+OIL/OWL (i.e., emerging Semantic

Web rules with emerging Semantic Web ontologies) for a substantial business appli-

cation domain scenario/purpose (for the first time, to our knowledge). Moreover,

these are combined further with process descriptions for the first time.

A prototype is running. We intend to make it publicly available in the near future.

10. CURRENT AND FUTURE WORK

Next, we discuss interesting research directions for current and future work:

Theory on Combining LP + DL: An important aspect of ontologies, mentioned earlier,

is to develop the theory of combining rules on top of ontologies, including expressive un-

ion and intersection, semantics, proof theory, algorithms, and computational complexity.

[27] gives our initial development of this theory, based on the Description Logic Pro-

grams KR; more is in progress. An objective is to enable completeness/consistency, an-

other is to enable efficiency in specification and inferencing. The DLP-based theory of

combination also provides a principled basis for unifying the syntax of the rules more

closely with that of the ontologies, e.g., using RDF for both; work on that is underway in

the Joint Committee effort [31].

SweetDeal Prototype Architecture: As we mentioned earlier, the SweetDeal prototype

architecture includes several other aspects, which provide directions for current and fu-

ture work. One is the queryable repository for contract fragments, including new techni-

cal aspects for RuleML to better enable modules inclusion and naming. Another is archi-

 - - 57

tecture relationships of overall contracting software agents (i.e.,, that are/act-for a buyer

or seller or intermediary) to infrastructure specifically for contract rules inferenc-

ing/execution, translation, communication, authoring/editing, storage/retrieval, etc Part

of this is to develop techniques for invoking business processes, e.g., Web Services, by

invoking Situated LP procedural attachments. Another aspect is tying in to agent nego-

tiation strategies.

More Example Scenarios: A direction for future work is to develop more and longer

example scenarios and test them out by running them using SweetDeal/SweetRules to-

gether with tools for DAML+OIL/OWL and, later, also with tools for reasoning specifi-

cally about process knowledge.

Rule KR Technologies for Semantic Web Services: A major direction for our current

and future work is relationships of our SweetDeal approach and its elements (rules, on-

tologies, process knowledge) to the area of Semantic Web Services (the convergence of

Semantic Web and Web Services). One aspect of this is further developing rule KR

technologies for use in Semantic Web Services, where services may use rules plus on-

tologies, and rules may call services.

Business Applications and Implications of Semantic Web Services (SWS): E-

contracting is an important potential business application area for Semantic Web Ser-

vices. In particular, a key direction of current work is to apply our SweetDeal approach

to what we call the deal layer of SWS: i.e., contracts about Web Services, where the

contractual agreement is described semantically. This is a crucial area for Web Services

 58

overall, which has been addressed at only a relatively shallow level to date, except for the

SweetDeal approach. Other business application areas for SWS, particularly that com-

bine rules with ontologies, that we are investigating include: financial information inte-

gration, e.g., ECOIN [36]; travel packages, trust management, and business policies.

Relating to emerging WS and SWS standards/pieces: There are a number of other

relevant emerging WS and SWS standards/pieces. These include existing basic Web

Services standards and techniques, e.g., WSDL invocations [24], SOAP messaging [23],

WSBPEL (procedural) process models [38], and UDDI advertising/discovery [25].

These also include general efforts on emerging Semantic Web Services techniques and

applications , e.g., DAML-Services [8], Web Services Modeling Framework (WSMF)

[28], and the Semantic Web Services Initiative (SWSI) [37], as well as Web Services

Choreography [35]. There are also existing and emerging standards for general-purpose

e-business/agent communication, e.g., ebXML [20] and FIPA’s Agent Communication

Language [21].

Legal Aspects of Contracting: A direction for future work is how to incorporate more

about legal aspects of contracting into our approach, including to connect to the Legal

XML emerging standards effort [26], particularly LegalXML eContracts [34].

Process Ontologies, including from MIT Process Handbook: Other directions involve

ontologies. One is to further develop the DAML+OIL/OWL ontology for business proc-

esses, e.g., our current work includes drawing on the Process Handbook. Another is to

further develop the contract ontology. Currently, we are investigating how to formalize

 - - 59

more deeply the relationship between a contract rulebase and a rule-based handler proc-

ess.

Default Inheritance: Finally, there is the challenge of how to cope with the issue of de-

fault inheritance in regard to DAML+OIL/OWL and also to the Process Handbook. De-

fault inheritance (i.e., where inherited values may be overridden or cancelled) is used in

most object-oriented/frame-based systems, including the Process Handbook. In current

work, we are taking an approach to default inheritance using the prioritized conflict han-

dling capability provided by the courteous feature of SCLP, and applying it to represent-

ing the Process Handbook in particular.

APPENDIX A. MORE PROCESS ONTOLOGY (pr.daml in ADL syntax)

hasException :: Process -~ Exception;

isHandledBy :: Exception -~ ExceptionHandler;

Process : ;

Exception : (exists isHandledBy . NotifyAboutException);

ExceptionHandler : Process;

Buy : Process;

Buy : (exists hasException . SubcontractorIsLate);

Buy : (exists hasException . LowQualityResult);

Buy : (exists hasException . SubcontractorDropsTask);

 60

Buy : (exists hasException . SubcontractorChangesCost);

Buy : (exists hasException . ContractorDoesNotPay);

Buy : (exists hasException . ContractorCancelsTask);

BuyOverInternet : Buy;

BuyinElectronicStore : BuyOverInternet;

BuyInElectronicStoreUsingAuction : BuyinElectronicStore;

BuyInElectronicStoreUsingPostedPrices : BuyinElectronicStore;

SystemCommitmentViolation : Exception;

 /* Violations of commitments made by the system operator

 to create an environment well-suited to the task at hand. */

AgentCommitmentViolation : Exception;

 /* Violations of commitments agents make to each other. */

InfrastructureCommitmentViolation : Exception;

 /* Violations of commitments made by the infrastructure to

 provide dependable communication and computation. */

MatchmakerViolation : AgentCommitmentViolation;

ContractorMatchmakerCollusion : MatchmakerViolation;

 - - 61

 /* collusion between contractor (ex. buyer) and matchmaker

 (ex. auctioneer) */

ContractorViolation : AgentCommitmentViolation;

ContractorDoesNotPay : ContractorViolation;

ContractorDoesNotPay : (exists isHandledBy . CheckCreditLine);

ContractorDoesNotPay : (exists isHandledBy .

DetectPrerequisiteViolation);

ContractorDoesNotPay : (exists isHandledBy .

ProvideSafeExchangeProtocols);

FraudulentCreditPayment : ContractorDoesNotPay;

ContractorCancelsTask : ContractorViolation;

ContractorCancelsTask : (exists isHandledBy .

DetectViaNotification);

ContractorCancelsTask : (exists isHandledBy .

PenalizeForDecommitment);

SubcontractorViolation : AgentCommitmentViolation;

 /* subcontractor (seller) violates commitments */

SubcontractorIsLate : SubcontractorViolation;

 62

SubcontractorIsLate : (exists isHandledBy .

DetectPrerequisiteViolation);

SubcontractorIsLate : (exists isHandledBy .

PenalizeForContingency);

SubcontractorIsLate : (exists isHandledBy .

PenalizeUsingRiskPayments);

LowQualityResult : SubcontractorViolation;

LowQualityResult : (exists isHandledBy .

DetectPrerequisiteViolation);

LowQualityResult : (exists isHandledBy . PenalizeForContingency);

LowQualityResult : (exists isHandledBy .

PenalizeUsingRiskPayments);

SubcontractorDropsTask : SubcontractorViolation;

SubcontractorDropsTask : (exists isHandledBy .

PenalizeForDecommitment);

SubcontractorDropsTask : (exists isHandledBy .

DetectViaNotification);

SubcontractorChangesCost : SubcontractorViolation;

FindException : ExceptionHandler;

 - - 63

FixException : ExceptionHandler;

AnticipateException : FindException;

MaintainReputationInformation : AnticipateException;

CheckCreditLine : AnticipateException;

DetectException : FindException;

DetectPrerequisiteViolation : DetectException;

DetectTimeout : DetectException;

MonitorUsingSentinels : DetectException;

DetectViaNotification : DetectException;

ResolveException : FixException;

NotifyAboutException : ResolveException;

NotifyAboutExceptionUsingEmail : NotifyAbouException;

NotifyAboutExceptionUsingPager : NotifyAbouException;

AvoidException : FixException;

ProvideSafeExchangeProtocols : AvoidException;

ProvideEscrowService : ProvideSafeExchangeProtocols;

 64

ProvideEscrowServiceWithBuyerCertification :

ProvideEscrowService;

ProvideEscrowServiceWithThirdParty : ProvideEscrowService;

ProvideIncentives : AvoidException;

ProvidePenalties : ProvideIncentives;

PenalizePoorBehavior : ProvidePenalties;

PenalizeForDecommitment : PenalizePoorBehavior;

PenalizeForContingency : PenalizePoorBehavior;

PenalizeUsingRiskPayments : PenalizePoorBehavior;

APPENDIX B. MORE CONTRACT ONTOLOGY (sd.daml in ADL syntax)

sd:Contract : (mincard-1 . sd:specFor);

sd:specFor :: sd:Contract -~ pr:Process;

sd:ContractForOneProcess : sd:Contract;

sd:ContractForOneProcess : (card-1 sd:specFor);

sd:ContractResult : ;

sd:result :: sd:Contract -~ sd:ContractResult;

sd:exceptionOccurred :: sd:ContractResult -~ pr:Exception;

 - - 65

sd:exceptionLikely :: sd:ContractResult -~ pr:Exception;

sd:detectsClass :: pr:DetectException -~ daml:Class;

sd:anticipatesClass :: pr:AnticipateException -~ daml:Class;

sd:avoidsClass :: pr:AvoidException -~ daml:Class;

sd:resolvesClass :: pr:ResolveException -~ daml:Class;

sd:handles :: pr:ExceptionHandler -~ pr:Exception;

sd:detects :: pr:DetectException -~ pr:Exception;

sd:anticipates :: pr:AnticipateException -~ pr:Exception;

sd:avoids :: pr:AvoidException -~ pr:Exception;

sd:resolves :: pr:ResolveException -~ pr:Exception;

ACKNOWLEDGEMENTS

Thanks to our MIT Sloan colleagues Mark Klein, Chrysanthos Dellarocas, Thomas

Malone, Peyman Faratin, and John Quimby for useful discussions about the Process

Handbook and representing contract exceptions there. Thanks to anonymous reviewers

on previous versions for helpful comments. Funding support was provided by the Center

for eBusiness @ MIT (Vision Fund award “Automatically Discovering, Selecting, and

Combining Web Services Using Business Process Descriptions”), and by the DARPA

 66

Agent Markup Language (DAML) program (award “Tools for Supporting Intelligent In-

formation Annotation, Sharing, and Retrieval”).

REFERENCES

1. Grosof, B.N.; Labrou, Y.; and Chan, H.Y. “A Declarative Approach to Business Rules

in Contracts: Courteous Logic Programs in XML”. Proc. 1st ACM Conf. on Electronic

Commerce (EC-99), 1999.

2. Reeves, D.M.; Wellman, M.P.; and Grosof, B.N. “Automated Negotiation From De-

clarative Contract Descriptions”. Computational Intelligence 18(4), special issue on

Agent Technology for Electronic Commerce, Nov. 2002.

3. Rule Markup Language Initiative, http://www.ruleml.org and

http://www.mit.edu/~bgrosof/#RuleML.

4. Grosof, B.N. “Representing E-Business Rules for Rules for the Semantic Web: Situ-

ated Courteous Logic Programs in RuleML”. Proc. Wksh. on Information Technology

and Systems (WITS ‘01), 2001.

5. DAML+OIL Reference (Mar. 2001). http://www.w3.org/TR/daml+oil-reference/

6. Semantic Web Activity of the World Wide Web Consortium.

http://www.w3.org/2001/sw

7. Web Services activity of the World Wide Web Consortium. http://www.w3.org/

8. DAML Services Coalition (alphabetically A. Ankolekar, M. Burstein, J. Hobbs, O.

Lassila, D. Martin, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, H.

 - - 67

Zeng). ``DAML-S: Semantic Markup for Web Services'', Proc. International Semantic

Web Working Symposium (SWWS), 2001; and more info at

http://www.daml.org/services

9. MIT Process Handbook. http://ccs.mit.edu/ph/

10. XSB logic programming system. http://xsb.sourceforge.net/

11. Niemela, I. and Simons, P. Smodels (version 1).

http://saturn.hut.fi/html/staff/ilkka.html.

12. IBM CommonRules. http://www.alphaworks.ibm.com and

http://www.research.ibm.com/rules/

13. Common Logic http://cl.tamu.edu/ ; Knowledge Interchange Format

http://logic.stanford.edu/kif and http://www.cs.umbc.edu/kif/ .

14. Grosof, B.N.; Gandhe, M.D.; and Finin, T.W. “SweetJess: Translating DamlRuleML

to Jess”. Proc. Intl. Wksh. on Rule Markup Languages for Business Rules on the Seman-

tic Web, held at 1st Intl. Semantic Web Conf., 2002.

15. Jess (Java Expert System Shell). http://herzberg.ca.sandia.gov/jess/

16. DARPA Agent Markup Language Program. http://www.daml.org

. This includes, in part, DAML-Rules http://www.daml.org/rules and DAML-Services

http://www.daml.org/services.

17. Malone, T.W.; Crowston, K.; Lee, J.; Pentland, B.; Dellarocas, C.; Wyner, G.;

Quimby, J.; Osborn, C.S.; Bernstein, A.; Herman, G.; Klein, M.; and O’Donnell, E.

 68

“Tools for Inventing Organizations: Toward a Handbook of Organizational Processes.”

Management Science, 45(3): p. 425-443, 1999.

18. Klein, M.; Dellarocas, C.; and Rodríguez-Aguilar, J.A. “A Knowledge-Based Meth-

odology for Designing Robust Multi-Agent Systems.” Proc. Autonomous Agents and

Multi-Agent Systems, 2002.

19. Antoniou, G. “Nonmonotonic Rule Systems using Ontologies”. Proc. Intl. Wksh. on

Rule Markup Languages for Business Rules on the Semantic Web, held at 1st Intl. Se-

mantic Web Conf., 2002.

20. ebXML (ebusiness XML) standards effort, http://www.oasis-open.org

21. FIPA (Foundation for Intelligent Physical Agents) Agent Communication Language

standards effort, http://www.fipa.org

22. XSLT (eXtensible Stylesheet Language Transformations),

http://www.w3.org/Style/XSL/

23. SOAP, http://www.w3.org/2000/xp/Group/ and http://www.w3.org/2002/ws/

24. WSDL (Web Service Definition Language), http://www.w3.org/2002/ws and

www.w3.org/TR/wsdl

25. UDDI (Universal Description, Discovery, and Integration), http://www.uddi.org

26. Legal XML, http://www.oasis-open.org

27. Grosof, B.N. and Horrocks, I. “Description Logic Programs: Combining Logic Pro-

grams with Description Logic”. Proc. Intl. Conf. on World Wide Web (WWW-2003),

2003.

 - - 69

28. Fensel, D. and Bussler, C. “The Web Service Modeling Framework (WSMF)”.

White paper, 2002. http://informatik.uibk.ac.at/users/c70385/wese/publications.html

29. Grosof, B.N. Semantic Web Services brief overview,

http://ebusiness.mit.edu/bgrosof/#SWS

30. OWL (Ontology Working Language), from W3C Web-Ontologies (WebOnt) Work-

ing Group, http://www.w3.org/2001/sw/webont . Working draft of July 29, 2002.

31. Joint US/EU ad hoc Agent Markup Language Committee,

http://www.daml.org/committee

32. Oasis http://www.oasis-open.org

33. Resource Description Framework (RDF) http://www.w3.org/RDF

34. Oasis Legal XML eContracts Technical Committee http://www.oasis-

open.org/committees/legalxml-econtracts

35. Web Services Choreography Working Group, http://www.w3.org/2002/ws/chor

(Related to this is Web Services Choreography Interface, codeveloped by BEA Systems,

Intalio, SAP AG, and Sun Microsystems, available at each’s site. E.g.,

http://ifr.sap.com/wsci/)

36. Firat, A.; Madnick, S.; and Grosof, B.N. "Knowledge Integration to Overcome Onto-

logical Heterogeneity: Challenges from Financial Information Systems". Proc. Intl.

Conf. on Information Systems (ICIS), Dec. 2002.

37. Semantic Web Services Initiative (SWSI), http://www.swsi.org

 70

38. Web Services Business Process Execution Language (WSBPEL), http://www.oasis-

open.org

 - - 71

Figure 1: Some specializations of “Sell” in the MIT Process Handbook.

 72

Figure 2: Some exceptions in the MIT Process Handbook.

 - - 73

Figure 3: Some exception handlers in the MIT Process Handbook.14

14 Track MBTF is a typo in the MIT Process Handbook. It should be Track MTBF (mean time between

failures) instead.

 74

Emerging Standards:

•RuleML

•DAML+OIL/OWL

Figure 4: W3C Semantic Web "Stack": Standardization Steps

 - - 75

Description
Logic

Horn Logic
Programs

First-Order
Logic

Description
Logic

Programs

Logic
Programs

(Negation As
Failure)

(Procedural
Attachments)

Figure 5: Venn Diagram of Expressive Overlaps between KR’s

 76

Buyer, e.g.,
manufacturer

Seller, e.g.,
supplier of parts

Business
Logic

Business
Logic

Rules RulesContract Rules
Interchange

e.g., OPS5 e.g., Prolog
As part of XML

documents

Figure 6: Contracting Parties NEGOTIATE Via Shared Rules.

 - - 77

Buyer, e.g.,
manufacturer

Acme Inc.

Seller, e.g.,
supplier of parts

Plastics Etc. Inc.

Req. For Proposal

Proposal

Purchase Order

Ack. Deal

Counter-Proposal

Final Offer

Figure 7: Exchange of Rules Content during Negotiation.

