\because.

Hassachusetts Institute of Technology Thesis 1935

Construction lilethods used on the East Boston Treffic Tunnel under Boston Harbor. $3 y$

Jack R. Kalman Course 2

Professor A. L. Merrill Secretary of the Faculty Massachusetts Institute of Technology Cambridge, Mass.

Dear Sir:
In partial fulfillment of the
requirements for the degree of Bachelor of
Science, this thesis on "Construction Methods
Used on the East Boston Traffic Tunnel under
Boston Harbor" is submitted.

Respectfully submitted,

I wish to take this opportunity to express my appreciation of the courtesy extended to me by Mr. Buck of the Silas Mason Co. in allowing me to use any information at his disposal. I also wish to thank the personnel of the City of Boston Transit Commission for some of the photographs used in this thesis.

Permit me to acknowledge my appreciation of the cooperation of Professor C. B. Breed under whose supervision this thesis was written.

INDEX

Page
Introduction 1
Location plan 4
Description of the project 5
Plan of the shield 111
 21
Mechanical conveyor system---------------- 25
 40
Concrete lining 45
Leakage 50
Comparison cast iron to steel rincss----- 63
Appendix 66
Bibliography 73

INTRODUCTION

One of the most serious traffic problems that the City of Boston has been called upon to face has been that of providing a short and adequate means of traffic communication between Boston and Bast Boston. Previous to the consideration of a tunnel, there had been but three connections. One was an antiquated ferry system carrying both passengers and vehicles. Another was a circuitous route through Charlestown and Chelsea and passing over several draworidges--objectionable because of the frequent delays caused by the opening of these drawbridees to permit the passage of harbor traffic; and thirdly, a tunnel for electric trains.

The inadequacy of these facilities is readily recognized with a brief inspection of the frowth of East Boston and its increasing relationship with the City Proper. The aif trafeic of Boston is closely linked.with East Boston since the airport serving the city is located there. Further, there are meny large piers and docks there, which are the destination and origin of much of the shippine trafifo-both freight and passenger. These two reasons alone, demonstrate clearly the necessity for a more direct hishway route between East Boston and the City Proper.

Two plans were offered for the solution of this problem. One was a suspension bridge from the main downtown district; the other a vehicular tunnel under the harbor. The first necessitated long approach sections to obtain the clearance for shipping as required by the War Department. This would have been impractical, since it would have required the condemnation of considerable taxable property at a creat cost. A tunnel, on the other hand, would require much less land for the approaches; and, since it would pass at a considerable depth beneath structures, it would necessitate the condemnation of easements only, with the obvious resultant savings.

In 1929 the Massachusetts Legislature enacted a bill providing for the construction of a vehicular tunnel between East Boston and Boston Proper (Chapter 297, Acts of 1929.) Thereupon, the City of Boston Transit Commission was assigned the projects--The plans and specifications for which were drawn up under the able direction of the Commission's chairman, Colonel Thomas F. Sullivan, and Chief Engineer, Ernest R. Springer. The contract for the shield driven portion of the work, the major part of which was under the harbor, was awarded to the Silas Mason Company of New York. Their use of devices and methods never before utilized in tunnel engineering, enabled them to complete
their work in many months less than the allotted time. In this thesis I shall endeavor to discuss the construction of this tunnel, pointing out the special methods employed by the contractors whereby they were able to make record time, also in some ingtances I shall oriticise the design and methods employed and I shall draw a comparison between them and those used elsewhere, particularly the Detroit Windsor Tunnel where conditions were in many respects similar.

DESCRIPTION OF THE PROJECT

There are two open cut approach sections, one on the Boston side, and one on the East Boston side-- These are connected by a shield-driven tunnel 4850 ft . in length, of which about 1500 ft . is under the harbor. From portal to portal the tunnel measures 5650 ft. (See plan Fig. I.)

From the construction shaft at Decatur St., East Boston (Fig. 2) to the harbor the grade is down 3.5\%. From that point it changes on a vertical curve to a down grade of 0.5% (this being the minimum grade for proper drainage) to a point near the center where a pump well is located. The grade rises on a slope of 0.5% to the Boston pier-head line where it again changes on a vertical curve to a grade of 4. 2%--This slope continues to the appreach section where it changed to a 4.4% grade to the Boston opening.

The construction of the main section of the tunel (shielddriven portion explained later) was awarded to the silas Mason Company, of New York. This section $\mathbf{1} 5450 \mathrm{ft}$. in length, 1500 ft. of which is under the harbor, it included a construction shaft, and two ventilation shafts,one on the East Boston side and one on the Boston side.

The tunnel in composed of a steel lining, built up of steel rings, designed to support all loads that the tunnel is subjected too, and a concrete lining inside of the steel lining designed independently of the steel lining. The design
was governed by the roadway requirements to obtain twoway traffic. A necessary roadway of 21 ft . 6 in. between curbs which resulted in a tunnel of the following dimen-sions:-

A height of 13 ft .6 in. from the roadway to the ceiling. and a total diameter of 31 ft . The space below the roadway and above the ceiling slabs formed ducts adapted for the purpose of ventilation--The space below to supply fresh air and that above to draw out exhaust air. At each ventilation shaft, a building with mechanical equipment was erected to draw out the foul air and force in the frosh air. The roadway is of granite block pavenent, and the sidewalls fintshed in tile.

The tunnel is provided with an indirect illusinating system whereby the lights are set into pockets on each side of the tumel in an ancle formed at the ceiling, and side walls. These lights are spaced at 15 ft. intervals. There are traffic lights for the control of the movement of vehicles.

Tunnelling in water-bearing sofl is usually done with the help of compressed air; the tunel being walled off near its mouth and air being pumped under pressure into the enclosed portion to neatralize the inward pressure of the viater and thereby preventing an inrush of water. Water exists in the pores of the earth under a
pressure head. The water because of its cohesive properties forms a minute diaphram within the pores of the earth, and this diaphram will break easily under the pressure aused by the water head. The balancing power of the compressed air equalizes the water pressure, prying on the delicate membrane and holds it in equalibrium.

Often, the further protection of a shield * is used in conjunction with the compressed air, especially in the construction of tunnels under water. In the

[^0]Five years after the eranting of the above patent, a company was formed to under take the tunnelling of the Thames River, a task that had been attempted several times previously, without success. Brunel, as chief engineer, designed a rectangular shield as he believed that the stresses would be minimized if the strata penetrated were to be cut parallel to its horizontal bed. The shield collapsed due to its lightness, and a second shield much stronger than the first, was built, by means of which the work was completed with phenomenal success.

Since Brunel's accomplishment, shielos have been used extensively in subaqueous tunnelling. The presentday shield is a highly developed mechanism. It is automatically propelled, erects the lining behina it, has hydraulic rams to support the heading during excavation, and in many cases has sliding steel bulkheads at the heading to support loose material.
building of the East Boston Tunnel a shield was used and compressed air used when necessary.

The shield used to bore under Boston Harbor, from East Boston to Boston, for the Vehioular tumel was a large monster. It was 31 ft .7 in. in diameter and left. $9 \frac{3}{4}$ in. Iong, weighing over 400 tons. The tail, (that section that overlans the steel lining put in lace) was of steel dates totalling 2 in. thick. The heading, or working section of the shield at the mouth of the tunnel, consisted of horizontal and vertical bracing of heavy built-up steel members. This bracing divides the working section of the shield into convenient working chambers. The floor of these chambers consisted of heavy steel plates that were rivette: onto table or face jacks. These jacks would be moved foward, bringine the floor or platform with it, and at the same time these jacks acted as rams supportinc the face of the excavation. There wereten of these noving platforms and ram jacks (see pig. 3) and when

With sight exceptions, the designs of shields are based on exncrience and in accordance with the ceology of the eround, the shell must be sufficiently thick to support the earth pressure without deformine at its tail, where there is no internal support. The cutting edge must be strong enoubh to withstend the pressure of the jacks and any head-on contact with some unexpected resistance.
they had been pushed formard to their maximum distance, slightly over $2 z$ it., the shield was ready to be advenced-Crdinarily wood plankine is used in conjunction with the rams to support the face, tut was mnecessary in this project bscanse of the solidness of the clay. (See plan Pic. 4).

The motive force ased to drive whe ahead

Jacks driven bya

 consisted of 30 circumferentiain dratic pressure of 6000 Ibs. per sq. in. These jacks were connected to shoes (Fig.5) which were forced asainst the erected rings to counteract the thrust of the jacks, moving the shjeld forwerd. These rines, the lining of the tionnel fre of welded steel construction; mere bill up behind the shield (Fig. 6) and vere designed to support all superimposed loeds including the pressure exerted by the shiel? jacks. (Originally, temporary rings bad been lowared into the construction shaft by a crane and built ar , behind the shiald, ready for the first Porward thrust of the jacks). Each ring * meighed 12,750 10 s . and was composed of eleven segments, en of which were approzimately 5 ft . long. The eleventh consistee of a ring section*

There were two trpes of tools used to tichten the ring wolts, which were set into place by hand. One type was a pheumatic tool, which consistec essentially of a turbine-driven wrench thet fitter the nat. The pressure of the air was 90 1bs. sc. in.
(See appendix). This tool ranialy tichtened the bolts until it was smug to the tron. This tool was suphlemented by a hand ratched wrench thet exerted a pressure greater than $\frac{1}{2}$ ton, due to its leveraee. Both tools required a second man who held the head of the bolt to prevent slippace.

6 ft . and a key section 2 ft . (Fig. 5). The key was tapered just the reverse of a keystone of an arch, so that it could be wedced into place from the inside of the tunnel. These sections were of rolled steel and welded, the outer plate $3 / 8$ in. thick, $2 \frac{1}{2}$ ft. wide, inner angles 6 in. by 8 in. by $\frac{3}{4}$ in., 45 libs. steel rails welded from angle to angle spaced everyy two feet, to transinit the stress from the shiell jacks. There were 475 bolts required for each ring. There was a second type ring refored to as a taper. It was used at grade points and to align the shield. The key of this ring was 2 ft .6 in. wide from which the segnents tapered to the opposite segment which was 2 ft .4 in . wide. This ring facilitated the bending of the section of the tunnel on the vertical curves and when itcdeviated from the line. It was also used when the skin of the shield tightened on the steel of the lining. When this condition occurred the narrow section of the taper ring was placed at the "tight" portion of the section, thereby loosening it. When the shiel was pushed ahead to its new position, the eleven lower circunferential jacks were released, and the lower three segments of tie ring vere slid into place, and bolted to the ring. Then, alternately, the other jacks were released and the remaining secments of the new ring were swang into place by a hydraulic erector arm
(Fig. 7) attached to the shield and the segments yere bolted, hence adding to the lining a distance of $2 \frac{1}{2} \mathrm{ft}$. As these steel rings wiere added, a temporary wooden floor was built up by putting 12 by 12 wooden beams across the steel rings and supporting the beams by wooden posts in the invert. A plank floor was laid across the beam sections on which the rails were set, (for material trains) and the belt conveyor system was set (for removing the muck, the soil excavated).

The line and grade of the shield had to be set accurately,for the tunnel followed the path of the shield and could not have been corrected if the original path had deviated. Each $\frac{3}{4}$ in. error at the start would have resulted in a 4 ft . error at the other side. (when the shield tunnelled through at the other side the grade checked exactly, and the line checked to a $\frac{\pi}{4} \mathrm{in}$.). The line of the shield was set daily, and the grade was checked after every forward move of the shield. The shield jacks controlled the arection of the shield. A thrust on the right would direct it to the left, a thrust on the top would direct it dow, and vice versa. (The enginser's reports and shovinc instructions are shown in the appendix).

Compressed air was used during the tunnelling under the harbor. A concrete bulkhead (Fig. 8) was built 500 ft. ahead of the Rast Boston Ventilation Shaft to hold the
pressure in the working chamber. One iir lock was used to permit 50 "sandhogs" (Fig. 9) of the shaft to enter the high pressure chamber, another into which materials were brought, and a third used for the excavation. There was also an emergency lock to be used in the event of an inrush of water.

The power for operating the shield, tools, and to generate the compressed air, was supplied from a plent built for the purpose on the East Boston side. The plant was supplied electric power from wo independent sources so that continoous operations was insured in case one source reiled. Thé equipment included two hich pressure air compressors, cach having a capacity of $1,300 \mathrm{ft}$. of air per minute at 90 to 105 lbs. pressure. These supplied compressed air for the air-driven tools, grouting machines, and air drum hoists. Three lovi pressure compressors, capable of deliverinc $3,300 \mathrm{ft}$. of air per minute at 30 Ibs. pressure, were used to sapply compressed air to the air chamber. Two hydraulic pamps, together with one hydro-pheumatic accumalator, was used to deliver water at a pressure up to 6000 lbs . per sq . in., generating the power by which the shield was driven.

EXCAVATION

The material excavated was a sandy clay, blue clay, and gravel, also a short distance of ledge, (hard shale) in the lower portion of the tumel. Soundings revealed 9 to 15 ft . of fround above the prade of the tunnel. The contretor demosited 7,645 cu. Yds. of clay blanket by scows over the portion of the harbor bed where the denth of cover was uncertain.

Mucking at the heading was acoompished y mons of three types of cutbine tools. Thore were two types of steel knives. The first used was a flat lone steel blade, puled by cables at both ens. Two men were required to operdte this knife, holding and directing it at each end. The cables were connected to air noist drum and supplied the force necessary to pull it through the material to be oxcavated. This tool did not prove Very successful since there was not sufficient roon for two men to work effectively and sefely in the formard en of the chamber. The slice excuvated yas too heavy and laree for these men to hendle eastiy.

The second strie of cutting lmife was therefore adonted. It had sirst been devsloned during the tmmel operations of the Detroit Windsor Tunel. This mife has a grip section to hold and direct it and a sharp ronded
section for cutting the clay. It was operated by a single drum air hopst, One man was able to handle this knife and cut out sections about 8 in. by 10 in. and from 2 to 3 ft. lone, (Fig. 10) which could be dropped directly into the muck chutes. This knife proved wery successful In clayey material. It was an important factor in making the high speed record established for lined tunnel driving, But the third tool, the pneumatic spade, was the aost useful knife of the three. It was adapted to any type of material and was of special value in sendy clay. This tool would break the material from the heading, dropping it onto the platiorm where it was scraped into the chutes.

Ledge was encountered in the lower sections of the shield. During excavation it was necessary to blast this rock. Diverging holes were drilles at an angle of 50 degrees to the face of excavation into the rock, in this manner the rock wäs wedged in so that it would shatter when blasted and not fly into the shield. This method of drilling forms a frustrum of a cone with the large base within the rock and the smaller vase at the face of the rock. When the explosion occurs, "the tendency is for the rock to fly towards the larger base of the wedge. Since this bese is within the rock section the force of the blast tends to shoot the section into the rock and not away from it.

The shield was protected from the blasts by means of sheathing at the face braced by the face jacks. Due to the method of drilling 50% more powder than is ordinarily required was used. The rock would lift into the clay and not fly to any great extent towards the shield.

One blast would clear the rock for a distance of 5 to 6 ft. permitting two forward shoves of the shield. The weight of the shield (400 tons) prevented the force of the blast from noving it backwards, lifting it above grade. When compressed air was used, it did not offer a serious problem, inasmuch as the ground was fairly compact; there was little fear of a blowout (i;e when the air pressure forces out the heading causing a gap that allovs the compressed air to escepe and since air cannot be supplied in sufficient quantities, water rushes in). and the pressure was regulated so as to keep the bottom of the heading dry. The air plant had a 100% reserve capacity plant which Was not once callea into use. At one or two greaver sections air leaked out and bubbles appeared on the water surface. One plant was capable of supplying sufficient air to balance the leakage in the chamber.

A compressed air-driven chain saw, with teeth on the chain, was designed to cut the piles encountered at the wharves and under buildings. The piles were cut above the
hood of the shield. The chain saw was not a very efficient tool, and in many instances the use of axes had to be resorted to.

Due to the efficient mechanical devices used at the heading the speed of excavation was fapid. There is a large field for the development of other mechanical devices as well as for the improvement of those already in use.

MECHANICAL CONVETOR SYSTEM

The installation of the mechanical conveyor system, a novel method for handling muck in lined tunnelling, was undertaken after the shield had passed through the East Boston Ventilation Sheft. Previous to this installation, the progress of the shielc averaged 5 rings, l2 $\frac{1}{2}$ f., in 24 hrs. With the conveyor system in use, the progress of the shield averaged $8 \cdot r i n g s, 20$ ft., in 24 hrs. As a result, a Eigh excavation record for lined tunnelling of 32 ft . in $24 \mathrm{hrs}$. was established. The convevor system made possible the excavation, with a single shield, of approximately $140,000 \mathrm{cu}$. yas. of muck in one year's time. This innovation nroved successfful since it removed the muck as fast as it vas excsvated and required little space and did not interfere with other operations.

At the head end of the tunnel excavation was accomplished by means of steel-cutting knives and by meumatic knives. Two mack chutes (Fig. 4) built into this shield

Diagram of Conveyor System
Section at shield

overhead Structura

received the muck and deposited it onto apron converors (See page 26, also Figs. 7 and 11), which were hung by angle irons to the lower pockets of the shield. The anron conveyors extended parallel with the axis of the tunnel into the shield. Six feet behind the sfield it was inclined upward thirty degrees to the axis of the tunnel so as to raise the muck to a higher lawel. Thence the apron conveyors were built into the jumbo (Fig. 12), a working platiorm, where the upper segments of the rings were tiehtened, and grouting operations were performed. These convevors were operated by two $7 \frac{1}{2} \mathrm{HP}$ motors, the belt travelling at a speed of 75 ft per minute. The muck was dropped into a hopper thet deposited it onto a 30 in. horizontal conveyor belt system (Fig. 13), which extended fron the jumbo hopner to the construction shaft. The belt was composed of sections 500 ft each; each section driven at a speed of 150 ft. per minute by a 20 HP motor. The linkage of one section with the next was acomplished by standard chutes. The length of the belt was increased by increments of 20 ft. lengths as the shield progressed. It required eight minutes for a crew of six men to make t血is installation.

At the construction shaft, Decatur St., Fast Boston, (see page 27) this convevor belt system empties into a hoprer that deposjted into a trector trpe conveyor, (Fig. 14) 36 in. vide.

This was sloped at an angle of 60 degrees to the horizontal. The conveyor raised the muck 80 ft. above the floor level of the shaft, then it was built level. There was a tripper which directed the conveyor to empty into any one of three apron conveyors which in turn emptied into boppers or storage bins, built on an elevated steel structure above Decatur st. The structure was designed so that it would not hinder vehicular traffic, by a clearance of 15 ft. 9 in. above the roadway. The hoppers were emptied by means of sliding doors operated by compressed air, directly into trucks under the structure. At the structure, a man was stationed to operate the sliding doors, to control the tripper and to remove the muck from the bins so that the operation of the hopper would not be hampered by settins muck.

With the introduction of compressed air in the tunnel the success of the belt conveyor system depenced upon developing a method of continuing the movement of the material mechanically through the bulkhead from the compressed air to the atnospheric pressure. Two locks had been designed for this purpose, (Fig. 15), each 5 ft. diameter, $34 \frac{7}{2} \mathrm{ft}$. long with sliding wates to be operated b compressed air. At the bigh air side the gate was on the top, at the free air, normal pressure, the gate was oin the bottom.

Belt Conveyor System
Cross Sections of Bulkhead

At the ends of the locks there were doors bolted on that could be renoved for repair work inside the locks. During the building of the first bulkhead section these two muck locks were set at the upper level. The end doors were not bolter in place and the present belt was elevated and went through one of these locks.

The final design was as follows:- (Diagrams, pages 33 and 34.) The belt was raised above the two muck locks overlapping a metal chute. This chute flanged out into two individual chutes. There was fitted a flap séte (See section AA) controlled by a compressed air piston at the mouth oi the flanged chute by means of which the muck is automatically directed alternately into the two muck locks. The lock redeiving the muck had the upper gate open, the muck falling onto a. 36 in. belt within this lock, travellins at a rate of 15 ft . per minute. It was so timed that when the muck travelled to the lower gate at the free air side, this gate would automatically slide open and the upper cate would close. . The belt would speed up to $22 \frac{1}{2} \mathrm{ft}$. per minute, depositing the muck into a metal chute (See section $B B$), which dropped it onto the belt conveyor below; thence to the horizontal belt system. These automatic operations were synchronized by a time clock that controlled electric mytors, operating change gears that opened and closed the gates
and controiled the speed of the inner belt. The time of a complete operation was 141 seconds. While one lock was loading, the other was discharging. One Iaborer was recuired to maintain watch over the flap operation. Then the muck alled un and blocked the flap, he turned off the control switch which stopped the conveyor belts from the shield to t.e bulkhead. (The muck locks were still operating). He then forced the muck below the flap into the Iocks, as soon as the locks were operating swtisfactorily, he woild start ap the conveyors and the operation of the system was resumed.

The proce ure of inaintainiag the use of the convevor durine the construction of the second binkhead is of interest. Tro locks of similar design as those referred to alove were ereoted. One iock was built around the mresent conveyor. The en doors were not installed. The belt and lock was lifted into the bulkhead section and the masonary was then ficoco. A control sjstem, a daglicate of the other described above was built. One lock was equpped with bults and no bor, the second Look as used as a continnous pasi , e for the belt. Work at the heading hed been stopy. over Bunday, as had been the practice, and the transfer was then made. There was no delay and Monday the new lock was in operation, the muck pes sing through the old
lock on a continuous belt. There vere only two dirículties encountered with the belt conveyor:-

1. At times, the belt crawled up on one side of the rollers, cansing the mack to drop off the belt and to fall onto the under side of the retarning aelt which doget some of the rollers. There was a teneency for the belt to tear under those conditions. This condition co.ld have bean remaliod by ailmant of the stoel frane. 2. mea moist meterial. was encountered the friotion side Of the bult and the arive meel monld become wot cansing the belt to lose traction and sip. Wuen this occirres the contrector plece ary cencut on the friction side of the belt and within a short tjue the belt would continue With reealar speed. Tuis condition oocurred only when tho maximan length of the belt was employed. On tise other hand its andmatses were mumerous:- It was possible to concrete the portion of the tunel already exceveted, since t e belt converor utilized very little of the available space in the timel, a practice that had never been attempted previonsly in tunnel constraction. When the shield tumelle through at the Boston Apmroach Section, the concrete was completed to the hale way point in the mmel and the invert was poures 26 ft. gohind the shield.
The conveyor systen elimin ted handine of the mok by hand. The only hand labor was the digsing at
the heading. Material once cleared from the heeding was mechanically conveyed through the tunnel to the street, where it tas de rosited inta tracks.

In cleaning the invert, preparing for concrete, the masts earth was hoisted by buckets to the floor level and dumped into the pessin bolt, in this ananer Dack waste cold be asposed of without necessitating the use of a mack car.

The use if the conveyor systen is confine? to certain types of material. It is cacellent in olay, pravel and send. It is less valuable in rock and not required in silt or guicksand. The difficulty in the first inctance (rock) is that the rock wonld break the hopers and tear the belts, also larce rocks wonld clog the chutes and block the operation of the converor. In the second case of silt or auickarnd let as refer to the macking of the Holland Tamel connecting Hew York and New Jersey, under the Muason Eiver. Tis tu: el passed through silt, a loose meterial and the shield was equipped with a bulkhead section to push the silt aside. No excavation was nccessary. The pressure of the shield jacks cause the cast iron rings already orected by the shield to rise adove grade, and the veight of the silt on the front of the shield about 5 , tons caused the shield to settle (on nose) below rade. To remedy this tendency the shield fanhram mas moved formard and the lower doors
were opened to admit about 30% of the silt previously displaced. This silt was denosited on the invert of the (back iron) thoserings already erected to weight it down and prevent "floating." It is evident since silt was admitted only as a ballast that a conveyor system was not necessary for excavation.

GROUT

Grout, composed of pea gravel and neat cement, is ejected outside the steel lining to fill the voids in the ground forming a close packing around the periphery of the steel rings of the tuanel. This causes a uniform distribution of the earth pressure. The grout also tends to create a vater-proof envelope around the shell; furthermore the grout hinders the electrolytic action of the salt water on the steel lining, therefore lengthening the life of the steel. This process prevents excessive settling of superimposed structures, tumelled under by the shield.

The greater percentage of the voids in the ground, around the periphery of the tumel are caused by the difference of diameter of the shield and of the steel lining. For example, in the Bast Boston Vehicular Tunnel, the outside diameter of the skin plate of the shield was 31 ft. 7 in. that of the stael lining was 31 ft. leavine a void of 3 글 in. around the lining.

If each section were not grouted immediately after placing the steel rings, settlement would have occurred, which would result in a deflection of the tunnel lining causing many stresses due to bending, unequal loadings and irregular pootings.

The o'Rourke patented method of erouting was used, which consists of a pressure tenk that forces a stream of grout through a hose, which is tapped to the ring sections, there being a tap in each segment of a ring, Grout was forced through the taps under pressure of 90 Ibs. per sq. in. Fea eravel was first forced into the void left by the motion of the shield and at twelve rings back neat cement was injected into the gravel surrounding the line. At times 115 cid. ft. or more pea gravel was usad at one tap. But on the average three cu. yds. of grout sealed the void created by one shove of the shield. ($2 \frac{7}{2}$ ft.) The volume of the void in cubic yards = (mean dia.) (π) x (width) x (length of shove) $\times I / 2 \%$. void cu. yds. $=31.29 \times 3.14 \times 0.29 \times 2.5 \times 1 / 27$. $=2.6 \mathrm{cu} . \mathrm{yds}$.

When the shield was passing under buildings great care was taken to do a complete grout job to minimize the setting. It was found that settlement took place directly avove the shiels with no noticeable settlement to either side of the path of the shield. The settle-
ment depended largely upon the type of ground tunnelled through. "At the Rast Boston shore of the harbor, where the ground was a consolidated fill, a mazimum settlement of 5 in: took place. The grout operations, no matter how skillfully done, could not prevent tis settlement. Grout forced its way through cracks in the ground and flowed out on the surface of the street, whereas on Moon St., Boston, where a hard clayey sand was tumelled through, no settlement was evident.

Many of the superimposed structures were underoinned.
Temporary footings were established by means of timber sills on the ground; I-beams were sapported on these footings; screw jacks were set on these I-beams and rails and I-beams vere supported on the screw jacks and were placed under columns of the buildings. These columns were then made independent of the oricinal footings and were supported by the temporary footings. During each move of the shield settlement levels were taken and if settlement was then noted; by the use of the sorew jacks the structure was lifted back to its original position. After the sisield had passed under the structire the columns were set back on the orisinal footings and steel plates were used, if necessary, to maintain the original levels. In this manner the foundations would settle but the buildings were held at erede during construction and sufficient time was allowed (usually $48 \mathrm{hrs}$.) after the passage of the shield, to insure acainst further settlement.

> Diagram of Concrete Steps Invert poured first. Forms poured in numerical order.

CONCRETE LINING

A concrete chute was-built at the East Boston Ventilation Shaft where transit mixed concrete was received. The concrete was delivered through the chute into the tannel to trains of six hopper dump ©ars, hauled by storage battery locomotives. These trains ran on the narrow sauge tracks built within the tunel, delivered the concrete to the section being poured. (Fig. 16). The concrete was poured in six progressive steps. The first pour beine that of the invert. The remaining five pours requiring the use of steel forms, built up the side walls, arch, and ceiling slab, working up from the lower section to the roof in successive pours. The belt conveyor that removed the excevation from the heading operated through the structure of the forms without interference. All the steel forms were equipped with sorew jacks and turnbuckles so that ther could be set to line and to grade. Pneumatic hammers were used to vibrate the steel forms, so that the conorete would compact and run into all spaces. Pour No: 1. The invert. (no steel form used). (See page 46). The timber platform or temporary roadway was hung by cables from the steel lining of the tunnel and the supporting timber posts removed. The steel lining was thoroughly cleaned, the waste earth hauled up to the

Invert
Form No. 1.

Diagram of Concrete pours
invert, Lower side wall, Floor slab.

Concrete steps
Pour 3, 4 \& 5 .

Concrete Steps
Pour No. 6.
floor level and dumped into the passing conveyor. Simple wooden end forms were used. A few floor boards were removed from the wooden floor and the concrete duped directily from the concrete cars into the invert, and then shoveled into place. A travelling guide formed to the contour of the invert (called a screed) was used in order to obtain the correct curvatiare. The invert was poured for 120 ft . at a time using the following materials:-

111 cu. yds. of concrete.
4320 lin. ft. of 1 in. sq. stress rods.

1170 Iin. ft. of $5 / 8 \mathrm{rd}$. temp. rods.

Pour No. 2 (Form No. 1) Lower side walls and floor slab. (See page 46).

The temporary timber floor had been built above the grade of the permanent floor slab so that the permanent concrete slab could be poured without interference. The wooden floor was user until the permanent slab had set (48 hrs. allowed). Tracks were set on the invert after pour No 1 had set and a steel form 75 ft. long on wheels was used. This form includod a flat slab, the floor form, and steel side plates, the lower side walls forms. The steel form was set to line and grade and the concrete was poured directly
from the concrete trains, traps were made in the wooden floors by removing some of the floor boards and the concrete dropped to the slab; the side walls ware poured directly from the cars by means of chates to the side forms.

Beams were set into the floor slab 5 f. centered to center 2 in. above the steel form of the floor, mortar was used to fill in the 2 in. space below the beam, wire cloth mas used around the bean bottom to hold in the mortar. The following material was used:-

> 150 cu. yds. of concrete.
> 4 cu. yds. of nortar.
> 2912 lin. ft. of 1 in. sq.
> stress rods.
> 2901 Iin. ft. of $5 / 8 \mathrm{rd}$.
> temp. rods.
> 15 floor veans, 89 lbs. 10 in. wide.
> 494 sq. ft. wire cloth.
> 150 Iin. ft. of 6 in. $C . I . p i p e . ~$
> 10 sheet metal fresh air flues.
> 45 tie rods (around C. I. pipe).

After the concrete had set the temporary plank floor was removed and the tracks and the belt conveyor were set on the concrete floor.

Pour No. 3 (Form No. 2) Side walls (See page 47). Rails:were laid on both sides of the concrete floor slabs, making a track 25 ft . wide, to carry the three steel forms nambers 2, 3, 4, which vere on wheels and had an axle span of 25 ft . These forms were in tandem, and each one was 79 ft. 9 in. long. Form ivo. 2 includes the sidewalk on the North wall and a water pipe ajche on the South wall. The hopper dump cars emptied into a belt that in turn emptied into a pivoter belt that was swung to empty into hoppers along this side; cars, driven by cables, were filled from these hoppers and they in furn emptied into the form.

Pour No. 3 Reguired the following material:-
90° cu. Yds. of concrete.
4 cu. yds. of morter.
2494 lin. ft. of $5 / 8$ in. rd.
temp. rods.
398 lin. ft. of 3 in. fiber ducts.
398 lin. ft. of $3 \frac{1}{2}$ in. fiber ducts.
30 lin. ft. of 6 in. C. I. pipe.
Anchor plates, 80 ft. long on either side. (used to bolt on the baffle plates for veatilation)

Pour No. 4 (Form No. 3) Side walls (see page 47). This pour brought the side malls up to the level of the arch. The concrete belt on form No. 2 was now rivoted to
the center hoppers on form No. 2. The concrete was run from the hoppers to cable cars up the ram to form No. 3. These cars were pulled by an air hoist and were emptied into concrete chutes directly into form No. 3. The following materials were required:-

> 90 cu. yds. of concrete.
> 2961 lin. ft. $5 / 8$ in. id.
> temp. rods.
> 420 lin. ft. of 3 in. fiber ducts.
> 1050 lin. ft. of 3 in. fiber ducts.

Pour No. 5. (Form No. 4) The Arch (See page 47) The same cars used to fill form No. 3 was used to feed two concrete guns (pressure tanks to shoot concrete into pipes) each pressure gun had a capocity of $\frac{1}{2}$ cu. yd. of concrete and fed into five 6 in. header lines, leading into ten riser pipes that were equipped with elbows within the forms. The risers were worked in pairs, one gun feering one and the second gun the other. The pipes could be swung around by hand to control the direction of the nozzle. A slight difficulty was encountered in filling the very top of the arch, for the concrete would not rise above the elbow, where the riser emitted the concrete. This was overcome busing alternate risers

Aorcing the concrete at the other riser. Then the elbows were removed and the concrete forced directly into the section. The following materials were required:-

100 cu. Jjds. of concrete. 2640 lin. $f t$. of 1 in. $s q$.
stress rods.
1029 in. ft. $5 / 8 \mathrm{in} . \mathrm{rd}$.
temp. rods.
Pour No. 6 (Form No. 5) Roof Slab (See page 48)
A steel form 120 It. lone built on wheels, with an axle form 25 ft., was used. This form followed the proceding series on the track previonsly laid. The concrete dum cars mere emptien from the floor level into a riser belt that drone the concrete to a secnd horizontal belt. Side chates mere adiusted to the horizontal welt and poured the concrete onto a steel plate (part of the form) forming the ceiling. The conorete was or cued by a ecreed and by hand. The following materials vere required:-

55 cu . yds. of concrete.
1083 lin . It . of $5 / \mathrm{in}$ in. rd .
temp. rods.
240 Iin. ft. of $6 \times 4 \times 3 / 8$ angles.
12 ceiling hangers (spaced every
10 It.)

> 220 sq . ft. wire cloth. 500 lin. ft. of $3 / 4 \mathrm{in}$. steel conduit. 120 lin. ft. of $1 \frac{1}{\text { in }}$ in. steel conduit.

The use of st el forms for the conoreting of a tunnel lining is not a new procedure. The desien of the forms used in the Past Boston Vehicular Tunel. possessed many features that resulted in greater efinciency than ever attained before.

In contrast to the Holland tube where steel forms were used, Gravity was relied on to eliminate hand labor. This necessitated the construction of overhead rails, suspended from the lining of the tunnel. The construction of switch tracks and spur tracks were required. Whereas, in the East Boston Tunnel a belt sustem that was self-contained was used; hence eliminating the orection of overhed rails the Isngth of the tunnel. The arch vas poured in the Holland Tunel by shoveliing conorete from these cars to the overhead stedform. This type of lavor is. slow shoce it is recessery for men to lift the shovels
\therefore Of concrete above their head, twisting the shovel and then force concrete into the small overhead gaps. Other
men vould ram the concrete into the forms. This procedure not only was slow but watteful, since the concrete would constantly be dropping to the ceiling level: On the other hand the Silas Mason Company designed the arch form so that once concrete left the cars at the floor level it was put in place mechanically. (Fig. 17) The concrete was emptied from the cars into a high speed belt from which it was transferred to pressure system that forced the nonorete in place.

In the Holland tube the forms were only 15 ft . in length, in order to facilitate concreting the curve. The East Boston Tube is a straight tube, hence the forms were built as long as desiref, the only limiting condition being that of slight vertical curves. This factor also. resulted in reater speed for the Rast Boston project in contrast to the Holland Tube, inasmuch as forms had to remain in place from 24 to 48 hrs .

The concrete that has set in steel forms obtains
a smooth and finishec appearance. (Fig. 18).

LEAKAGE

There are three sources of I akage through a steel lined tunnel.

1. Grout holes.
2. Bolt holes.
3. Joints between the segments.

The leakage due to erout holes may be considered of ainor importance. Be ond abing sure that all grout holes have their plug mell fitted in nosition. Wothing need be done about rout noles and they seldon
o'en m" roblem.
The onl : readition taken in the cere of wolt holes mas to use steel washors uncer the head and nut of each bolt.

The method used in prevention of leaky joints between the segments, me the appication or master padanea, a rofing coment, "untbered" onto the tonts os the riazs.

A tumel nos the tendency to perform the Punction of a drain for the erromoing soil. won the rater in the rount is mesent undor a had the limine mot De vator tiont to mevent Lokage into the thanel. Efter con Iotion of the Eust, Boston Veniculer tman some Ieaks nere evident. In my oninion tiere ore namerous Potors hhet man he cused this oondition.

Phe matue's matn mas at satisfactory as rar as mekne a water tint juint wetwen bequents, for it Powed too ireely moder pressure. Tis was denonstroted when the nact cament was ejected ander areseure outside of the steel ining, it oozed into the thmel through the joints of the rings displacing the mastor's pudding. The pudine was cansed to further flow by the
heat generated by the setting of the cement.
The steel rings deflected during erection, and the pressure of the sheid jecks loosened the back iron, necessitating retiontening. T is Ceflection no coubt, caused the grout shell to orack end aeparate from the steel linine and also cansed the suanental joints to open. when conorete ws noured the sectimal waiches wonld case the indivedal segents to senarate oponine un the joints.

In my ornirn the Pollowine recentions should be taken to insure as roor as possible a weter fight tun sel.

The rings shoud be desthed so as to i mode the flow of mator. If the path that water hod to travel was a winding one, its mpoese woula be hindred.

If the flanges vere designed as show in age 60 , the flow of water waid be impeded.

The ideal oalkin. motorial wond be one thet wonld be plicble, yet solid, wonld not llow aner preseure, would adhere to the linins, will not detertorate with age, and not cause corrosion of the Inine. Land vory closelr amooches bhis ideal.

In the Holland thnol a Groove was movides in the Inin: for calin vurposes. mis groowe mes onsb into the Inin: segments and machined, es show pae 60.

Flange design to impede water path

Design of caulking groove used in the
Holland Tunel.

Design proposed for caulking steel lining.

A wire lead was drawn into the orove establishing a fairly tight joint. The East Boston Tunnel did not have any provisions for calking the joints.

I believe that if the outstanding legs of the flange angles of adjacent rings were designed to facilitate calkine, it would be of assistance in sealing leaking joints. If a desige such as showi on page 60 were used, this calking co.ld be accomplished by filling the recess formed. Connections of the member segrents must not be neglected and a similar design at these joints employed.

The formation of a concrete shell around the periphery of the lining by means of grouting operations offers resistance to the head of water and in many cases has almost completely stopped perculation. If the perculation is reduced sufficiently by routing, the design and calking shonld. make a substantially water tight etructure.

In the Detroit Windsor Tunel a design siailar to that used for the East Boston Vehicular Tumel mas used. The erouting operations sealed all vater bearing aravel sections and the clay was of a drier character than that under the Boston Harbor, resulting in a fairly dry tunel. This condition was also true a
on the Past Boston side of the tunnel. On the Boston side and under the harbor where the clay was vet, the tunnel showed occasional leaks, even though grouted. Itwas therefore necessary to resort to back grouting which was done by the opening of the grout plugs and forcing dry cement into and through the plug to fill the openings that permitted the seepage. If after the back grouting had been resorted to and there still was seepage it would be nedessary to resort to calking of the joints or if that would not stop the leaks, then electric line welding could be employed which would result in a most perfect water seal.

It is important that all necessary precautions be cerried out to insure as a dry a tunnel as is possible before the concreting of the inner section is undertaken, since the concreting conceals the steel lining of the tunnel it mould be difficult to remesy any leaks that might occur after the tunnel is completed.

In the East Boston Tumel the Surther precaution was taken before poring concrete to extend the srout plugs through the thickness of the concrete by pipes so that after the concrete was pored any leaks could be sealed by grout ejected though those energency plugs.

COMPARIGON CAST TRON RING TO STREL RINGS

In older practice many of bbe important structures were mae of cast iron, incladine bridges and columns. Now structual steel is used in its plece. Structual steel hes many qualities in its favor, principaly freater tensile stranctin and therefore freator reliauility.

The onter line of the tanncl should be sc construsted that it will withstand tho weipht of the ecrth above and any othor suberimposed Zoed to ether with the Gorces to wioh it is subject by the ase of the shiel jacks and mat be a permanent pert of the tuncl and as Water tight as possible.

In the Dast Boston Rumel steel Iining was used. in preference to cast iron wich has been used in former tunnel constraction.

In cast iron lined tmmels, thare is no dencer fron deformity of the rinss since the cast iron does not bend ond it is pasier to bolt the joints becanse of the rifidity of the cast iron, since all holes re manine drilled and fit when one ring is alaced a,minet the other. There is however the anger on oreckage. In a steel lined tunnel the steel lining is sidject to deformity and because of such deformitu it will transmit to sonc gearee the stresses to the
concrete lining forming the tunnel, therefore the concrete must be reinforced to take whatever loads are transaitted to it. The practice in steel line tunnelline is to design a concrete tunnel independently of the steel, hence requiring heavy reinforced concrete and a double desisn.

The economy of stel lining is on important factor in its favor. The veight of a cast iron rine is about three times that of a steel ring. The cost per pound is practically the sane as steel. The saving in a 30 ft . diameter tunnel using steel lining in place of cast is approximately $\$ 1,500,000$ per mile of tunnel. Since steel is fairly flexible and weichs $1 / 3$ as much as the same size cest Ining it is possible to handle larger segneats. But there are more bolts required for a steel tunal since eflection causes stresses that must be transmitted to the back iron. In a cast iron tunnel the pressure of the flanges and the shear, due to weigh of iron, does not require as many bolts.

In a cest iron tunnel breakage is slight. In the Holland tube approximately one segment broke to 40 rings or about 0.2%. This expense is equalized in steel turnelling by delays caused by "tight iron" which is a result of deflection.

If the shiele deforms to such an extent thot cast iron rings could not be placen, it is probable that steel
rings could be erected after buraing out new bolt holes since those in the iron would not fit. Hence under such emergencies steel vould be meneficial when it was of economy to continue construction rather than stop to repair the stield.

There are many details of the East Boston Vohicular Tunnel construdition that I did not attempt to desoribe, suffice to say ander the able managenent of the eontractor the work proceeded in a smooth manner with a minimum of accidents to the nen empioyed and not a single ratality, although the working cow was inexperienced in tunnel construction and the use of compressed air is always a source of dancer to the men. The Silas Mason Company did everything in their power to protect the health of the men emplored, and I have attempted in this thesis to noint out some of the new metrods employed by the contrector in constracting the tunnel.
appendix

CITY OF BOSTON - TRANSIT DEPARTMENT
 TRAFFIC TUNNEL
 SECTION A

Feb. 15 1930
$1 z=-8 \quad A \mathrm{~m}$
Date \qquad
Shield Check after Shove to Erect Ring No. 7585 _Iron Check on Ring No. 3584.

DIST. FROM INDEX PTS	LEFT SIDE	RIGHT SIDE	STATION INDEX POINTS	STATION
	2015	20.03	$45-20$	$45-40.09$
			Top Flange	
		Bottom Flange		
Diaph. Shield	455	4.55		$45-44.54$

Station of Cutting Edge $(+8.37)$
Station of Rear Face of Erector (-4.00)
Side Lead: Iron- 12 Ieft Shield . 05 left
Ring No. 3585 Horiz. Diam. 2970 Vert. Diam. 29.64
Theoretical Diameter of Flange, 29.67. Overhang of Iron-1.08 \qquad
Plumb Line on Shield I. 60 Overhang on Shield 1. 13
Dist. Base Line to Plumb Line__Dist. Plumb Line to Axis-Erector \qquad
Dist. Base Line to Axis-Erector
Theo.
Deviation \qquad
Dist. Base Line to Left Flange of Iron__ Theo.__ Deviation___
Dist. Base Line to Right Flange of Iron_____ Theo.__Deviation

LEVELS

B. S.	H.I.	F.S.	ELEV.	OBJECTIVE	THEO.	DEVIATION
2.20	38.50	26.30	B. M.			
7.73			36.2 Axis Er'tr	36.71		
				Bot. Flange		
					Top Flange	

Computed by Signed
Checked by \qquad

```
CITY OF BOSTON - TRANSIT DEPARTMENT
TRAFFIC TUNNEL
SECTION A
```


SHEELD REPORT

Before Shove to Erect Ring No. 3585

DATE FeH. 15, 19 32
TIME 12 PM

Position:

Instructions for Shoving:

Plumb_I. 58

BIBLIOGRAPHY

```
Bngineering News Record-m-Rebruary 7, 1929
                            Vol. 95 No. 23
                            Vol. 94
Compressed Air-------------May, 1932
Shields and Compressed Kir Thnels
        Hewett and Johannesson-1922
Tunel shisids and the Use of Compressed Air
        in Subaqueous Works----1906
Revort of the Transit Department, City of
        Boston, for the raars, en ing December 31 ,
    1929,1930,1931.
The Bighth Wonder-The Holland Tunnel
    Sturtevant, B. F. Co.
```


[^0]: * Shield. Shield tunnelling is not a recent development. The inventor of the shield, Sir Marc Isamband Brunel, a Frenchman, obtained a patent in 1818, in which he describes his idea. It consisted essentially of an iron cylinder equipped at its front edge with an auger-like cutter, which, when revolved, was supposed to screw into the soil shead and thus advance the cylinderical shield. The portion excavated by the shield was to be lined with sheet iron plating and strengthened by masonary.

