Simply Dense: a new paradigm for transit oriented development

by

Alison Hammer

B.A. Yale University 2001

Submitted to the Department of Architecture in Partial Fulfillment of the Requirements for the Degree of Master of Architecture

at the

Massachusetts Institute of Technology

June 2006

© 2006 Alison Hammer. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author.

Department of Architecture

May 25, 2006

Certified by...

Assistant Professor, Department of Architecture

Thesis Supervisor

Dennis Frenchman

Professor of the Practice of Urban Design, Department of Urban Studies and Planning

Thesis Supervisor

Accepted by...

Julian Beinart, Professor of Architecture

Chair Department Committee on Graduate Students
Thesis Readers

Paul Lukez
Assistant Professor
Department of Architecture

Paul Ognibene
Urban Spaces, LLC
Cambridge, MA
Simply Dense: a new paradigm for transit oriented development

by

Alison Hammer

Submitted to the Department of Architecture on May 25, 2006 in Partial Fulfillment of the Requirements for the Degree of Master of Architecture

ABSTRACT

Rising gas prices. Shifting population demographics. Residential inequity. A highly mobile, over-stimulated populace that is always on the go. Contemporary society is replete with forces pushing simultaneously away from the established suburban condition and towards density and development around transit. However the American allergy to city living, with its congestion, stigma and inefficiencies born through history, still perpetuates.

This thesis posits that there is both a need and an inherent potential for the emergence of a new development typology: a suburban super-core, grafted onto existing multi-modal infrastructure intersections. Typically these sites have lain fallow following the invasion of the rail lines and multi-lane highways that fragmented the space and rendered the parcels too unattractive for development. The project of this thesis is to define what sort of space/place might start to locate itself in these zones. The first stage of the process determines the maximum floor area ratio (FAR) that could be inserted in the interest of achieving an extremely high density project. This is studied through a systematic analysis of case studies. The second step involves the defining the identity of these places, their organizing element: transfer. These two preparatory phases give rise to a series of rules shaping the development of these places and, in turn, to a series of parti diagrams that can be laid one over another and assembled into a development that is 'simply dense'. This methodology is then tested on the site of Secaucus Junction, New Jersey, where the confluence of infrastructures makes an ideal site for the project of the thesis.

Thesis Supervisor: Alexader D'Hooghe
Title: Assistant Professor

Thesis Supervisor: Dennis Frenchman
Title: Professor of the Practice
Thank you to my thesis committee for being so generous with their time, energy and insights

Thank you to my friends and family who helped me complete this effort (in alphabetical order) Andres, Chris, Dad, Jeremey, Mom, Sassypot, Seamus, Shuji, Talia, Vida
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introduction / The Case for Suburban TODensity</td>
<td>07</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Hypothesis / Case Studies / Determining FAR</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Hypothesis / The Transfer Concept</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>The Test Case / Secaucus Junction, New Jersey</td>
<td>29</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Methodology / The Partis</td>
<td>37</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Results / Secaucus Junction, New Jersey</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Addendum</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>81</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

THE CASE FOR SUBURBAN TODensity
Introduction

This thesis is based on one fundamental assumption: that a single architectural intervention can radically and positively change the landscape of the existing urban context, increasing the civic quality of territory far beyond the perimeter of the intervention itself. In particular, this thesis will look at the possibilities for the insertion of a high density, high FAR development centered around transit into a relatively suburban environment. Operating at the intersection between architecture and real estate, this project examines the feasibility of the fundamental assumption from the perspectives of architecture, urban planning and real estate.

The Argument for Density

Since the middle of the nineteenth century, suburban developments have emerged as the dominant typology in the United States residential real estate market. Suburban sprawl has been linked to increasing social inequity, alienation, the erosion of natural habitats, and ever-growing automobile usage. Sprawl has been almost uniformly identified as an unsustainable form on many fronts: social, ecological, financial, and cultural.

However, perhaps the juggernaut of sprawl is reaching its limits as it is met by the fundamental shift in American demographics that has shifted the exodus of families out of the cities and into the suburbs back into the denser developments. Across the country, demand for single family housing has been falling sharply while condominium sales are still maintaining healthy growth and city centers are experiencing a renaissance.

America will add roughly 43 million new residents—that's 2.7 million new residents per year—between now and 2020. America is not only growing but also undergoing dramatic demographic changes. The traditional two-parent household with children is now less than a quarter of the population and getting proportionally smaller. Single-parent households, single-person households, empty nesters, and couples without children make up the new majority of American households, and they have quite different real estate needs. These groups are more likely to choose higher-density housing in mixed-density communities that offer vibrant neighborhoods over single-family houses far from the community core.\(^1\)

The need to rethink density and our extended city centers goes beyond the issue of changing population demographics. Social theorist Richard Florida posits a primary shift in the character of first-world societies to a knowledge-based rather than labor-based economic system, which has in turn given rise to a powerful ‘creative class’:

There can be little doubt that the age we are living through is one of tremendous economic and social transformation. Roughly a century ago, our economy and society changed from an agricultural to an industrial system. The change that we are undergoing today is at least as large as that one, and brings with it sweeping implications for the way we work and live, the nature of family and community structure, and the role and function of urban centers.\(^2\)

In the United States, where creative workers made up only 15 percent of the workforce in 1950, they now command 30% of jobs and 47% of wages. The talent that drives the new economy hungers for the social conditions found in denser urban environments rather than what might be considered the traditional, close-knit, exclusive American community. This, posits Florida, is of particular importance as it appears that the creative class

\(^1\) ULI, Higher Density Development, 6

\(^2\) Florida, R. Cities and the Creative Class, 3
draws jobs to where they choose to locate rather than the converse:

In reality, people were not making the career decisions or geographic moves that the standard theories said they should: They were not slavishly following jobs to places. Instead it appeared that highly educated individuals were drawn to places that were inclusive and diverse...From my perspective, creative people power regional economic growth, and these people prefer places that are innovative, diverse, and tolerant.3

The Urban Land Institute applies Florida's concepts to the need for higher density development:

Another emerging body of research suggests that higher density development is an important component of economic development initiatives and helps attract new employers...[Knowledge workers] seek out vibrant, diverse urban centers that offer access to technology, other knowledge workers, and lifestyle. The economic development game has changed. Employers now follow the workers rather than the other way around. Therefore, communities that focus on providing a high quality of life with the energy and vitality created by urban centers will be much more likely to attract these highly prized, talented, and productive workers than communities of faceless sprawl. Studies have shown that increasing employment density increases labor productivity, generally by reducing commuting times. Thus, introducing higher-density projects into a community will actually increase that community's revenue without significantly increasing the infrastructure and public service burdens...Increasing density provide a real economic boost to the community and helps pay for the infrastructure and public services that everybody needs.4

The Argument for Transit Oriented Development

In recent decades, urban planners, architects and local officials have worked to find counter-projects to the suburban exodus, often achieved through revitalizing the historic city centers and the initiation of transit oriented developments.

Once upon a time, transit oriented development was the norm in the United States. Railroad technology evolved along with the growth of the nation and enabled expansion ranging from the early, compact streetcar suburbs to the far-flung, geographically isolated communities which emerged along the rail lines crisscrossing the continent. These railroads, along with the cities, towns, manufacturing and agriculture that they connected, provided the framework for the dynamic American economy and allowed the vast country a sense of connectivity and cohesiveness.

The early metropolitan centers in the United States were shaped dramatically by the rail lines that served them. Many of the historical suburbs can trace their urban forms to the location of eighteenth and nineteenth century rail depots. These transit cities, even suburban ones, were compact, walkable and had clearly defined borderland separating the built from the bucolic. America's original transit network reached its peak in 1926, bringing more than 17.2 billion people where they needed to go via streetcar, subway and bus.5

However, by the middle of the twentieth century, it seemed that this way of living had changed for good with the advent of the age of the automobile.
The automobile certainly provided United States citizens with the freedom and lifestyle choices that have become synonymous with the American way of life. No longer do you have to wait for a train or be bothered by an unseemly passenger on the public transportation system. Instead, hop into your newly purchased automobile and take yourself to any given destination on your own timetable and in a controlled environment.

This shift from a public transit based way of life to an automobile-centric society was not a fully organic process that emerged directly from the desire of the populace. Rather, as sociologist Eric Schlosser points out, powerful lobbyists from car-related industries were able to exert pressure on the government to finance the high cost of constructing our nation’s roadways, a privilege that had not been available to the railroad industry in its nascence.

The automobile industry, however, was not content to simply reap the benefits of government subsidized road construction. It was determined to wipe out railway competition by whatever means necessary. In the late 1920s, General Motors secretly began to purchase trolley systems throughout the United States using a number of front corporations...More than one hundred trolley systems in all were purchased by GM and the completely dismantled, their tracks ripped up, their overhead wires torn down. The trolley companies were turned into bus lines, and the new buses were manufactured by GM.\(^6\)

So, perhaps dependence on the automobile is not a trait hardwired into our very humanity, but rather a learned behavior encouraged by profiteers and interested parties.

However, it would be untenable to suggest that the suburban forms that have developed around the automobile were purely a result of corporate finagling and the influence of big industry over the lives of individual citizens. Long before the automobile became so pervasive, upper and middle class Americans were already fleeing the overcrowded city centers to find respite from the urban conditions in the borderlands just outside their edges. Dolores Hayden traces this historical shift back as far as 1820:

One by one, American middle class families chose to reside at the edge of the city rather than in the center... a place where prosperous families who disliked urban congestion might set up housekeeping, lured by the scenic charm of living near farmers’ fields and woods.\(^7\)

The Argument for Working Within the Sub-Urban Condition

Hayden’s point underscores the fact that simply revitalizing city centers will not meet the needs of a public that demands a new kind of density. Although there is a renewed desire for density and access to multiple transit infrastructures, there are still barriers to that major urban influx this might suggest. Cities are often (perceived as being) congested, difficult to navigate, polluted, expensive and dangerous. The suburbs are unsustainable. Rather, there must be a medium between the condition of the city and the condition of the suburb.

The project of new urbanism has made an attempt to resolve the issues of sprawl through the realization of higher density, mixed-use, pedestrian and mass transit-friendly neighborhoods based on historical models of the early nineteenth century. Criticisms lodged against new urbanism run the gamut from misguided nostalgia to the perpetuation of homogeneity. However, perhaps the most fundamental shortcoming of the movement is that it is itself a form of
sprawl. Its strategy replaces one format with another that has many similar characteristics, instead of looking outside typological bounds.

Particularly ignored by the projects of new urbanism and core revitalization is the potential represented by the peripheral conditions found on the outskirts of major cities. This relatively low FAR “grey goo” of light industry, shopping plazas, office parks, infrastructure and lower-income residential is typified in the American imagination by the post industrial wastelands of New Jersey. This territory and the attendant imperative to improve it have been identified by Alexander D’Hooghe:

Recent planning literature confirms over and over again the simultaneity of two development trends. One is ex-urban, or development of the outer fringes of suburbia with extreme low-density residential development. The other is the gentrification of historic cores, the revitalization of city centers attracting new development for a number of niche audiences (upper middle classes, artists, PIBs). Between those two areas, a vast, diffuse terrain exists to which comparatively little investment is flowing. This ‘middle ring’ area does not even have a name, yet it consists of a great mass of middle and especially lower middle class housing and commercial infrastructures. It is a carpet development, the result of previous waves of suburbanization yet never properly updated or developed into a series of identifiable urban or suburban districts. We may call this zone the ‘GREY GOO’ of major cities: the sea of scattered post-urban fragments between the gentrified downtown and the exurban frontier.

The confluence of infrastructure, public transportation, and peripheral condition makes this type of site ideal for the scheme of the thesis. The ‘grey goo’ functions as a soft edge of the urban fabric in the transition to more typically suburban forms. With the visual and psychological reference of the city on the horizon, the low density site can absorb the shock of intense development. While the site lies outside the city (geographically) it is very much of the city, as the city could never survive without its outlying hubs. The inter-modal interfacing, proximity to urban and suburban destinations, and simultaneous isolation provide an opportunity for the amorphous terrain to acquire a more legible contour, a more viable community, and become a stronger contributor to the local economy.

8 D’Hooghe, Studio Brief
CHAPTER 2

HYPOTHESIS
CASE STUDIES / DETERMINING F.A.R.
One fundamental question being posed by this thesis is the degree of density that can be established in an all-encompassing and non-contextual project. When one is operating in an urban context there are some assumptions that can be made based on the surrounding density, whether the project site is in Manhattan, Boston, San Diego or anywhere else. In the case of this project, which attempts to insert a development of maximum density in a low density, suburban context, there are not the same cues, as in the case of the city, in the built environment to suggest anything about the scale or size of the development.

Furthermore, there are few, if any, comparable cases which one can use as a point of comparison. While there are projects that exemplify certain aspects of the idea, none match all of the parameters. For instance, the Destiny USA project being built on the edge of Syracuse, NY is imagined as a high density, mixed use, consumer oriented experience, however, its premise has no relation to the ideals of transit oriented development. And, while there is a great history of transit developments in the US and abroad, from the Rosslyn, Virginia to Canary Wharf in London, these tend either to be low density, essentially suburban new urbanist projects or high density developments located in major metropolitan areas.

In order to begin to get an idea of what sort of density may be sustainable and appropriate for the project site, a series of case studies of high density and transit oriented developments was undertaken with two objectives in mind. On one hand, these projects would be analyzed to help determine what sort of net FAR could be implemented in the project. Furthermore, investigation of these cases was intended to help generate a series of guidelines for successful development.

The case studies considered in this analysis included, among others: Arabianranta, Helsinki, Finland; One-North, Singapore; Potsdamer Platz, Berlin, Germany; The Prudential Center, Boston, MA; The Rosslyn-Ballson Corridor, Arlington, Virginia; The Lindbergh Center, Atlanta, Georgia; Tyson’s Corner, Virginia; Canary Wharf, London, England; Euralille, Lille, France; Zlote Tarasy, Warsaw, Poland; Museum Plaza, Louisville, Kentucky; and Mockingbird Station, Dallas, Texas. In the following pages a selection of these precedents are presented and analyzed in formation of the guidelines for this thesis.
Rosslyn-Ballston Corridor
Virginia USA

Project Data

Land Area:
Location: across the river from Washington, DC
Year:
Major Actors:
Initial Conditions: deteriorating corridor
Transit: Metro rail, double ridership
Bus Service: buses
Roads:

Total Development:
FAR: 2.5-5, possible variances up to 10
Office: 45,998,870 sq ft
Retail: 42,143,453 sq ft
Residential: 35,019 units
Hotel: 14,858 rooms
Structured Open Space:

Parking:
Workers:
Population:
Median Household Income:

Additional Amenities:
Special Features:
Major Tenants:

Investment:
Euralille
Lille, France

Project Data

Land Area: 175 acres
Location: regional capital of northeastern France
Year: 1991-1995
Major Actors: City of Lille, Private equity companies
Initial Conditions:
Transit: TGV, 2 new metro lines, pub trans up 77%
Bus Service: trains and buses

Roads:

Total Development: 739,640 sq m

FAR:
Office: 308,252 sq ft (45,000 sq m)
Retail: 98,423 sq m
Residential: 176,803 sq m (1,200 units)
Hotel: 200 rooms / 45,032 sq m
Structured Open Space:

Parking: 6,000 spaces
Workers: 6,000 jobs
Population: 200,000
Median Household Income:

Additional Amenities: public facilities 83,130 sq m
Special Features: concert hall, business school
Major Tenants:

Investment: 800,000,000 Euros
The Prudential Center
Boston, MA

Land Area: 23 acres
Total Development: 3.2 mil sf
FAR: 2.0 - 10.0
Retail: 620,000 sf
Office Space: 2.6 mil sf
Residential: 780 units
Hotel: 3,000+ rooms
Parking: 3,660 spaces
Amenities: 175,000 sf conference space, close to Back Bay, Newbury St
Highway access: Rte 90
Transit Access: MBTA
Secaucus Junction Area Vision Plan
Secaucus, NJ

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Area</td>
<td>231 acres</td>
</tr>
<tr>
<td>Total Development</td>
<td>122 acres</td>
</tr>
<tr>
<td>FAR</td>
<td>0.4 - 1.0</td>
</tr>
<tr>
<td>Retail</td>
<td>500,000 sf</td>
</tr>
<tr>
<td>Office</td>
<td>300,000 sf</td>
</tr>
<tr>
<td>Residential</td>
<td>1,850 units</td>
</tr>
<tr>
<td>Hotel</td>
<td>350-500 rooms</td>
</tr>
<tr>
<td>Parking</td>
<td>1.6 spaces/unit</td>
</tr>
<tr>
<td>Amenities</td>
<td>40,000 sf conference</td>
</tr>
<tr>
<td></td>
<td>93 acres open land</td>
</tr>
<tr>
<td></td>
<td>art/theater</td>
</tr>
<tr>
<td>Highway access</td>
<td>Rte 95</td>
</tr>
<tr>
<td>Transit access</td>
<td>NJ Transit</td>
</tr>
</tbody>
</table>
Canary Wharf
London, England

Project Data

- **Land Area:** 33 ha / 86 acres
- **Location:** 5 km east of London's CBD
- **Year:** First tenants move in 1991
- **Major Actors:** Canary Wharf Group, Morgan Stanley, Brascan Group
- **Initial Conditions:** Cargo warehouses serving docklands
- **Transit:** Jubilee line, Docklines Light Railway (DLR)
- **Bus Service:** 30 buses per hour, 1,500 people per hour
- **Roads:** Docklands Highways (opened 1993)

Total Development: 1.3 million square meters
- 10 million sf to date, 7 million still available
 - **Office:** 932,642 sf
 - **Retail:** 450,000 sf
 - **Residential:** 300 apt in Canary Riverside
 - **Hotel:** Four Seasons in Canary Riverside

- **Parking:** 3,000+
- **Workers:** 63,000 and rising

- **Additional Amenities:**
 - **Special Features:** 1.75 million sf 50 story skyscraper
 - **Major Tenants:** Six of London’s top twelve financial institutions have long term leases
"The rationale for choosing Lindbergh was clear. The station, the second busiest in the system, was situated at the junction of two MARTA lines. "I told everybody that we should go with our best property first... if anything was going to generate interest, it had to be our best piece of property." - Ditmars, 179

Project Data

Land Area: 47 acres
Year: Major Actors: Bell South, MARTA, Carter and Associates (developer)
Initial Conditions: low density, aging, strip development, parking
Transit: Lindbergh Center stop MARTA
Roads: I-85, GA 400

Total Development:
 Office: 2,500,000 sf
 Retail: 300,000 sf
 Residential: 1,300 units
 Hotel: 160 rooms
 Parking: 10,461 spaces (2.24:1,000sqft)

Additional Amenities: Cinema

Total Investment: Returns:
Case Study Analysis

<table>
<thead>
<tr>
<th>Finding net FAR</th>
<th>RB corridor</th>
<th>Lindbergh</th>
<th>Canary</th>
<th>Rosslyn</th>
<th>Prudential</th>
<th>Secaucus</th>
</tr>
</thead>
<tbody>
<tr>
<td>office</td>
<td>25,998,670</td>
<td>3,000,000</td>
<td>9,326,642</td>
<td>11,322,170</td>
<td>2,600,000</td>
<td>300,000</td>
</tr>
<tr>
<td>retail</td>
<td>4,231,453</td>
<td>300,000</td>
<td>450,000</td>
<td>595,903</td>
<td>620,000</td>
<td>500,000</td>
</tr>
<tr>
<td>residential</td>
<td>35,019,000</td>
<td>1,300,000</td>
<td>300,000</td>
<td>12,338,000</td>
<td>780,000</td>
<td>1,875,000</td>
</tr>
<tr>
<td>hotel</td>
<td>14,858,600</td>
<td>160,000</td>
<td>200,000</td>
<td>2,385,000</td>
<td>3,000,000</td>
<td>500,000</td>
</tr>
<tr>
<td>total dev</td>
<td>58,600,000</td>
<td>4,760,000</td>
<td>17,000,000</td>
<td>26,641,073</td>
<td>7,000,000</td>
<td>3,175,000</td>
</tr>
<tr>
<td>land area</td>
<td>43,560,000</td>
<td>2,047,320</td>
<td>3,553,090</td>
<td>10,280,160</td>
<td>1,001,880</td>
<td>5,310,324</td>
</tr>
<tr>
<td>net FAR</td>
<td>1.3</td>
<td>2.3</td>
<td>4.8</td>
<td>2.6</td>
<td>7.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Adjusting FARs to project area 1,368,478 sf

<table>
<thead>
<tr>
<th>Adjusting FARs to project area 1,368,478 sf</th>
<th>office-adj</th>
<th>retail-adj</th>
<th>res-adj</th>
<th>hotel-adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>office-adj</td>
<td>816,779</td>
<td>2,055,272</td>
<td>3,592,170</td>
<td>1,507,189</td>
</tr>
<tr>
<td>retail-adj</td>
<td>132,935</td>
<td>200,527</td>
<td>173,318</td>
<td>79,326</td>
</tr>
<tr>
<td>res-adj</td>
<td>1,100,156</td>
<td>868,951</td>
<td>115,545</td>
<td>1,642,414</td>
</tr>
<tr>
<td>hotel-adj</td>
<td>466,778</td>
<td>106,948</td>
<td>77,030</td>
<td>317,487</td>
</tr>
<tr>
<td>total dev-adj</td>
<td>2,516,646</td>
<td>3,181,699</td>
<td>3,958,064</td>
<td>3,546,416</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9,561,371</td>
<td>818,202</td>
</tr>
</tbody>
</table>

Mix Analysis

<table>
<thead>
<tr>
<th>Mix Analysis</th>
<th>office mix</th>
<th>retail mix</th>
<th>residential mix</th>
<th>hotel mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>office mix</td>
<td>32%</td>
<td>63%</td>
<td>91%</td>
<td>42%</td>
</tr>
<tr>
<td>retail mix</td>
<td>5%</td>
<td>6%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>residential mix</td>
<td>44%</td>
<td>27%</td>
<td>3%</td>
<td>46%</td>
</tr>
<tr>
<td>hotel mix</td>
<td>19%</td>
<td>3%</td>
<td>2%</td>
<td>10%</td>
</tr>
</tbody>
</table>
CONCLUSIONS

The highest net FAR calculated in the case study analysis was the Prudential Center at FAR 7. Many were significantly lower. Because this project has no urban context, and is trying to find the limits of suburban density, this FAR of 7 will be considered a lower benchmark for the project. The high end of the range for development would be FAR 10, which is approximately the density of midtown Manhattan.

7 PRINCIPLES FOR DEVELOPMENT

1. Connect with all available transportation infrastructure, and bring in more if possible

2. Create a singular environment that possesses a unique identity and brand, providing a competitive advantage over other local areas

3. Integrate the project with its immediate surroundings, both physical and community

4. Create value for local residents through meeting their local needs and incentives

5. Act sensitively to the local environmental conditions, and remediate where possible

6. Establish a framework and program mix that is both equitable and flexible.

7. Parking and the road network must directly and conveniently link into the project
CHAPTER 3
HYPOTHESIS
THE TRANSFER CONCEPT
Even more fundamental than the question of density in this development is the question of identity. What is the nature of this new suburban hub that is unique, what will be its brand? It is at once a destination and a way-station. As an intermodal crossroads one can find the central theme for development: TRANSFER.

The high density suburban development will need to be integrated into all possible forms of transit in a direct manner: trains, subway, cars, pedestrians, busses, bicycles, boats. It must be accessible to all and provide quick and simply movement between transit modes, as well as in and out of the overbuild development.

The goal of the project is to harness this force of transfer and find a way to create a better experience for the end user as well as providing a sound basis for real estate developers to create profitable investments. In order to achieve this, all of the transit/transfer activity must be linked together in a dynamic manner that feeds directly into the commercial activity of the development. A central zone of intermodal transfer must seamlessly flow between transit modes, overbuild, local context and parking. The basis lies in the logics of concentration and distribution.

The programmatic pieces generated for this scheme can also be determined around the concept of transfer. To find this, one must ask what services and destinations would be of value and use to a person who is moving through the development and making a transfer.

This transfer activity may be happening in many different scenarios. A suburban worker using transit to commute to work may want to drop off dry-cleaning or check e-mail, a downtown shopper may want to take a continuing education class, a young adult may wish to meet and mingle or get a drink, a business traveller may come for a conference or spend the night at a hotel, a new professional may want to live there for a few years while they transition (transfer) into a more adult lifestyle, and aging seniors may wish to locate here as they transfer between phases of life.

This project will find success by maximizing the transfer potential in all of its manifestations.
What will you do with your transfer time?

<table>
<thead>
<tr>
<th>Time</th>
<th>School</th>
<th>Residential</th>
<th>Retail</th>
<th>Service</th>
<th>Social / Ent.</th>
<th>Commercial Tenants</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td></td>
<td>Convenience</td>
<td>Express Workout</td>
<td>TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast food</td>
<td>Bank</td>
<td></td>
<td>Transfer Lounges</td>
<td>Corporate Outposts</td>
</tr>
<tr>
<td></td>
<td>Artist studios /</td>
<td>Chapel</td>
<td>Curves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>Jam space</td>
<td>Bars</td>
<td></td>
<td></td>
<td>Meet-up rooms</td>
<td>Social networking spaces</td>
</tr>
<tr>
<td></td>
<td>Airport terminal</td>
<td>Meditation</td>
<td>Spa</td>
<td>DMV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Duty Free)</td>
<td>Grocery Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 hr</td>
<td>Flea Market</td>
<td>Capsule Hotels</td>
<td>Restaurants</td>
<td>Gym</td>
<td>Yoga Studio</td>
<td>Movie Theater Nightclub</td>
</tr>
<tr>
<td></td>
<td>Day Care</td>
<td>Capsule Hotels</td>
<td>Restaurants</td>
<td>Gym</td>
<td>Yoga Studio</td>
<td>Movie Theater Nightclub</td>
</tr>
<tr>
<td></td>
<td>Mall</td>
<td>Conventional Hotels</td>
<td>Big-Box</td>
<td></td>
<td></td>
<td>Conference Center</td>
</tr>
<tr>
<td>1 day</td>
<td>One day seminars</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weekend retreats</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continuing Education</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 wk</td>
<td>Apartment Hotels</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Call Centers</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mo</td>
<td>Technical School</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apartments for local employees</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Jersey Transit</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Jersey Port Authority</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Jersey Meadowland Commission</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Community College</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loft Apartments</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Jersey Highway Administration</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elementary School</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Senior Housing</td>
<td>Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 PRINCIPLES FOR DEVELOPMENT

1. Have all transit modes interface in a single transfer zone

2. Allow for vertical mixing and movement from and through the transfer floor into the build-out

3. All access must pass through the central transfer area

4. Mix uses, allowing shifting forces to dictate flexible, changing use structures

5. Locate highest density area along the highway

6. Link the project area into the surrounding landscape

7. Sculpt the build-out to achieve maximum site benefits such as solar and views

8. Vary floor plates for public/private uses
CHAPTER 4

THE TEST SITE

SECAUCUS JUNCTION, NEW JERSEY
SECAUCUS JUNCTION IN THE SUBURBAN CONTEXT

GPS data (left) shows the site in the population demographics of the region. Most striking is that the site sits in a totally empty zone, devoid of significant development or a local population. It is a huge gap in the density gradient radiating out from Manhattan and into the New Jersey suburban landscape. This large swath of undeveloped land is taken up by in parts by the meadowlands, large and somewhat defunct industrial/warehouse districts, a rail yard and postal headquarters, in addition to open parcels in need of degrees of remediation.
SECAUCUS JUNCTION / THE TRANSFER CONCEPT

Secaucus Junction is an ideal site to test the implementation of this scheme because of the confluence of infrastructure on the site and the presence of an existing transfer station. As seen in the New Jersey Transit map to the left, nearly every line of the New Jersey Transit system passes through the Secaucus Junction Station. The station was built explicitly for this purpose, as before it was built New Jersey Transit trips originating in Bergen and Passaic counties terminated in Hoboken Terminal, forcing passengers to switch over to the PATH or ferries to get to Manhattan and adding an average of 15 minutes to commuting times. Currently serving 10,000+ commuter a day, Secaucus Junction has a tremendous potential to harness the forces of transfer.
As seen to the immediate left, in addition to the New Jersey Transit link, Secaucus Junction conveniently and closely connects to many important sites within a five mile radius, such as Manhattan, the Meadowlands complex, Newark Airport, Hoboken, Jersey City, and Newark. In addition, the New Jersey Turnpike runs directly along the edge of the site and there are potential opportunities to bring in additional transit modes such as the PATH, the Hudson-Bergen light rail and even potentially the #7 subway from Manhattan.
CURRENT SITUATION AND EXISTING VISIONS FOR SECAUCUS JUNCTION

As it currently stands, the potential of the Secaucus Junction transfer station is clearly being under utilized. Right now, there is absolutely no development supporting the transfer station, and not even anywhere to park at the site. It is accessible only to those who are actively transferring between lines of the New Jersey Transit, and there is nothing for those people or anyone else at the site to do. There are two major camps in envisioning the future for Secaucus Junction, both problematic and both of which have failed to get off the ground yet in any significant way.

The Secaucus Junction Area Master Plan (top right) is a low density (0.5 net FAR), transit village/new urbanist development that does not capitalize on the many particular advantages of the site either in plan or program. The alternative developer scenario, as illustrated top left may take advantage of the development potential at the site, but fails to realize any specificity about the site or the program, simply grafting large plate Manhattan style buildings into a corner behind the station.
CHAPTER 5
METHODOLOGY
THE PARTIS
In order to test the hypothesis about the insertion of high density development in the suburban context, a series of parti diagrams were developed to be deployed at the test site.

These parts aim to maximize density, integration and experience both specific to the site and in a general manner that could be used in other contexts or sites with minor adjustments.
Create a platform 1/4 mile in diameter

A circular platform with a diameter of 1/4 mile forms the base for this development. The top floor of the platform, which actually lies 16 ft. below the ground level and the train tracks, will be the transfer floor, and the plate size was chosen to accommodate the transfer function and keep the time it takes to traverse the station hall to a minimum. Below the transfer floor there are two levels of parking and the bottom level for service and storage.
Connect the project into the highway infrastructure via a ring road and interchange

It is crucial to this project that it be easily and directly accessible from the highway, so that people can drive directly there either to transfer onto public transportation or as a destination. To this end, an interchange with the New Jersey Turnpike is create on the site that funnels traffic onto a ring road around the project for drop off or to the parking levels below.
Split the rail lines so that each line has its own track

With the current configuration on the site all of the rail lines come through that station on the same right of way. In order to create a dynamic transfer zone rather than mono-functional platforms, the rails are split so that as they enter the station each is on its own track. The east west lines pass through the space 16 ft. above the transfer floor datum, and the north-south lines 32 ft. above.
Identify access points and the desire lines that connect them to one another

Access points are determined around the periphery of the transfer floor. These points will provide access to the rail lines above, to the surface of the roof/green space above, and directly into the overbuild development. Finding all of the desire lines between these access points will help shape the development on the transfer floor and above.
Insert platforms and escalators

At the access points which are determined to be used for connecting the train platforms to the transfer floor 16 and 32 feet below, vertical movement is introduced through stairs, escalators and elevators. However, this vertical movement only connects the platforms to the transfer floor below and not directly to the parking, roof or overbuild. This helps to force all pedestrian traffic to move through the transfer floor are, dynamically activating it.
Define the negative space around the desire lines

Extruding these spaces will allow the emergence of a floor plan that resembles an organic urban plan. Arranging the floor plan around the desire lines will allow for quick movement between the various access points and platforms while also providing clear, open lines for visual clarity and to assist in way finding.
Extrude the intermediary spaces into volumes

The volumes are extruded to different height depending on function: kiosks are extruded 10 feet, secondary support for the rail line are extruded 16 and 32 feet, and primary support for the overbuild is extruded to the level of the green space 48 feet above the transfer floor. Also, some volumes are extruded as elevators which will travel through the open air up 30 stories into sky lobbies above. (See diagram on page 56)
Lay down a connective green framework

The green space serve multiple purposes. It creates a second plane for access into the build-out and movement across the space of the development 50 feet above the transfer floor. Flying over the highway and existing rail infrastructure and touching down on the other side, it allows the surrounding green spaces of the meadowlands and parks to flow over and through the infrastructure and the project. Paths or even roads may be laid down on this surface as well.
Extrude the build-out footprint around the circumference of the platform

A ring around the platform 160 feet wide is extruded straight up to a maximum height of 80 stories. In addition, 160 foot wide swaths along the highway and facing south are extruded, beginning to define the area along the highway as the high density zone.
Cut down the build-out into zones of high and low density

The areas of the build-out closest to the highway are assigned as the high density zone in order to emphasize the visibility and impact of the project from the perspective of the driver, as well as to maximize views out of all areas of the build-out. This configuration also minimizes the shadows cast by the tall buildings onto the central green / glazing.
Cut down the build-out to create floor plates, maximize sun and views

The areas at the bottom of the development are kept continuous to allow for larger floor plate uses such as retail. The structure can then split out into floor plates suitable for smaller floor plate size uses, such as office, hotel and residential. Larger floor plates are then reintroduced at a higher level, up 30-60 stories, in order to create a secondary public level which has direct access from the transfer level below and may contain public programming such as civic, cultural, educational or retail. Towers extend above.
Fill in the open spaces between the green and the build-out with glazing

Glazing the roof structure allows the transfer floor area beneath to function as a single space. With glass covering more than 50% of the roof area natural light will reach the interior station spaces below. One section of the glazing is reserved for the integration of a translucent ice skating rink that hangs over the transfer floor.
The proceeding page shows the partis on the site fully assembled and inhabited by people, landscaping, cars and trains.

This drawing also illustrated some of the possibilities for integrating this project into the surrounding area.

On one hand, the project could be used to create a firm boundary for development that will not be overstepped, as illustrated in the bottom right of the drawing. The green spaces of the roof structure would simply peter out into the land and merge directly into the landscape.

On the other hand, it is also possible that this project could act as a catalyst for additional development, as indicated in the bottom left and top right. Roads could come in and run through the green spaces on the roof connecting the quadrants separated by infrastructure, which could be developed thematically, for instance as recreational, educational, retail and commercial/office zones.
CHAPTER 6
RESULTS
SECAUCUS JUNCTION, NEW JERSEY
This chapter presents the deployment of the parti diagrams on the site of Secaucus Junction, New Jersey in a more detailed, architectural manner than the schematic partis above.

Right: the project in the site, as seen from Hoboken
Transfer Floor Plan
Programming / Use
The section through the entire project shows the large floor plate area of the transfer floor with its accompanying parking and service level. The blue vertical volumes connect the parking, transfer floor and habitable roof space. Some circulation cores, as seen in the background, move up straight through the open air and provide direct access into the larger floorplate skybridge areas of the mega-structure, which function as a second level of public space 30-60 stories above the ground.

The towers are not nostalgic. They borrow and extend the logics of concentration and distribution. They re-concentrate vertical movement which would suggest internal priorities of space by being the most adjacent to points of entry.¹

¹ Voorhees, May 22
The section to the right emphasizes the vertical organization within the transfer zone. The station hall / transfer area is highlighted in the red box and includes the transfer floor itself and the train lines that pass through the open space above it on two levels.

The choreographed exchanges between distribution (as in the initial dispersal of trainlines) and concentration (as in the vertical movement in elevators at points of exchange between levels) set up a dynamic of congestion and release within the public spaces. The intensity of movement varies both according to time of day (as the rush hour traffic pushes its active capacity) and to the potential circulatory redundancies (taking multiple combinations of elevator, escalator, and paths to reach consistent destinations).¹

The following pages contain perspective renderings taken at different elevations within this section.

¹ Voorhees, May 22
This perspective illustrates the form and activity of the roof structure, including the translucent ice skating rink, circulation volumes emerging from the transfer floor below, the roof structure, the green network, the overbuild and the skies beyond.
As one arrives via train into the station transfer area, one is able to appreciate the entire space, activity and organization from above. Also one can see up through the glazed roof and apprehend the development and parks above.
Traveling on the plane of the transfer floor, one moves through trajectories that point you towards your goal, whether it be entering the overbuild, transferring lines or visiting the parks above. Although the plan is complex the space is easy to navigate and the visual cues of the rail lines and circulation volumes rise up above the floor level.
The diagrams to the right demonstrate diagrammatically the programmatic mixing that could be implemented within the envelope of the build-out. Functions and program types can organize themselves in large blocks or smaller cells, finding appropriate adjacencies and reorganizing themselves and cannibalizing one another over time as market forces dictate.

On the following pages, a series of diagrams illustrate possible scenarios for construction phasing.
phasing 1/4 sections

phasing the transfer floor

phasing 2/4 sections

phasing the overbuild
phasing the green network and roof

phasing the entire project in sections
phasing 3/4 sections

phasing 4/4 sections
The city then becomes an autonomous entity forced to account for itself, for its history, its collective life, through memory, and realized from the logical construction of architecture that would be its way of realizing itself, its own form.¹

This thesis examines a point of emergence, a moment where a new paradigm for city form is born of necessity and desire. This emergence does not stand on its own, but rather follows in a grand tradition of the history of architecture, society and urbanism conflating to define the urban image, experience and form. The city, defined as an autonomous entity most famously by Aldo Rossi, has a history and trajectory of its own, which folds back upon itself in a perpetual self-correcting manner. Peter Eisenman comments:

Into this new idea of process Rossi reintroduces the elements of history and typology, but not as nostalgia for narrative or a reductive scientism. Rather, history becomes analogous to a "skeleton" whose condition serves as a measure of time and, in turn, is measured by time... For Rossi, architecture's history lies in its material; and it is this material which becomes the object of analysis -- the city. Typology, on the other hand, becomes the instrument, the "apparatus"...of time's measurement; it attempts to be both logical and scientific. The skeleton and its measuring apparatus become the process and ultimately the object of the autonomous researcher.²

In his article on Aldo Rossi, published in the Oppositions Journal, Raphael Moneo summarizes Rossi's concept of the evolution of the autonomous city:

The problem of the city, Rossi says, grows out of "the end to political and physical homogeneity which followed the coming of industry...a first stage can be discerned in the destruction of the fundamental structure of the medieval city based in absolute identity between dwelling and workplace within the same building." The breakdown of the duality, dwelling/work, whose continuity was taken for granted until the appearance of industry, would then be responsible for the current disjunction that has turned the problem of the city into a problem of housing, with its well-known social implications. Rossi says, "the second, decisive, stage begins with the progressive industrialization provoking the definitive split between residence and work and destroying the relationships of neighborhood." Rossi continues that "the third phase in the changing city starts with the beginning of individual means of transportation." Here Rossi must face an objection: the attempt to look at how "the new dimension" might change the substance of urban facts: that is to say, the new scale.³

The process of the formation of the character of the city which Rossi describes can be understood as a series of major paradigm shifts in the essential modes and manners of living. These shifts did not come about gracefully or gradually, but rather with a shocking brutality born from the failures and incapabilities of the existing social structures and their attendant physical manifestations in city form to support the life and lifestyle of the city's inhabitants.

In the medieval city, politics was form. The populace was made up of serfs, the city belonged to and was formed by the political power structure which controlled and defined the lives of all its citizens. However, by the time of the industrial revolution, this was no longer a sustainable dynamic within the city or society. Population growth and socio-cultural advances bred a zeitgeist that demanded a new paradigm for living in and organizing the city.

The industrial revolution brought this amor-

¹ Moneo, 113
² Eisenman, 5
³ Moneo, 112-113
phous sentiment to bear on the physical forms, structures and organization of the city. As Moneo reads Rossi, with the industrial revolution so came an entirely new way of living and living in the city. Peasants and farmers moved into city centers from the surrounding farmlands to work in the new factories and plants. Now the city had to answer to this new demographic and shift its character to support their new needs. No longer did the city function only as an extension of the power structure. In the spirit of industry, it now became a machine to facilitate the lives and living of the new city dweller who was not an artisan living, working and even subsistence farming on his own land, but a mass of free and unencumbered individuals with new needs for housing, sustenance and social interaction.

However, the massive influx of the world’s industrialized populations into the cities was not an indefinitely sustainable paradigm. Just as the city that was hewn by politics could no longer support the new industrial reality at a certain point, so too the city of industry eventually became an outmoded model for living past the industrial breaking point. This led to the next major realignment in the character of the city, one which Rossi understands as a suburban exodus following the advent of pervasive automobile ownership and usage.

However, just as the industrial revolution was as much about the failure of the existing social structures as the positive impact of industrialization, so too the shift in living from urb to suburb was as much, if not more so, a result of the failures of the industrialized city than a byproduct of the age of the automobile. Long before the automobile became so pervasive, upper and middle class Americans were already fleeing the overcrowded city centers to find respite from the urban conditions in the borderlands just outside their edges. Dolores Hayden traces this historical shift back as far as 1820:

One by one, American middle class families chose to reside at the edge of the city rather than in the center...a place where prosperous families who disliked urban congestion might set up housekeeping, lured by the scenic charm of living near farmers’ fields and woods. These affluent families sought more delicate amenities than noisy urban centers could offer—pure air, pure water, access to fields and garden, meadows where children might play, lanes where women might walk, trees that would offer shady relief from the stifling summer heat of the city.4

Just as the natural forces of change and development rendered the medieval city and the industrial city obsolete through the failure of their forms to adapt to and support the new societal structures, so too the current suburban typology is coming under fire as unsustainable in our contemporary society. Surely for decades already theoreticians and social critics have bemoaned the suburban lifestyle, recognizing its inherent unsustainability and lack of civic quality. However, it only now that this model of living is truly reaching its breaking point in society, approaching the point of massive and cataclysmic failures that precipitates major changes in the form and image of the city.

Skyrocketing gas prices facing an uncertain future at best, a new knowledge-based, networked, global economy, and a population demographic no longer centered on families with children but including the powerful constituencies of the active retiree and the unencumbered young professional. Surely the old medieval or industrial models could never sustain this emerging milieu, but so too the suburban condition cannot support the civic quality and social experience

4 Hayden, Building Suburbia, 22
demanded by the new populace of the 21st century. The almighty suburb is perhaps finally facing its inevitable demise.

Just as the failure of the medieval city necessitated the new urban form of the industrial city, and in turn the failures of the industrial city gave rise to the suburban typology, so too the collapse of the suburb will inevitably be closely followed by the emergence of a new, more relevant urban form and existence. A simple return to previous manifestations of urban life will not meet the needs of the new public. The same barriers and failures that precipitated the suburban exodus in the first place still exist today; cities are often (perceived as being) congested, difficult to navigate, expensive and dangerous. The suburbs are unsustainable. Rather, there must be a medium between the condition of the city and the condition of the suburb.

This is the circumstance explored in the thesis project – what will be the new urban model that picks up the pieces following the collapse of the suburb and the continuing untenability of the historical city? It seems as though the central focus of this new typology will be based around interface and convenience, around movement and transfer, of goods and of people and of ideas. This can be achieved through exploring new adjacencies, breaking down historical boundaries and conglomerating dispersed functions into a quasi-centralized zone which is at once of the city, yet not in the city.

Hence the project of the new city finds itself located at the tangles of infrastructure lying on the outskirts of metropolitan regions, mediating between the fabric of the city and that of the suburb. These places, until today neglected and left fallow, scorned by developers and residents alike, possess the inherent dichotomy of being part of the city though physically outside its boundaries:

This thing is absurd because it makes sense. Its location makes sense not because it is in the middle of the urban but because it is simultaneously outside (geographically) and inextricable (the city cannot exist without these hubs). It follows a traditional location of a city, along transportation routes. Instead of propagating outwards, it propagates inwards, feeding of an intensity that made it manifest.5

The tangles of infrastructure attain such potency through their ability to support the expansion of the intermodal interface. In the modernist city, as read through the group form projects of urbanists and designers such as Josep Lluis Sert, the strategy was one of separation. Pedestrians move through one space, cars through another, public transportation in its own right of way. There is no, if any, interaction between modalities. The policy is isolation. The assumption, perhaps correct at the time, was that the users of different modes each had their own exclusive ends and goals which did not overlap.

For example, in the case of Sert’s Boston University Law School project, there is an assumption that one pedestrian flow would be completely internal to the project, moving through its courtyards and pathways. This zone of movement is completely isolated from the automotive traffic on the street and the pedestrians moving along the sidewalk passing between Kenmore Square and Allston. Despite his utopian intentions, Sert’s move has created a deadened space, underutilized and ignored by both the students and the larger community, stymied by its lack of integration and multi-functionality.

The project of this thesis proposes to turn the modernist intention on its head, consolidating and integrating various forms and trajectories of movement into a single space, a space of transfer. The scheme is defined...
by short-cuts and redundancies, producing a more urban condition than a didactic/fascist linearity. The logic of the project indeed is one of cyclical concentration and dispersion:

The choreographed exchanges between distribution (as in the initial dispersal of trainlines) and concentration (as in the vertical movement in elevators at points of exchange between levels) set up a dynamic of congestion and release within the public spaces. The intensity of movement varies both according to time of day (as the rush hour traffic pushes its active capacity) and to the potential circulatory redundancies (taking multiple combinations of elevator, escalator, and paths to reach consistent destinations).

This place of transfer, this new spatial condition of the post-suburban city, has an important role in creating an experience which is unique to the specifics of the place and the project. Indeed, the city has long been the space of experience:

The moving about that the city multiplies and concentrates makes the city itself an immense social experience of lacking a place—an experience that is, to be sure, broken up into countless tiny deportations (displacements and walks), compensated for by the relationships an intersections of the exoduses that intertwine and create an urban place but is only a name, the City. The identity furnished by this place is all the more symbolic (named) because, in spite of the inequality of its citizens' positions and profits, there is only a pullulation of passer-by, a network of residences temporarily appropriated by pedestrian traffic, a shuffling among pretenses of the proper, a universe of rented spaces haunted by a nowhere or by dreamed-of places.

The project of the thesis, however, seeks to give relevance, meaning and civic quality to an existence that until now was defined by its lack of definition. The person in transit is considered neither here nor there, not at the place one has left but also not yet arrived at the destination. Here this amorphous nature is reconstituted, given not only a space and a definition but indeed also a civic quality, activated by the new needs and desires of the rising transfer milieu. And this may be the key for the post-suburban city.
BIBLIOGRAPHY
Works Cited

D’Hooghe, Alexander. Towards a New Monumentality in Passaic, New Jersey: A counter-project based on the deployment of a series of public forms in the sprawling grey goo of what used to be called suburbia. MIT Spring 2006 Studio Brief

Voorhees, Jeremy (Adjunct Professor of Architecture, Rensselaer Polytechnic Institute). Notes on the Review. May 19th, 2006

