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Abstract

The MISES quasi 3-D design/analysis code implements a two-equation integral method with
empirical closure relations to solve the boundary layer flow problem with or without suction,
but lacks the option of flow control via blowing. The integral method is parameterized with
the shape parameter H = */6 which cannot be applied to the blowing problem since 0 -+ 0
downstream of the injection slot causing H - o - a computational disaster.

In this thesis, two alternate approaches are proposed to solve the blowing problem.
First, a two-equation integral method parameterized with the profile parameters of a multi-
deck representation of a turbulent jet based on Coles' law of the wake was formulated. The
appearance of spurious singularities in the Jacobian matrices associated with the system
of equations and the vector of unknowns prevented this method from being implemented.
Second, a Chebyshev spectral method using the wall function technique was applied to the
defect form of the incompressible viscous momentum equation. A turbulent jet profile was
computed with N = 40 modes, a number low enough to allow the method's implementation
into the MISES framework.

For the spectral approach, a stand-alone code was developed to solve laminar and tur-
bulent flow over a flat plate with the following configurations: solid wall, porous wall with
vertical suction/blowing, and fluid injection from an inclined slot. For the turbulent case,
the Reynolds stress was replaced with a composite model for the eddy viscosity based on
Spalding's law of the wall for the inner layer and Clauser's outer layer formulation. In the
laminar regime, N - 10 modes are required for an accurate solution whereas the two-layer
structure of a turbulent boundary layer increases this number to N - 100 modes. The

incorporation of a wall function, consistent with the inner layer eddy viscosity model, in
the approximation of the streamwise velocity, reduced the required number of modes by an
order of magnitude - a major computational advantage.

The more general Spalart-Allmaras turbulence model was implemented in the spectral
formulation to investigate the effect of using a wall function based on Spalding's law of the
wall. For the flat plate case (solid wall), a small inconsistency between the wall function and
the eddy viscosity model produced an erroneous shear stress near the wall. Nevertheless,
the velocity profile was in close agreement with an accurate representation constructed from
Spalding's law of the wall and Coles' law of the wake.

Thesis Supervisor: Mark Drela
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

The viscous/inviscid computational formulation and method of Drela and Giles [10] has
become an established tool in the aircraft industry for airfoil design and analysis work. It
has since been extended by Youngren [441 with the inclusion of streamtube thickness and

rotation effects, permitting application to turbomachinery cascades. Further developments
by Merchant [28, 29] have been to include boundary layer suction modeling in both the

airfoil and the cascade formulations. Application of these methods to aspirated transonic

compressor designs has been extremely successful, as described in Kerrebrock et al. [19, 20].

The ensuing research effort carried out on aspirated compressors in collaboration with

the NASA Glenn Research Center has produced more promising designs. For instance,
the loading limit with aspiration was doubled in the design of two high pressure ratio fan

stages. This result was successfully demonstrated both computationally by Merchant [30]
and experimentally by Schuler et al. [37] in MIT's Gas Turbine Laboratory. The aspiration

concept has also led to the development of an advanced aerothermal design system which

is an essential ingredient in the success of the program.

Figure 1-1: Aspirated compressor vis-a-vis a blown/aspirated compressor.

In an engine environment, however, it may not always be practical to use aspiration
without incurring a penalty. The low total pressure in a front fan or first stage of a com-
pressor makes it difficult to extract the flow. Alternatively, it may be more feasible to
aspirate in high pressure regions of the compressor and blow in low pressure front stages
(see Figure 1-1). The performance of a compressor could be improved by utilizing a suit-
able combination of both suction and blowing (see Figure 1-2). In order to investigate these
alternate designs, flow control via blowing would have to be an added feature in the current
suite of computational tools.
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Figure 1-2: Blowing/suction flow possibilities in a compressor.

1.2 Integral Methods for Suction and Blowing

The MISES1 quasi 3-D design/analysis code implements a two-equation integral method
with empirical closure relations to solve the boundary layer flow problem with or without
suction. The method is parameterized with the shape parameter H = 6*/, where * and
9 are, respectively, the displacement and momentum thicknesses. For flow with or without
suction, 3* and 0 are both positive indicating a defect in mass and momentum of the viscous
flow relative to the inviscid flow. Conversely, these thicknesses will be negative for a strong
blowing case since there is now an excess of mass and momentum in the boundary layer. As
the jet dissipates downstream, 6 -> 0 which will cause H -+ 00 - a computational disaster.

The value of the shape parameter is a good indicator of the state of the boundary layer.
For a favourable pressure gradient, H is small but for an adverse pressure gradient, H is
large. The comparison is usually made relative to the shape parameter values for a flat
plate with no pressure gradient and for separated flow. In the laminar regime, H e 2.6 for
a flat plate whereas at separation H ~ 4. In the turbulent regime, H J 1.3 for the flat
plate and H ~ 3 at separation. Suction profiles will always have H > 1 and be far from
the separation value. For a jet, the shape parameter values are meaningless since the ratio
of * to 0 is non-unique.

Solving the blowing problem via the two-equation integral method requires new closure
relations. In MISES, the skin friction, Cf, dissipation coefficient, CD, etc. are all functions
of the shape parameter H and Reo, the Reynolds number based on 0. These relations are
useless for a jet since H -+ 00 as 0 -> 0 and Reo < 0 whenever 0 < 0. Conversely, the
suction case requires no changes to these correlations since H > 1 and 0 > 0. In other
words, suction is treated in the same fashion as the solid wall case with the exception of
performing some record-keeping on the fluid removed from the boundary layer (i.e. source
terms in the integral equations).

In Chapter 2, an integral method parameterized with the profile parameters of a multi-
deck representation of a turbulent jet based on Coles' law of the wake [6] was proposed.
The blowing model does a fairly good job in approximating experimental jet profile data.
Consequently, the dimensionless form of both the von Kirmin integral momentum equation
and the integral Kinetic Energy (KE) equation were derived for each layer with the closure
relations modeled in terms of the profile parameters. It was discovered that the Jacobian
matrices associated with the system of equations and the vector of unknowns have spurious
singularities. Conversely, applying the model to a wake profile and using the integral ap-
proach yields a well-constrained system. Therefore, the application of the integral boundary
layer method to compute a multi-deck representation of a turbulent jet profile is inherently

'MISES is an acronym for Multiple blade Interacting Streamtube Euler Solver.
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difficult. An alternate approach would have to be found to efficiently compute the blowing

case within the MISES framework.

1.3 Spectral Method with Wall Function

In certain areas of computational fluid dynamics, spectral methods have become the pre-

vailing numerical tool for large-scale computations [17]. The three-dimensional direct sim-

ulation of homogeneous turbulence, computation of transition in shear flows, and global

weather modeling are typical examples. For many other applications, such as heat transfer,
boundary layers, reacting flows, compressible flows, and magnetohydrodynamics, spectral

methods have proven to be a viable alternative to the finite-difference and finite-element

techniques.

Spectral methods are characterized by the expansion of the solution in terms of global

and usually, orthogonal polynomials. Although originating in early-20th-century work of

Galerkin and Lanczos, numerical spectral methods for partial differential equations (PDEs)

were first developed by meteorologists in the 1950s. The expense of computing nonlinear

terms remained a severe drawback until the early 1970s when Orszag [31] and Eliasen et

al. [12] developed the transform methods that still form the backbone of many large-scale

spectral computations.

These methods and others used in fluid mechanics prior to 1970 are termed spectral

Galerkin methods. The fundamental unknowns are the expansion coefficients and the equa-

tions for these are derived by the techniques used in classical analysis. With the advent of

the computer, an alternate discretization was made possible. Termed the spectral colloca-

tion technique, the fundamental unknowns are the solution values at selected collocation

points and the series expansion is used solely for the purpose of approximating derivatives.

This approach was proposed by Kreiss and Oliger [22] and by Orszag [32] in the early 1970s.

Boyd [2]) divides spectral methods into two broad categories using a more generic clas-

sification: interpolating and non-interpolating. The interpolating methods (comprised of

the collocation or pseudospectral methods) associate a grid of points with each basis set.

The coefficients of a known function are found by requiring that its truncated series agree

with it at each point in the grid. In the case of a PDE, the associated residual is forced

to vanish at each collocation point. The non-interpolating category includes Galerkin's

method and the Lanczos tau-method [23]. There is no grid of interpolation points. Instead,
the coefficients of a known function are computed by multiplying its truncated series by a

given basis function and integrating. For a PDE, the residual is weighted by a given basis

function and integrated.

In Chapter 3, the use of a Chebyshev spectral formulation (Galerkin-type approach)

to curve-fit experimental turbulent jet profiles obtained from Zhou and Wygnanski [45]

demonstrated that few modes are required to capture the outer layer profile. The inner layer

could then be approximated using an appropriate wall function to complete the profile. The

wall function technique is a common strategy employed in current Navier-Stokes methods

to reduce the grid density requirements in the near-wall region. Spalding's law of the wall

[39] is a good candidate since it captures the turbulent inner layer profile for flat plate flow
and it has an eddy viscosity model associated with it.

The Galerkin form of the Chebyshev spectral method formulated with the defect form of

the incompressible viscous momentum equation was developed. Application of the method

to laminar flow over a flat plate with or without flow control was successful, as shown in
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Chapter 4. The solution to the analogous turbulent flow problem, described in Chapter 5,
required a large number of Chebyshev modes due to the two-layer structure of the boundary
layer. An algebraic model for the eddy viscosity based on Spalding's law of the wall for
the inner layer and Clauser's outer layer formulation [5] was implemented. Including a wall
function in the velocity approximation that is consistent with the inner layer eddy viscosity
model drastically reduced the number of Chebyshev modes. In the jet case, the number of
modes is low enough to have the method coded into the MISES framework thus allowing
design and analysis work on cascades with flow control via blowing.

1.4 Thesis Objective

The main objective of this thesis is:

9 To develop a computationally efficient model for boundary layers with blowing in
order to extend the capability of the MISES code to design turbomachinery cascades
with this flow control method.

1.5 Contributions

The following is a summary of the main contributions of this thesis:

" First demonstration of the inherent difficulties of applying the two-equation integral
method to solve the blowing problem with a multi-deck representation of a turbulent
jet velocity profile based on Coles' law of the wake.

" First application of the Galerkin form of the Chebyshev spectral method to the defect
form of the incompressible viscous momentum equation. Results for laminar and
turbulent flow over a flat plate with or without boundary layer control are in excellent
agreement with theory and/or experiment.

" First incorporation of Spalding's inner layer eddy viscosity model, in conjunction
with Clauser's outer layer formulation, within an algebraic turbulence model for the
spectral method described previously.

" First application of the wall function technique for the spectral method described
previously. An order of magnitude reduction in Chebyshev modes is observed for all
the test cases. Such a drastic drop in the number of modes can only be achieved if
the wall function is consistent with the inner layer eddy viscosity model.

" First incorporation of the Spalart-Allmaras turbulence model within the spectral for-
mulation as applied to the flat plate case with no flow control. The inconsistency be-
tween the wall function based on Spalding's law of the wall and the Spalart-Allmaras
eddy viscosity is observed with an erroneous shear stress near the wall.

1.6 Overview

The thesis is structured in the following manner. Chapter 2 applies the integral method to a
blowing model and spurious singularities are discovered in the Jacobian matrices associated
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with the system of equations and the vector of unknowns. Chapter 3 presents the Galerkin

form of the Chebyshev spectral method and applies it to a curve-fitting example. Chapter 4

applies the spectral method to solve the laminar incompressible boundary layer flow problem

over a flat plate with or without flow control. Chapter 5 solves the analogous turbulent flow
problem using an algebraic model for the eddy viscosity and then demonstrates the reduction
in modes achieved with the incorporation of a wall function in the velocity approximation.

Chapter 6 describes the Spalart-Allmaras turbulence model and applies it to the flat plate
case with no flow control. Chapter 7 summarizes the contributions of the thesis and offers
a few recommendations for future work. Appendix A presents the Falkner-Skan wedge
flows which are used for comparison purposes with the spectral solution. In Appendix B,
boundary layer separation in a diffuser is computed via the two-equation integral method
and the results are compared to those obtained from the spectral formulation.
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Chapter 2

Integral Method

An integral method parameterized with the profile parameters of a multi-deck representa-
tion of a turbulent jet based on Coles' law of the wake [6] is proposed. The blowing model
does a fairly good job in approximating experimental jet profile data. Consequently, the
dimensionless form of both the von Kairmin integral momentum equation and the integral
Kinetic Energy (KE) equation are derived for each layer with the closure relations modeled
in terms of the profile parameters. It was discovered that the Jacobian matrices associ-
ated with the system of equations and the vector of unknowns have spurious singularities.
Conversely, applying the model to a wake profile and using the integral approach yields a
well-constrained system. Therefore, the application of the integral boundary layer method
to compute a multi-deck representation of a turbulent jet profile is inherently difficult.

2.1 Blowing Model

Consider modeling a turbulent jet profile using a multi-deck representation as shown in
Figure 2-1. Coles' law of the wake [6] is used to express the velocity profile in each layer
given by

Top u=uy+(Ue-Uy) 1 - cos (rg-y , Y y 6,
(2.1)

Bottom u = uo + (Uy - Uo)) [1 - cos (7r)] 0 < y ! Y.

In these expressions, uo and uy are, respectively, the streamwise velocities at y = 0 and
y = Y. The boundary layer thickness is denoted by 6 and ue is the edge velocity (streamwise
component).

This simple model was applied to sets of turbulent jet profiles obtained from experiments
conducted by Zhou and Wygnanski [45] as shown in Figures 2-2 to 2-4. The data from three
jet strengths uOo/ujet = {0.085,0.59,0.381 each consisting of five profiles measured at 32,
100, 200, 300, and 400 mm from the slot location were used.

The experimental jet velocity was first normalized with its edge velocity such that Uexp
uexp/ue. Next, the MATLAB1 piecewise cubic Hermite interpolation technique was used to
approximate the profile with 181 points. The points were chosen by setting x = - cos O
with p ranging from [0, 7r] in increments of 7r/180 and then applying the transformation
y = (x + 1) /2 such that 77 = y/6 ranges from [0, 1]. Using the interpolated jet velocity

'The Mathworks, Inc., Natick, MA, http://www.mathworks.com
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Figure 2-1: Multi-deck representation of the jet profile.

Uint = Uint/Ue, the maximum velocity in each profile was set to U0 = uo/ue whereas the
minimum velocity in the outer layer was set to Uy = uy/ue. The location of Uy will be
Y/6 in the normalized q coordinate. Hence, the model profiles can be constructed and
compared.

Overall, the blowing model does a fairly good job of approximating the experimental
profiles. Figure 2-2 is a pathological case for the model since Y = 6 (where uy = ue). The
top layer cannot be used since the denominator of the cosine function blows up. The same
would be true for the bottom layer if Y = 0 (where uy = uo). Figures 2-3 and 2-4 represent
the types of profiles the model was intended to predict. Due to this close agreement between
model and experiment, there was substantial motivation to attempt to include blowing in
an integral formulation.

2.2 Integral Boundary Layer Equations

2.2.1 Turbulent Flow

The 2-D, steady, incompressible Reynolds-averaged continuity and x-momentum thin shear
layer equations governing the real viscous flow (RVF) in the turbulent regime are given by

u+ = 0 (2.2)
ax ay

a 2 1 I p 1 ar
(92) + a(UV) + =9 0.(2.3)

In these expressions, u and v are, respectively, the x- and y-components of the RVF velocity;
p is the mass density; p is the static pressure and T is the shear stress given by

T = p - pu'v, (2.4)
ay

where p is the dynamic viscosity and -pu'v' is the turbulent shear (or Reynolds stress).

2.2.2 Dimensional Form

Integrating across the shear layer (see Drela [9])
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Figure 2-2: Blowing model results: Jet strength uoo/ujet = 0.085.
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Figure 2-3: Blowing model results: Jet strength uco/ujet = 0.59.
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Figure 2-4: Blowing model results: Jet strength uoo/ujet = 0.38.
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j (Y2 [U - Ue) X (2.2) + (2.3)] dy, (2.5)

/1jY2 [(2 - u2) x (2.2) + 2u x (2.3)] dy, (2.6)

yields the dimensional form of both the von Kirman integral momentum equation and the
integral Kinetic Energy (KE) equation

± (pe) + peUe6d -i + T2 = p 2E 2 (Ue - U2) - p1E1 (Ue -ui), (2.7)

dd

d (pene0*) 2D - 2u1T1 + 2u2T2 = p2E2 (u2 - u) - p 1 E 1 (u2 - u). (2.8)

These equations involve the standard integral definitions for the displacement thickness *,
momentum thickness 0, and KE thickness 0* given by

* 1 - u ) dy, (2.9)

SY2(U Udy, (2.10)
JYi Ue Ue

6* (1 -2) dy. (2.11)
Y1 Ue Ue

The shear dissipation D and entrainment velocity E, which is the velocity component normal
to the demarkation line Y (x) as shown in Figure 2-5, are defined by

lu oudY
D T-audy and E = u - v. (2.12)

y1  ay dx

The pressure gradient term has been written in terms of the edge velocity ue. This comes
from the assumption that in a boundary layer

P (X, Y) p() = Pe (), (2.13)

where Pe (x) is the static pressure at the edge and using Bernoulli, it can be shown that

dPe due (2.14)
dx d

The edge density pe = p since the flow is incompressible.

For a single (solid) wall boundary layer, the integration is typically performed across
the entire layer. In this case, Yi is at the wall where ui = Ei = 0 and Y2 is outside the
layer where Ue - U2 = T2 = 0. This results in both righthand sides being zero and gives the
more familiar entrainment-free forms of these equations. For multi-deck representations of
confluent shear layers the entrainment terms will be present. Moreover, if flow control via
blowing occurs over a slot (usually inclined at some angle and flush with the surface), the no-
slip condition will not hold. Over the slot, ui = um and vi = v, which are, respectively, the
streamwise and normal velocity components of the fluid that is either removed or injected.
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Figure 2-5: Layer demarkation lines and entrainment velocities.

The governing equations for the blowing model can be derived by performing two in-

tegrations. First, integrate from Yi = 0 to Y2 = Y to obtain the governing equations for

the bottom layer. Second, integrate over the entire layer and remove the respective von

Karmain integral momentum and KE integral equations from the bottom layer to obtain

the top layer equations. Lastly, express these equations in dimensionless form as required

in the MISES framework.

2.2.3 Dimensionless Form

The dimensionless form of both the von Kirmain integral momentum equation and the

integral KE equation governing the entire boundary layer for the blowing case are

dO 6* 9 due PwVw u +Cf-2+ --- +2) 1 - +
dx / ue dx peue e 2

dO* 9* due _ PwVw

dx ue dx PeUe

whereas the bottom layer is governed by

dOy (6y +2Cy due pyEy+ +L2
dx Oy ue dx Peue

dOy 0y due pyEy uyd +3' - +
dx Ue dx Peue Uel

uw uw

u- + Cf + 2CD
ue )Ue

U- + Pe1e U
ue pene Ue )

Cf
2

pwom u uW1 - + -Cf + 2 CDy.
PeUe Ue) Ue

(2.15)

(2.16)

(2.17)

(2.18)

The skin friction Cf and dissipation coefficient CD are defined by
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Tw
CJa 1 TP2

2Peue

D
and CD =D 3'Peue

(2.19)

where T is the shear stress at the wall given by

(2.20)Tw =-p
y -o

The Y subscript on the terms 5y, Oy, 0y and CDy indicates that the limits of the integration
go from 0 to Y. The entrainment velocity at the height Y is denoted Ey. The term pwVw
represents the injected mass flux and u, is the streamwise velocity component of the injected
fluid.

2.3 Inherent Difficulties

For the blowing case, the vectors of unknowns and profile
and W given by

0- y 1
U= *

6y. Yv .

parameters are, respectively, U

Y

and W = .
Uy

.UO _

Appropriate closure relations can be modeled for Cf, CD,

that the governing equations can be expressed as
Ey, etc.

(2.21)

in terms of W such

d
V (W) =f (W),dx

(2.22)

where the vector V is given by

0- Oy
0 * -0*

V = .

L _

By performing the chain rule and inverting yields

dW V -(
dx fawJ= [(W)V,

(2.23)

(2.24)

where [8V/8W] is the Jacobian matrix for the system of equations. Furthermore, since
U = g (W) then to determine W given U requires [U/W]- 1 . The term [OU/&W] is the
Jacobian matrix for the vector of unknowns.

It turns out that both these Jacobian matrices have spurious singularities as shown in
Figure 2-6. These contour plots were obtained by varying Uo in the range [0, 4] and Uy in
the range [0, 1]. The ratio Y/6 = 0.2 with 6 being set to unity. The value of 6 is required
since the integral thicknesses are lengths.
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Figure 2-6: Singularities in Jacobian matrices for the jet.

2.4 Wake Model Comparison

As a means of comparison, the idea to model the jet profile with a two-layer velocity deck

was applied to a wake profile as shown in Figure 2-7. In this case, the expression for the

velocity profile in each layer is given by

u = uO+ + (ue - uo+) 1 [1 - cos (7r F)]

U = UO- + (Ue - uo-) 1 [1 - cos (7r

o < Y:5 6+,

6- <y :5 0.

In these expressions, uO+ and uo- are, respectively, the streamwise velocities at y = 0 for

the top and bottom layers. The boundary layer thicknesses are denoted 6+ and 6. Note

that these thicknesses cannot be zero or else the cosine function in the velocity expression

for their respective layers will blow up. Furthermore, if uO+ = Ue or uo- = Ue, both 6+ and

6- will be ill-defined.

For the wake case, the vectors of unknowns and profile parameters are, respectively, U

and W given by

6 - O'

Oo
. 00 .

and W=[ .
UO+

_UO-

In these expressions the 0 subscript indicates that the limits of the integration go from 6-

to 0. Thicknesses with no subscript have been integrated over the entire layer or from 6-

to 6+. Furthermore, UO+ = UO+ /Ue and UO- = uo- /ue.

Following the same arguments as the blowing case, the vector V is given by
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Figure 2-7: Multi-deck representation of a wake profile.

0* - 0*
V = 0 0 (2.27)

60

and the contour plots of the Jacobian matrices are shown in Figure 2-8. In this case,
both UO- and U0 + were varied in the range [0, 1]. The height 6+ was set to unity and

6~ = -J+. The Jacobian matrix [OU/OW] has no spurious singularities whereas [aV/8W]

has singularities at UO- = Uo+ = (-5 + 2V/iU) /15.
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(a) |iU/OW|
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(b) |BV/OWI

Figure 2-8: Singularities in Jacobian matrices for a wake.
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2.5 Perturbation Analysis

In order to gain some insight as to what the singularities in [OV/OW] mean to the set of

integral equations, consider a perturbation 6V due to the perturbation 3Wv such that

6V =a Ae6WV, (2.28)
14W

where A and e are, respectively, the diagonal matrix of eigenvalues and the matrix of

eigenvectors associated with [8V/aW]. Denoting the zero eigenvalue corresponding to

each singularity as Ao and its associated eigenvector as eo, the perturbation 6U will be

6U = eo WV . (2.29)
aww

For the wake, both singularities in [8V/8W] produce a nonzero perturbation in the

displacement thicknesses for each layer. Recall that in reality the edge velocity ue, assumed

given here, does depend on the displacement thickness P*. In fact, computing the flow

past separation is only possible with Interacting Boundary Layer Theory (IBLT) where

the governing equation for ue is written in terms of P* and the geometry of the problem

(see Appendix B). In Classical Boundary Layer Theory (CBLT), ue is prescribed and

the computation fails at the separation point due to the Goldstein singularity. Therefore,
although [V/&W] has spurious singularities, the governing equation for ue will prevent

the Jacobian matrix for the entire system of equations from being singular for the wake

case.
In the blowing case, both [8U/&W] and [aV/8W] have spurious singularities. Apply-

ing the above analysis to [aV/8W] yields zero perturbations in both the momentum and

displacement thicknesses for each layer. Hence, the Jacobian matrix for the entire system of

equations will be singular. Therefore, using a two-equation integral boundary layer method

to compute the multi-deck representation of a turbulent jet profile is inherently difficult.

In the following chapters, an alternate approach is taken to efficiently compute the blowing

case within the MISES framework.
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Chapter 3

Spectral Method

In this chapter, the Galerkin form of the Chebyshev spectral method is presented. By

using the idea of a residual, it will be shown how spectral approximation can be defined

for the representation of a given function as well as for the solution of a partial differential
equation (PDE). The boundary conditions will be imposed by means of the tau method. The

Chebyshev polynomials will be defined and their orthogonality property examined. Lastly,
the methodology will be applied to solve a simple curve-fitting example. The notation used

in the formulation has been adopted from Peyret [33] and Boyd [2].

3.1 Basic Idea

Spectral methods are encompassed within the framework of the method of weighted resid-

uals (MWR) as described in Finlayson [14]. This family of methods for solving PDEs

utilize approximations defined in terms of a truncated series expansion, such that some

quantity (error or residual) which should be identically zero is forced to be zero only in an

approximate (mean) sense. This is done through the inner product defined by

lb

where u (x) and v (x) are arbitrary functions defined on [a, b] and w (x) is some given weight

function.

3.2 Function Approximation

Assume the function u (x) defined on [a, b] can be approximated by a truncated series

expansion

N

u (x) uN (X) ~~ Ck k (X) , (3.2)
k=O

where the N + 1 basis (or trial) functions #k (x) are given and the series coefficients ck must
be determined. In spectral methods, the chosen basis functions are either trigonometric

functions eikx (i.e. Fourier series) for spatially periodic problems or Chebyshev Tk (x) and

Legendre Pk (x) polynomials for nonperiodic problems. In general, the trial functions are

orthogonal with respect to some weight w (x), such that

35



where Ck = constant and 4k1 is the Kronecker delta symbol.
The aforementioned basis functions possess two other useful properties. First, they

are easy to compute. Indeed, both trigonometric functions and polynomials fulfill this
criterion. Second, they form a complete set. To satisfy this property, the basis functions
must be sufficient to represent all functions in the class we are interested in with arbitrarily
high accuracy.

When the series UN (x) is substituted into the PDE

Lu (x) = f (x), (3.4)

where L is either the linear or nonlinear homogeneous differential operator associated with
the PDE under consideration and f (x) is the corresponding inhomogeneous term, the result
is the residual function defined by

RN (x) LUN (x) - f (x) (3.5)

The residual function RN (x) is identically equal to zero for the exact solution. The difficulty
lies in choosing the series coefficients cl in such a way so as to minimize the residual function.

3.3 Method of Weighted Residuals

The MWR sets to zero the inner product

(RN, Nj) = Ja RN (X) Oj (x) w* (x) dx = 0, (3.6)

where /j (x) are the test (or weighting) functions and the weight w, (x) is associated with
the method and basis functions. Note that j E JN where the dimension of the discrete set
JN depends on the problem under consideration.

The choice of the test functions and of the weight defines the method. The Galerkin-type
approach corresponds to the case where the test functions are the basis functions themselves
and the weight w., is the weight associated with the orthogonality of the basis functions,
that is,

0j = #$ and w* = w. (3.7)

3.4 Boundary Conditions

The traditional Galerkin method applies when the basis functions k (x) in the expansion

of UN (x) satisfy the homogeneous boundary conditions of either Dirichlet, Neumann, or
Robin type. In this case, JN = {0,... , N} which furnishes N + 1 Galerkin equations of
the form (3.6) to determine the N + 1 series coefficients ck. If the basis functions do not
satisfy the homogeneous boundary conditions, the method may be applied by first using
basis recombination. However, it is usually simpler to use the tau method.

In 1938, Lanczos [23] introduced the tau method to allow the use of basis functions not
satisfying the homogeneous boundary conditions. Basically, this technique replaces Galerkin
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equations with boundary conditions. For instance, if there are two boundary conditions then

JN = {o, ... , N - 2}. The omission of the Galerkin equations for j = N - 1 and j = N
introduces a supplementary error, the tau error, which has given its name to the method.

The reader is referred to Gottlieb and Orszag [15] and Canuto et al. [3] for further details.

In brief, high order derivatives of Chebyshev (and Legendre) polynomials grow rapidly as

the endpoints are approached. The mismatch between the large values of the derivatives

near x i 1 and the small values near the origin can lead to poorly conditioned matrices

and accumulation of roundoff error. However, the ill-conditioning of an uncombined basis

is usually not a problem unless N - 100 or the PDE has third or higher derivatives.

3.5 Chebyshev Polynomials

The Chebyshev polynomial of the first kind Tk (x) is the polynomial of degree k defined for

x E [-1, 1] by

Tk (x) = cos (k cos 1 x) , (3.8)

where k = 0, 1, 2..., and hence -1 < Tk (x) 1. Now, setting x = cos z yields

Tk (z) cos kz, (3.9)

from which it is a simple matter to obtain the first Chebyshev polynomials

To (x) = 1, Ti (x) = cos z = x, T 2 (x) = cos 2z = 2cos2 z - 1 = 2x 2 - 1 ..... (3.10)

Alternatively, using the trigonometric identity

cos (k + 1) z + cos (k - 1) z = 2 cos z cos kz (3.11)

the following recurrence relation can be deduced

Tk+1 (x) = 2xTk (x) - Tk_1 (x), (3.12)

where k > 1. The polynomials Tk (x) for k > 2 can be obtained from the knowledge of

To (x) and T 1 (x). The graph of the first few polynomials is shown in Figure 3-1.

Consequently, the recurrence relations for the first, second, and higher order derivatives

of the Chebyshev polynomials can be determined by simple differentiation. For instance,
the first and second derivative recurrence relations are given by

Tk+ 1 (x) = 2Tk (x) + 2xTk (x) - T_ 1 (x), (3.13)

Tj'+1 (x) = 4Tk' (x) + 2xTk' (x) - Tk'_ 1 (x) . (3.14)

The Chebyshev polynomials are orthogonal on [-1, 1] with the weight

1
-( = . (3.15)

The orthogonality property is
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Figure 3-1: Graphs of the Chebyshev polynomials Tk (x), for k =0, . . . , 5.

(Tk, Ti), Tk (x) T (x) w (x) dx = Ck (3.16)

where Ck takes on the values

Ck = (3.17)

3.6 Curve-Fit Example

Consider curve-fitting sets of turbulent jet profiles obtained from experiments conducted by

Zhou and Wygnanski [45] using the spectral method. Once again, the data from three jet

strengths Uoo/Ujet = {0.085,0.59,0.38} each consisting of five profiles measured at 32, 100,
200, 300, and 400 mm from the slot location were used.

The experimental jet velocity was first normalized with its edge velocity such that Uexp =

Uexp/Ue. Next, the MATLAB piecewise cubic Hermite interpolation technique was used to

approximate the profile with 181 points. The points were chosen by setting x = - cos W

with W ranging from [0, 7r] in increments of 7r/180 and then applying the transformation 77 =

(x + 1) /2 such that 77 = y/ 6 ranges from [0, 1]. The interpolated jet velocity Uint = Uint/ue
is denoted U (77) defined on [0,11 and its truncated series expansion UN (7q) has the form

N

UN () k k (C).- (3-18)
k=O

Choosing the basis functions #k (77) to be the Chebyshev polynomials Tk (x) defined on

[-1, 1] requires a change of variable from 77 to x given by

x = 27 - 1. (3.19)
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The residual function RN (x) is given by

N

RN (X) = U (x) -UN (x) = U (x) - ckT (x) . (3.20)
k=O

Applying the MWR (Galerkin-type) gives

(RN,Tj), = RN(x) Tj (x) w (x) dx = 0, (3.21)

where the weight w (x) is once again

1
w (x) (3.22)

V/1 -X2

The weight can be removed with a change of variable. Setting x - cos y reduces the
weighted residual statement to

RN ()Tj (o) dp= 0. (3.23)

Substituting the residual function and rearranging yields

N [f T ( ) Tj ( ) dp ck = j U (p) Tj ( ) d , (3.24)
k=0 . C

Kf

which is the simple matrix system

Kc = f. (3.25)

The matrix K is known as the stiffness matrix from dynamics, c is the vector of unknown
series coefficients, and f is the righthand side vector.

Before solving the above system the boundary conditions at r; = 1, namely,

UN (1) = 1 and U'y (1) = 0, (3.26)

must be imposed. For this, the tau method is implemented in which the last two Galerkin
equations are replaced by the equations for the boundary conditions. Therefore, j E JN
has JN = 10, ... , N - 2} where N = 20 in this example. The integration was performed
using the trapezoidal rule with the integration points corresponding to the location of the
interpolation points.

The results of this example are shown in Figures 3-2 to 3-4. Overall the approximation
is fairly good especially near the edge. Near the wall the high velocity gradients cause large
errors in the approximation. Applying the no-slip condition at the wall would have required
increasing N dramatically. If the inner layer could somehow be resolved independently of
the rest of the profile, it seems clear that only a few modes would be required to compute
the outer layer. This is, in fact, the motivation for using a wall function.
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(a) 32 mm

(b) 100 mm (c) 200 mm

5 10 15 '0 5 10 15
U U

(d) 300 mm (e) 400 mm

Figure 3-2: Curve-fit results: Jet strength uno/ujet = 0.085.
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(a) 32 mm

(b) 100 mm (c) 200 mm
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(d) 300 mm (e) 400 mm

Figure 3-3: Curve-fit results: Jet strength uoo/ujet = 0.59.
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Figure 3-4: Curve-fit results: Jet strength Uoo/Ujet = 0.38.
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Chapter 4

Laminar Flow

The spectral method is applied to solve the laminar incompressible boundary layer flow
problem. The defect form of the momentum equation is derived and constitutes the partial
differential equation (PDE) of interest. Truncated Chebyshev series expansions for the
unknown velocities are substituted into the PDE to obtain the residual function. The
weighted residual statement is formed using the Galerkin-type approach and the boundary
conditions are imposed with the tau method. Additional constraints are required for the
edge velocity and the boundary layer thickness. The Newton method is implemented to
solve the system of nonlinear equations in an iterative fashion. The results for a flat plate
with or without boundary layer flow control via vertical suction/blowing are reported. The
laminar jet on a flat plate is also simulated.

4.1 Boundary Layer Equations

4.1.1 Real Viscous Flow

The 2-D, steady, incompressible continuity and x-momentum thin shear layer equations
governing the real viscous flow (RVF) in the laminar regime are given by

u+ = 0 (4.1)
ax ay

O 8 18p l187- (2) + (o) + - = 0. (4.2)
ax ay p ax pOy

In these expressions, u and v are, respectively, the x- and y-components of the RVF velocity;
p is the mass density; p is the static pressure and r is the shear stress given by

r = u (4.3)
19y

where p is the dynamic viscosity.

4.1.2 Equivalent Inviscid Flow

In analogous fashion, the 2-D, steady, incompressible continuity and x-momentum thin
shear layer equations governing the equivalent inviscid flow (EIF) in the laminar regime are
given by
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+ = 0, (4.4)
ax ay

(u ) + (u v ) + I = 0. (4.5)ax , y pi ax
In these expressions, the subscript i denotes the EIF condition. As such, ui and vi are,
respectively, the x- and y-components of the EIF velocity; pi is the mass density and pi is
the static pressure.

4.1.3 Defect Form of the Momentum Equation

Subtracting (4.2) from (4.5) gives

a 2 2 1 api 1 p 1 T
- -U) + (ujv - v) ++ __= 0, (4.6)ax ay pi ax poax p (y

which can be simplified noting that

p = p and p (x, y) p (x) = pi(x) , (4.7)

such that

+(u? U2) + (uivi - v) + va u) =0. (4.8)ax , y ay (9y
This is the defect form of the x-momentum equation. The expression for T has already been
substituted where the kinematic viscosity, v, is the ratio of the dynamic viscosity p to the
density p, or

v = A. (4.9)
p

4.1.4 Local Scaling Transformation

The coordinate transformation (x, y) is given by

= x, (4.10)

7= 2Y - 1, (4.11)6

where 6 is the thickness of the boundary layer. The partial derivatives transform to

a a (a + 1) d6 a
-- = - - - -- ' (4.12)ax og 6 d oq'
- - = - - (4.13)

Ay t gv

Applying this transformation to (4.8) gives
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o 2 (_+_)_o_ 2

(? -u 2 ) _ +1)d6 ( .
6 d a77

- U2) + (uivi
J 89

4 a (au)\
o) + v -- 0

which is the PDE of interest.

4.2 Series Expansions

4.2.1 Viscous Streamwise Velocity

The viscous streamwise velocity u ((, g) defined on ( E (0, oo) and q E [-1,1] can be
approximated by the truncated series expansion given by

N

u ( , 7) .UN (, 17) - Ue () ck () Tk (),
k=O

(4.15)

where Ue () is the edge velocity (streamwise component), ck ( ) are the series coefficients,
and the chosen basis functions Tk (q) are the Chebyshev polynomials.

4.2.2 Viscous Normal Velocity

An expression for the viscous normal velocity v ((, g) can be obtained by making use of the
continuity equation (4.1). Rewriting

av
ay

Ou
ax'

(4.16)

and integrating between 0 and y gives

j9v dy

v (x, y) - v (x, 0)

v (x, y)

ly=

ou
dy, d

(9X

= ady,

x-j
= W W(x - 1

The term v (x) = v (x, 0) is the wall velocity (or transpiration) which can be positive or
negative or zero (solid wall case). Applying the coordinate transformation (x, y) - ( ), 7)

gives

6 (7 + 1)d60u d,
6 d(8q '

(4.18)

which can be expanded to

V ((, n) = VW ( -
2 _1

ou
~d18 9 U d

1 d6 _ ou
-dy, (4.19)

and using integration by parts on the last integral gives
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(4.17b)

(4.17c)
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V(, ) =VW (0) - 2
a A_1 T, u

1 d3 F
+ - (I + 1) u -2 d Jud] , (4.20)

where v ( ) = v ((, -1).

4.2.3 Inviscid Streamwise Velocity

The inviscid streamwise velocity ui ((, T) is nothing but the edge velocity ue (i), or

(4.21)

4.2.4 Inviscid Normal Velocity

The inviscid normal velocity vi ((, j) can similarly be derived from its corresponding conti-
nuity equation (4.4). Rewriting

and noting that

yields

Integrating between y and 3 gives

la v -dy

vi (x, 3) - vi (x, y)

vi (x, y)

' du e
Y dx

dud
= - (x)-yy) ,

du,
= Vi (X, 6) + (o-y) ,

where vi (x, 3) = v (x, 6) = ve (x), the normal component of the edge velocity. Applying the
coordinate transformation (x, y) -+ ( , T) gives

Vi Vi 1+ (1 du,
- ,dx

(4.26)

where vi ((, 1) = v ((, 1) = ve ( ).

4.3 Weighted Residual Statement

4.3.1 Residual Function

Substituting the expressions for u, v, ui, and vi into the PDE of interest (4.14) yields the
residual function R ( , y). It has the form
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avi Ouj
ay- x (4.22)

ui (x, y) = u (x) = Ue (x) ,

vi
ay

(4.23)

due

dx
(4.24)

(4.25a)

(4.25b)

(4.25c)

ni ((, q) = Ui (0) = Ue (0) .



R (

2 8 + 4 a ( au
(2 ae uv)+v

(4.27)

4.3.2 Galerkin Approach

Applying the MWR (Galerkin-type) gives

(4.28)(RT)= tR(wg)T() w (q)d =0,

where the weight w (77) is

1
1-=

(4.29)

The weight can be removed with a change of variable. Setting 71 - cos p with p E [0, 7r]

yields

0
R (, o) T (V) dp = 0.

Hence, there are N + 1 Galerkin equations RGJ (() defined by

RGj ( f) jR oT (W) d= 0.

(4.30)

(4.31)

Unless otherwise noted, the integration will be performed using the trapezoidal rule with

A o = 7r/180.

4.4 Boundary Conditions

4.4.1 Tau Method

At the edge of the boundary layer

u (x, 6) = ue (X)

whereas at the wall the no-slip condition is

U (x, 0) = 0

or U ( , 1) = Ue (() ,

or U ( , -1) = 0.

(4.32)

(4.33)

The tau method is used to impose these two boundary conditions. As such, the last two

Galerkin equations are replaced by the equations for the boundary conditions denoted by

RBCi (x, 6) = u (x, 6) - Ue (X) = 0 or RBC1 ( , 1) = u ( , 1) - Ue () = 0, (4.34)

and
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RBC2 (X, 0) = u (x, 0) = 0 or RBC2 (U,-1) = ((, -1) = 0. (4.35)

Therefore, j E JN has JN = {O,..., N - 2}.

4.5 Additional Constraints

4.5.1 Boundary Layer Thickness

The height of the rq interval in y space is simply 6, which is best set to match, or slightly
exceed, the physical boundary layer thickness. Here, this 3 is constrained with the residual

R3 z, = U , 6) - 0.95ue (x) = 0, (4.36)

or equivalently,

Rj ((, 0) = u ((, 0) - 0.95ue () = 0. (4.37)

The precise form of R6 is not critical, as long as 6 is larger than the physical boundary layer
thickness.

4.5.2 Edge Velocity

The edge velocity is simply specified

Rue (x) = ue (x) - Ue,,ec (X) = 0, (4.38)

or equivalently,

Rue () = Ue () - Uespec () = 0. (4.39)

4.6 Solver

4.6.1 Newton Method

The system of nonlinear equations is solved by means of the Newton iteration scheme. For
a vector of equations F and a vector of unknowns U such that

F (U) = 0, (4.40)

the solution procedure at some iteration level n is

F (Un+ 1) = F (U + 6U") ~ F (U") + [Fj 6U" = 0, (4.41a)

6U = [BU] F (Un) , (4.41b)

Un+1 = U" + 6U". (4.41c)

The term [fF/8U]" is the Jacobian matrix whose (i, j) entry is the partial derivative of the
i'th equation in F with respect to the j'th variable in U, evaluated at U". The algorithm
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converges quadratically for fairly accurate U". Solving the linear system in (4.41b) is the
most expensive step.

In the present application the vector of equations F will consist of the N - 1 Galerkin
equations RG, the two boundary conditions, RBCi and RBC2 , as well as the two constraint
equations, R, and R,.. The vector of unknowns U will contain the N + 1 series coefficients

Ck, the boundary layer thickness 6, and the edge velocity ue. These vectors are given by

RGo CO

RGN- 2  CN-2
F RBC1 and U CN-1 *

RBC2  cN

Rb 6
Rue Ue

The Jacobian matrix [8F/8U] will be an (N + 3) x (N + 3) matrix of the form

ORGO ... ORGO ORG0  ORGO ORGO ORG0
OCO OCN-2 OCN-1 OCN 06 Oue

ORGN- 2  ORGN- 2  aRGN-2 ORGN- 2  ORGN- 2  ORGN-2LF & 0 ' OCN-2 9CN-1 OCN 6 OUe
S ORBC 1  ... ORBC 1  ORBC 1  ORBC 1  ORBC 1  ORBC 1  (4.43)

OU OCO OCN-2 9CN-1 CN 06 Oue
ORBC 2  ... ORBC2  ORBC 2  ORBC2  ORBC 2  ORBC 2

OCO OCN-2 9CN-1 OCN 06 Oue
6  ... OR6  OR 6  OR 6  OR6  OR6

OCO OCN-2 OCN-1 9CN 06 OUe
ORue ... ORue ORue ORue ORue ORue

OCO OCN-2 OCN-1 OCN 06 OU -

4.7 Discretization

4.7.1 Similarity Station

The flow is assumed to be similar from > 0 until the first grid point. Setting the first grid

point to station 2 and anywhere before this point as station 1 (except at the origin), the

similarity condition

U U , (4.44)
Ui I Ui 2

must hold true at any given qj value. In addition,

ni = Cien, m = Cmgjm, and 6 = C6 '6, (4.45)

where Ci, Cm, and 0Q are constants and #u, Om, and 36 are constant in , such that

- due & dm t do
#s - du, /3m - d , and #3 =U--. (4.46)

Ne d m d b da

Noting that M U e6 then the relationships between the various #'s are
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1 + 3u
2

1 -- #2
and #36= 2

Therefore, at station 2 it is possible to deduce

dui U
= #u,

du 2  2

a~u u

U 2

1U 2!3uy2

d6 = 1 -,

= 2 J

4.7.2 Logarithmic Differencing

Outside the similarity station, logarithmic differencing is employed to get

dui ui d (In uj) ui A (In uj) _ N 2 In ui2 - In uil in Ui)

d< d (In () (A (In () 2 In 2 - In (1 ( In (2

du u2 In (Ui2
? = 22 2 l,)

dn 
(2 2n

au 2 =a (U2U

of of z

)u= U + U dui U2 - U1 +±U2 Ui2 (iau dui U2 -1 i2 UI

2 &U2  2 d U -U2 2 %2in 2 uI
*2 + U22 22 

(n

d6 J d (In 6) 6 A (In 6) 62 In 2 - In 61 _ 62 1n6 (457)
d In () (A (In ) 2In 62- In ( ( In(L

The difference forms above are exact in laminar similar flows with negligible curvature effects
even if A / is not small. Hence, logarithmic differencing greatly reduces the streamwise
resolution requirements near the leading edge where ( -- 0. For small A(/( these are
equivalent to Backward-Euler to first order in /
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(a) N = 2 (b) N = 3

(c) N = 4 (d) N = 5

........- P 7 - .. ... .

-0 .s - . . ......- -0 .5 - - - - -. -

0 0.2 0.4 0.8 1.2 ~0 0.2 0.4 0.8 1 1.2

(e) N = 6 (f) N =10

Figure 4-1: Laminar flat plate: Modal convergence for u/ue.
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(a) N = 2 (b) N = 3

(c) N = 4 (d) N = 5

F 0 - P U-

-0.5 - -. -- -0.5 - - -..--.

~4 5 95 1 1.5 -. 5 95 1 1.5

(e) N = 6 (f) N = 10

Figure 4-2: Laminar flat plate: Modal convergence for r/Tw.
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4.8 Results

4.8.1 Flat Plate (,3 = 0)

The quintessential problem in viscous boundary layer flow is that of flow over a flat plate.

For the laminar case, Prandtl's first student, H. Blasius [1], derived an ordinary differential

equation (ODE) governing the flow based on similarity arguments. The nonlinear Blasius

equation (see White [41]) has never yielded to exact analytic solution. Rosenhead [35] has

chronicled proposed solution methods to this equation in his text. With the advent of the

computer, the equation can now be solved numerically.

Table 4.1: Falkner-Skan and Spectral Method solutions to flat plate flow.

Solution 31 F" (0) = 
1 CfV ex IFS 3*VUeIVXI OFS O Ue/VX H

Falkner-Skan 0 0.33206 1.72080 0.66412 2.591
Spectral Method 0 0.33211 1.72086 0.66401 2.592

In this work, the Falkner-Skan family of boundary layer similarity solutions (see Ap-

pendix A), of which the flow over a flat plate is but one special case, will be used for

comparison purposes. Table 4.1 shows the close agreement in results between the Falkner-

Skan solution and the spectral method. Note that x = ( in the table. For the spectral

method, N = 10 based on the modal convergence plots shown in Figures 4-1 and 4-2. Fig-

ure 4-3 illustrates the exponential convergence rate (geometric-type) of the series coefficients

on a log-linear plot (see Boyd [2]). The flow was solved for N = 180 to show the appearance

of a Roundoff Plateau (see Boyd [2]) starting at N ~ 45. Detailed plots for the spectral

solution to the flat plate problem as well as some of the more interesting wedge flows are

listed in Appendix A.

10

U

0 50 100 150
k

Figure 4-3: Laminar flat plate: Icki vs. k.

200
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4.8.2 Flat Plate with Wall Suction or Blowing - Similar Flow

A porous flat plate with nonzero wall velocity, v < ue, either positive (blowing) or negative

(suction), has many applications: mass transfer, drying, ablation, transpiration cooling, and

boundary layer control. There is no streamwise wall velocity, u,, so the no-slip condition

is still enforced. For similarity, v, (x) must vary as x- 1/ 2 (see White [41]). The results will
differ according to the suction-blowing parameter, v,*,, defined by

v* vwvIe,w on x gRen byUe

where Re., is the Reynolds number based on x given by

Rex = UeX
Re V

(4.58)

(4.59)

Figure 4-4 depicts how strongly the velocity profiles are affected by v* . These are plotted

with respect to r/* = y f/K where x = ( and y = (rq+ 1) 6/2. In all cases, N = 30. Suction

thins the boundary layer and increases the slope at the wall. The suction profiles have

strong negative curvature, are very stable, and delay transition to turbulence. Conversely,
blowing thickens the boundary layer and makes the profile S-shaped, less stable, and prone

to transition to turbulence. The boundary layer is blown off at v* = 0.619.

1

-0.2
0 .8 ---- --------- 0

0.2
0.4

0.6 05 - -

10
T1

Figure 4-4: Velocity profiles for a flat plate with wall suction or blowing.
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4.8.3 Flat Plate with Uniform Wall Suction - Nonsimilar Flow

Iglisch [18] studied the flow past a flat plate with uniform suction (i.e. v. = constant < 0).
Wall suction is an effective means of delaying transition to turbulence, at the expense of

increasing the drag. The resulting flow is nonsimilar. The velocity profiles change from the

laminar flat plate profile at the leading edge to the asymptotic exponential profile given by

U = Ue (1 - ey"" " , (4-60)

far downstream (see White [41]). The asymptotic condition is reached when (-Vw/ue)vRMj ~

2.0. For a suction rate of (-Vw/Ue) = 0.01 with Ue = 1 m/s, this corresponds to a distance

of x = 0.6 m.
For the spectral solution to this problem, N = 10. The velocity and shear stress profiles

shown in Figure 4-5 exhibit the theoretical exponential shapes, as expected. The detailed

spectral solution to this problem shown in Figures 4-6 and 4-7 clearly indicates the asymp-

totic behavior. Once again, ( = x and rq = 2y/6 - 1.

0 0.2 0.4 0.6 0.8
U/u

0.4 0.6

(a) Velocity Profile (b) Shear Stress Profile

Figure 4-5: Uniform suction: U/Ue and r/rr, profiles at ( = 1 m.
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(a) Boundary Layer Thickness

(c) Wall Shear Stress

.5- - -

.5 -

00 0.2 0.4 0.6 0.8

(b) Edge Velocity

0.04

0.04

0.035

0.03

0.025,

0.020 0.2 0.4 0.6 0.8 1

(d) Skin Friction Coefficient

Figure 4-6: Uniform suction: 6, ue, r, and Cf vs. (.
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x 10
x 10'

(a) Displacement Thickness (b) Momentum Thickness

4?

(c) Shape Parameter (d) Reynolds Number

Figure 4-7: Uniform suction: *, 9, H, and Reo vs. (.
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4.8.4 Laminar Jet

Fluid injection is an effective means of flow control. Consider a flat plate with an inclined
slot of length 1 and width b such that sin a = b/l, where a is the slot angle (see Figure
4-8). For b = 0.005 m and 1 = 0.05 m the angle a : 5.74*. Utilizing a jet strength of
Uoo/ujet = 0.38, with the velocity profile inside the slot modeled as the Poiseuille parabola,
the velocity and shear stress profiles are shown in Figure 4-9 where rq = 2y/6 - 1. The
flow evolution is depicted in Figures 4-10 and 4-11 where ( = x. The slot is located at
( = 0.65 m and N = 30. The most striking feature out of all these plots is how P* and 9
become strongly negative demonstrating the fact that the jet causes an excess of mass and
momentum in the boundary layer.

Flow

a

b

Figure 4-8: Slot geometry.

This case also points out some of the difficulties in treating the blowing problem with
traditional integral boundary layer methods. Such methods are typically parameterized by
H = 6*/, which can no longer be used when 0 goes through zero downstream of the jet.
The closure relations which depend on H and Reo cannot be used since H not only blows
up but is non-unique. The Reynolds number based on 0 is negative whenever 9 < 0 so it
also cannot be used. Suction problems have no such difficulties.

0.5 .1.. 1 .. 2... 2... .5 3..3.5.

0.5 1 15 2 25 335
u/u

(a) Velocity Profile

0.5 F

9' 0

4 -1

....5. 0..0.5

-05 0 t Po

(b) Shear Stress Profile

Figure 4-9: Laminar jet: U/ue and /r, profiles at ( = 1 m.
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0.2 0.4 0.6 0.8 1

(a) Boundary Layer Thickness

(c) Wall Shear Stress

d-

(b) Edge Velocity

(d) Skin Friction Coefficient

Figure 4-10: Laminar jet: 6, ue, -rm, and Cf vs.
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CD

(a) Displacement Thickness (b) Momentum Thickness

100

0
-2000

-4000 - - --.--
-10

-6000

-20 - -- - ~

-10000 - -

-30 - -12000

-14000

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

(c) Shape Parameter (d) Reynolds Number

Figure 4-11: Laminar jet: J*, 0, H, and Reo vs.
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Chapter 5

Turbulent Flow

The primary complication in solving the turbulent incompressible boundary layer flow prob-

lem is the modeling of the Reynolds stress term in the momentum equation. The spectral

method applied to turbulent flow is analogous to the formulation for laminar flow outlined

in Chapter 4. The eddy viscosity is modeled using an algebraic turbulence model and the

results for the flat plate case are reported. A wall function consistent with the inner layer

eddy viscosity model is introduced into the approximation of the streamwise velocity and

the flat plate problem is solved once more. An order of magnitude reduction in modes is

observed - a major computational advantage. The results for vertical suction/blowing on

a flat plate with or without the incorporation of a wall function are reported. The turbulent

jet on a flat plate is also simulated.

5.1 Boundary Layer Equations

5.1.1 Real Viscous Flow

The 2-D, steady, incompressible Reynolds-averaged continuity and x-momentum thin shear

layer equations governing the real viscous flow (RVF) in the turbulent regime are given by

O+ = 0 (5.1)
Ox Oy'

(U2) + -() + = 0. (5.2)
9X 49y p ax p 0y

In these expressions, u and v are, respectively, the x- and y-components of the RVF velocity;

p is the mass density; p is the static pressure and r is the shear stress given by

B9u
T = Pa- pu'v, (5.3)

B9y

where y is the dynamic viscosity and -pu'v' is the turbulent shear (or Reynolds stress).

5.1.2 Equivalent Inviscid Flow

In analogous fashion, the 2-D, steady, incompressible Reynolds-averaged continuity and x-

momentum thin shear layer equations governing the equivalent inviscid flow (EIF) in the

turbulent regime are given by
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oui ovi+ =0, (5.4)
Ox Dy

(U) + - (uivi) + = 0. (5.5)
9x , ay pi ax

In these expressions, the subscript i denotes the EIF condition. As such, ui and vi are,
respectively, the x- and y-components of the EIF velocity; pi is the mass density and pi is
the static pressure.

5.1.3 Defect Form of the Momentum Equation

Subtracting (5.2) from (5.5) gives

8 2 & 1tp lop lPOT0a (U -- u2) + - (uv U - v) + l-p+ - ± -=0, (5.6)
ax ay pi Ox pOx pay

which can be simplified noting that

p =pi and p (X, y) ~p (x) = pi (x), (5.7)

such that

(u? U2) + - (uvj - UV) + (V + Vt)] = 0. (5.8)ax z y ay _ ay_
This is the defect form of the x-momentum equation. The expression for r has already been

substituted where the kinematic viscosity, v, is the ratio of the dynamic viscosity pL to the
density p, or

v = . (5.9)
P

The turbulent shear -pu'v' is replaced by

-pu/v 1 = pt , (5.10)
ay,

where pt is the so-called eddy viscosity. This follows the modeling assumption first made

by J. Boussinesq in 1877. The eddy viscosity pt has the same dimensions as y but it is not
a fluid property. It varies with the flow conditions and the geometry of the problem (i.e.
it depends on the turbulent eddies). The term vt which appears in the defect form of the
x-momentum equation is also referred to as the eddy viscosity but it is given by

vt = . (5.11)
p

5.1.4 Local Scaling Transformation

Applying the coordinate transformation (x, y) -- ((, r/) described in Section 4.1.4 to (5.8)
gives
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(U - 2) _U 2 )+2a (UV - U)+ 4 [(v± vt) = 0, (5.12)

which is the PDE of interest.

5.2 Series Expansions

5.2.1 Viscous Streamwise Velocity

The viscous streamwise velocity u ((, q) defined on ( E (0, oo) and 7 E [-1, 1] can be
approximated by the truncated series expansion given by

N

U ( )~UN =e Y, ck () Tk (7), (5.13)
k=O

where ue ( ) is the edge velocity (streamwise component), Ck ( ) are the series coefficients,
and the chosen basis functions Tk (,q) are the Chebyshev polynomials.

5.2.2 Viscous Normal Velocity

An expression for the viscous normal velocity v ((, j) can be obtained by making use of the

continuity equation (5.1). The derivation is identical to Section 4.2.2 such that

6 a u d,+1 do 'qu ~ (.4
V ( , 17) = VW ( 2 - d 2 + (77 + 1) U -- f d (.4

where v (() = v ( , -1) is the wall velocity (or transpiration) which can be positive or

negative or zero (solid wall case).

5.2.3 Inviscid Streamwise Velocity

The inviscid streamwise velocity ui ((, y) is nothing but the edge velocity ue (a), or

Ui (,) =u () = Ue (). (5.15)

5.2.4 Inviscid Normal Velocity

The inviscid normal velocity vi ((, i) can similarly be derived from its corresponding conti-

nuity equation (5.4). Referring to Section 4.2.4 gives

6 due
vi ((, O = Vi ((, 1) + 6(1 - q) d, (5.16)2 17)dx'(16

where vi ((, 1) = v ( , 1) = ve (a), the normal component of the edge velocity.

5.3 Eddy Viscosity Model

5.3.1 Inner Layer

The inner layer eddy viscosity model vt, is taken from Spalding [39], such that
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2v = vse--B e""+± 1 - su+ - U)]. (5.17)

The inner-law variable u+ is defined by

U
U+ - (5.18)

UTr

where the friction velocity u, is given by

Ur = [sTwI]1/2 (5.19)
P.

with s = sgn (Tm). The constants

K = 0.41 and B 5.0 (5.20)

are taken from Coles and Hirst [7].

5.3.2 Outer Layer

The outer layer eddy viscosity model vt, is based on the formulation by Clauser [5], such
that

vti = 0.016ue*, (5.21)

where ue is the edge velocity, and P* is the displacement thickness defined by

*1 -u dy= -- 1 - dr. (5.22)
0 e 2 -1 (1 Ue

5.3.3 Blending Model

The models for the inner and outer layers are combined into one composite formula for the
eddy viscosity vt given by

1//a

vt -1/a -/ vi, (5.23)
1 +, 1+(a

where t = vto /vt and a = 4. Blending ensures that the derivatives are continuous at
the interface between the two layers as shown in Figure 5-1. In the inner layer, the eddy
viscosity reduces to the linear relation

vt ~ hUr Y, (5.24)

except in the viscous sublayer where damping reduces vt to a cubic function of y. In the outer
layer, vt is tens or even hundreds of times greater than the molecular viscosity, depending
on the local Reynolds number. A turbulent shear layer has a high outer and low inner
effective viscosity which is why turbulent velocity profiles are so steep at the wall and so
flat further out.
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2 4

Figure 5-1: Eddy viscosity blending model.

5.4 Weighted Residual Statement

5.4.1 Residual Function

Substituting the expressions for u, v, ui, vi, and vt into the PDE of interest (5.12) yields

the residual function R ((, ?7). It has the form

( ( + 1) d6 2 2R ( 1, ) = Z (u6 ) - (u j u ) (5.25)

+ 2 19 (Ujvj -UV) + 42 0 ve .u

5.4.2 Galerkin Approach

Applying the MWR (Galerkin-type) gives

(R, Tj)w = j R ( , 77) T (,q) w (,q) dr = 0, (5.26)

where the weight w (77) is chosen to be unity

w()= 1. (5.27)

Utilizing the orthogonality weight associated with the Chebyshev polynomials tends to cause

the nonlinear system to be more ill-conditioned. Therefore, the weighted residual statement

is

R (F, 7) T (n) dq = 0. (5.28)
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Hence, there are N + 1 Galerkin equations RG, (() defined by

RGj () fR ( , ) Tj (I) d 1 = 0. (5.29)

Unless otherwise noted, the integration will be performed using the trapezoidal rule. The
integration points are chosen using y = - cos p with p ranging from [0, 7r] in increments of
7r/180.

5.5 Boundary Conditions

5.5.1 Tau Method

The tau method is used to impose the same two boundary conditions as in Section 4.4.1.
As such, the last two Galerkin equations are replaced by the equations for the boundary
conditions denoted by

RBC 1 (, 1) = u( ,1) -e(() = 0, (5.30)

and

RBC2 (, -1) = U (, -1) = 0. (5.31)

Therefore, j E JN has JN = {0, ... ,N - 2}.

5.6 Additional Constraints

5.6.1 Boundary Layer Thickness

Referring to Section 4.5.1, the R6 constraint is

R6 ( , 0) = u ( , 0) - 0.95ue () = 0. (5.32)

5.6.2 Edge Velocity

Referring to Section 4.5.2, the Ru, constraint is

Re () = Ue () - Uespc () = 0. (5.33)

5.7 Solver

5.7.1 Newton Method

The system of nonlinear equations is solved by means of the Newton iteration scheme as
described in Section 4.6.1.

In the present application the vector of equations F will consist of the N - 1 Galerkin
equations RG, the two boundary conditions, RBCi and RBC2 , as well as the two constraint
equations, R6 and Rue. The vector of unknowns U will contain the N + 1 series coefficients

ck, the boundary layer thickness 6, and the edge velocity ue. These vectors are given by
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RGO c0

RGN- 2  CN-2
F RBC1 and U = CN-1 (5.34)

RBC2  CN

R6
Rue Ue

The Jacobian matrix [OF/8U] will be an (N + 3) x (N + 3) matrix of the form

OR 00  ... ORG OG 0  ORGO ORG ORGO
OCo '' CN-2 9CN-1 OCN 06 OUe

ORGN- 2  ORGN- 2  ORGN-2  ORGN-2  ORGN-2  ORON-2

OF - OCO '' CN-2 OCN-1 OCN 06 Oue

=u ORc1 aRBc1 Oac2 aRB, aRc acRBC1 (5.35)IOU NO ''' 9CN-2 OCN-1 49CN 006 -OUe
- RBC 2  ... ORBC 2  ORBC 2  ORBC 2  ORBC 2  ORBC 2

OCo OCN-2 9CN-1 OCN 06 Oue
OR6 ... ORs OR,5  R OR6 OR
OCo OCN-2 9CN-1 OCN 06 OUe

ORue ... ORue aRue Mue ORue Rue
_ Oco '' CN-2 OCN-1 OCN 06 OUe .

5.8 Discretization

5.8.1 Similarity Station

The flow is assumed to be similar from ( > 0 until the first grid point. Setting the first
grid point to station 2 and anywhere before this point as station 1 (except at the origin),
the required conditions for similarity are listed in Section 4.7.1. Therefore, at station 2 it
is possible to deduce

du- U-
(5.36)

d 2
u 2 U (5.37)

d(

au U
-U (5.38)

au 2 U2

=132p 1 (5.39)

-6 = o -. (5.40)
d( 2/

5.8.2 Logarithmic Differencing

Outside the similarity station, logarithmic differencing is employed to get
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(a) N = 30 (b) N = 50

(c) N = 100 (d) N = 120

0 0.2 0.4 06 o8 1 1.2 -0 0.2 0.4 0 0 1

(e) N =150 (f) N 180

Figure 5-2: Turbulent flat plate: Modal convergence for u/ue at (= 1 m.
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(a) N = 30

(c) N = 100
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(b) N = 50

97

(d) N = 120

(e) N = 150 (f) N = 180

Figure 5-3: Turbulent flat plate: Modal convergence for /r, at ( = 1 m.
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dui ui d (In uj) ui A (In ui) u 2 In u 2 - In u 1 _ u42 In (u .Z) (5.41)
d( d (In) A (In) (2 In (2 - In1 (j 2 In(2

du? u2 In (Ui2=i - 2 Ui (5.42)
in (in

Du 8 U dui U2 - U Ui2l- = (Un) = u + U ~ U + U2 2 ui (5.43)8(O( d( 2 2 - 1 (2 In (2

au2  a dui - UU? In (i)
= $ (U 2 U 2U2 + U2 U-2 2a o *8 d( 1 2 -- 2 1 2 In (L

d6 _ 6d(ln6) SA(ln6) _ 62 In 62 -n 1 _ 2 n (545)
d( d (In ( A (In () 6 In6( - l~ In (L2)

Section 4.7.2 describes the advantages of using this form of differencing over other methods.

5.9 Flat Plate

5.9.1 Detailed Plots

The spectral solution to turbulent flow over a flat plate was computed. In this case, N = 180
based on the modal convergence plots shown in Figures 5-2 and 5-3 at ( = 1 m. The two-
layer structure of the turbulent boundary layer is clearly evident from the velocity profile.
The shear stress does not quite go to zero at the edge since the eddy viscosity has a nonzero
value in the outer layer. Detailed plots for the flat plate solution are shown in Figures
5-4 and 5-5. The transition location is where the flow first exceeds Reg = 500000. Figure
5-6 illustrates the convergence rate of the series coefficients on a log-linear plot at ( = 1
m. This plot is typical of coefficients which oscillate with N (see Boyd [2]). However, the
convergence is not exponential primarily due to a lack of smoothness for u rather than
integration error. Recall that the integration points were chosen using r = - cos p with p
ranging from [0, 7r] in increments of 7r/180. For smaller increments, i.e. 7r/360 and 7r/1800,
the graph of Ickl vs. k at ( = 1 m changes very little.

5.9.2 Velocity Comparison

The velocity profile obtained from the spectral method was compared to an accurate rep-
resentation constructed from Spalding's law of the wall [39] and Coles' law of the wake [6].
The details of the construction now follow.

The inner-law variables u+ and y+ are defined by

U+ - and y+ - -, (5.46)
u, 1T
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Figure 5-4: Turbulent flat plate: 6, ue, r, and Cf vs. (.
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(a) Displacement Thickness

0 0.2 0.4 0.6 0.8

C

CD

10-

(b) Momentum Thickness

(c) Shape Parameter (d) Reynolds Number

Figure 5-5: Turbulent flat plate: P*, 0, H, and Re8 vs. (.
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Figure 5-6: Turbulent flat plate: Ick| vs. k at ( = 1 m.

where u, and 1, are, respectively, the friction velocity and friction length. They are given

by

Ur = s 1 and 1,'=-, (5.47)
P ] U

where s = sgn (r). The velocity construction takes the form

U+ = U+s + -f ,Y) (5.48)

where u+s is governed by Spalding's law of the wall

y+ = u+ + e-rB + -1-u+ ( 2 
_ u±)3  (5.49)

The values of r, and B are those specified in Coles and Hirst [7]. The function

f ~f) sin2 (" Y) (5.50)

and the Coles wake parameter II ~ 0.45 for a flat plate (see White [41]) since there is a

slight wake. Utilizing the skin friction law of Kestin and Persen [21],

CJ ~ 0.455 (5.51)
In2 (0.06Rex)'

ur can be calculated at some location on the plate (knowing the freestream velocity) and

the profile constructed. Figure 5-7 demonstrates the close agreement in the profiles. Note

that the logarithmic law of the wall (or log law),

1
n+= - In y+ + B, (5.52)

Ks
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has also been plotted for historical reasons.
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Figure 5-7: Velocity comparison using inner-law variables u+ and y+.

5.10 Wall Function

5.10.1 Modified Viscous Streamwise Velocity

The viscous streamwise velocity u ((, 77) defined on ( E (0, oo) and E [-1, 1] is modified

by including an inner layer velocity profile, u, () u+s (y+), or wall function (WF) in its

truncated series expansion approximation given by

N

U ( , 71) ' UN (, 7) = Ue () ck () Tk () + UT () U+ (y+),
k=O

(5.53)

where Ue () is the edge velocity (streamwise component), ck (() are the series coefficients,
the chosen basis functions Tk (,q) are the Chebyshev polynomials, u, ( ) is the friction ve-
locity, and u+s (y+) is Spalding's law of the wall [39].

5.10.2 Friction Velocity Constraint

The friction velocity u, ( ) is a new unknown and it must be constrained accordingly. The
residual

Ru, (x) = (us - u) wudy = 0, (5.54)

or equivalently,

R () = - L2 (us - u) wud77 = 0, (5.55)
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ensures that the velocity profile in the inner layer is only approximated by Spalding's law

of the wall. Note that us = uru+s and wu, is given by

1
WU, = {1+ tanh [K (1 - ()]}, (5.56)

where ( = vti/vt and K = 40. Figure 5-8 depicts the variation of wu, with ( It is unity

in the inner layer and zero in the outer layer.

1

0.8 - ......... -.

0 .6 --- -- ..........

01
0 0.5 1 15 2 2.5 3 3.5 4

Figure 5-8: Graph of wu, vs.

5.10.3 Modified Newton System

The vector of equations F will consist of the N-1 Galerkin equations RG, the two boundary

conditions, RBC1 and RBC2 , as well as the three constraint equations, Ru,, R 6, and Rue.

The vector of unknowns U will contain the N + 1 series coefficients ck, the friction velocity

u-r, the boundary layer thickness 6, and the edge velocity ue. These vectors are given by

RGO

RGN-2

RBC1

RBC2

Ru,
Rs

..Ru .

and U =

CO

CN-2

CN-1

CN

Ur

Ue

(5.57)

The Jacobian matrix [8F/OU] will be an (N + 4) x (N + 4) matrix of the form
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-9RGO

Oco

aRGN-2

Oco
ORBC1

OBO
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2

ORBC1
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ORBC1
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8Ru b

9RGN-2

aRBC1
Oue

aRBC2One
OR9UT
OUeRu,
oUe
_RT

o9Ue
aRu
o U-e

. (5.58)

5.11 Flat Plate Revisited

5.11.1 Detailed Plots

The spectral solution to turbulent flow over a flat plate was computed with the incorporation

of the wall function. In this case, N = 4 based on the modal convergence at ( = 1 m as

shown in Figure 5-9. Detailed plots for the flat plate solution are shown in Figures 5-10

and 5-11.
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Figure 5-9: Turbulent flat plate (WF): Modal convergence at ( = 1 m.
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5.11.2 Velocity Comparison

The velocity profile obtained from the spectral method with the incorporation of the wall

function was compared to the previously described velocity construction using Spalding's

law of the wall [39] and Coles' law of the wake [6]. Once again, the agreement is excellent

as shown in Figure 5-12. Note that the log law has also been plotted for historical reasons.

30
-Log Law
Spalding + Coles

25 -Spectral Solution

20

10-

5

10~ 10 10 10 10 10

Figure 5-12: Velocity comparison using inner-law variables u+ and y+ (WF).

Figure 5-13 breaks down the velocity profile into its two contributions. It is reassuring

to observe that the Chebyshev profile is zero (on the average) in the inner layer following

the constraint equation Ru. This allows the Spalding profile to approximate the velocity

near the wall. In the outer layer, the Chebyshev profile corrects the velocity approximation

as required to solve the flow.
The velocity gradient and shear stress contributions are depicted in Figures 5-14 and

5-15. The Chebyshev contribution has little effect on the overall Bu/8a. The laminar

component of the shear stress rI = p (Ou/Oi) scales the velocity gradient by the dynamic

viscosity. Conversely, the turbulent component rt = pt (8u/a) utilizes the eddy viscosity

as a scaling factor which varies with the location inside the boundary layer. Since the wall

function is consistent with the inner layer eddy viscosity model, the shear stress exhibits a

slight oscillation near the wall. At the edge, the shear stress does not go to zero since the

eddy viscosity has a nonzero value in the outer layer (i.e. Clauser's formulation). These

oscillations can be alleviated with more modes. Nevertheless, the total shear stress profile

is fairly accurate for only N = 4.
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Figure 5-13: Velocity profile contributions (WF).
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Figure 5-15: Shear stress contributions (WF).
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5.12 Flat Plate with Wall Suction or Blowing

5.12.1 Modified Law of the Wall

Wall suction, vW < 0, or blowing, v > 0, adds a strong streamwise convective acceleration
v (9u/Oy) to the near-wall boundary layer. For the flat plate case where the pressure
gradient is zero, the momentum equation very near the wall becomes

au o9r
PVW Y%' y or r Tw + pvwu.

Therefore, the wall velocity has a profound effect on the shear distribution. By matching
this expression to an eddy viscosity model of turbulent shear, Stevenson [40] derived a
modified logarithmic law of the wall with suction or blowing, that is

2 (+ VW+U+)1/]2 Iny+ + B,
vw+ K

(5.60)

where v,,+ = Vw/ur. For v = 0 this relation reduces to the solid wall case. The typical

range of vw is t0.06. Figure 5-16 illustrates Stevenson's correlation.

12 10310Y+ 104

Figure 5-16: Effect of suction and blowing on logarithmic law of the wall.

In this study, the inner layer velocity profile is approximated by Spalding's law of the

wall. Hence, it needs to be modified to cope with a nonzero wall velocity v,. Define a

modified inner-law variable, U4, such that

(5.61)U* = 2[(1 + V-+U+)1/2

and demand that the following conditions be met

(5.62)+ *0 ; y+ -U+
u+ 00 ; y+ e e-x u.
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This suggests

2 62 (r
y+ = U+ + e-rB e"+---u* 2  6 'i' u+. (5.6 3 )

from which u+s (y+) will be governed.

5.12.2 Modified Inner Layer Eddy Viscosity

By matching

(p + pti) = Tw + PVwU, (5.64)
ay

the above can be simplified to

+ =t dy+ 1 + vW+n+ .(5.65)
yt du+ dy+|

(du+ l U+=0

Substituting the expression for y+ and noting that d= 1 the modified vt will bedu+ uI= U= 1temdfedv ilb

v-KB 
U*2~

vt.~ (1 + vwu+) 1 +V+ -2 -- u+ 2 ) . (5.66)
(1 + -v1- u+)__

5.12.3 Results without Wall Function

The spectral solution to turbulent flow over a flat plate with wall suction or blowing was
computed with N = 180. The length of the plate was doubled with the second half having
flow control applied to it. Figure 5-17 depicts the effect on the law of the wall at ( = 2
m. Comparison with Stevenson's correlation is shown in Figure 5-18. The agreement is
excellent.

5.12.4 Results with Wall Function

The spectral solution to turbulent flow over a flat plate with wall suction or blowing was
computed with the incorporation of the wall function. Once again, the length of the plate
was doubled with the second half having flow control applied to it. Figure 5-19 depicts the
effect on the law of the wall at ( = 2 m. Comparison with Stevenson's correlation is shown
in Figure 5-20. The agreement is excellent. In this case, N = 4 and as N is increased the
solution exists and the oscillations are reduced, just as in the flat plate case with no flow
control.
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Figure 5-17: Suction/blowing effect on a flat plate: u+ vs. y+.
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5.13 Turbulent Jet

5.13.1 Modified Outer Layer Eddy Viscosity

Clauser's eddy viscosity has the form

vt0 ~ (velocity across layer) x (thickness of layer) ~ ue6 *, (5.67)

which can be viewed as a dimensional argument. Hence, the outer layer eddy viscosity
model vj0 was altered to

vt0 = CAu6, (5.68)

where C = 0.0001, 6 is the boundary layer thickness, and Au is a root-mean-square velocity
jump measure given by

Jj OU2- 1/2 OU2-1/2

AU = ( dY = 2j( - d 7 ]. (5.69)
o 9 _ -1 aq

For the jet, utilizing Clauser's formulation would be out of the question since 6* can become
negative for a strong enough jet.

5.13.2 Modified wu,

In order to make sure the inner layer eddy viscosity vt, is applied below the maximum jet
velocity, the function wu, was modified to be

wU { 1 - tanh [K (-Y)] (5.70)

where K = 1000. The term y* is the percentage of the boundary layer thickness below the
maximum jet velocity. Noting that q = 2y/6 - 1 and q* = 2y*/o - 1 the expression can be

simplified to

1 ~K
WUT = - 1 - tanh [- (I - n*)]} (5.71)

5.13.3 Results without Wall Function

The spectral solution to the turbulent jet case was computed with N = 180. The setup was
identical to the laminar jet but the flow was tripped to become turbulent five slot lengths
downstream of the slot. Figure 5-21 depicts the velocity and shear stress profiles. Figure
5-22 illustrates the convergence rate of the series coefficients on a log-linear plot at ( = 1
m. Although this plot is typical of coefficients which oscillate with N (see Boyd [2]) the
convergence is not exponential just like the turbulent flat plate case. This is primarily due
to a lack of smoothness for u rather than integration error.

5.13.4 Results with Wall Function

The spectral solution to the turbulent jet case was computed with the incorporation of the
wall function. To achieve an almost identical match to the case without a wall function,
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Figure 5-23: Turbulent jet (WF): u/Ue and r/r, profiles at ( = 1 m.
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N = 40 although N = 20 or N = 30 would give workable solutions. Figure 5-23 depicts the
velocity and shear stress profiles. Figure 5-24 illustrates the convergence rate of the series
coefficients on a log-linear plot at ( = 1 m. Once again, the convergence is not exponential
primarily due to a lack of smoothness for u rather than integration error.
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Chapter 6

Spalart-Allmaras One-Equation
Turbulence Model

The Spalart-Allmaras turbulence model [38] is a one-equation model assembled using empiri-
cism and arguments of dimensional analysis, Galilean invariance, and selective dependence
on the molecular viscosity. It computes the turbulent shear (or Reynolds stress) -pu'v'

from a transport equation for the rate of change of stress. The spectral method is applied
in solving this equation which is coupled to the defect form of the 2-D, steady, incompress-
ible viscous momentum equation through the eddy viscosity. The Newton iteration scheme
is applied to the entire system of nonlinear equations. Results for the flat plate case are
reported. A wall function is introduced into the approximation of the streamwise velocity
and the flat plate problem is solved once more. The inconsistency between the wall function
and the turbulence model within the inner layer produces an erroneous shear stress.

6.1 Reynolds Stress Transport Equation

The eddy viscosity vt is given by

x3vt = Dfvi, fAi =3 3, x - (6.1)
X + C3i v

where v is the kinematic (or molecular) viscosity. The working variable f obeys the transport
equation

a a 1 ( ,,~ 80 2 J)2
(Ui) + (VF) = CblS + [(v+ ) +cb2 -- c1fm - . (6.2)

ax ay a ay 9y. ay y

Here S is the magnitude of the vorticity,

S 5 + 2fV2, fv2 = 1 - xi, (6.3)
4By 1 ~ 1 + xfV1'

and y is the perpendicular distance from the wall. The function fw is

fW = g 1[g6 cw3 I = r + cw 2 (r -r), r = (6.4)
+cu 43,Y2
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The list of constants are cbi = 0.1355, o- = 2/3, Cb2 = 0.622, K = 0.41, Cwi = Cb1/r 2 +
(1 + cb2) /o, Cw2 = 0.3, Cw3 = 2, and coi = 7.1.

6.2 Local Scaling Transformation

Applying the coordinate transformation (x, y) -+ ((, g) described in Section 4.1.4 to (6.2)
gives

(j+ 1) d6 a
6 d-( 8?

1 4 fa [ 8
a-62 977+

2 a
6 97 (vD) - Cb1Sl

(6.5)
+Cb2 )

4 ( )2
+cW1fw6 

-q + 1

which is the PDE of interest.

6.3 Series Approximation to Working Variable

The working variable F. (, r) defined on ( E (0, oo) and 77 E [-1, 1] can be approximated by
the truncated series expansion given by

D , ) ~- f ((, 7) = v E d () T (7),
k=O

(6.6)

where v is the kinematic viscosity, dk ( ) are the series coefficients, and the chosen basis
functions Tk (n) are the Chebyshev polynomials.

6.4 Weighted Residual Statement

Substituting the expression for f into the PDE of interest (6.5) yields the residual function
R ( , I). It has the form

a (,- + 1) d6 a
R ((, 71) = (Uf) 6 d-(U[)

1 4 a
,6 2 a?,

[(V

+ 2 (vi) - cbllN

f )2}
+ cb2

4
+ cifw 2

Applying the MWR (Galerkin-type) gives

wher T,) c to b

where the weight w (77) is chosen to be unity

T (TI) w (T/) dy = 0,

w (,q) = 1.
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Utilizing the orthogonality weight associated with the Chebyshev polynomials tends to cause
the nonlinear system to be more ill-conditioned. Therefore, the weighted residual statement
is

11 ((, y) T (n) d = 0.

Hence, there are N + 1 Galerkin equations RG, ( ) defined by

RGj ('i) j § (,q)dr1 = 0.

(6.10)

(6.11)

Unless otherwise noted, the integration
integration points are chosen using q=
7Tr/180.

6.5 Boundary Conditions

At the edge of the boundary layer

i (x,6) = 0

will be performed using the trapezoidal rule. The

- cos <p with <p ranging from [0, 7r] in increments of

or D ((, 1) = 0, (6.12)

and at the wall

p (x, 0) = 0 or ( , -1)=0. (6.13)

The tau method is used to impose these two boundary conditions. As such,
Galerkin equations are replaced by the equations for the boundary conditions

the last two
denoted by

RBC1 (x, 6) = D (x, 6) = 0

RBC2 (X> 0) = (x, 0) = 0

or NBCi 1) = i( 1) = 0,

or RBc2 (-1) f(l -1) = 0.

Therefore, j E Jg has Jg = {0,..., N - 2}.

6.6 Newton Solver

The system of nonlinear equations is solved by means of the Newton iteration scheme as

described in Section 4.6.1.

In the present application the vector of equations F will consist of the N - 1 Galerkin

equations RG, the two boundary conditions, RBC1 and RBC2 , the two constraint equations,
R6 and R,, the N - I Galerkin equations RG, and the two boundary conditions, RBc 1 and

RBC2 . The vector of unknowns U will contain the N +1 series coefficients Ck, the boundary
layer thickness 6, the edge velocity ue, and the N + 1 series coefficients dk. These vectors

are given by
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and U =

The Jacobian matrix [F/8U] will be an (N +5+4) x (N + 5 +4) matrix of the form

wF t mA B

where the matrices A, B, C, and D are given by

~ 9RGO
OCO

aRGN-2

aco
aRBC1

OCO
aRBCG

Oco
OR6

co
aRue

OCo

Bz=

ORGO ORG0  ORG 9RG0  aRGO
9CN-2 CN-1 B0 Ue

ORGN-2

OCN-2

.RBC1
OCN-2

aRBC
2

OCN-2

9CN-2
... ORue

' CN-2

- ORGO
ado

ORGN-2

ado
aRBC1

ado
ORBC2

ado
OR 6
ado
aRue
. do

ORGN-2

8CN-1
ORBCI

OCN-1
aRBC

2

OCN1I
OR 6
OCN -1
ORue
BCN-1

ORGN-2

BCN
aRBC1

OCN
ORBC2

OCN
ORM6
OCN
ORue
49CN

ORGN-2

0
ORBC1

0
ORBC2

06
OR6

ORue
0

ORG0  ORGO ORGO
adg_2 Bdg_, Bd,

ORGN-2

ORBC1

aRBC
2

OR 6

aRue
OdR_ 2

ORGN-2

Odg- 1
ORBCG

aRBC
2

Bdg_1
OR6

adg_,
aRue

Od , _

9RGN-2

Od g
ORBCG

Od g
ORBC2

OdR
OR 6
OdR
aRue
Od&
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RGo

RGN-2
RBC1

RBC2

R6
Rue

RGo

RGg_2

RBC1

L ABC 2 .

CO

CN-2

CN-1

CN

6
Ue

Ldod-2

Rf-1

(6.16)

(6.17)

ORGN-2

ORBC1
OUe

ORBC
2

OR6
Bue

Rue
OUe

(6.18)

(6.19)



ORGO ORGO 89RGO aRGO 85GO aRGO
Oco OCN-2 8CN-1 OCN O0 Oue

C NRGR-2 ... R-2 NG-2 NGR-2 G-2 G-2 (6.20)
&co OCN-2 OCN-1 aCN 0 aUe(.

8RBC 1  . R.B. 5C 1  RBC 1  ORBC 1  RBC 1  RBC 1
aco OCN-2 OCN-1 aCN OE fue
RBC 2  .. R. BC 2  OaRBC 2  ORBC 2  RBC 2  ORBC 2
Oco OCN-2 OCN-1 OCN M0 aUe -

ORG 0  ... ORG0  ORG0  ORG0

Odo dR- 2  OdR_1  Od&

D - RG -2 NGR-2 MGR-2 NGR-2
Odo adR_ 2  OdR_1  Od '2
RBC 1  ... RBC1  RBC 1  aRBC1

do '' d _2  Od 1 dg

ORBC2  . RBC2  RBC2  RBC 2
Odo dR- 2  Od_,& adR

6.7 Discretization

The only term that needs to be discretized is

8 - 8 8 de 202- 1D1 ~ i2In (i

v= (Uiv) = i- ( + Uv- ~ui Ui U2 i 2 - + U2 v1n2 u1 , (6.22)
< 8 -( d+ U2 - 2 (n ( )

which makes use of the logarithmic differencing technique. For the similarity station this
term is set to zero.

6.8 Flat Plate

The spectral solution to turbulent flow over a flat plate was computed. The setup was
identical to that reported in Chapter 5. In this case, N = 180 and N = 10.

Figure 6-1 depicts the velocity, eddy viscosity, and shear stress profiles at ( 1 m which

corresponds to Reo ~ 104 . Note that u has been normalized with ue, vt with 0.025ue6 *, and
r with T. The main feature of this plot is the abruptness with which the eddy viscosity
goes to zero near the edge of the boundary layer. This makes it difficult to resolve the
working variable fl.

Figure 6-2 compares the velocity profile to the velocity construction using Spalding's
law of the wall [39] and Coles' law of the wake [6]. The log law has also been plotted for
historical reasons. Despite the spectral solution being slightly higher in the buffer region
(due to arguments in the modeling of the eddy viscosity), the comparison is quite good.

Figure 6-3 illustrates the eddy viscosity budget in the boundary layer. All the plots
were normalized with 0.1-r. The production, diffusion, and destruction are defined by
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Production = cb1 5L/,

Diffusion

Destruction

+Cb2
+ cb2 - ,

(6.23a)

(6.23b)

(6.23c)

where the sum is simply the addition of these terms (or the convection terms in the transport
equation). Notice that the oscillation present in the diffusion term is due to the difficulty

in resolving F/, as described previously.

Figure 6-4 illustrates the convergence rate of the series coefficients on a log-linear plot at

= 1 m. This plot is typical of coefficients which oscillate with N (see Boyd [2]). However,
the convergence is not exponential primarily due to a lack of smoothness for u rather than

integration error.

Velocity

0.8 -

0.6 - - ---

Eddy Viscosity

0.4 - -- - - --

Shear Stress

0
0 2 4 6 8 10

y/*

Figure 6-1: Turbulent flat plate: Various profiles at Reo a 104.

6.9 Wall Function

6.9.1 Modified Viscous Streamwise Velocity

The viscous streamwise velocity u ( , 71) defined on ( E (0, oo) and q E [-1, 1] is modified

by including an inner layer velocity profile, u, () u+s (y+), or wall function (WF) in its

truncated series expansion approximation given by

N

u (, TI) x UN (Cq) = Ue (E) Ck () Tk (1) + UT ()U+s (Y+),
k=O

(6.24)

96

1 - - -9 [(v + iD) -- ]-62 ay an

-C~W4 ( 2
62 + 1



25

20

+ 15

10

5

--- Log Law
-- Spalding + Coles 00:*
- Spectral Solution

..........2.3 ..

10 10 10 10 10 10

Figure 6-2: Turbulent flat plate: u+ vs. y+ at Reo ~ 104 .

0 2 4 6
y/*

8 10

Figure 6-3: Turbulent flat plate: Eddy viscosity budget at Reo ~ 104 .
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Figure 6-4: Turbulent flat plate: Ick vs. k at (= 1 m.

where ue () is the edge velocity (streamwise component), ck ( ) are the series coefficients,
the chosen basis functions Tk (77) are the Chebyshev polynomials, u, (() is the friction ve-

locity, and u+s (y+) is Spalding's law of the wall [39].

6.9.2 Friction Velocity Constraint

The friction velocity uT ( ) is a new unknown and it must be constrained accordingly. The

residual

Ru, (x) = (us - u) wu.,dy = 0, (6.25)

or equivalently,

Ru, ( f) = - (us - u) wu,dy7 = 0, (6.26)
2 _1

ensures that the velocity profile in the inner layer is only approximated by Spalding's law

of the wall. Note that us = uru+s and w., is given by

In w, = - KAvt] 2  with Avt = vti - Vt. (6.27)

The constant K = 1000, vt is the inner layer eddy viscosity model based on Spalding's law

of the wall [39], vt is the eddy viscosity computed from the Spalart-Allmaras model, ue is the

edge velocity, and 6 is the boundary layer thickness. Figure 6-5 plots vtj and vt depicting

the region near the wall where they are almost equivalent. Figure 6-6 demonstrates the

expected Gaussian behavior of wu,.
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6.9.3 Modified Newton System

The vector of equations F will consist of the N-1 Galerkin equations RG, the two boundary
conditions, RBC1 and RBC2 , the three constraint equations, R,,, R6 , and Rue, the N - 1
Galerkin equations RG, and the two boundary conditions, RBC, and RBC2 . The vector
of unknowns U will contain the N + 1 series coefficients ck, the friction velocity ur, the
boundary layer thickness 6, the edge velocity ue, and the N + 1 series coefficients dk. These
vectors are given by

RGO

RGN-2

RBC1

RBC2

RuT
R6
Rue
RGO

RGR;-2

RBC1

RBC2 _

and U =

CO

CN-2

CN- 1

CN

UT

6
de
d0

dl -2

-dg-

(6.28)

The Jacobian matrix [DF/aU] will be an (N + + 5) x (N + N + 5) matrix of the form

[F ]_[A B~19U CD'

where the matrices A, B, C, and D are given by
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6.10 Flat Plate Revisited

The spectral solution to turbulent flow over a flat plate was computed with the incorporation

of the wall function. The setup was identical to that reported in Chapter 5. In this case,
N = 4 and N = 10.

Figure 6-7 depicts the velocity, eddy viscosity, and shear stress profiles at ( = 1 m which

corresponds to Reo ~ 104 . Once again, u has been normalized with ue, vt with 0.025ue3 *,
and r with T. The two main features of this plot are the abruptness with which the eddy

viscosity goes to zero near the edge of the boundary layer and the overshoot in the shear

stress near the wall. The former feature has already been discussed whereas the latter is

due to the inconsistency between the wall function and the turbulence model within the

inner layer.
Figure 6-8 compares the velocity profile to the velocity construction using Spalding's

law of the wall [39] and Coles' law of the wake [6]. The log law has also been plotted
for historical reasons. The spectral solution matches up perfectly since the velocity was

constrained to equal Spalding's law of the wall in the inner layer. The fact that the wake
also matches up very well is mere coincidence.
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Figure 6-7: Turbulent flat plate (WF): Various profiles at Reo ~ 10 4 .

Figure 6-9 illustrates the eddy viscosity budget in the boundary layer. All the plots

were normalized with 0.1-r,. The production, diffusion, and destruction terms have already

been defined where the sum is simply the addition of these terms (or the convection terms

in the transport equation). Again, the oscillation present in the diffusion term is due to the

difficulty in resolving i. The production and destruction terms are erroneous near the wall

since they both depend on the velocity gradient (i.e. S).
Figure 6-10 breaks down the velocity profile into its two contributions. In these plots,

7 = 2y/ - 1. It is reassuring to observe that the Chebyshev profile is zero (on the average)

in the inner layer following the constraint equation R,. This allows the Spalding profile to

approximate the velocity near the wall. In the outer layer, the Chebyshev profile corrects

the velocity approximation as required to solve the flow.

The velocity gradient and shear stress contributions are depicted in Figures 6-11 and

6-12. Once again, il = 2y/6 - 1. The Chebyshev contribution has little effect on the overall

Ou/62. The laminar component of the shear stress Tr = p (du/9) scales the velocity

gradient by the dynamic viscosity. Conversely, the turbulent component r = pt (Ou/Oj)

utilizes the eddy viscosity as a scaling factor which varies with the location inside the

boundary layer. Since the wall function is not consistent with the inner layer eddy viscosity

model, the shear stress exhibits a large oscillation near the wall. The shear stress at the

edge approaches zero smoothly as reflected by the eddy viscosity behavior at this location.
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Figure 6-10: Velocity profile contributions (WF).
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Chapter 7

Conclusion

7.1 Summary

Due to the current inability of the MISES quasi 3-D design/analysis code to handle the

the boundary layer problem with flow control via blowing, two alternate approaches were

proposed. First, a two-equation integral method parameterized with the profile parameters

of a multi-deck representation of a turbulent jet based on Coles' law of the wake was

formulated. The appearance of spurious singularities in the Jacobian matrices associated

with the system of equations and the vector of unknowns prevented this method from being

implemented. Second, a Chebyshev spectral method using the wall function technique was

applied to the defect form of the incompressible viscous momentum equation. A turbulent

jet profile was computed with N = 40 modes, a number low enough to allow the method's

implementation into the MISES framework.

The following summarizes the main points of the thesis.

" An integral method parameterized with the profile parameters of a multi-deck rep-

resentation of a turbulent jet based on Coles' law of the wake was proposed. The

blowing model does a fairly good job in approximating experimental jet profile data.

Consequently, the dimensionless form of both the von Kairmin integral momentum

equation and the integral Kinetic Energy (KE) equation were derived for each layer

with the closure relations modeled in terms of the profile parameters. It was dis-

covered that the Jacobian matrices associated with the system of equations and the

vector of unknowns have spurious singularities. Conversely, applying the model to a

wake profile and using the integral approach yields a well-constrained system. There-

fore, the application of the integral boundary layer method to compute a multi-deck

representation of a turbulent jet profile is inherently difficult.

" The Galerkin form of the Chebyshev spectral method was presented and applied to

curve-fit experimental jet profiles. It was found that the outer layer in these pro-

files could be approximated with N = 20 modes. The near-wall region, in which

high velocity gradients exist, could potentially be resolved using an appropriate wall

function.

" The spectral method formulated with the defect form of the incompressible viscous

momentum equation was developed to solve laminar flow over a flat plate with bound-

ary layer control via suction or blowing.
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- For the case of no flow control, the Falkner-Skan family of boundary layer simi-
larity solutions, of which the flow over a flat plate is but one special case, were
used for comparison purposes. With N = 10, the spectral method was in close
agreement with the Falkner-Skan solution. The exponential convergence rate of
the series coefficients was shown on a log-linear plot.

- Similar flow can also be maintained on a porous flat plate with vertical suc-
tion/blowing if the wall velocity varies as the inverse of the square root of the
distance along the wall. The no-slip condition is still enforced and the results dif-
fer according to the suction-blowing parameter. Suction thins the boundary layer
and increases the slope at the wall. Conversely, blowing thickens the boundary
layer and makes the profile S-shaped. In all case, N = 30.

- Uniform suction results in the flow being nonsimilar changing from the laminar
flat plate profile at the leading edge to the asymptotic exponential profile far
downstream. The velocity and shear stress profiles obtained from the spectral
method exhibit the theoretical exponential shapes and the flow evolution clearly
indicates the asymptotic behavior. In this case, N = 10.

- The laminar jet was setup on a flat plate with an inclined slot. The jet angle is

deduced from the slot geometry. Utilizing a jet strength of 0.38, with the velocity
profile inside the slot modeled as the Poiseuille parabola, the resulting velocity
and shear stress profiles were indicative of fluid injection. In this case, N = 30.
The displacement and momentum thicknesses demonstrated the excess mass and

momentum in the boundary layer due to fluid injection. This case also points out
some of the difficulties in treating the blowing problem with traditional integral
boundary layer methods.

The spectral method applied to turbulent flow is analogous to the formulation for
laminar flow with the only complication being the modeling of the Reynolds stress
in the momentum equation. An algebraic model for the eddy viscosity based on
Spalding's law of the wall for the inner layer and Clauser's outer layer formulation
was implemented in the spectral method.

- The spectral solution to turbulent flow over a flat plate with no flow control was

computed. Due to the two-layer structure of the boundary layer, the number

of modes needed to be increased to N = 180. The velocity profile was in close
agreement with an accurate representation constructed from Spalding's law of

the wall and Coles' law of the wake. The shear stress does not quite go to zero
at the edge since the eddy viscosity has a nonzero value in the outer layer. The
convergence rate of the series coefficients is not exponential primarily due to a
lack of smoothness in the velocity approximation rather than integration error.

- The incorporation of a wall function, consistent with the inner layer eddy viscos-
ity model, into the approximation of the streamwise velocity reduced the number
of modes to N = 4. Comparison of the turbulent flat plate results with and with-
out the wall function are almost identical.

- For a flat plate with wall suction or blowing the inner eddy viscosity model
was modified due to the profound effect that the wall velocity has on the shear
distribution. The spectral solution was computed with N = 180 and compared to
the Stevenson correlation. The agreement was excellent. The wall function was
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then modified to match the new eddy viscosity model in the inner layer. Using
N = 4 the resulting solution compared favorably to the Stevenson correlation.

- The turbulent jet problem required a modification to the outer layer eddy viscos-
ity model because Clauser's formulation uses the displacement thickness which
can become negative for a strong enough jet. The setup was identical to the
laminar jet but the flow was tripped to become turbulent five slot lengths down-
stream of the slot. Once again. N = 180. The convergence rate of the series
coefficients is not exponential for the same reasons as in the flat plate case. In-
corporating a wall function reduces the number of modes to N = 40 to obtain a
close a match to the velocity and shear stress profiles for N = 180.

* The turbulent flow over a flat plate was also solved using the Spalart-Allmaras turbu-
lence model. For the working variable in this model, N = 10. The resulting velocity
profile compares favorably to the accurate representation constructed from Spalding's
law of the wall and Coles' law of the wake with N = 180. The convergence rate of
the series coefficients is not exponential primarily due to a lack of smoothness in the
velocity approximation rather than integration error. Incorporating the wall function
based on Spalding's law of the wall and computing the solution with N = 4 yields
an erroneous shear stress near the wall due to the small inconsistency between the

Spalding velocity and the Spalart-Allmaras eddy viscosity.

7.2 Recommendations for Future Work

The following are suggestions for improvements based on some shortcomings encountered
in the methodology:

" A more accurate integration scheme should be employed when higher resolution is
required. A Gauss-Legendre quadrature scheme is suggested since it is the most
accurate. The only difficulty is in the evaluation of integrals whose limits change,
such as in the viscous normal velocity component.

" The constraint on the boundary layer thickness should be replaced with a differential

equation based on the local velocity profile. This would avoid situations in which the
velocity profile is forced to zero over a large percentage of the boundary layer. The
effect would be a substantial reduction in the number of required modes.

" The Spalart-Allmaras turbulence model for the eddy viscosity should be modified to

match the inner layer eddy viscosity model based on Spalding's law of the wall. This
would require replacing the functional weight on the working variable.
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Appendix A

Falkner-Skan Wedge Flows

The most celebrated family of similarity solutions for boundary layer flow was discovered

by Falkner and Skan [13] and later computed numerically by Hartree [16]. This class of

solutions have the property that the velocity profiles, u, at different streamwise locations, x,
can be made congruent with suitable scaling factors for u and y (the normal flow coordinate).
The partial differential equations (PDEs) governing the flow reduce to one simple ordinary

differential equation (ODE). This appendix derives the ODE and presents the numerical

results for a range of wedge flows. In addition, the spectral solution to some of the more

interesting wedge flows are listed.

A.1 Boundary Layer Equations in Streamfunction Variables

The 2-D, steady, incompressible continuity and x-momentum thin shear layer equations

governing the real viscous flow (RVF) in the laminar regime are given by

-+ =0 (A.1)
Ox ay

- (U 2) + a(no) + 1 9 T= 0. (A.2)
9x ay pax p9y

In these expressions, u and v are, respectively, the x- and y-components of the RVF velocity;

p is the mass density; p is the static pressure and r is the shear stress given by

T = p-, (A.3)
ay

where p is the dynamic viscosity. Defining a streamfunction variable, 0, such that

O'~bT au
and - = v (A.4)ay p ay'

where the kinematic viscosity v = p/p, the RVF x-momentum equation reduces to

O@8u O 8 'ib8u due O(T/p)ao= (9 oau- u + .Tp (A.5)
ayax axay dx y

The pressure gradient term has been written in terms of the edge velocity Ue (streamwise

component). This comes from the assumption that in a boundary layer
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(A.6)

where Pe (x) is the static pressure at the edge and using Bernoulli, it can be shown that

dpe

dx

due

Pe e dx
(A.7)

The edge density pe = p since the flow is incompressible. The boundary conditions at y = 0
are

0b= 0 and u = 0,

whereas at Y = Ye,

where ye denotes the edge location.

(A.8)

(A.9)U = Ue,

A.2 Coordinate Transformation

The coordinate transformation (x, y) - T (, r) is given by

( = X,

Y =

(A.10)

(A.11)

where A (x) is an appropriate length scale for the thickness of the boundary layer. The
partial derivatives transform to

a - a
O9X 9

-- dA 0
A d q'

0 1 a

ay A aq

Noting that

UA ab
ud = and -A = vO

P a?
the RVF x-momentum equation becomes

OV;09U- 0v) 9U= ne A du
on On 04 On de

O(i-/p)
+ .(onq

A.3 Variable Transformation

The variable transformation (0, U, r) -- (F, U, S) is given by

Ir mue
=mF, U = UeU, and -= uS.

p i
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(A.13)

(A.14)

(A.15)

(A.16)

P (X, Y) ~1_ P (X) = Pe (X) ,



m (() Ue (() A (), O dm
m d(

and 3- -due
Ue d(

and noting that

9F
U =0 and S- l/U, au _ - au

m2 an7 Ue A 2 O an

the RVF x-momentum equation becomes

as+ mF

+n an + # (1 auOF)
The boundary conditions at 7 = 0 are

F = 0 and U = 0,

whereas at 'q = ne,

U = 1,

where ne denotes the edge location in transformed coordinates.

A.4 Requirements for Similarity

For similar flow (8/8( = 0), the following conditions must hold:

1. #m,f u = constant in (. 2. VUe = constant in .
m2

3. BCs = constant in (.

The first condition is satisfied if

m (() = Cm(#m, and A () = CA('^,

where Ce, Cm, and CA are constants. The second condition will yield the relationship
between 0#m and fu, that is

1 + #l2
Om 2 . (A.24)

2

Noting that m ( u) Ue (() A (a), it is a simple matter to deduce

/3m = iu + OA. (A.25)

The third condition is satisfied outright from the previously stated boundary conditions.

A.5 Falkner-Skan Transformation

Falkner and Skan chose the combination

= 1 (A.26)
Ue A2
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(A.17)

(A.18)

OFaU)
.a (A.19)

(A.20)

(A.21)

Ue (6) = Ce6,

(A.22)

(A.23)

aF OU
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from which the Falkner-Skan length scale, AFS, could be defined as

AFSA(x) =
Ue (x)

As a result, the RVF x-momentum equation reduces to the ODE

d +F 1+#uJ
W+ (

d2F
F dj + # 1 - = 0.

I dq

The boundary conditions at = 0 are

F = 0 and dF

whereas at Tj -> oo,

dF
dr

(A.28)

(A.29)

(A.30)

A.6 Integral Thickness Definitions and Shape Parameter

The displacement and momentum thicknesses, * and 0, are defined as

10j(
- U)dy and 0 o (1

0
- uudy.

Ue Ue
(A.31)

Applying the Falkner-Skan transformation yields the modified thicknesses

0

dF) dj
d~q and OFS l- 1

AFS 0

where the subscript FS is used to differentiate between the actual and transformed quanti-
ties. The shape parameter, H, defined by

6*
0

(A.33)6*S

OFS

indicates the state of the boundary layer. For a favourable pressure gradient, #3 > 0 and
H is small. Conversely, in an adverse pressure gradient, #u < 0 and H is large.

A.7 Skin Friction Coefficient

The skin friction is defined by

Cf J T 2,1 Te
wPeUe

where 'Fw is the shear stress at the wall, or

au
TW = Y - V--
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6* dF
d-

dF
dy

(A.32)

(A.34)

(A.35)



In Falkner-Skan variables the skin friction is obtained from

d 2 F W= S|?1  = Cfv/Ret
pe-u AFS 2

(A.36)

where ( was replaced by x in the final expression.

A.8 Numerical Solution

The Falkner-Skan ODE can be solved by discretizing the equation with finite differences

and implementing a Newton iteration scheme to solve the corresponding set of nonlinear

equations. The results have been summarized in Table A.1 and the corresponding velocity

profiles are depicted in Figure A-1.

Table A.1: Solutions of the Falkner-Skan equation for various values of #0.

F 2 COS P 7Ue//X OFS = 0\I'ue/V H

1 1.23258 0.64791 0.29235 2.216
1/3 0.75745 0.98538 0.42900 2.297
0.1 0.49657 1.34787 0.55660 2.422
0 0.33206 1.72080 0.66412 2.591

-0.01 0.31147 1.78005 0.67892 2.622
-0.05 0.21348 2.11775 0.75147 2.818

-0.0904 0.00478 3.44593 0.86798 3.970

1

4
11

8

Figure A-1: Falkner-Skan velocity profiles for various values of u.
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A.9 Spectral Method Results for Wedge Flows

The spectral solution to some of the more interesting wedge flows are listed in Table A.2. In
all cases, N = 10. For #3 = {1, 1/3,0, -0.05, -0.088}, the velocity and shear stress profiles
as well as detailed flow evolution plots are listed on subsequent pages. In these plots, = x
and r =2y/6 - 1.

Table A.2: Spectral solution to wedge flows for various values of #3.

#u IF" (0) =C5 Re s [ 6* u /Vr 9 FS 1 uevx H

1 1.23262 0.64751 0.29191 2.218
1/3 0.75746 0.98516 0.42871 2.298
0.1 0.49659 1.34784 0.55646 2.422
0 0.33211 1.72086 0.66401 2.592

-0.01 0.31153 1.78011 0.67881 2.622
-0.05 0.21360 2.11780 0.75130 2.819

-0.088 0.04682 3.05947 0.85775 3.567
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A.9.1 Stagnation Flow (0. = 1)

10 0.2 0.4 0.6 0.8
u/u

(a) Velocity Profile (b) Shear Stress Profile

Figure A-2: Stagnation flow: u/Ue and /r, profiles.
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Figure A-3: Stagnation flow: 6, ue, r, and Cf vs.
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Figure A-4: Stagnation flow: P*, 0, H, and Reo vs.
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A.9.2 Constant r, (#u = 1/3)

0.4 0.6

(a) Velocity Profile (b) Shear Stress Profile

Figure A-5: Constant -r: u/Ue and /r, profiles.
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(a) Boundary Layer Thickness
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Figure A-6: Constant -r: , Ue, rw, and Cf vs. (.
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Figure A-7: Constant r,: 6*, 0, H, and Reo vs. 1.
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A.9.3 Flat Plate (#u = 0)

1 0.2 0.4 0 6 0.8
u/u

(a) Velocity Profile (b) Shear Stress Profile

Figure A-8: Laminar flat plate: u/Ue and T/r, profiles.
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Figure A-9: Laminar flat plate: 6, ue, -r, and Cf VS.
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Figure A-10: Laminar flat plate: *, 0, H, and Reo vs.
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A.9.4 Adverse Pressure Gradient (,3 = -0.05)

0.6
U/u

1.4

(a) Velocity Profile (b) Shear Stress Profile

Figure A-11: Adverse pressure gradient: u/ue and r/r, profiles.
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(a) Boundary Layer Thickness

(c) Wall Shear Stress (d) Skin Friction Coefficient

Figure A-12: Adverse pressure gradient: 6, ue, Tw, and Cf vs. (.
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A.9.5 Onset of Separation (3 = -0.088)
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(a) Velocity Profile

Figure A-14: Onset of separation: u/Ue and r/r, profiles.
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Appendix B

Interacting Boundary Layer
Theory for Separated Flows

The quasi 1-D flow in a diffuser is solved using a two-equation integral method and the
spectral formulation. The integral boundary layer equations for both laminar and turbu-
lent flow have identical forms differing only in their closure relations. The edge velocity
constraint is formulated using Classical Boundary Layer Theory (CBLT) and Interacting
Boundary Layer Theory (IBLT) [4, 10, 11, 24, 25, 26, 27, 42]. The solution procedure for
the integral method is outlined and results to laminar and turbulent flow test cases for var-
ious Reynolds numbers are reported. The spectral method is applied in solving the diffuser
problem in both flow regimes using the FLARE approximation [34, 43] for separated flow.
In the case of turbulent flow, the Spalart-Allmaras turbulence model described in Chapter
6 is implemented in the spectral formulation. The agreement in laminar flow solutions from
both methodologies is excellent. For turbulent flow, the Spalart-Allmaras turbulence model
is strained but the trends in the flow solution variables are nonetheless correct. The in-
corporation of a wall function in the spectral approximation of the streamwise velocity has
little effect in reducing the number of required modes due to the boundary layer thickness
constraint.

B.1 Integral Boundary Layer Equations

B.1.1 Laminar Flow

The 2-D, steady, incompressible continuity and x-momentum thin shear layer equations
governing the real viscous flow (RVF) in the laminar regime are given by

On Ov

a 2) 8 18ap 18rT
(U) + (o) + -- = 0. (B.2)

ax ay px OX pay
In these expressions, u and v are, respectively, the x- and y-components of the RVF velocity;
p is the mass density; p is the static pressure and r is the shear stress given by

T (B.3)
By,
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where p is the dynamic viscosity.

B.1.2 Turbulent Flow

The 2-D, steady, incompressible Reynolds-averaged continuity and x-momentum thin shear
layer equations governing the real viscous flow (RVF) in the turbulent regime are given by

O- + = 0V (B.4)
Ox ay

O ( 2 + (no)+ = 0. (B.5)
ax ay poax pay

In these expressions, u and v are, respectively, the x- and y-components of the RVF velocity;
p is the mass density; p is the static pressure and r is the shear stress given by

T -u vP, (B.6)

where p is the dynamic viscosity and -pu'v' is the turbulent shear (or Reynolds stress).

B.1.3 Dimensional Form

Integrating across the laminar boundary layer

j [(u - Ue) x (B.1) + (B.2)] dy, (B.7)

[(U 2 - u2) x (B.1) + 2u x (B.2)] dy, (B.8)
0

as well as the turbulent boundary layer

1 
6

j [(U - Ue))x (B.4) + (B.5)] dy, (B.9)

j (u2 - u ) x (B.4) + 2u x (B.5)] dy, (B.10)
0

yields the dimensional form of both the von Kairmin integral momentum equation and the
integral Kinetic Energy (KE) equation for either case

d (pe26) peue* = r (B.11)
dx (e) + dOX e _

d(e,* 2D (B.12)
d
dx (pn -* 2D. (B.12)

The displacement thickness *, momentum thickness 0, KE thickness 0*, and the shear
dissipation D are defined by

3* j ( -- dy, (B.13)
0 Ue
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0 j (1 - u) udy, (B.14)
- fo _e Ue

0* = 1 - dy, (B.15)

D Ejr dy. (B.16)

The pressure gradient term has been written in terms of the edge velocity Ue (streamwise
component). This comes from the assumption that in a boundary layer

p (X, y) p (X) = pe (x, (B. 17)

where pe (x) is the static pressure at the edge and using Bernoulli, it can be shown that

dpe due (B.18)
dx dx

The edge density pe = p since the flow is incompressible. The shear stress at the wall -r, is
given by

rW = p -- . (B.19)
ay y=O

B.1.4 Dimensionless Form

The dimensionless form of both the von Kairmi'n integral momentum equation and the
integral KE equation can be obtained by simply expanding their dimensional form, such

that

dO + (H + 2) - =du C (B.20)
dx Ue dx 2

d +* 3 d*e = 2 CD, (B.21)
dx Ue dx

where the skin friction Cf, dissipation coefficient CD, and shape parameters H and H* are
defined by

Tw D * 0*
Cf , 1 2, CD 3, H =--, H* - (B.22)

SPene Peue 0 0

Utilizing the relation

1 dIH* 1 d* 1 dO
H* dx 0* dx 0 dx'

the so-called shape parameter equation is obtained

9 dH*+(I H) 0 due 2 CD Cf
H* dx Ue dx H* 2'

which is used in lieu of the KE equation. Manipulating this equation further
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SdH( H dH* +(1-H) 0 due _ 
2CD Cf

H dx H* dH u dx H* 2 (B.25)

B.1.5 Logarithmic Form

In logarithmic form the von Kairmain integral momentum equation and the shape parameter
equation become

d d 1C
dx (ln ) + (H + 2) dx (ln ue) = , (B.26)

d x d 1 2D O

d (In H*) + (1 - H) d (In ue) = I (2D f. (B.27)

Equivalently, the shape parameter equation can be written as

d (In H) H dH) + (1 - H) + (Inue) = 1 H* 2f. (B.28)

B.1.6 Similarity Form

Noting that

x d() d (ln ())
() dx d(lnx)'

the similarity form of the von Karmin integral momentum equation and the shape param-
eter equation become

#0 + (H + 2)X f = , (B.30)
0 2

OH* + (1 - H) Ou = x H*C 2 , (B.31)

or equivalently for the shape parameter equation

OH H dH* + I-Ho x 2CD Cf (.2
(HH* dH + -H), 0 (H* 2 ,(.2

B.2 Channel Geometry

The diffuser geometry is defined by

h (x) = ho + (hi - ho) (3x 2 - 2x 3 ) with 0 < x < 1, (B.33)

where ho = 0.05 m and hi = 0.1 m. Only half the diffuser will be treated, assuming
symmetry about the center plane, which can also be considered as an inviscid wall. The
rate of change of h (x) with x is given by

dh
dx =(hi-ho)6x(1-x) with 0<x<1. (B.34)
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B.3 Edge Velocity

In Classical Boundary Layer Theory (CBLT), ue is known a priori from the channel geometry

whereas in Interacting Boundary Layer Theory (IBLT), the displacement thickness 3* also

influences ue, such that

CBLT: Ue (x) = _ and IBLT: Ue (x) h . (B.35)
h (x) h (x) - 6* (x)

The constant volume flux rh/p is known from the inlet flow and geometry. The rate of

change of Ue (x) with x is given by

due Ue dh due Ue d6* dh(

dx h dx dx h-6* dx dx)

In similarity form these become

xdh 3* x dh
# = and 3 u - 3 * = . (B.37)* h dx h - 6* h - 6* dx'

B.4 Reynolds Number

The Reynolds number can be appropriately defined with the length of the channel (unity)

and the inlet velocity. The latter can also be set to unity so that Re = 1/v.

B.5 Solution Procedure

The integral boundary layer equations are valid for both laminar and turbulent flow. How-

ever, the empirical closure functions H* (H), Cf (H, Reo), and 2CD/H* (H, Reo) taken from

Drela [8] quantitatively differ between the turbulent and laminar case. The flow is assumed

laminar from the leading edge and turbulent downstream of some transition location. The

transition location is where the shape parameter H first exceeds some critical value Herit.
This will nicely simulate transition induced by pressure gradients and/or laminar separation.

The three unknowns for the integral method are 6 (x), 3* (x), and ue (x). The governing

ordinary differential equations (ODEs) are

#0 + (H + 2) # = x ,C (B.38)
0 2

OH( H dH*) + (1 - H )# = x H*D 2 ,(B.39)

** xH d h*

#U - *s . x d (B.40)
h h- * h - * dx'

where 0H can be expressed in terms of 3* and 30 as follows

OH= -3* ~f3o. (B.41)

In matrix form these equations become
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1 0 H+2 ~ ~
IBLT: -- H 1-HJ # = H 0x - . (B.42)

At any streamwise station xi the coefficient matrix and righthand side vector can be eval-
uated. This 3 x 3 system can easily be solved for #0, 3*, and #u. The x-derivatives

dO = *o - = -3, and due - U (B.43)
dx x dx x dx x

can then be used to determine 0, 6*, and Ue at station x+1 using say, Forward-Euler,
or some higher-order method such as Predictor-Corrector or Runge-Kutta. However, the
integration method will be inaccurate if Ax/x is not small (such as near the leading edge).

One way to get around this problem is by using #0 , 36*, and 3u directly, for instance,

x d0 d1/ _ d (In0) AlinO _ In Gi+ 1 - In6O In (Gi+ 1/0)
0 dx dx/x d (ln x) A Inx In xi+1 - In xi ln (xi+1/xi)'

such that

ln (A+1/0) = oln (xi+1/xi) or 0j+1 = O x'±). (B.45)

Similarly

*1= of and Uesi = Ue X i+1 . (B.46)6\ X/ 1/e (

These are exact for similar flows (i.e. near the leading edge) no matter how large the
quotient Ax/x = (xi+1 - xi) /xi may be. For small Ax/x the above power-law integration
is equivalent to normal Forward-Euler to first order in Ax/x. Tabulated Blasius solutions
are used to generate solution quantities at the first grid point. This is necessary to start
the downstream integration.

To solve the CBLT problem simply neglect 6* in the third line of the 3 x 3 system to
obtain

1 0 H+2 2~ 02
CBLT: --}H* } (* - H )- . (B.47)

FH* dH H H j [0~ [ * 2d0 0 1__ _x An
- h dx -j

B.6 Spectral Formulation

The spectral method applied to the diffuser problem for either laminar or turbulent flow
follows the formulation of Chapters 4 and 5. The Spalart-Allmaras turbulence model de-
scribed in Chapter 6 is implemented in the spectral formulation for the turbulent case. The
only modification occurs in regions of separated flow. For flows with negative wall shear
it is necessary to overcome the stability problem in order to continue the calculations past
the separation point. This may be done with the approximation suggested by Reyhner and
Fliigge-Lotz [34]. This approximation, referred to as FLARE by Williams [43], consists of
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neglecting uwu/ax in the x-momentum equation whenever u < 0. For turbulent flow, the

term uiwB/Ox in the transport equation must also be neglected for u < 0.

B.7 Laminar Test Cases

Both the CBLT and IBLT solutions for Re = 104, 10 5, 106 with Herit = 500 (fully lami-
nar) were computed using the two-equation integral method and the spectral formulation.

Figures B-1 to B-3 compare the CBLT solutions whereas Figures B-5 to B-7 compare the

IBLT solutions using both methods. Note that ( = x in the graphs. The spectral method

uses N = 10 for all the Reynolds numbers in the CBLT case and N = 20, 30, 90 for the

IBLT case. The integration was performed using the trapezoidal rule with Ap = 7r/180 in

the CBLT case and AW = 7r/1800 for the IBLT case. The velocity and shear stress profiles

are shown in Figures B-4 and B-8 where y =2y/6 - 1.
The CBLT encounters the Goldstein singularity [36] at separation (i.e. at ( ~ 0.185 m)

and fails whereas the IBLT does not. At separation dH*/dH = 0 and H 4 such that the

coefficient matrices become

1 0 6 1 0 6~

CBLT: 0 0 -3 and IBLT: 0 0 --3 . (B.48)
0 0 1 [0 -h6*

The matrix is singular for the CBLT case whereas the IBLT matrix is not because of the

displacement term -6*/ (h - 6*).
Furthermore, the separation location for the CBLT is independent of Reynolds number.

Conversely, the separation point moves closer to the leading edge as the Reynolds number is

increased for the IBLT case. The reason for this is that the edge velocity ue does not depend

on Re in the CBLT case but does so for the IBLT through the displacement thickness P*.
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Figure B-1: Laminar diffuser CBLT, Re = 10': u, 0, H, and * - h vs.
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Figure B-2: Laminar diffuser CBLT, Re = 105: ue, 9, H, and 6* - h vs.
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Figure B-3: Laminar diffuser CBLT, Re = 106: ue, 0, H, and * - h vs. (.
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(a) Re = 104 (b) Re = 104

(c) Re = 105 (d) Re = 105

1.2

(e) Re = 106 (f) Re = 106

Figure B-4: Laminar diffuser CBLT: u/ue and r/r, profiles at ( = 0.185 m.
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Figure B-5: Laminar diffuser IBLT, Re = 104: ue 0, H, and 6* - h vs.
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Figure B-6: Laminar diffuser IBLT, Re = 105: ue, 0, H, and * - h vs. (.
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Figure B-8: Laminar diffuser IBLT: u/ue and /wr, profiles at ( = 1 m.
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B.8 Turbulent Test Cases

A useful measure of diffuser efficiency involves comparison of mixed-out quantities far down-
stream of the exit. The assumptions are that the skin friction vanishes and the channel

width remains constant downstream of the exit. The mixed-out static and stagnation pres-

sure coefficients are given by

Poo -Pinlet

1P 210Uo
and Cp- Pa0 0  POinlet

CPI 1 2~PU0

where C, measures the diffuser pressure rise while Cp measures the diffuser loss.

the integral theorems for the conservation of mass and momentum, these coefficients

expressed more conveniently in terms of the inlet velocity uo, inlet and exit channel

ho and hi, and the boundary layer quantities at the exit 01 and 6* as follows

C= + )21 - 2 - 2
(h 16* h1 h1 '

C =hi - R 1i 2h .

(B.49)

Using
can be
widths

(B.50)

(B.51)

Figure B-9 shows the variation of C, with respect to C,, for ho = 0.05 m and a range

of exit widths 0.1 m < hi 5 0.3 m, using Re = 107 and Herit = 3. As h, is increased, the

pressure rise increases until separation sets in. After this point, little additional pressure

rise is realized and the loss increases rapidly. For small hi, the loss also increases due to

larger ui and hence larger skin friction C-p .2

0.95

Large h, Separation

Loss

0.75-

0-0.o5 -0.045 -0.04 -0.035c -0.03 -0.025 -0.02 -0.015

UC

Figure B-9: Graph of C, vs. C,

The integral method was used to generate Figure B-9 since using the spectral formulation
would have required an exorbitant amount of computational resources. For the sake of

comparison, Figure B-10 plots the flow solution for hi = 0.2 m. In this case, N = 180 and
N = 50. Note that ( = x in the graphs. It is evident that the Spalart-Allmaras model is
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strained in separated flow but the trends are nonetheless correct. The C, value from the
spectral method is 0.8990 whereas the integral method yields 0.9120, a difference of 1.4%.
The Cpo value is about 51% off (i.e -0.3853 instead of -0.2550) mainly due to the fact that
the separation loss increases rapidly for large hi.

The velocity and shear stress profiles are shown in Figure B-11 where 77 2y/6 - 1.
The fact that both the velocity and shear stress are zero for about half the boundary layer
thickness forces N and R to be large. This is due to the R3 constraint. To ease the
abruptness with which the eddy viscosity goes to zero, an artificial viscosity v' replaced v
in the diffusion term of the transport equation. It is given by

V= [v2 + (KAiq6u)]", (B.52)

where K = 1.0, Aq is the smallest integration interval scaled with the boundary layer
thickness 6, and u is the x-component of the RVF velocity.

The spectral solution to the turbulent diffuser problem with hi = 0.2 m was also com-

puted with the incorporation of the wall function. The benefits of using a wall function are

rendered useless by the fact that the velocity and shear stress are zero for half the boundary
layer thickness. As such, N = 150 and N = 50. Figure B-12 compares the flow solution
and Figure B-13 depicts the velocity and shear stress profiles. These are almost identical
to Figures B-10 and B-11, respectively. The C, and Cp. values are also the same.

Figure B-14 breaks down the velocity profile into its two contributions. The Spalding
profile contributes a negative velocity since the friction velocity, uT, is negative for flow
reversal. The Chebyshev profile is zero (on the average) following the constraint equation

R,. The function wu, was taken from the turbulent jet case

w 1-tanh K -- ,] (B.53)

where K = 1000. The term y* was chosen to be 0.16. Noting that 7 = 2y/6 - 1 and

* = 2y*/6 - 1 the expression can be simplified to

w, = - 1 - tanh (I - q*) . (B.54)
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(a) Velocity Profile (b) Shear Stress Profile

Figure B-11: Turbulent diffuser: U/Ue and /r, profiles at ( = 1 m.
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Figure B-12: Turbulent diffuser (WF): ue, 0, H, and * - h vs. (.
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