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Abstract

Alternative splicing plays a major role in protein diversity and regulating gene ex-
pression. Motifs that regulate tissue-specific alternative splicing have been identified
by groups studying small sets of genes. We introduce a tissue-specific skipping score
for skipped exons using exon-exon junction microarray data. We compare these exons
with known literature-verified EST skipped exons and exons predicted to be skipped
in both human and mouse. After deriving tissue-specific skipped exon sets for brain,
heart, muscle and testis, we find sequence features in the exon and flanking introns
that distinguish these tissue-specific skipped exons from constitutive exons. Lastly, we
use sequence-based scoring based on these features to predict tissue-specific skipped
exons and compare these with EST data to demonstrate the tissue-specificity of the
motifs.
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Chapter 1

Introduction

Relative to transcription, a less well understood mechanism of gene expression con-

trol which has recently come under much attention, is via the regulated removal or

inclusion of RNA sequence regions in premature messenger RNA by alternative splic-

ing, thereby altering the function of a gene in a tissue-specific fashion, or by down-

regulation of the gene by generating a premature termination stop codon, leading to

degradation via the nonsense-mediated decay pathway. Alternative splicing plays a

major role in protein diversity and regulating gene expression in higher eukaryotes

[5, 4], and more than half the human genes have been estimated to be alternatively

spliced. Motifs that regulate splicing (splicing enhancers or silencers) can be found

on the exons as well as the flanking introns as shown in Figure 1-1 A. Figure 1-1 B

shows the different elementary alternative splicing events that can occur [2].

1.1 Alternative Splicing and disease

It is widely believed that alternative splicing is of particular importance in the nervous

system. Defects in the splicing machinery have been known to cause a substantial

fraction of human genetic diseases. Errors in alternative splicing regulation directly

cause a large number of diseases, including several types of cancer, dementia, genetic

defects and lethal infant degenerative conditions such as spinal atrophy [14, 8]. Cor-

rection of erroneous splicing is an important goal of molecular therapies [13]. This is
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Figure 1-1: A. Regulatory elements that can affect alternative splicing B. Types of

alternative splicing events [2].
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the main motivation for studying alternative splicing in greater depth and using com-

putational approaches to understand the signals that affect tissue-specific alternative

splicing, which shall be explored in this thesis.

1.2 Previous work on tissue-specific alternative splic-

ing

Cell type and tissue-specific regulation of gene expression is of utmost importance

in specifying normal growth and development, metabolism, and other fundamental

processes in living organisms. Control of tissue-specific expression of a gene can

be achieved by various different mechanisms, such as binding of tissue-specific tran-

scription factors to the promoter regions of genes, and more recently, complementary

base-pairing of tissue-specifically expressed microRNAs to the 3'-UTR of target genes.

A common theme in understanding such specific regulation is to identify sequences

that act as cis-regulatory binding sites to tissue-specific trans-acting elements (pro-

teins or RNA sequences). A basis for most methods depends on extracting motifs

that distinguish sets of transcripts enriched in one tissue versus other tissues. To

systematically and efficiently perform such computational searches of sequence mo-

tifs, large experimental sources of data across a wide variety of tissues of interest are

necessary. Such data can come from expressed sequence tags (EST's), SAGE tags or

microarray data. For example, tissue-specific binding sites (particular to muscle and

liver) have been identified by Smith, Sumazin and Zhang [1].

Splicing is regulated by the interactions of protein factors with the splicing ma-

chinery, where the factors bind to cis-elements in the regulated exons or the flanking

introns. Careful studies of the binding affinities of particular splicing trans-factors

such as ETR3 [15] and NOVA-1 [16, 10], or mutation of cis-regulatory elements, or

a combination, have identified tissue-specific cis and trans relationships. Systematic

larger-scale searches using experimental and computational methods [22, 18, 19, 12]

have uncovered additional splicing cis-elements. In addition, motifs that regulate
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tissue-specific alternative splicing have been identified by groups studying small sets

of genes [17]. Efforts involving larger sets of tissue-specifically regulated exons have

come from utilizing expressed sequence tags (EST's) [6]. Even after controlling for the

non-uniformity of tissue libraries, ESTs retain significant limitations because of bias

in transcript coverage [9, 7]. Fortunately, more recent large-scale experimental ap-

proaches utilizing splicing-specific microarrays have provided a more comprehensive

set of tissue-specific alternative splicing exons[9, 3].

1.3 Prediction of tissue-specific skipping

In this study, a binning approach is described that assigns a potential microarray-

based tissue-specific skipping (M-TSS) score for exon skipping to each exon in the

Rosetta microarray dataset [9]. The scores were utilized to compartmentalize exons

into tissue-specific skipping (TSS) sets. Predicted skipped exons were compared to

exons with a positive ACEScan score (ACEScan[+] exons) [20] predicted using a

comparative genomics and statistical learning method. A simple statistical motif-

finding approach was used to identify tissue-specific motifs particular to exon skipping

events. These motifs were used to predict tissue-specific skipped exons from the

sequence data by assigning to them a sequence-based tissue-specific skipping (S-TSS)

score. In combination with methods such as ACEscan, we thus suggest the potential

to predict tissue-specific exon skipping from sequence data alone and compare the

skipping scores assigned to exons with EST skipping evidence. Such cis-elements are

likely to be important in specifying tissue-specific regulation of alternative splicing in

vivo.

1.4 Thesis Outline

Chapter one introduces the motivation behind studying alternative splicing, and looks

at some previous relevant work in this area. Chapter two describes the methods

for using microarrays to predict tissue-specific alternative splicing in human tissues.

18



Chapter three describes the extraction of motifs that distinguish between tissue-

specific skipped exons and constitutive exons. Chapter four describes the prediction

of tissue-specific skipping from sequences using the motifs found with the help of the

microarray data and demonstrates the tissue-specificity of the motifs. Chapter five

concludes the work, and offers some perspectives.
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Chapter 2

Microarray-based prediction of

tissue-specific skipping

2.1 Microarray dataset

The microarray data consists of exon-exon junction microarrays for more than 10,000

human genes in 52 tissues and cell lines [9]. The tissue set consists of some diseased

cell-lines in addition to normal tissues. Microarray data tends to be noisy, and there

are many factors that cause variation within this data. The tissue-specific expression

levels and the binding affinities of the probes are estimated from the data itself. In

addition, there are a number of probes that do not hybridize target RNA well or at

all. All these factors have to be taken into account when determining exon skipping

in a tissue.

Each gene is characterized by a matrix of hybridization intensities of exon-exon

junction probes across splice junctions for the tissues and cell lines as shown in Figure

2-1 for the EPB41L2 gene. The tissues and cell-lines as ordered on the microarray are

listed in Table ??. Log-transformed data is often used in microarray analysis to do

statistical tests. But untransformed data can sometimes be more useful for detecting

global correlations or finding significant changes in intensity levels [21].
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Figure 2-1: Original hybridisation intensities for the EPB41L2 gene.

2.2 Prediction of skipping from microarray data

by assigning scores

2.2.1 Normalization of the microarray per gene

For each gene, the probe binding affinity for a particular junction probe was ap-

proximated by the median of the original intensities across all tissues for that probe.

Similarly, the tissue-specific gene expression level was approximated by the median

of the intensities across all junction probes in the gene for that tissue. The intensities

for the gene were thus normalized in the following way:

X x't - Pt

xpt t-

X ~P

where xp,t is the original intensity value for the pth probe in the tth tissue, x' e

and x", are the intensity values after normalizing across tissues and then across
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Normalized intensities
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Figure 2-2: Normalised hybridisation intensities for the EPB41L2 gene. The darker
cells correspond to lower intensities.

junction probes respectively, (pt, o-t) is the median and standard deviation of the

original intensity values across all junction probes for that gene in tissue t within that

gene, and ( , o) is the median and standard deviation of the normalized intensity

values of junction probe p across all tissues after the first normalization. Figure 2-2

displays the normalized intensity values for the EPB41L2 gene.

2.2.2 Scoring of the exons

After normalization, all the normalized intensity values within a gene were binned

into multi-variant bins irrespective of tissue or junction, using a euclidean k-means

approach. In this approach, the intensities are partitioned into k disjoint subsets or

bins bj, j E [1, k], such that each bin contains intensities xji i E [1, 1bjf] where pj is

the mean intensity value for that bin and Ibj I is the size of the Jth bin.

Initially, the bin centers pj are chosen randomly. In each iteration, the intensities

are resassigned to the closest bin so as to minimize the sum of distances of each

intensity from its new bin center. Thus the following sum of squares criterion is

minimized at each step, to get an optimal assignment of the intensities to the bins:
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Figure 2-3: Binned intensity values for the EPB41L2 gene. The darkest bin corre-

spond to the exons that are predicted to be skipped while the lighter bins correspond

to exons predicted to be included.

The iterations are stopped when the stopping criteria is met, i.e. when there is

no further reassignment of the intensities to the bins. To prevent getting stuck in a

local minimum, this was repeated a few times for each gene and the bin assignment

that resulted in the minimum sum of squares was chosen. Figure 2-3 shows the

bin assignments of all the intensity values after applying k-means for k = 5. Thus,

the intensities that are assigned to the first bin have the lowest intensities and are

predicted to correspond to skipped exons.

To assign a skipping score to an exon in a particular tissue t, each of the bins

above was given a weight. These bin weights were estimated from the training data

with a gradient descent approach. The microarray-based tissue-specific skipping (M-

TSS) score for exon e in tissue t is thus calculated by summing the bin weights for

24



the intensities corresponding to that exon.

M - TSS(e, t) = w[bin(pe, t)] + w[bin(pe+1 , t)]

where pe is the junction probe overlapping with exon(e - 1) and exon (e), bin(pe, t)

is the bin assignment for the intensity of the junction probe pe in tissue t, and

w[bin(pe, t)] is the weight of that bin. High weights correspond to an affinity for

exon skipping, while low weights correspond to an affinity for exon inclusion. Hence,

the lower intensity bins get assigned a higher weight so that a high M-TSS score

corresponds to the likelihood of the exon to be skipped in that tissue. These weights

are determined via a learning algorithm using gradient descent. To determine the

optimum bin weights, a training set of about 40 positive (alternatively spliced) and

40 negative (constitutive) exons was used. The set consisted of non tissue-specific

skipped exons. A validation set of similar size is used to prevent over-fitting to

the training set. All these training exons are either literature-verified or verified in

previous studies by reverse transcription polymerase chain reaction (RT-PCR) and

sequencing.

In order to compare the M-TSS predicted skipped exons with the training set of

skipped exons, a microarray-based net skipping (M-NS) score was calculated for each

exon e.

EtMTSS(e, t) - jp(Ve, EtMTSS(e, t))
M (Ve, EtMTSS(e, t))

where EtMTSS(e, t) is the net skipping score for the exon, i.e., the sum of the

M-TSS scores of the exon over all tissues, pu(Ve, EtMTSSe, t) is the median of the

net skipping scores of all exons in the gene, and o-(Ve, EtMTSSe, t) is the standard

deviation of the net skipping scores of all exons in the gene. Under the assumption

that a majority of the exons within a gene are constitutive, this transforms the M-TSS

scores to have zero median and unit standard deviation.

25



Mean Squared Error on the training set using gradient descent
0.45#
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Figure 2-4: Mean squared error versus gradient descent iterations. The parameters are

the weights assigned to the different bins, and they determine the predicted skipping

score for the exons. The parameters are learned by minimising the mean squared

error between the known and the predicted labels on the training set using a gradient-

descent approach. The solid curve depicts the mean squared error on the training

set, and the dashed curve depicts the error on the validation set.

2.2.3 Learning the weight parameters

The weight parameters are obtained using a gradient descent approach to minimize

the root mean squared prediction error F( ' ) which is the error between the known

and predicted labels of the exons. 'n is the vector of bin weights at the n'h iteration

of the algorithm, the predicted label gwn)for the e'h exon is the normalized M-NS

score lying between 0 and 1 ( =1 for the strongest skipping score, Qe=0 for

the weakest skipping score) calculated using the n'h iteration weights, and y, is the

known binary label for that exon (y. = I for alternatively spliced exons, y, = 0 for

constitutive exons). The prediction error at the n 1h iteration is given by:

F(* ) = E 4 (ye - Qe ( ))2
n

The weights are updated in the direction of the negative of the gradient of the mean
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error on the training set, such that the step size, -y, is allowed to decrease at every

iteration. To avoid overfitting to the training set, the training data was partitioned

into the training set and the validation set with 40 positive and 40 negative exons

each. The stopping criteria is defined by a change in mean-square error per iteration

of less than 0.01. In Figure 2-4, the dashed curve depicts the mean squared error on

the training set, and the solid curve depicts the error on the validation set, confirming

that the parameters have not been overfitted to the training set.

2.3 Correlation with previous predictions

To compare the exons predicted to be skipped from microarray data with ACEscan(+)

exons, each exon was given a Microarray-based Net Skipping (M-NS) score. This net

score is the number of standard deviations away that the total score of the exon in

all tissues is from the median net score given to all exons in that particular gene.

The predicted M-NS scores of exons with EST skipping evidence (SE exons) were

compared with the M-NS scores of the background set of constitutive exons (CE

exons). These exons are literature-verified and RT-PCR verified. The SE set had

1400 exons, and the CE set had about 30,000 exons. Random sets of 500 exons in the

skipped set and the background constitutive set were selected over 20 iterations and

the corresponding M-NS scores were found. The figures show a correlation between

known skipped exons and high M-NS scores, i.e. between EST data evidence and

microarray data predictions. We also compared ACEscan predictions with the M-NS

predictions. ACEscan uses conservation in human and mouse to make predictions

about exon skipping from sequence data.

Figure 2-5 shows the cumulative distribution curves for the M-NS scores assigned

to exons. The M-NS scores depict the skipping of the exon from the microarray data.

In each of the figures, the difference between the cumulative distribution curves for

the skipped exons depicted by dashed curves and the constitutive exons depicted by

solid curves provides a rough cutoff measure for the M-NS scored exons. The EST

skipped exons have a higher cumulative M-NS score distribution than the constitutive
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exons.

Figure 2-5(a) shows the cumulative distribution curves for the EST-based skipped

exons versus the constitutive exons. Interestingly, the cumulative distribution curves

for the ACEscan(+) EST skipped exons versus the constitutive exons in Figure 2-5(b)

are further apart. The significantly larger difference between the two distributions

could be due to the SE set of exons containing exons being skipped in diseased

tissues or non-functional isoforms in addition to the regulated evolutionarily conserved

alternatively spliced ones (ACEscan[+] exons). An alternative explanation is that

skipping events that are conserved in human and mouse are skipped in a greater

number of tissues and are thus detected more easily across tissues.

could be skipped in more tissues and hence is detected more easily across tissues.

2.4 Tissue-specific skipping

According to the predictions, the brain exons exhibited most skipping (973 exons),

followed by the heart (850 exons), muscle (440 exons) and testis (390 exons). Exons

predicted to be skipped in a particular tissue, like the brain, were compared with

exons that were included in all the tissues. Several motifs were found to be over-

represented in the exons and the flanking intron regions. We considered regions of

150bp in the upstream and downstream introns avoiding splice sites.

2.5 Reading frame

Out of roughly 21,000 exons that were skipped in at least one normal tissue, about

8200 preserved the reading frame (i.e., the number of base pairs in their exon se-

quences was a multiple of three). Out of 2276 exons that were skipped in at least 4

normal tissues, 877 exon sequences were a multiple of 3, and 1399 were not.
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Figure 2-5: This figure shows the cumulative distribution curves for the M-NS scores

assigned to exons. The M-NS scores depict the skipping of the exon from the microar-

ray data. In each of the figures, the difference between the cumulative distribution

curves for the skipped exons (dashed-dotted curve) and the constitutive exons (soild

curve) provides a cutoff measure for the M-NS scored exons. (a) Cumulative distri-

bution curves for exons with EST evidence for skipping versus constitutive exons. (b)

Cumulative distribution curves for the ACEscan(+) exons with EST evidence versus

constitutive exons.
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Chapter 3

Extraction of tissue-specific

skipping motifs

3.1 Comparing TSS sets with the background set

Using the microarray data to assign skipping scores to exons in each tissue, we attain

tissue-specific skipping (TSS) sets for brain, muscle, heart and testis. We consider

exons with the strongest evidence for skipping in that particular tissue, i.e. the

exons for which both the corresponding probe intensity values belonged to the lowest

intensity bins.

Given a TSS set of exon sequences, we search for common sequence patterns that

occur more frequently than chance in constitutive exons and their flanking introns,

similar to the method used in [11]. Statistically significant hexamer and pentamer

motifs enriched in the exonic and intronic regions of the sequences exhibiting tissue-

specific alternative splicing are found as described below.

The frequency of occurrence of motif m in the background set is pm = ebr, where

eb,m is the number of samples containing motif m in the set of nb samples analyzed.

For the enrichment of a motif in tissue t with respect to all exon samples, nb = 4900

for the background set that was considered. nt was the size of the TSS set. We

assume as a null hypothesis that the motif was randomly distributed across all exons

or introns. So the enrichment is defined as the probability that the number of samples
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et in which the motif m is present, is larger than or equal to the observed value x

assuming the frequency pm in all exons. This follows a hypergeometric distribution

which converges to the binomial distribution when nb >> nt . The probability of

enrichment is expressed as

P(et ;> x) = pi(i - pm)f

The enrichment probability is computed for all the motifs. P-values for the motifs

are calculated by comparing their enrichment probabilities with motifs from randomly

distributed sets. Motifs with p-value < 0.01 are selected as TSS motifs. The motif

weight assigned to motif m for a particular tissue t is based on the frequency of

occurrence of the motif in the tissue-specific set and is given by

W = log(' )
fm, b

where fm,t is the frequency of occurrence of motif m in the TSS set of exons

skipped in tissue t, and fm,b is the frequency of occurrence of the motif m in the

background set of constitutive exons.

3.2 TSS motifs in brain, muscle, heart and testis

Statistically significant motifs over-represented or under-represented in the exonic

and intronic regions of the sequences exhibiting alternative splicing were found as

described in Section 3.1. The p-values for all the motifs were calculated and those

with p-values < 0.01 are listed in Appendix A. The motifs are listed for the TSS sets

that are skipped in the brain, muscle, heart and testis.

The tables in Appendix A list the motifs that were found over-represented and

under-represented in the exonic and intronic regions in four tissues: brain, muscle,

heart and testis. GU-rich sequences present in the intronic regions were shown to
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enhance inclusion of the exon in that gene, i.e. they were under-represented in exons

skipped in that particular tissue. This is consistent with findings that show that

ETR-3 binding sites enriched by SELEX were GU rich and enhanced exon inclusion

[15]. Splicing regulation by ETR-3 was stated to be relevant in muscle, heart and

brain since ETR-3 is abundant in these tissues.

The motifs over-represented in sequences that exhibit greater exon skipping in

the brain were found to be high in G-rich and C-rich sequences. G-rich and C-rich

sequences were identified earlier as potential intronic splicing enhancers [6], found

more frequently in introns flanking weak exons than in introns flanking strong exons.

It is likely that these ISEs acted to enhance the inclusion of these exons in non-brain

tissues. This is also consistent with findings that alternative exons included in brain

had a deficiency of G-rich sequences in the flanking introns [17].
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Chapter 4

Sequence-based prediction of

tissue-specific skipping

4.1 Using TSS motifs to predict tissue-specific skip-

ping

Leave-one-out cross-validation was used to find tissue specific motifs and test these

motifs on the data. During a single validation experiment, the gene that the validation

exon belonged to was left out and the TSS motifs were found for the rest of the data.

The TSS motifs in Appendix A were weighted according to the log of the ratio of

frequency of occurrence in the tissue-specific set of alternative spliced exons versus

the background set of constitutive exons. These weights were used to calculate the

score for the validation exon sequence by considering all hexamers and pentamers in

the exon as well as those in the flanking intronic regions of 150 bp, avoiding the splice

sites.

During each cross-validation, the weighted motifs found were used to predict

tissue-specific splicing in the exon. The test exon was given a sequence-based tissue-

specific skipping score (S-TSS score) by summing up the weight of each motif in its

sequence as well as the flanking intronic sequences. The S-TSS score is thus given by
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0 = E me'log( f' b

fm, b

where M = (Mexon U Md 2nit U Muint) is the set of the motifs over-represented

in the TSS sets of exons and the corresponding flanking downstream and upstream

introns respectively, fm,br is the frequency of motif m in the brain-specific splicing set

of exons, and fm,b is the frequency of motif m in the background set of constitutive

exons.

Leave-one-out cross-validation was carried out about 21,000 times where the sequence-

based tissue specific skipping (S-TSS) score was calculated for the validation exon each

time. The test S-TSS scores were ranked and divided into partitions. In the figure,

the x-axis shows 42 partitions of 500 exons each, where the first partition contains

the exons with the highest scores, and the last partition contains the exons with the

lowest score. The y-axis depicts the number of exons in that bin, which were pre-

dicted to be skipped from the microarray data. The figures thus show the correlation

between the predictions from the microarray data and those from the sequence data

using the weighted TSS motifs.

4.2 Tissue specificity of motifs

The next few figures are used to demonstrate the tissue-specificity the motifs for each

of the four tissues in Appendix A. In Figure 4-1, the exons are scored separately

according to brain motifs, muscle motifs, heart motifs and testis TSS motifs. The

four plots show the correlation of S-TSS scoring for all tissues with the M-TSS scoring

for brain skipped exons. The S-TSS scoring for brain shows the strongest correlation

with the M-TSS scores, thus validating the brain-specificity of the brain TSS motifs.

In a similar fashion, the rest of the Figures 4-2, 4-3 and 4-4 demonstrate the tissue-

specificity of the motifs for the heart, muscle and testis respectively.
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S-TSS scoring using muscle motifs
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Figure 4-1: Tissue-specificity of the brain motifs. The exons (21000 exons) were
ordered from highest to lowest according to the S-TSS scores using the brain-specific
sequence motifs, and these ordered exons were divided equally into partitions with
the first partition containing the exons with the highest S-TSS scores. The number
of exons in each partition predicted to be skipped in the brain according to the
microarray (M-TSS) scores is shown in the figure.

37

20

10

# exons in
bin that
show
microarray
evidence
of
skipping
primarily
in brain

0

30

20 

10

0
0 10

I "

S-TSS scoring using brain motifs

' ' ' ' '

'



S-TSS scoring using muscle motifs
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Figure 4-2: Tissue-specificity of the heart motifs. The exons (21000 exons) were

ordered from highest to lowest according to the S-TSS scores using the heart-specific

sequence motifs, and these ordered exons were divided equally into partitions with

the first partition containing the exons with the highest S-TSS scores. The number

of exons in each partition predicted to be skipped in the heart according to the

microarray (M-TSS) scores is shown in the figure.
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S-TSS scoring using brain motifs
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Figure 4-3: Tissue-specificity of the muscle motifs. The exons (21000 exons) were
ordered from highest to lowest according to the S-TSS scores using the muscle-specific
sequence motifs, and these ordered exons were divided equally into partitions with
the first partition containing the exons with the highest S-TSS scores. The number
of exons in each partition predicted to be skipped in the muscle according to the
microarray (M-TSS) scores is shown in the figure.
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S-TSS scoring using brain motifs
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Figure 4-4: Tissue-specificity of the testis motifs. The exons (21000 exons) were

ordered from highest to lowest according to the S-TSS scores using the testis-specific

sequence motifs, and these ordered exons were divided equally into partitions with

the first partition containing the exons with the highest S-TSS scores. The number

of exons in each partition predicted to be skipped in the testis according to the

microarray (M-TSS) scores is shown in the figure.
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4.3 Classification using sequence-based scoring

To further demonstrate the tissue-specificity of the motifs and the usefulness of the

STSS scores in predicting novel TSS exons, we used a test set of exons with mid-

high brain MTSS scores which did not overlap with the TSS sets of exons used for

detecting the motifs. The true labels for the exons are derived from EST data and

the S-TSS scores are used to make predictions. The cumulative distribution curves in

Figure 4-5 show the differences in STSS scores assigned to the exons skipped in the

brain tissues, exons skipped in non-brain tissues and constitutive exons according to

EST data. The scores of exons skipped in the brain appear higher, demonstrating

that the brain motifs can be used to predict brain-specific skipping and not skipping

in general, and hence showing the tissue-specificity of these motifs. Prediction of

tissue-specific exon skipping can also be approached from a classification perspective

as in Figure 4-6. Each point on the curve represents a specific cutoff value of the

STSS score. The noticeable difference between the ROC curves for exons skipped

in the brain and exons skipped in non-brain tissues also supports the tissue-specific

feature of the brain motifs.
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STSS scores for Exons with a mid-high brain MTSS score range
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Figure 4-5: Cumulative distribution functions of the STSS scores. The dashed curves

represent the cumulative brain-motif based STSS scores assigned to exons that have no

EST evidence of skipping in any tissue. (a) The solid curve represents the cumulative

distribution function of the STSS scores assigned to exons that have shown skipping

from EST data. (b) The solid curve represents the cumulative distribution function

of the STSS scores assigned to exons that have shown EST-based skipping in any

tissue other than the brain.
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Classification performance using STSS scores
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Figure 4-6: Classification performance using STSS score cutoff values to classify ex-
ons skipped in the brain. The solid curve represents the classification performance
between exons skipped in the brain according to EST data and the constitutive exons.
The dashed curve represents the classification performance between exons skipped in
non-brain tissues and the constitutive exons. The dotted curve represents classifica-
tion by chance.
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Chapter 5

Conclusions and Perspectives

This thesis finds tissue-specific sequence motifs that contribute to exon skipping. It

uses microarray data to assign microarray based tissue-specific skipping scores to ex-

ons to predict tissue-specific skipping with a novel binning approach. The parameters

for the algorithm were learned from a small set of literature-verified and RT-PCR ver-

ified training samples of known alternatively spliced exons. We then compared the

skipped exons predicted using the microarray-based scores with skipped exons from

the EST data. This helps to provide a rough cutoff measure for microarray-based

scores in order to predict exon skipping.

Tissue-specific motifs that enhance skipping were found with a leave-one-out cross-

validation method. The skipped exons predicted from the microarray data were

divided into tissue-specific sets, and a simple statistical approach was used to discover

over-represented motifs in their sequences and the sequences of the flanking introns.

These motifs were weighted and then used to assign sequence-based tissue-specific

skipping scores to the validation exon sequence to predict skipping. The tissue-

specificity of the motifs was demonstrated, and the correlation between sequence-

based and microarray-based skipping predictions was also shown.

The biggest contribution of this work is the demonstration of the ability to use

short motif sequences in the exon and flanking introns to help predict alternative splic-

ing. In conjunction with methods like ACEscan, the sequence-based tissue-specific

scoring approach can be used on the subset of ACEscan predicted alternatively spliced
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exons to provide a more accurate prediction for tissue-specific skipped exons.
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Appendix A

Tables of TSS motifs
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Table A.1: Brain-specific TSS motifs

Upstream intron Exon Downstream intron

Over-represented
ggcagc
gcageg
cagccg
gcaggt
tggacg
atcate
cctgac
ccccgc
ctgacc
gcccct
cccctg
ctgacg
caccgc
ccgact
teccag
tgacac
ccaccg
ccctgg

Under-represented
aaataa
aataaa

Over-represented
ggcccc
acggcc

cgggcg
gcgcgc
ggggcc
gggggc
tgggcc
ggcacc
gcagcc
cagccc
tcgccg
tggggg
gtgcag
cccace
cgcgcg
tgccgc
cgccgc
cgcgga
agcagc
ggcctc
agccca
gggccc
ggtgcc
cccctg
aggagg
ggctcg
gccccg
cagcag
gccgct

Under-represented
tcaatg
ctcatt

Over-represented
ggaggg
gccggc
cccggt
acggcc
ccccct
ggcctg
caggga
gcggag
gaagtt
tccggg
gggagg
ggggcc
gcctgg
ggcagc
ctgccc
tgccct
gggacc
gggcgg
ggctgg
gacagg

Under-represented
attttg
attaat
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Table A.2: Heart-specific TSS motifs

Upstream intron Exon Downstream intron

Over-represented
acccgt
gacgcc
ccggac
gegaca
cattga
gcggc
atgcgg
gcggcc
tatttt
accaaa
cgcggc
cccgtg
tacaga
ggcgac
ccgga
ttcacc
acgcc
cccgt

cggcg
gaccca
tgtcct
atttt

Under-represented
accat
cctcaa

Over-represented
cccca
cccagg
cagtgg
ceccag
cggctg
cccag

Under-represented
ttgaa

Over-represented
aaacag
cgagta
gacaca
agatta
gcgtat
agtctt
agcgta
ggtagt
tagctg
tgcaag
geggag
cggga
aaaaac
cgccg
teccg
gttgtt
ttgttg

Under-represented
ttcca
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Table A.3: Testis-specific TSS motifs

Upstream intron Exon Downstream intron

Over-represented
atgtta
aacatt
atacac
ccgcgg
ttcgcc
taaagc

aactat
aggatt
ctagat
tcacgc
tttgtc
ttaggt
aaact
tagatt
cgcggc
gcggc
cgttc

Under-represented
cetgg

Over-represented
cgtcat
gccgcg
gtctgc
caccg

Under-represented
caatt

Over-represented
ctccgc
cgggat
atcgg
gectag
tgcgcc
ctttaa
atcggt
gtgaga
cctagt
tgagcg
gttcg
atcatt

gtcggg
ttatcg
cggga
agttac
tagtta

Under-represented
agaact
gctga
acaca
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Table A.4: Muscle-specific TSS motifs

Upstream intron Exon Downstream intron

Over-represented
aatgac
gatctg
caggtt
ggtagg
cgetet
ggggta
gcaaat
tggct
acccat

Under-represented
tgtgtg
gtgtg
gtgtgt

Over-represented

tgtggg
cctccc
aggcac
gccagc
gagtcg

Over-represented
cggttg
gtgtcg
tgccct
gcgagg

Under-represented
gtgtgt
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