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Abstract
Ni 3Al, an L12 structure intermetallic crystal, is the basic composition of the y' precip-
itates in nickel-based superalloys and is a major strengthening mechanism contribut-
ing to the superalloys' outstanding high-temperature mechanical properties. Many
L12-structure crystals present unusual macroscopic mechanical properties, including
the anomalous temperature-dependence of yield strength and strain hardening rate.
To date, extensive research has been carried out to reveal the underlying mechanisms.
However, none of the resulting models has satisfactorily quantified the macroscopic
behavior based on microscopic phenomena. Mechanism-based constitutive modeling
and simulation provide an effective method in this respect, assisting in the under-
standing and development of current existing models, and potentially providing a
convenient path for engineering applications. In light of recent theoretical develop-
ments and experimental evidence, a single-crystal continuum plasticity model for the
L12-structure compound Ni 3A1 is developed. Both the superkink-bypassing mecha-
nism and the self-unlocking mechanism have been modified and combined to describe
the unlocking of sessile screw dislocations and the deformation-induced evolution of
dislocation "states" in the yield anomaly region. The proposed model has been im-
plemented within a finite-element framework to investigate the mechanical properties
observed in constant strain-rate uni-axial tension/compression tests. Results of nu-
merical simulations successfully capture major features of the mechanical behavior of
Ni 3Al-based single crystals, including the anomalous temperature-dependence and
the strong orientation-dependence of yield strength and hardening rate, the yielding
properties of tension-compression asymmetry and the strain-rate insensitivity of yield
strength and strain hardening rate. Diffusional processes corresponding to the uni-
axial deformation of [001]-orientation at very high temperatures, and the property
of yield strength reversibility presented by the Cottrell-Stokes experiments are also
discussed.

Thesis Supervisor: David M. Parks
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

Nickel-based superalloys are of great interest because of their excellent mechanical

properties of high-temperature strength and creep resistance. Based on these par-

ticular mechanical properties, they are subjected to very severe operating conditions

in both commercial and military applications, especially in gas turbine engines. The

yield strengths of nickel-based superalloys are also fundamental design parameters in

the manufacture of aerospace components.

Due to the complex microstructure of nickel-based superalloys, their outstanding

high-temperature strength is derived from a combination of several principal mecha-

nisms. Among them, strengthening by y' precipitates is one of the most important.

The basic composition of the y' precipitates is Ni3 Al, an L12 structure crystal.

L12 is a derivative configuration of the fcc crystal structure (Figure 1-1 (a)), and is

typical for compounds with an AB 3 composition. In the unit cell of an L12 crystal,

the minority (A) atoms occupy the corner sites, and the majority (B) atoms occupy

the face-center sites (Figure 1-1(b)). As a result, the lattice translation vector in L12

compounds is < 110 >, as opposed to 1/2 < 110 > in fcc crystals.

Extensive research has been carried out since the first observation of the anomalous

temperature-dependence of hardness in Ni 3A1 in 1957 [2] (Figure 1-2(a)). In the early

stages, most work focused on yield-related mechanical properties, while in the past

17



10 years, more and more attention has been placed on strain hardening. Since Ni 3 Al

is ordered up to its melting temperature, the yield anomaly can not be explained by

an order-disorder transition, as in ,3-brass. The common understanding is that their

macroscopic mechanical properties are dominated by the behavior of dislocations, and

a considerable number of models and theories have been put forward based on certain

observations and various hypotheses. However, due to the extreme complexity of the

structures, mechanisms and their kinetics, none of the existing models can satisfacto-

rily explain all of the major mechanical properties of the L12 crystals. Moreover, most

of the existing models are not completely quantitative, and lack verifications based on

numerical simulations. Mechanism-based constitutive modeling and simulation can

be very useful in this respect, assisting the understanding of current existing models

and providing a convenient method for engineering application, (e.g., assisting the

development of new alloys and guiding the implementation of existing alloys).

This PhD research focused on developing a single-crystal constitutive model for

the L12 structure crystals. Following a broad literature study, the proposed consti-

tutive model was developed based on recent theoretical developments in dislocation

mechanics and experimental evidence, and was implemented into a numerical solver

through a user-material interface to a commercially-available FEM package. The

simulation results successfully captured the principal mechanical behaviors of L12

crystals, especially the temperature-dependence, the orientation-dependence and the

small strain-rate sensitivity of yield strength and strain hardening rate.

1.2 Description of the Material Studied

1.2.1 Terminology

Certain specific terms are commonly used to describe basic micro-features in the study

of L12 structure compounds, and these features are closely related to the macroscopic

mechanical properties. Therefore, in order to assure a good understanding of L12

structure compounds, it is appropriate to give brief descriptions of these terms first.
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1. Superlattice Dislocations and Antiphase Boundaries (APBs) : The

total dislocation Burgers vector in the L12 crystal structure is < 110 >, twice

the value in fcc materials. Dislocations having such long Burgers vectors are

commonly termed superdislocations. Superdislocations often dissociate into two

partial dislocations, each having a Burgers vector of b = < 110 >, which are

usually termed "superpartials". When the superpartials separate, a planar fault

termed an "Antiphase boundary" (APB) is created on their plane of spreading

(Figure 1-3). An APB ribbon can exist on both octahedral planes and cube

planes, and the average dissociation width is found to be 75 A (- 30b) [12].

APB energy is found to be lower on cube planes than on octahedral planes, and

is composition-dependent.

2. Complex Stacking Faults (CSF): The complexity of the dislocations struc-

tures in the L12 ordered intermetallic compounds goes beyond that of the simple

splitting into two superpartials. Superpartials generally further dissociate and

split into two Shockley partials, bounding a Complex Stacking Fault (CSF)

inside (Figure 1-3 (b)). The Shockley partials only dissociate on octahedral

planes, and the core extension is found to be very narrow (around 3b in Ni 3AI

[34]) under the observation with high-resolution electron microscopy (HREM).

CSF energy is also found to be very composition-dependent. A detailed sum-

mary of the existing measurements of APB energy and the CSF energy has been

listed in Table 3 of the review paper by Veyssiere [34].

The dissociation of < 110 > screws into two superpartials, which further dis-

sociate into Shockley partials, is widely observed and considered to be closely

related to the yield anomaly in L12 single crystals. Theoretically, {111} < 110 >

screws can dissociate in another mode, involving splitting into two super-lattice

Shockley partials, with the Burgers vector of < 112 >. It has been suggested

that the normal temperature-dependence of some L12 structure crystals (such as

Pt 3A1) is related to this dissociation mode. But there is no direct experimental

evidence so far to support this idea [65].
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3. Kear-Wilsdorf Lock: {111} < 110 > screws in L12 crystals can cross-slip

onto the {001} cube planes, driven by a drop of APB energy and the torque

forces due to large elastic anisotropy. A non-planar Kear-Wilsdorf lock (K-W

lock) [1] configuration is generated if the leading screw superpartials cross-slip

onto a cube plane for some distance, cross-slip back onto a parallel octahedral

plane, and move forwards until the trailing superpartials meet the cross-slipped

cube plane and can not advance on the octahedral plane any more (Figure 1-

4(b)). This locked configuration is termed an "incomplete K-W lock" (IKW) if

only part of the APB has been transferred onto the cube plane; otherwise, it is

a "complete K-W lock" (CKW).

4. Superkinks: Due to the cross-slip of screws and the formation of K-W locks,

the mobility of screw dislocations is much lower than the mobility of edge-

charactered dislocations. Thus, locked screws are observed to be the dominant

micro-features of L12 compounds deformed in the anomalous yield region. These

locked screws are generally not straight, but contain many edge-oriented seg-

ments. These edge-oriented segments are usually termed "superkinks" (Figure

1-5).

1.2.2 Macro-mechanical Properties of L12 Single Crystals

The first demonstration of the unusual mechanical behavior of alloys having the L12

ordered structure was provided by Westbrook [2]. He showed that there was a peak

in the hardness vs. temperature plot of Ni 3Al (Figure 1-2(a)). A later study [3]

confirmed from tensile tests that the 0.01% offset yield strength of polycrystalline

Ni 3Al also increased with increasing temperature, as shown in Figure 1-2(b). Since

then, extensive experimental work has been carried out, and many mechanical fea-

tures about the L12 structure crystal have been summarized. However, since binary

L12 single crystals are difficult to grow, it should be kept in mind that most of the

experimental properties were measured using crystals with different ternary compo-

sitions. Here, only the most general mechanical characteristics related to L12 single
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crystals are summarized and listed:

1. The yield strength increases with increasing temperature, both in tension and

compression, until a peak yield temperature (T,o) is reached [4]. Above the peak

tempcraturc, the strength drops off significantly (Figure 1-6). The temperature

of peak yield strength (Tp,a) depends on crystal composition and the loading

orientation.

2. The Schmid law is often violated: crystal orientations with the same Schmid

factor (e.g., < 001 > and < 011 >) have different yield strengths under uniaxial

states of stress. Even for the same orientation, yield strength often differs in

tension and compression. Orientations close to the [001] corner of the unit

crystal triangle show a higher strength in tension than in compression, while

for orientations on the other side of the crystal triangle, compression strength

is higher than the tensile strength (Figure 1-6).

3. The yield strength anomaly disappears in the micro-strain range (with the offset

strain less than 10- 5 ) Figure(1-7) [5].

4. Work hardening rate (WHR) also presents anomalous properties. Generally,

WHR represents the slope of the stress-strain curve and is marked as 0 or h for

polycrystals and single crystals, respectively (0 = d, and h = d, in which a,

and (. represent the uniaxial true stress and plastic strain, and T and represent

the resolved shear stress and strain of a slip system). WHR is reported to be very

large (up to 40% of the shear modulus) and orientation-dependent (Figure 1-8

(b)). It anomalously increases with temperature up to a peak strain hardening

temperature Tp,h, and Tp,h is usually smaller than the peak temperature of yield

strength, Tp,,, as shown in Figure 1-8 (a).

5. The strain-rate dependence of the yield strength is found to be positive but

very small below Tp,,, in both strain-rate jump and constant strain-rate tests

(Figure 1-9 (a), (b)). Commonly, the change in the yield strength is less than

1% corresponding to a strain-rate change by a factor of ten [5]. However, above
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Tp, a strong positive strain-rate sensitivity is observed [4] (Figure 1-9 (b)).

In the anomalous yield region, the strain hardening rate is also found to be

rate-insensitive (Figure 1-9 (a)).

6. Yield strength of L12 single crystals is found to be largely reversible in so-

called Cottrell-Stokes type experiments. That is, the yield strength of a sample,

which has previously been deformed at a higher temperature, when subsequently

further deformed at a lower temperature, is similar to the lower yield strength

of a virgin sample deformed at the same lower temperature (Figure 1-10). If the

prestraining temperature is lower than the deforming temperature [6], the yield

strength of the prestrained sample is much lower than that of a virgin sample

deformed at the same high temperature.

1.2.3 Microscopic Observations in L12 Compounds

Since it is commonly believed that the macro-mechanical behaviors of L1 2 structure

crystals reflect the underlying dislocation dynamics, many TEM observations have

been carried out to reveal the governing micro-mechanisms. We review below the

most representative microscopic observations in L12 compounds, which served as the

physical bases for most of the prevailing models.

1. In the anomalous yield range, octahedral slip systems dominate. Above Tp,,,

predominant cube slip comes into control [4]. This is supported by the ob-

servation of the change of the dominant slip traces (Figure 1-11) and TEM

observations of the dislocation substructures.

2. Most of the dislocations observed in the anomalous region are long < 101 >

screws [7, 8] (Figure 1-12), which indicates that screw dislocations are much less

mobile than the non-screws, as confirmed later by several in-situ deformation

experiments [9, 10]. The sessile screw superdislocation segments are mostly

locked in the Kear-Wilsdorf configuration.

3. The dominating long screws are not straight but contain many steps (superkinks),
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which have been observed post-mortem (Figure 1-5). For deformation, at a given

temperature, the number distribution of superkinks exhibits an exponential de-

crease with superkink height, , N = No exp(-I/lo) (Figure 1-13). The "mean"

height of superkinks, which is actually o10, decreases with increasing deformation

temperature, from lo 18 - 20 nm at 300 K to 10-12nm at 673 K in Ni 3Ga,

as reported by Couret [11]. At room temperature, a large number of Ni 3Ga

superkinks with the height equal to the APB width have also been observed.

4. Jerky movement of screw dislocations was reported in room temperature in situ

experiments (Figure 1-14). Long screw dislocations on the octahedral planes

were observed to stay in one position for a while (several seconds) and then

suddenly jump to another position [12]. The jumping distance varies, and

sometimes it scales with the APB dissociation width; such a process is usu-

ally referred to as an "APB jump".

5. Above the temperature of maximum yield strength, Tp,,, the dislocation sub-

structure on the cube plane shows both screw and edge dislocations with nearly

equal densities (Figure 1-15), implying comparable mobility for screws and

edges. Unlike octahedral slip, cube slip is confirmed to be planar, without

cross-slips.

1.3 Outline of the Thesis

This PhD research aims to develop a mechanism-based constitutive model for L12

single crystal plasticity. Background and motivations for the research are given in

Chapter 1. Major mechanical properties and microscopic observations are also pre-

sented.

Chapter 2 gives a detailed literature study for the most representative models and

theories, along with necessary discussions. Based on these pre-existing models, the

proposed model is expounded in Chapter 3.

The framnework of continuum crystal plasticity is recviewcd first in Chapter 4,
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followed by the implementation of the proposed model.

In Chapter 5, the results of simulations will be reviewed and discussed, and the

summary and future inquiry will be proposed in Chapter 6.
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(a) (b)

Figure 1-1: (a) The fcc unit cell and (b) the L12 unit cell of AB 3 compounds, in which
minority atoms (A) occupy the corner sites and the majority atoms (B) occupy the
face center positions.
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Figure 1-2: (a) Temperature-dependence of the hardness of polycrystalline Ni3Al [2];
(b) Flow stress of polycrystalline Ni 3 A1 as a function of temperature [3].
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Partials

(b)

Figure 1-3: (a) Two superpartial dislocations connected by a patch of antiphase
boundary (APB) [13];(b) 2-D illustration of the dissociation of one superdislocation
into two superpartials, bounding an APB ribbon, and the further dissociation of
superpartials into Shockley partials.
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Figure 1-4: 2-D illustration of the configuration of (a) a mobile screw dislocation on
an octahedral plane and (b) an incomplete Kear-Wilsdorf (K-W) lock.
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Figure 1-5: TEM image of a typical superdislocation with superkinks (lnarked as
"SK" ) connecting sessile KW-locked screw segments [14].
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Figure 1-6: Temperature-dependence of the CRSS for (111)[101] slip, measured for
Ni 3(Al, Nb) in both tension and compression, for three different orientations of the
tensile/compressive axis [15].
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Figure 1-9: (a) Compressive stress-strain curves and (b) Relation between the yield
strength vs. temperature of Ni 3(Al, 5at%Ti) for different temperatures and under
different applied strain-rates [18]. For temperatures below Tp,,, the yield strength is
nearly strain-rate independent, while above Tp,,, it is very sensitive to the applied
strain-rate; The hardening rate in the yield anomaly region is also rate-independent.
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Figure 1-10: Example of a Cottrell-Stokes experiment deformed in compression along
[123], conducted on Nia(A1, 0.25at%Hf), [19].
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Figure 1-11: Slip traces on two orthogonal faces of (a) < 001 > (b) near-< all > and
(c) near-< 111 >.oriented samples of Ni3{Al, N~) at various test ternperatures. [20]
(For the left half of the center column (case b), the axes (00 1) and (111) have been .
incorretly switched: This is why it shows (001) slip at low temperature and (111) slip
at high temperature, which is incorrect).
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Figure 1-12: Dislocation structure of a Ni3Al single crystal cOlnpressed along [001]
at 873K (below Tp,a for the [001] orientation). [21]
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Figure 1-14: In situ observation of the jerky movement of screw dislocation in Ni3Al
at room temperature [12]: A screw dislocation is observed as sessile in one position
(a) for several seconds and then suddenly jumps (downwards) to another position (b).
The sessile/ sudden- jurnp cycle goes on (c)- (h), and the distance between two sessile
positions is found to be close to the APB width.
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Figure 1-15: A weak beam image showing the distribution of dislocations in the
primary < 101 > {DOl} slip in a sample deformed at a temperature above Tp,C7 [22].
Edge and screw dislocation densities in this cube slip system are comparable.
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Chapter 2

Review of Existing Models of the

Yield Anomaly Region

2.1 Overview

In the preceding chapter, we reviewed the physical background of the L12 structure

crystal in the anomalous yield region, including both macro-mechanical properties

and micro-structural observations. They serve as the goal and the physical basis of

the current modeling and simulation work, respectively. Since the discovery of the

anomalous temperature-dependence of hardness in Ni 3A l in 1957, grcat efforts have

been devoted to research on L12 compounds. Many models and mechanisms have

been put forward based on certain physical observations and various hypotheses. A

thorough literature study is thus both a necessary and important part of this Ph.D.

work, so that the proposed model and the resulting simulations can be solidly based

on reasonable underlying mechanisms.

It is commonly accepted that the change of dominant slipping system from octahe-

dral to cube planes is the reason for the abnormal/normal transition of temperature-

dependence of yield strength (at least for uniaxial loading axes other than that close

to the [001] orientation). In the anomalous yielding region, one of the most signifi-

cant microscopic observations is the dominance of the long, straight, and locked screw

superdislocations. In this regime, edge dislocations present themselves mainly as the
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links connecting the cross-slipped screw segments. Thus, most researchers related the

yield anomaly to the cross-slip-caused low mobility of 111} < 101 > screws, as was

first suggested by Flinn [3].

In this chapter, the most representative models for the anomalous octahedral

slip will be illustrated, in the three categories of "steady-state models", "dynamic-

simulation models" and "hardening models", respectively. Detailed discussions of

each model will also be presented.

2.2 Review of Existing Models

2.2.1 The Steady-state Models

"Point-obstacles" models

Early research work in L12 single crystals mainly focused on the property of yield

anomaly, and the initial quantitative models were based on the "point-obstacle" as-

sumption. Cross-slip was considered to be thermally activated and to occur locally,

forming equally-spaced pinning-points along the screw dislocation. These point ob-

stacles were assumed to be dissolved athermally, when the adjacent screw segments

bowed out to a critical curvature. Meanwhile, by a steady-state assumption, a new

pinning point was created for every released one, and the pinning-unpinning cycle

went on, as shown in Figure 2-1(a). Under the condition of constant applied strain-

rate, the flow strength is expressed as:

= o exp-HI3kT (2.1)

where H1 is the activation enthalpy for locking, k is the Boltzmann constant and T is

the absolute temperature. The yield anomaly is physically explained by postulating

that more and more "point-obstacles" are generated with decreased pinning-point

spacing at higher temperatures, and a higher level of effective stress is needed to keep

dislocations in a steady-state motion.
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As the earliest quantitative model to explain the anomalous yield behavior, the

"point-obstacle" model does present a positive relation between the flow strength and

the temperature. However, the positive temperature-dependence expressed in Eqn 2.1

is very weak. For example, the yield strength of Ni 3 AI at 700 K is typically 3 4

times its strength at 300K. In order to account for this, the locking enthalpy calculated

according to Eqn. 2.1 has to be only around 4 x 10- 4 eV, which is unreasonably low.

Besides, since unlocking in "point-obstacle" models is purely mechanical, once

the applied stress exceeds the critical level to overcome the obstacles, unlocked screw

dislocations would move with Newtonian viscous velocity, V' = -r%/B, which linearly

depends on the resolved shear stress -t. Thus, the predicted yield strength is very

strain-rate dependent:

5a = pbV = (2.2)

Hirsch [23] also criticized this locking as rate-controlling dislocation dynamics by

pointing out that if B - 5 x 10- 5 Nm- 2s, and a representative shear stress was

r' - 200MPa, for an applied strain-rate of 10-4s- 1, the mobile dislocation density

was unreasonably low, pa - 0.04cm-2. This means that the average dislocation

velocity determined by the locking as rate-controlling mechanism is simply too high

to be true.

Most of all, with the improvement of experimental techniques, a number of TEM

pictures published subsequently clearly illustrated that the screws were locked in long,

straight segments, but not by "point-obstacles". Thus the basic assumption for these

models is found to be questionable.

Though "point-obstacle" models are currently considered as mostly of historical

significance in explaining the yield anomaly phenomena, the contributions of some of

these models in understanding the details of cross-slip process are still studied and

referred to in recent research.

Based on different assumptions for the local cross-slip process, different "point-

obstacle" models have developed various expressions for the locking activation en-

thalpy H1. Takeuchi and Kuramoto [24] described that the locking (cross-slipping)
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process was aided only by the resolved shear stress (RSS) on the cube cross-slip plane,

rb,. Hence, HI is given as:

H1 = HI0 - Vclrcbl, (2.3)

where H10 is considered a constant and V, is the stress-independent activation volume.

The absolute value, 7r,,bl, reflects the possibility of cross-slip in either direction on

the cube plane. The introduction of a Tcb term does predict a breakdown in the

Schmid law, but the predicted crystallographic orientation-dependence of uniaxial

yield strength does not agree well with experimental results. Besides, the property

of tension-compression asymmetry, which has been seen experimentally [4], is not

exhibited in the locking enthalpy given by Eqn. 2.3.

Later, Paidar, Pope and Vitek (PPV) [25] revised Takeuchi and Kuramoto's model

by specifying the locked configuration and mnodifying the cross-slipping procedure

based on the cross-slipping theory established by Friedel and Escaig [26, 27] for fcc

materials. In Escaig's model, cross-slip was initiated with the constriction of the

stacking fault on an octahedral plane between the Shockley partials as shown in

Figure 2-2 (a), followed by cross-slip onto an intersecting octahedral plane. Since

the superpartials in L12 crystals have the same Burgers vector as the dislocations

in fcc crystals, and also dissociate into Shockley partials, PPV proposed a similar

constriction-initiated cross-slip procedure, as shown in Figure 2-2 (b). The constricted

leading superpartials are assumed to cross-slip onto a cube plane, and then to expand

on a cross-slipping octahedral plane, pinning the total dislocation in a non-planar

locked configuration. The detailed locking (cross-slipping) process was illustrated in

three steps: (i) Constriction of the glissile core of the leading screw superpartials on

the (111) plane, (ii) movement of the constricted superpartials along the (010) plane

by a distance of b/2, and (iii) further splitting of the cross-slipped superpartials onto

the cross-slip (li 1) plane. Core transformations of the superpartials (the first and the

third steps), rather than the cross-slipping on the cube plane (the second step), are

considered as the essential parts of the locking process. PPV noted that even though

the superpartials are screw-orientated, the dissociated Shockley partials have edge
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components. Thus, the non-Schmid stress components Tpe and Ts, (on the original and

cross-slipping octahedral planes perpendicular to the Burgers vector of superpartials,

as shown in Figure 2-3) are involved in the cross-slip process. According to the sign of

the applied stress, these non-Schmid stress components (pe and T,) either constrict

or expand the core of the superpartials, which in turn assists or inhibits the cross-

slip process, respectively. The locking activation enthalpy was decomposed into two

parts, assumed independent of each other, corresponding to the constriction and the

cross-slip process, respectively:

H = W + Hcs. (2.4)

The constriction part W, is a modified version of the constriction energy given by

Escaig. The cross-slip part Hcs includes the self-energy and interaction energy of two

cross-slip-generated jogs on the cube plane, the energy gained by transferring part of

the APB ribbon from the octahedral plane to the cube plane, and the work done by

Tcb. The expression for H1 as a summation of W, and Hcs is somewhat complicated,

but under the assumption that the magnitude of the work done by cb is much less

than the energy gained by cross-slip, H can be simplified into a linear form:

HI = HIo - V(Tpe - iTse) - V:rbl1, (2.5)

where V and V,, are the corresponding activation volumes, and they are derived as

V, = :b4 and VO = . Here, L is the shear modulus, A a dimensionless parameter,

and AE is the energy gained per unit length by cross-slip. The magnitude of AE is

estimated to be 10-12Jm - by applying the APB energy ratio of octahedral plane to

cube plane as yly, = 1.4 (a typical value in Ni 3Al) and the cross-slipped distance

w = b/2 (the assumed cross-slip distance on cube plane). Thus the value of V, is

around 5b3. The factor A in the expression of VO is considered to be dependent on the

value of APB energy on the octahedral plane. The magnitude of X was not explicitly

specified in the PPV model, but since the constriction was assumed as the essential

part in the cross-slip process, the value of A should make the activation volume V
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larger than V,. (Qin and Bassani [67] analyzed the effects of different values of Vo,

V,. and ti on the orientation-dependence and tension-compression asymmetry of yield

strength, and similar parameter sensitivity studies and simulations are available in

the author's Master's thesis [68]).

The simulation results of the PPV model were compared with the experimen-

tal work of Umakoshi, et al. [4] and the work of Ezz, et al. [28] on single-crystal

Ni 3AI doped with Nb. The predicted results successfully matched the experimental

data in the properties of orientation-dependence and, especially, tension-compression

asymmetry of yield strength. For this reason, the PPV-type locking mechanism was

accepted and implemented in many later quantitative models.

On the other hand, the PPV-type cross-slip process was also questioned by some

researchers. First, the PPV model assumed a non-planar locked configuration with

the leading superpartials lying on the cross-slip octahedral plane (111). Based on

anisotropic elastic analysis, Schoeck [29, 30] pointed out that the splitting of the

superpartial core on the (111) plane was not energetically favorable. Schoeck's point

was supported by the atomistic simulation results of Parthasarathy and Dimiduk[31].

Therefore, the Te term may disappear from Eqn. 2.5. Secondly, the separation

between the Shockley partials was reported to be very small (- b). It can not be

resolved in screw dislocations and can only barely be resolved by TEM weak-beam

techniques in edge dislocations. Thus, some researchers argued that it was improper

to use elastic theory in deriving the locking enthalpy, as in the PPV model. Besides,

the locking activation enthalpy was derived under certain assumptions such as: Tpe

and Tse << YcsF/b and the cross-slipped distance w = b/2; and was simplified into the

linear form (Eqn. 2.5) with the assumption of TCbb2 < AE. YCSF was reported to be in

the range of 200 - 350mJ/m- 2 , so the magnitude of YcsF/b is around 1GPa. So the

first assumption is plausible. The second assumption is under question, because both

IKWs and CKWs have been observed, and the cube plane APB width of IKWs can

be much longer than b/2 [32]. But we need to keep in mind that in the PPV model, w

represents the initial cross-slipped distance on a cube plane, while the observed cross-

slipped distance may be the result of the evolution of K-W locks under applied stress.
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The third assumption also needs further consideration. If we assume Tcb - 100MPa,

a reasonable value for uniaxial loading orientations other than that very close to [001],

the magnitude of b2-cb 10-12 Jm - 1 , which is similar to the value of AE. Thus, for

these orientations, HI call not be simplified to the linear expression form Eqn. 2.5.

Discussions about the cross-slip mechanism and the properties of orientation-

dependence and tension-compression asymmetry of yield strength are still going on.

Many experiments reveal that the non-Schmid properties of L12 single crystal are

greatly composition-dependent, and are even claimed to disappear in pure Ni 3Al sin-

gle crystals [33]. In a review article, Veyssiere and Saada argued that "It is fair to say

that the actual orientation-dependence appears in fact to be more complicated than a

simple theoretical analysis could predict, unless of course this theory is appropriately

parametrized." [34].

Superkink Unlocking Models

As we have summarized, the "Point-obstacle" rationalization of the yield anomaly

is in conflict with the observation of long, locked K-W form screw segments. To

overcome the above limitations of pinning-point models, more physically-based mod-

els have been put forward. These models have proposed new unlocking mechanisms

corresponding to the K-W locks, and the unlocking process is considered to be rate-

controlling part of the steady-state movement of screw dislocations. One of them is

the superkink (also termed as macro-kink) unlocking mechanism.

Superkinks were spotted in very early TEM studies, but it was Sun and Hazzledine

[35] who first proposed and emphasized that locked screws could be unlocked by the

shuttling of the edge-orientated superkinks. After that, many superkink models have

been put forward [14, 36, 37].

Sun [36] studied the expansion of superkinks as they glided along the screw dislo-

cation, and concluded that if the superkink height was larger than a critical value ,

the superkink would bow out and generate new superkinks. Otherwise, the superkink

just glided out to the end of the screw. Thus, in order to sustain a continued deforma-

tion, the average dislocation height 1 must be no shorter than l,. The yield strength
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is deduced from the condition = c1, and it is found to be inversely proportional to 1.

The superkink unlocking mechanism was also adopted in Louchet's [37] extended

locking/ unzipping (ELU) model. The basic idea of this model is: a screw disloca-

tion is assumed mobile if the longest superkink on it is longer than a critical value

le, which depends on the jog resistance at the ends of superkinks under a given ap-

plied stress. The distribution of screws (Ps,,(1)) is then derived over the total screw

dislocations as a function of the height of the longest superkinks on it, based on an

assumed distribution of superkinks Psk = Po exp (-1/lo). Both Ps:,.(1) and Psk(l) are

schematically plotted in Figure 2-4. Meanwhile, sufficiently long superkinks ( > Irn)

may bow out and generate new sessile screw segments and new mobile superkinks.

Both and 1,, are derived to be inversely proportional to the applied stress. Under

the condition of constant applied strain-rate, the yield strength is viewed as the stress

magnitude that balances the multiplication rate and the exhaustion rate of the mo-

bile screw dislocations. The multiplication rate is considered to be proportional to

the number of superkinks that are longer than Ir, which is illustrated as the shaded

area under Psk for 1 > 1m. The exhaustion rate is considered to be proportional

to the number of screws on which even the longest superkink is shorter than l, as

illustrated by the shaded area under Pscr for 1 < le. With the assumption that the

average superkink height decreases with increasing temperature, both Pc,. and Psk

drift to the left (where the value of is smaller) in Figure 2-4. Thus, the area repre-

senting exhaustion rate increases, while the area related to multiplication decreases.

Therefore, to rebalance the exhaustion and the multiplication rates, both le and 1,r

need to decrease, which in turn yields an increase of flow strength (Figure 2-4).

Despite the different formats of illustration, the above superkink models are similar

to each other in the following ways:

1. Plastic strain is assumed to be produced by the shuttling of superkinks along

the previously locked screw segments, in the octahedral planes.

2. Resistance forces at the end of the superkink (either the pinning strength at

the kink junctions or the force due to imbalance of the line tension at the two
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superkink ends) are independent of the superkink height.

3. Yield strength is derived based on an assumed pre-existing distribution of su-

perkinks or a characteristic length of superkink (e.g. 1). The shorter the su-

perkinks, the higher the yield strength. This is consistent with the study of

Dimiduk [38], which found that the height of the superkinks varied as the in-

verse of the strength of the alloys.

4. Yield anomaly is achieved via an assumed decrease in superkink's height with

increasing temperature, due to the temperature-enhanced locking frequency.

This assumption has been experimentally confirmed by Couret, et al. [11].

Both Sun and Louchet's models are incomplete quantitative models. The tempera-

ture-dependence of superkink's height, which is the essential part of modeling the yield

anomaly, is explicitly assumed, but not defined. As for the strain-rate insensitivity,

both models claimed a pure mechanical (athermal) unlocking mechanism; thus the

critical unlocking stress (yield strength) was determined by the resistance forces and

the superkink height, but not by the applied strain-rate. However, this proposition

needs further consideration. If the critical strength hardly depends on the applied

strain-rate, neither does the mobile dislocation density, because both l, and le are

inversely related to the applied stress. Thus, according to Orowan's relation:

te = pmbV-, (2.6)

the gliding velocity of superkinks must be very sensitive to the applied strain-rate.

However, based on the assumed Newtonian viscous velocity, it is not clear, under sim-

ilar stress levels, why the dislocation velocity should entirely vary so much. Therefore,

this explanation for strain-rate insensitivity may not be self-consistent.

Usually, the screw dislocations have very complicated non-planar configurations,

with adjacent locked segments and the connecting superkinks lying in different oc-

tahedral planes. Most of the superkink unlocking models simplified the problem by

assuming a two-dimensional planar configuration, without providing details of the
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unlocking process. That is why Hirsch's [23] superkink model, which presented very

detailed mechanistic descriptions of the formation and evolution of the K-W locks

and a full illustration of the superkink unlocking mechanism, is widely referred to

and deemed as the most successful superkink unlocking model.

Hirsch assumed that locking originated locally first by the cross-slipping of the

leading superpartial, and the resulting jogs on the cube plane generated during the

cross-slip would readily sweep along the dislocation, until an edge dipole has been

formed (Figure 2-5 (b)), so a long cross-slipped screw segment (K-W locks) would

be formed. The unlocking process is the essential part, and Hirsch's unlocking mech-

anism is schematically illustrated in Figure 2-5. It was assumed to start with a

thermally-activated cross-slip of the leading superpartials (L) at the end of the K-W

lock segment, and a small segment of cross-slipped leading superpartials annihilates

with itself (L and L'), as shown in Figure 2-5 (c)-(d). After the cross-slip and the

annihilation, the jog on the leading superpartials is mobile and the superkinks can

then start the unzipping process to the left, as shown in Figure 2-5 (e)-(g). The driv-

ing force for unzipping is derived from a simplified 2-D model, without consideration

of the resistance force on the jogs in the cube plane. As schematically illustrated

in Figure 2-6 (a), the movement of superkinks is driven by the decrease of energy,

AE, and inhibited by the line tension forces, Tli,. As the superkink passes along the

locked screw segment, an APB tube is formed as shown in Figure (2-5 (g)), which is

also TEM-observed (Figure 2-6 (b)). Even though the detailed mechanism of forming

such an APB tube is still under research (Hirsch and Veyssiere have published several

papers, recently, debating the formation of APB tubes [39, 40, 41]), these observed

APB tubes clearly present the trace of superkinks and strongly support the superkink

unlocking mechanism. Besides, micro-structures such as long cross-slipped screw seg-

ments, superkinks and edge dipoles are also observed post-mortem, supporting the

essential idea of Hirsch's superkink unlocking mechanism.

Despite the extremely sophisticated geometry and mechanisms proposed to de-

scribe the unlocking process, Hirsch's superkink unlocking mechanism was eventually

simplified into a "steady-statc" movement of one screw segment (Figure 2-1 (b)).
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Since unlocking is assumed rate-controlling, and in each locking-unlocking cycle, the

screw segment advances by a distance of 21 (1 is the height of the superkink), the

average velocity of the screw dislocation is given as v = 21/t,,. Here t,, is the time

needed for each unlocking procedure, which is the inverse of the unlocking frequency

fu. Therefore, the average velocity is finally derived as:

v = - = 21f, = 21voexp(- (2.7)

where HU is the unlocking enthalpy, and vo is the Debye frequency.

On the other hand, whenever a screw segment is free, it moves a distance of I with

free-flight velocity, vf, until it gets locked again. Thus vf = I/t,, where t is the time

needed for the locking procedure, and is the inverse of the locking frequency fi:

1 H,
vf = = If, = lvo exp(-k) (2.8)

where H, is the locking enthalpy.

Combining Eqns. 2.7 and 2.8, we get:

v = 2vf exp(- ) (2.9)

The activation enthalpy for unlocking, H,, is derived as:

H = H - V(1)( - Ta), (2.10)

where H,o is the activation enthalpy for the cross-slip of the leading superpartials

illustrated in Figure 2-5(d), V(1) is the activation volume, which is proportional to

the kink height , and Ta = ppb/l is the resistance strength to the bypassing of the

superkinks, derived from the simplified 2-D configuration given by Figure 2-6(a). Here

p is a non-dimensional geometrical parameter, and is the shear modulus. Since ra
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is inversely dependent on 1, Eqn. 2.10 can be rewritten as:

H = H*0 - VT; where H, 0o = H,,l + VTa. (2.11)

Explanation of the yield strength anomaly still depends on an assumed decrease

of superkink height with increasing temperature, the mechanisms of which were not

quantitatively derived in the model. For the property of strain-rate insensitivity, some

review papers have asserted that it was achieved due to the large athermal stress

component (a) involved in Hirsch's model. But actually, it is the large magnitude

of the activation volume (1 - 100b = V - 100b3 ) that makes the average velocity

very sensitive to the change of the applied stress. Thus, according to Orowan's

relation (Eqn. 2.6), a very small increase in stress can increase the average velocity

dramatically, which can balance large change in the applied strain-rate. Therefore, a

small strain-rate sensitivity of yield strength is expected.

Hirsch directly adopted the PPV version of locking enthalpy Hi in Eqn. 2.9 in

order to capture the prediction for all the non-Schmid effects, even though the locked

configuration of screws in Hirsch's model differs greatly from that assumed in the

PPV model. However, details of locking procedure were not the focus of Hirsch's

model.

Self-unlocking Mechanism

Another approach to unlock the K-W segments is the self-unlocking model proposed

by Caillard and Paidar [42]. This model is based on in situ TEM observations of the

movement of screw dislocations (shown in Figure 1-14) at room temperature.

The jerky movement of one screw is simplified into a 2-D model, shown in Figure

2-7, in projection along the screw direction. The leading superpartials cross-slip to the

cube plane first, glide for a distance w, then back-cross-slip onto an adjacent primary

octahedral plane (Figure 2-7 (a)). This configuration is then mobile until the trailing

superpartials encounter the cube plane on which the leading superpartials initially

cross-slipped (Figure 2-7 (b)). Unlocking is assumed to be caused by the cross-
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slipping of the trailing superpartial onto this cube plane, resulting momentarily in a

glissile configuration. Meanwhile, the leading superpartial has the chance to cross-slip

again, and the cycle continues. The free glide on octahedral planes was assumed to

be much faster than that on the cube plane, due to the comparably much smaller

frictional forces. Therefore, the kinetics of locking and unlocking closely depend on

the average velocities of leading and trailing superpartials on the cube planes, under

their corresponding driving stresses.

Stress analysis was carried out for both leading and trailing superpartials according

to linear elasticity, without considering the core structure of the Shockley partials.

The driving components on the cube plane for both leading and trailing superpartials

(%Ts and -t,) have been derived, and a critical stress -critical was defined as the applied

octahedral system stress under which Tcts = T 8. Based on different applied stress

levels, T, three hypothetical conditions were proposed:

1. If T > Tcritical, the cube-slip driving force on the trailing partial will exceed that

of the leading one, Tct8 > T-,. Therefore, the trailing superpartials are supposed

to move faster on the cube plane than the leading superpartials. Thus, the

total APB width on the cube plane is assumed to eventually decrease, which in

turn makes t8 even larger than -rs, and the unlocking process becomes more

rapid. This results in a transformation into the planar mobile configuration as

illustrated in Figure 2-7 (c).

2. If =- Tritical, in which case t = Ts, the two superpartials are assumed to

move and cross-slip at the same rate, with resulting octahedral advance limited

to the "APB jump" (Figure 2-7 (d)).

3. If < Tcritical, in which case ts < Ts, the leading superpartial is assumed

to move faster than the trailing one onto the cube plane, so that, after a few

episodes of motion, w increases progressively (Figure 2-7 (e)). With the increas-

ing of w, the driving force on the trailing superpartials becomes even smaller,

and their movement on the cube plane becomes even slower. When T7-8 is reduced
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to a value lower than the resistance on the cube plane, the screw dislocation is

fully locked.

The three hypothetical conditions discussed above are based on purely mechanical

analysis, and the evolution of the cross-slipped distance w is assumed to be determined

by the relative cube-slip velocity of the two superpartials. Based oni this analysis, the

former two conditions are related with continuing deformation, while the later one

ends up in a fully-locked configuration. Therefore, to sustain a continued deformation

by this mechanism, the applied stress should be no smaller than Tcritical, which is con-

sidered to be the flow strength. 'critical was derived as a function of the cross-slipped

distance w and material variables including fault energies and the elastic anisotropy

factor. The magnitude of Tcritical increases monotonically with increasing values of

w. Thus, the flow strength anomaly is explained by assuming that since the locking

procedure is thermally activated, w should increase with increasing temperature.

Similar to the superkink models, the key parameter determining the temperature-

dependence of yield strength, w (1 in superkink model), was not specifically derived

and left as an adjustable parameter. Thus, the self-unlocking mechanism is not a true

quantitative model, either. According to the self-unlocking mechanism, the minimum

value of the critical stress (with w = b/2) for Ni 3AI (using %yc = 0.144J'm -2 and

y, = 0.18Jm- 2 ) is calculated to be 185MPa. However, in the low-temperature

part of the yield anomalous region, the resolved shear stress (for Ni 3A1) is less than

this minimum value, which means the self-unlocking mechanism can not be applied

as an exclusive explanation. Especially, for uniaxial stress in the [111] orientation,

with maximum Schmid factor equal to 0.27 on the octahedral planes, even for the

case of peak uniaxial yield strength (around 700MPa at 700K), the resolved strength

is still barely equal to this minimum value required to activate the self-unlocking

mechanism. If we consider that at such an elevated temperature, u should be larger

than b/2, then cr,itical is also increased, so the self-unlocking mechanism is unlikely

to be activated.
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2.2.2 Dynamic simulations

All steady-state models focus on essential features of yielding (e.g., temperature-

dependencc, non-Schmid effects, and the strain-rate sensitivity) without addressing

the hardening properties. The predicted isothermal stress-strain curves are thus "flat"

after the yield point. In order to overcome this severe limitation of steady-state

models, the approach of dynamic simulation has emerged as required. Some research

groups, aided by the rapid development of computer calculation capabilities, have

tried to study macro-behaviors via the simulation of the dynamical evolution of micro-

structures. Despite the fact that results of these dynamical simulations are usually

qualitative, they help in the understanding of strength (or hardening) anomaly related

mechanisms, and thus provide guidelines for further study.

The representative dynamics studies were carried out by Mills and Chrzan [43] and

Veyssiere and Saada's group [44, 45]. The framework of such dynamical simulations

is:

1. Define simulation elements to describe dislocations;

2. Choose and apply kinetic laws to the elements;

3. Choose and apply the pinning (locking) law and the unpinning (unlocking) law

to the elements;

4. Calculate the evolution of the system, under specified loading conditions.

In Mills and Chrzan's [43] 2-D dislocation dynamics simulation, each dislocation

was divided into several segments. A probability of pinning, p, was calculated as

the product of a geometrical part, pg, and a thermal part, Pt, and was assigned to

the end points of each segment. The geometrical probability was highest for the

screw-orientation, and the thermal probability was taken from the PPV model. The

unpinning process was purely mechanical. A pinned point was dissolved when the

adjacent free segment tangent bowed under stress to a critical angle ( = 30 in

the simulation) with respect to its pinned neighbor. When a segment was unpinned

and free, its velocity was linearly related to the applied effective stress. Two types
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of qualitative simulations were conducted under constant applied stress conditions:

one focused on the movement of a complete dislocation loop, while the other treated

a finite-length dislocation segment of near-screw orientation. The major simulation

results and conclusions are:

1. Near-screw parts of the dislocation loop are highly-pinned. The propagation of

screws is governed by the lateral motion of superkinks, and the mobility of a

superkink is related to its height.

2. Statistical study shows that the superkink number distribution is exponentially

related to the inverse of superkink height, and the average value of superkink

height is found to decrease with increasing temperature, consistent with exper-

imental observations [11].

3. Exhaustion of the mobile screw density is the proposed mechanism for both the

yield anomaly and the work hardening.

4. The strain-rate independence of yield strength is due to a great change in mobile

dislocation density corresponding to the change in applied strain-rate.

The first property is easy to understand since a high locking probability was

assigned to screw (or near screw) segments.

The exponential form distribution of superkink can be understood in the following

way: when a screw segment moves within an octahedral plane, it can be locked with

the assigned probability of p = pg x Pt at each step, and a superkink of height 1 = nAl

implies that the adjacent screw segment has not become pinned until it has advanced

n-steps (Al is the advance distance for each step, projected onto the octahedral

plane). Thus, the probability of having a superkink of height, 1, is P(l) = p(l _p),-l,

which can also be rewritten into an exponential form as P(l) = Poe-l/l °, with lo =

-Al/ln(1-p). (This idea has been modified and implemented in the proposed model

to obtain an initial superkink distribution; details will be given in Chapter 3). Since

P = Pt x pJ, in which the thermal part Pt increases with increasing temperature, the

average superkink height should decrease with increasing temperature, as observed.
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Mills and Chrzan's simulations were carried out under constant applied stress

(creep) condition. As mentioned previously, unlocking was assumed to happen when

a critical angle c, is reached. Based on this critical angle 0c, the line tension force

and the applied stress Tapp, a critical superkink height Ic has been derived as Ic =

2ILb, sin(0,). Exhaustion of screw dislocations was observed when the superkinks on

them all become too short (shorter than l,) to move at that level of stress. Thus,

the hardening mechanism was proposed as follows: in a constant applied strain-rate

condition, applied stress must continuously increase as l, drops in order to balance

the exhaustion of mobile dislocations.

The small strain-rate dependence of yield strength was also roughly mentioned in

the model, and was proposed to be due to the change of mobile dislocation density.

They argued that, since the superkink distribution was in an exponential form, a

small change in , corresponding to the small change of stress level, would cause a

large difference in the mobile dislocation density. But if we examine this assumption

more carefully, we will find that to make the above statement valid, the exponential

curve has to be very steep (or in other words, lo has to be extremely small). For

example, if we want to keep the yield difference under 1% with a 10-times strain-rate

jump, as generally observed in the experiments, lo0 has to be of the order of b or even

less, which is inconsistent with both the Mills and Chrzan's simulation results, and

the experimental observation by Couret [11].

Following Mills and Chrzan's idea, 2-D dynamical simulation was also carried out

by the research group of Veyssiere, et al. [44, 45]. Screws were assumed to be locked

in K-W configuration. Both superkink unlocking and the self-unlocking mechanisms

were taken into consideration. The simulation was carried out in the condition of

constant applied strain-rate. For each unlocked segment, the velocity is given as:

v(t)= (), (2.12)
B

where -r(t) is the effective stress at time t, and B is a constant resistance. On sub-

stitution of the above equation into the Orowan equation, we can obtain the plastic
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strain-rate at each time step. Since the applied strain-rate is constant, the applied

stress is modified at each step by:

6 rapp(t) = C(app - Yplastic)6t, (2.13)

where C represents the relevant elastic modulus. Thus, the stress-strain relation is

obtained. Simulations were carried out within the temperature range between 200 to

600K, and various sets of parameters were applied at each temperature to understand

their influence on the overall stress-strain curve. The main results are listed as follows:

1. Two different temperature regions may be distinguished according to the dis-

location dynamics. At low temperatures (200-400K), bypass of the superkinks

is the dominant way to unlock K-W locks. Since the drag force on the ends of

the a kink are considered as constant, the mobility of kinks is directly related

to its length, and the motion of largest kinks provides most of the strain. At

higher temperature, when only a limited number of superkinks are long enough

to overcome the K-W locks, the direct unlocking mechanism of the incomplete

K-W locks begins to dominate.

2. As for the strength anomaly, the authors point out that the simulation will

present an anomalous yield behavior only if the K-W locks are strong enough,

either when the jog mobility is restricted or the incomplete K-W locks are not

so easily overcome.

3. Since the mobility of superkinks is closely related with their heights, superkink

coalescence is essential in determining the dynamical evolution of the microstruc-

ture.

Veyssiere's simulation may be the first to combine the two unlocking mechanisms

together. Two critical stresses were introduced: one is for the activation of superkinks

from the resistance of the jogs at the ends of each superkink; the other one is the

critical stress to activate the self-unlocking mechanism, which is determined by the

temperature-dependent cross-slipped APB width. The conclusion that these two
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critical stresses are important in simulating the yield anomaly actually verifies that

the increase in cross-slip frequency with increasing temperature itself is not enough for

the expected yield anomaly (as we discussed above for the "point obstacle" models),

and another temperature-dependent parameter (1 or/and w ) has to be included.

Superkink coalescence was observed in the dynamic simulation and was considered

to be very important for superkink-unlocking mechanism. In the 2-D simulation,

the coalescence of two superkinks is simplified by combining the encountering two

superkinks into a new one having the height of either the sum or the difference of

the original two. The real case is much more complicated than the 2-D simulation,

because these superkinks may not be in the same octahedral plane. Even if we

assume a 2-D planar configuration, considering the numerous different possibilities

for the encounter of two superkinks (different height, different sign), it may still be

too complicated to simplify and model. Thus, we neglect the superkink coalescence

in the proposed superkink unlocking mechanism.

2.2.3 Hardening models

Cuitifio and Ortiz [46] tried to account for strain hardening in L12 crystals by invoking

a forest-type hardening mechanism. They claimed that the yield anomaly was actually

the manifestation of hardening, since the anomalous yielding only happened when a

small, but finite offset strain is considered (Figure 1-7). Explicit expressions for the

hardening rate of both the cube and the octahedral slip systems were developed, with

both systems having the form

[( ) - 1] if r > g;
0 otherwise.

Here m is the strain-rate sensitivity exponent, % is a reference shear strain-rate, "

is the resolved shear stress, and g9 is the resistance.

The evolution equation proposed for ga was taken to be a function of an assumed

point obstacle density. For the cube slip systems, the change of g (due to the
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change in the point obstacle density), was considered to be influenced only by forest

dislocation multiplication, which was assumed to be linearly related to the dislocation

density of other piercing slip systems. For the octahedral systems, local cross-slip-

caused pinning was also taken into consideration in the expression for ga. The cross-

slip mechanism of the PPV model was implemented, and the pinning obstacle density

was determined by the temperature-dependent cross-slip frequency. The simulation

results demonstrated anomalous yield strength and hardening rate, due to the increase

of ga by the accelerated cross-slip at enhanced temperatures.

However, since the hardening and yielding were rooted in the same mechanism, the

predicted temperatures of maximum strength and of maximum hardening rate were

the same. The difference in peak temperatures for hardening and yielding in Cuitifio

and Ortizs paper was due to the measurement of different plastic strain offsets, as

shown in Figure 2-8. Moreover, the basic assumptions of point-obstacle locking are

inconsistent with the TEM observations, and it is also argued that observed hardening

rates as large as /10, where is the shear modulus, can not be interpreted by forest

hardening (with a typical hardening rate of /L/100 for multi-slip and p/1000 for single-

slip in fcc material).

In recent years, the research group of Martin, et al. has been very active in study-

ing the deformation mechanisms of L12 crystals. They found that the work hardening

rate (h) and the exhaustion rate of mobile dislocation density (Apl/Pmo), measured

at the same plastic strain by a series of repeated transient creep/relaxation tests, ex-

hibit very similar trends if plotted vs. applied stress or vs. temperature (Figure 2-9)

[47]. Therefore, they assert that hardening is due to the exhaustion of the mobile dis-

location density, because h and APm share similar temperature dependence, includingPmo

the exact same peak temperature. In particular, they propose an explanation as to

why the temperature of the maximum hardening rate is always lower than that of the

maximum yield strength by combining their idea (exhaustion of mobile dislocation

density) with the self-unlocking mechanism proposed by Caillard. The idea is illus-

trated schematically in Figure 2-10. Since the cross-slip-based locking is a thermally

activated process, at higher temperatures, screws are locked more frequently, and the
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exhaustion. rate of mobile screw dislocations is thus higher. That is why the initial

slopes of the stress-(plastic) strain curves Figure 2-10 (a) increase with increasing

temperature. As the applied stress reaches a critical value, K-W locks (starting from

the weakest ones with the shortest cross-slipped width on the cube plane) begin to be

self-unlocked and contribute positively to the mobile dislocation density, leading to

a decrease of the slope (the hardening rate). Thus, as shown in Figure 2-10 (b) and

(c), there is a peak for the hardening rate curve in the temperature range where the

(offset) yield strength is still monotonically increasing. Martin, et al., further sup-

ported their idea by pointing out that the resolved shear stress at the temperature

corresponding to the maximum hardening rate varies with octahedral plane APB en-

ergy y,, in a way very close to the estimated critical unlocking stress (corresponding

to the weakest K-W locks) calculated according to the Caillard model (Figure 2-11).

Martin. et al., also carried out several experimental works on the composition-

dependence of dilutely-alloyed Ni 3AI, and tried to determine the influence of fault

energies onl the mechanical properties. They (Viguier and co-workers [48]) found

that materials with higher complex stacking fault energy, CSF, show higher yield

strengths and lower temperatures of peak yield strength, Tp,,, as shown in Figure 2-

12. The former phenomenon is explained as: with all others factors (e.g., temperature

and stress state) equal, the cores of leading superpartials in a compound with higher

values of YCSF are intrinsically more constricted, leading at any magnitude of applied

stress to a higher frequency of cross-slip and mobile dislocation exhaustion rate. The

latter one is because, on one hand, due to the reason we just analyzed, at the same

temperature, the yield strength of crystals with a higher value of 'YCSF is higher, and

so is the resolved shear stress component on the cube planes. On the other hand, the

higher the 7CSF, the closer the Shockley partials. And a closer core is assumed to lead

to a correspondingly lower friction force on the cube plane. Thus, cube systems in the

compounds with higher YCSF are easier to be activated at relatively low temperatures.

Martin, et (al., proposed a quantitative model to explain the hardening in the

L1 2 compounds and performed extensive experimental work to support their model.

There remain several issues which need more careful consideration:
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1. First of all, the exhaustion rate of the mobile dislocation density plotted in

Figure 2-10, which is the strongest proof for the whole model, was derived from

experimental data of a series of transient relaxation/creep tests, under a number

of assumptions.

2. Secondly, even assuming that the mobile dislocation exhaustion data of A/pl

was c(orrectly obtained from the transient tests, it is not clear why the same dis-

location exhaustion processes occur in constant strain-rate tension/compression

simulations.

2.3 General conclusions

We have summarized the most representative models in this chapter with discus-

sions. It seems that though considerable amounts of experimental and theoretical

effort have, been devoted to the study of L12 crystal for decades, some of the un-

derlying mechanisms that dominate the overall mechanical properties and behaviors

still remain unclear, and none of the existing models can provide a quantitative and

comprehensive description of this problem.

It is commonly understood now that the anomalous behaviors of L1 2 crystals

are dominated by the non-planar movement of screw dislocations o the octahedral

planes. Somre physically-oriented models have been put forward, based on different as-

sumed mechanisms of the formation and the unlocking of K-W locks. However, most

of them are steady-state models, focusing on the anomalous temperature-dependence

of yield strength. Generally, these models present quantitative expressions for the

yield strength, however the anomalous temperature-dependence of the yield strength

has to be established through certain assumptions on temperature-dependence of

some internal variables (e.g., the superkink height and the cross-slipped distance

on the cube plane), which are not explicitly provided. Similarly, no quantitative

mechanism-based hardening models have been proposed. Furthermore, the com-

plexity of this problem is much more than just anomalous temperature-dependence

of yield strength and strain hardening rate. Great challenges exist in fully under-
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standing and systematically explaining other mechanical properties, including the

orientation-dependence and the small strain-rate dependence of yielding and harden-

ing, the tension-compression asymmetry of yield strength, the reversibility of yield

strength, the fault energy effects and the difference in the temperatures corresponding

to peak yield strength and peak hardening rate.

In the next chapter, we propose a single-crystal constitutive model, based on

the current understanding of the underlying micro-mechanisms in L12 compounds.

Strain hardening mechanisms are also presented, derived from the evolution of the

same internal variables that dominate the yield properties. The initial state and the

evolution of these internal variables are quantitatively illustrated, and systematical

simulations have been carried out. The simulation results (e.g. the predicted stress-

strain relations, the evolution of critical initial variables and parameter sensitivity

studies) provide a great deal of information to examine and understand the proposed

model as well as the underlying mechanisms.
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Figure 2-1: Schematic illustration of the successive positions for a dislocation on the
(111) plane by (a) bowing between pinning points and (b) by the lateral motion of
superkinks [14].
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Figure 2-2: Cross-slip processes of screw dislocations: _(a) The Fri.edel-Escaig .mecha-
nism. in fcccrystals; (b)PPV model-in £12 crystal [34].
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Figure 2-3: Schematic illustration of the non-Schmid stress components, including
cross-slip cube and octahedral planes intersecting a primary octahedral plane.
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le lm i

Figure 2-4: Illustration of the ELU model. As the temperature increases, both distri-
butions (P,,, and Psk) shift to the left. To rebalance the multiplication rate and the
exhaustion rate, which are proportional to the two shaded areas, respectively, both
le and m, need to decrease. Since le and Im are found to be inversely related with the
applied stress, an anomalous temperature-dependence of yield strength is expected.
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(a)
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fa)

(c)

(f)

(g)

Figure 2-5: 3-D illustration of Hirsch superkink bypaSsing m~chanism [34]. (a) the
incomplete K-W lock configuration; (b)-(c) formation of edge dipoles at the ends
of the locked screw segments;. (d) a thermally activated cross-slip step brings the
superkink to the upper (111) plane; (e)-(g) the IKW is unlocked by the bypassing of
super~ink and the formation of an APB tube.
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(a)

(b)

Figure 2-6: (a) 2-D illustration of a superkink moving left along the locked screw
segment; (b) TEM observation of K-W locks and superkinks on an octahedral plane.
APB tubes are attached at the end of the super kinks [41].
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Figure 2-7: Schematic illustration of the three different cases in the evolution of
IKW locks: (a) the mobile configuration after the cross-slip (by a distance of wo)
of the leading superpartial; (b) the successive locked configuration when the trailing
superpartial meets the cross-slipped cube plane; (c-e) depict asymptotic states for the
segment after a sufficient number of unlock/glide/re-cross-slip events [42], depending
on magnitude of applied octahedral shear stress.
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Figure 2-8: Simulation results [46]: (a) Stress-strain curves for different temperatures;
(b) Temperature-dependence of yield strength at 0.2% offset strain in both tension and
compression; (c) Temperature-dependence of hardening rate of two different strain
regions.
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Figure 2-9: The exhaustion rate of mobile dislocation density and the work hardening
rate vary in a similar way with temperature. Temperature of peak hardening coincides
with that of peak exhaustion of mobile dislocation density [47].
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Figure 2-10: Schematic illustration rationalizing the existence of a peak temperature
of work-hardening rate in the yield anomaly region: (a) Stress-(plastic) strain curves
at three temperatures, with two hardening stages; (b) Stress at given plastic strain
increases monotonically with increasing temperature. (c) In the same temperature
range, the work-hardening slope presents a temperature peak [47].
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Figure 2-1:1: Resolved shear stress corresponding to the maximum in work-hardening
in a range of alloy compositions, plotted as a function of APB energy on (111) [47].
The solid line along which the data points cluster corresponds to the dependence of
critical self-unlocking stress on yo.
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Figure 2-12: Illustration of the 'ycSF-dependence of yield strength [46]. Crystals with
larger ycsjF show a higher yield strength and lower Tp,I.
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Chapter 3

Mechanism-based modeling of

single-crystal L12 intermetallic

compounds

3.1 Framework of the Single-crystal Plasticity Model

As summarized in Chapter 2, much work has been done to reveal the underlying

mechanisms that dominate the mechanical behaviors of L12 single crystals, especially

the mechanisms governing the anomalous yield and hardening properties. For ori-

entations other than those close to [001], it is well understood that the change of

the temperature-dependence of uniaxial yield strength from 'abnormal' to 'normal'

is due to the change of dominant slip-systems from octahedral planes to the cube

planes. Therefore, in the proposed model, both octahedral and cube slip-systems are

included.

The only active slip direction in the L12-order single crystal is the close-packed

< 101 > orientation, except at very high temperatures ( substantial numbers of

< 100 > dislocations were found in Nia(Al,Ti) deformed at 1200 K [49]). In the

anomalous yield region, plastic deformation is mainly contributed by the slow and

jerky movement of long screw dislocations on the octahedral planes. Thus, a total
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of twelve distinct ({111} < 110 >) slip-systems have been chosen as potentially

activated slip-systems.

The jerky movement of screws in the anomalous yield regime is considered as

a sequence of successive locking-unlocking processes. Locking is due to thermally

activated cross-slip from octahedral planes to cube planes, which is driven by both

the reduction of APB energy and the torque forces introduced by elastic anisotropy.

For the unlocking part, as we have discussed in the last chapter, both the superkink

unlocking and the self-unlocking mechanisms are very physically-oriented and sup-

ported by many experimental observations. Besides, the change of the temperature-

dependence of the strain hardening rate in the anomalous yielding region suggests

that there is more than one underlying unlocking mechanism. Therefore, in the pro-

posed model, both the superkink unlocking and the self-unlocking mechanisms have

been modified and implemented.

In the low-temperature part of the yield anomaly region, screws are considered to

be unlocked by the bypassing of the longest superkinks on them. The self-unlocking

mechanism does not contribute to the total plastic strain because the resolved shear

stress is lower than the critical value corresponding to self-unlocking of the weak-

est incomplete K-W locks. Hardening in this regime is due to the decrease of the

longest superkink height with continuing plastic deformation, and the hardening rate

increases monotonically with increasing temperature. In the high-temperature part

of the yield anomaly region, the stress level has been raised high enough to activate

the self-unlocking mechanism. With increasing temperature, more and more screws

which can not be unlocked by the superkink mechanism, due to the lack of sufficiently

long superkinks, can now be self-unlocked. Thus a negative temperature-dependence

of hardening rate is expected, even though offset yield strength continues to increase

with temperature. In the proposed model, superkink unlocking and self-unlocking

are introduced as two relatively independent mechanisms; detailed discussions will be

presented in Chapter 5.

Above the temperature of peak yield strength, T,, where cube slip dominates, the

screw and edge dislocation densities were observed to be comparable (Figure 1-15).
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The movements of dislocations (both screw and edge) are found to be slow and planar.

Detailed mechanisms of dislocation dynamics for cube slip are still unclear and are

not the focus of the current research. Therefore, we simply include six {001} < 110 >

cube slip-systems modeled with standard power-law form to capture the 'normal' part

of temperature dependence of yield strength. The cube-slip resistance is assumed to

decrease linearly with increasing temperature. Thus, with increasing temperature and

stress, the cube slips will gradually but increasingly contribute to the total plastic

deformation, until they are fully dominant.

For uniaxial stress in the [001] orientation, since the Schmid factor is zero for the

cube planes, octahedral slips always dominate. Stress-drops after initial yielding have

been experimentally observed in uniaxial compression tests, at very high temperatures

and with relatively low applied strain-rate. The offset yield strength measured after

the stress-drop shows a 'normal' temperature-dependence. In order to capture the

mechanical properties of the [001] deformation at high temperatures, a proposed

diffusion mechanism is implemented.

The model framework is schematically illustrated in Figure 3-1, and Tables 3-1 and

3-2 list all the 18 potential slip-systems used in the proposed model and simulations.

3.2 Octahedral-slip

3.2.1 Revised superkink unlocking model

We have reviewed superkink-unlocking models in Chapter 2. Generally, these models

share the following common assumptions:

1. Locked screw dislocations are unlocked by the bypassing of predominantly edge-

orientated superkinks;

2. Longer superkinks are supposed to have higher mobility, and the yield strength

is inversely related to superkink height;

3. An initial distribution of superkinks or a characteristic length of superkinks
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(for example, 1) , from which the yield strength is derived, is presumed fully-

established as a precursor to explaining the subsequent plastic deformation.

4. The yield anomaly is due to an assumed systematic shortening of superkink

height with increasing temperature.

In the proposed superkink model, we adopt the basic ideas about superkink mech-

anisms. Additionally, two major modifications have been made. Firstly, an explicit

temperature-dependence of the initial dislocation superkink distribution is derived,

adding quantitative structure to the proposed model. Secondly, an evolution mech-

anism for the dislocation distribution has been proposed, in order to capture the

hardening properties.

"Initial" superkink distribution

We assume that most of the screw dislocations are locked by thermally-activated

cross-slip (luring the early (microstrain) expansion of dislocation loops. Superkinks

with different height are generated by the same procedure. This superkink distribu-

tion is then considered as an "initial" condition in the proposed superkink-unlocking

model. In Chapter 2, we reviewed the computer simulation carried out by Mills and

Chrzan, and discussed the relation between the superkink distribution and the ther-

mally activated locking procedure of screw dislocations. Here, we derive the "initial"

superkink distribution in a similar way.

As illustrated by Figure 3-2 (a), when a screw segment (with some characteristic

length) moves within an octahedral plane, it can be locked by cross-slipping onto

the nearest cube plane, with the probability of P(l = a) = p, or, if it does not

cross-slip, it can continue to move on and cross-slip on the next-nearest cube plane,

with the probability of P(l = 2a) = p(l - p), and so on. Here, is the distance

the screw segment has advanced on the octahedral plane before it cross-slips onto

the cube plane, which is also the height of the superkink generated in the procedure.

The parameter a = V/3b is the distance between the two adjacent cube planes (cube

I and II in Figure 3-2 (b)) on the octahedral plane, with b the magnitude of the
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Burgers vector of the superpartials. The general form for the probability of forming

a superkink with a height of I = na is then given as:

P(l = na) = p(l- p)(n-l) - (1 -)(/a) (3.1)i-p
The above expression assumes that at each step, the cross-slip probability is the same.

However, the bowing screw segment should become less and less screw-orientated as

it moves forwards. Thus, Eqn. 3.1 is modified by a factor q (q < 1), as:

P(l = na) = q(1P ) [q( l p)](t/a). (3.2)

Eqn. 3.2 can be rearranged into the logarithm-form:

ln[P( = na)] = n ( P 1 (3.3)[--q(1 - p) - (-a/ln[q(1 - p)])'

The distribution function, P(l), is schematically illustrated in Figure 3-3, with

both the normal-form (Eqn. 3.2) and the logarithm-form (Eqn. 3.3).

The basic cross-slip probability p, in Eqns. 3.1-3.3, is taken to be:

pa = exp(-HT) exp(cpSp,), (3.4)

where the superscript oz represents a particular slip-system. The first factor on the

right hand side of Eqn. 3.4 shows that cross-slip is a thermally activated process,

and the locking enthalpy Ho is set as a constant of 0.3 x 10-19J in the simulations.

The second term is introduced because we assume that cross-slip process is initiated

by the constriction of the leading Shockley partials on the octahedral plane. The

dimensionless parameter cp,, which was taken as 1 in the simulation, represents the

intensity of this effect. Spe in the second term is the non-Schimid factor for each

slip-system. In the case of uniaxial loading in the x 3-direction,

3 3IT (3.5)Spe 1(33 .
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According to the PPV model, the non-Schmid stress component p,, either constricts

or expands the leading Schockley partials, which in turn assists or inhibits the cross-

slip of screw dislocations. The absolute operator in Eqn. 3.5 accounts for the fact

that -Tp changes sign when going from tension to compression. Under conditions

of uniaxial-stress (tension/compression), if the loading axis (here taken as parallel

to Cartesian basis vector e3) corresponds to a more constrictive p,, screws of that

system find it easier to cross-slip and generate shorter superkinks, and vice versa.

If we derive the initial distribution strictly by simulating the movement and the

cross-slip of screws, a locking enthalpy having the form HI = H10 - VpTpe should be

applied. In the simulation, we instead assume that an initial distribution can be fully

established "at the beginning" of plastic deformation, and the non-Schmid factor Spa

rather than the real value of Tpct is used, in order to capture the basic idea of the

assumed constriction-initialized locking process.

Eqn. 3.3 has a form similar to the number distribution of superkinks reported in

the experimental work of Couret, et al. [11]:

N(l) = No exp( ) = In(N(l)) = lr(No) - (3.6)
lo lo)

thus we can rewrite Eqn 3.3 as

P(I) = Po exp(- ), (3.7)

with l = -a/ln[q(1 - p)], and P0 = p`/q(1 - p). As p' is defined by Eqn. 3.4,

the magnitude of both the intersection term of Eqn. 3.3 (the first term in the right

hand side ) and the slope term (-(a/oL[~(1-p)])) increase with increasing temperature,

consistent with the observations in experiments [11].

In the simulations, values of I are chosen discretely from Imi, = b to the maximum

value, m,ax, with an increment of b (Actually, this is not the most computationally

optimized approach, since very short superkinks can hardly be activated, and thus

have no contribution to the plastic deformation). By assuming that the normalized

probability of P(lmax) equals to a critical value Pin, Imax for each temperature is
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given as:

arrx = 1 In(1 + b/l1Pmin), where lO = -a/ln[q(l - p)]. (3.8)

As shown in Figure 3-4 (a) ([123] orientation), ma, determined by Eqn. 3.8 monoton-

ically decreases with increasing temperature, and is dependent on the value of Pmin,

which is taken as 10- 4 in the simulations. Figure 3-4 (b) presents the orientation-

dependence of lma due to different Spe values. For the compression condition, S,

corresponding to the active slip-system for [001], [123], and [111] orientations are

-0.2357, 0.1347 and 0.1574, respectively.

In the simulations, screw dislocations are the strain carriers, and their mobility

is assumed to be directly related to the longest superkinks on them. Thus, it is

necessary to know the distribution of screws as a function of the height of the longest

superkink they possess. This statistical analysis was carried out by Chrzan, et al.

[50] in three steps: Firstly, the number of superkinks on each screw, n, is assigned as

a Gaussian distribution over the population of screws:

Si) 1 exp((n _ ,)2Sl(n)= ~exp( ( > )) (3.9)r·r 02c2 2 ),2,

where on :is the standard deviation and Ti is the mean value. In Chrzan's work,

the superkink spacing and the length of screws were not specified. In our model,

screws are simplified to have the same length, so that once they get unlocked, they

are assumed to be equal strain carriers. According to the TEM observations (Figure

1-12), this is not a bad assumption.

Secondly, given that the number of superkinks on one screw is n, we need to derive

the probability S2(1, n) that the longest superkink on this screw has the height of 1.

In order to do this, we first assume the probability of an individual superkink with

height of 1, chosen at random from all screws, is given by Eqn. 3.7. Then, the chance

that a superkink drawn at random from this distribution, has a length shorter than

1, is derived as:
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1'=1

W(1) = E P(l'). (3.10)
1'=b

Therefore, in considering a screw having n superkinks on it, the probability that

the longest superkink on this screw has the height of 1 is a binomial distribution given

as:

S2(l, n) = CP(1)W(l)n- 1 (3.11)

where C = n is the binomial coefficient.

The probability S2(1, n) given in Eqn. 3.11 is for the case of exactly n superkinks

on the screw dislocation. In the final step, we need to sum up S 2(1, n) x Sl(n) for

all possible values of n, and the desired screw distribution with longest superkink of

height of 1 is derived as:

Pscrew (l) =

Integrating the abo

that a,, << , we get:

Pscre. (I)

fj S (n)S2(1, n)dn

100 1

/° exp 2 ) Cl'P(l)W(1)"-ldn.I VirU 2a

(3.12)

(3.13)

ve equation with Maple and simplifying the result by assuming

1 P(1)W(1)('-1) exp ( lnW())
2 2 ) / ++

x(erf[ / 2aV lnW ( + n i) (lnW(l ) 

With the assumption of an < , the value of the error function in the above

equation is close to 1. Thus, Psce(l) can be finally simplified as the following form

(Eqn. 6 in Chrzan's paper):

Pscrew(l) = exp ([lnW(l)n]2) [nW(l)uo n+ n]P(l)W(l) (i - )
2 llY LU] LIY L

(3.14)
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If I is very small, it is very unlikely that such a short superkink can be the longest

on a screw dislocation. On the other hand, if 1 is very large, then the population

of such long superkinks is so small as to make it unlikely that the longest superkink

on a randomly chosen screw is this large. Thus, Pscre,,,(1) is a bell-shaped function.

Figures 3-5 and 3-6 illustrate that the distribution of Pscre,(1) differs significantly

with different values of n, but it is insensitive to the change of a,,. The assumption

r,, < n is made to derive a simplified form for Eqn. 3-12, and this needs further

experimental support. However, this assumption does not affect the general bell-

shape of the distribution Pcre,(l) and should not affect the following simulation

too much. It also needs to be mentioned that, in Louchet's ELU model, a similar

bell-shaped distribution of screw dislocations has been derived (P,,r(l) as drawn in

Figure 2- 4); it is a special case of Pscrew with the assumption that there are only two

superkinks on each screw dislocation.

Evolution of superkink distribution with plastic deformation

Most previous superkink models are steady-state models, keeping the characteristic

superkink height (or distribution) unchanged with deformation. Therefore the stress-

strain curves predicted based on these models are flat after the yield point, showing no

hardening. In the proposed model, an evolution relation for the superkink distribution

has been derived. As we will illustrate later, under a given stress level, only the

screws possessing very long superkinks (close to the current value of irax), can be

unlocked. When these screws are locked again, new superkinks will be generated

(luring the re-locking procedure, which is assumed to be the same as in the original

locking process when the initial superkink distribution was formed. Thus, the newly-

generated superkinks are taken to follow the same distribution P(1) defined by Eqn.

3.7. Similarly, the re-locked screws should also follow the distribution of Pscre(l),

as defined by 3.13. Because P,r,,,(l) is a bell-shaped function, it is very likely that

longest superkinks on the re-locked screws are much shorter than their original height.

Thus, with increasing plastic deformation, there are fewer and fewer screws with very

long superkinks on them, and the applied stress is expected to increase, in order to
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activate screws with shorter superkinks and sustain continued deformation.

According to Orowan's relation, the plastic strain-rate for each slip system is given

as:

= abv, (3.15)

where p, is the mobile dislocation density for each slip system, b is the magnitude of

Burgers vector, and v ' is the average velocity of the mobile dislocations. We assume

that the unlocking process is thermally activated, as described by Hirsch, so that

Orowan's relation can then be rewritten as:

I...
= otab E Pacre(l)v(1, Ta), (3.16)

b

where Pttal is the total dislocation density for each slip-system, and the velocity is

given as:

v'(l, T') = v SK exp (Hu T)), (3.17)

where v S K is a reference velocity, and the unlocking enthalpy H, is derived by Hirsch

and is given in Eqn. 2.10 as H, = H*o - V(l)r. Numerically, since the magnitude of

activation volume, V(l), is large and the term VT' is inside an exponential operator,

the yield strength is very sensitive to value of V. Therefore, since V is proportional

to the superkink height 1, under a given stress level, only those screws possessing long

superkinks very close to the current value of lma, can be unlocked.

At each time step, a fraction of the screws are activated and redistributed, as

schematically illustrated in Figure 3-7. Thus, Pcrew is updated as:

Pscre, (i; t + At) = (1 - Pact(li, At)) + Psce,(li; t) Pscre,(lj; t)Pact(lj , At), (3.18)

where Pc,,,,(li; t) is the ith term in the discrete P,,,,,-distribution at time t, and

Pact(li, At) is the portion of activation (unlocking) corresponding to the ith length-
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scaling bin for Psc,:r. The first term on the right hand side of Eqn. 3.18 corresponds to

the unlocking-caused decrease of population for screws with longest superkink height

li, and the second term represents the compensation from the redistribution of all the

unlocked screw dislocations. Since unlocking is thermally activated, the probability

of screws with the longest superkink height i that can be unlocked is proportional

to exp(-H,,(li, -r)/kT), and is given as P,,act(li, At) = ftp exp(-H,,(li, T")/kT). Here

fapt is an attempting frequency with a fit value of 5s-1, At is the time increment, and

1i is the ith term of the height distribution.

3.2.2 Revised self-unlocking model

The self-unlocking model was proposed by Caillard [42, 51] based on his in situ

observation [12, 52] of the jerky movement of screw dislocations. Figure 3-8 shows the

2-D configuration of an incomplete K-W lock, in projection along the screw direction.

0 is the inclination angle between the line connecting the two superpartials and the

trace of the cube plane. w is the width of APB cross-slipped onto the cube plane. The

stress components on both the leading and trailing superpartials have been indicated,

but the details of the Shockley partials are neglected. In Figure 3-8, is the APB

energy on the cube plane, y,0 is the APB energy on the octahedral plane, and Tcb and T

are the resolved shear stress components on the cube plane and the octahedral plane,

respectively. The interaction between the two superpartials is represented by the

radial repulsion component Ti, and the torque due to the tangential stress component

-. According to Yoo [53], To = f(9)Ti, where

(0) = (A - 1) sin 20
2(Acos2 + sin2 0)'

In Eqn 3.19, A is the Zener elastic anisotropy factor, A - 2C44/(C11 - C12). For the

leading superpartial, the projections of the force components in the octahedral plane

balance each other:

rb - y + ib cos o - ob cos = 0, (3.20)
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where a = 55 °- 0 and P = 35°+0. The total driving force for the leading superpartials

in the cube plane is:

bTl = bTb -- -bTiCO SbTosin9. (3.21)b7c = b7b - Yr + bi cos + bTH sin H. (3.21)

Similarly, the total driving force for the trailing superpartials in the cube plane is

given as:

b7ct = bTb + Y - bri cost) - be sin 0. (3.22)

Rearranging Eqn. 3.20, i can be expressed as:

[cos aC - f () cosf]' (3.23)

Substituting Ti into Eqns 3.21 and 3.22, T- and 7Tt can be rewritten as:

T = T - c/b + * (3.24)

%r = + -c/b - *, (3.25)

where r* is given as:

*= (7 cos- + f () sin (3.26)
b cos a - f (0) cos ('

As we discussed in Chapter 2, continued octahedral slip of screws is assumed

when the cube-direction driving force on the trailing superpartials is larger than that

on the leading one ( > ). Thus, a critical stress, above which the self-unlocking

mechanism will be activated is derived under the condition of TC, = l1 , and is expressed

as:

Tcritical(0) = b b (0) (3.27)
b b

where g(O) is:

g9(0) cos a(O) - f(0) cos/3(0) (3.28)
cos + f(0) sin (
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Functions f(0) and g(6) are plotted in Figure 3-9 with the Zener factor A = 3.3,

which is a typical value for Ni 3AI [58].

This critical unlocking stress was also derived by Caillard [42], but the interaction

force between the two superpartials in his paper was derived based on the calculation

of Saada and Veyssiere [54], which is expressed as a function of the APB width on

the cube and octahedral planes, w and w', respectively, rather than 8. Obviously, w,

w' and 0 are not independent, but are related in the following way:

W W !

W--~ W' ~~~(3.29)sin a sin '

as illustrated in Figure 3-10(a). In the absence of applied stress, w' can be expressed

as w' = (dc - w)yc/yo, where d is the equilibrium APB width on the cube plane

under the stress-free condition. In this case, the relation between w and 0 is nearly

linear and is drawn in figure 3-10 (b) with the energy ratio y,/y, taken as 0.8.

In Caillard's paper [42], the unlocking strength for the weakest incomplete K-W

lock (with w = b ) and the unlocking strength corresponding to a complete K-W lock

(with w = ',,w = WApB ) were given as:

T(w = b) = _ 2/A (3.30)

T(W=WAPB) = [ -o 1 Ye 1] (3.31)

These expressions are exactly the same as the outcomes of Eqn 3.27, if we apply

the respective 0-values of 55° (which is the intersection-angle between the cube and

the octahedral plane) and 0°. In the simulation we use as the variable due to the

convenience in deriving the general form of Tcritical, as expressed in Eqn 3.27.

Martin, et al., [47] proposed that this self-unlocking mechanism was responsible

for the decrease of the hardening rate in the anomalous yield region. To support this

idea, experimentally measured yield strengths at temperature T),,n were plotted vs.

the APB energy on the octahedral plane, y, for each material in Figure 2-9. The

critical stress to unlock the weakest K-W locks, given by Eqn. 3.30 with /-yy, - 0.8,
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was also drawn vs. y, (the straight line in Figure 2-9). Martin, et al., argued the fact

that all experimental data points in Figure 2-9 fell along the theoretical line strongly

implied that the decrease of hardening rate was caused by activation of the self-

unlocking mechanism. We accept this idea in the proposed model, and further assume

that 0 follows a modified Gaussian distribution over the population of KW-locked

screws, with a mean value 0 and a standard deviation of as = 3°. The temperature

dependence of is not quantitatively derived as in the case of max, and a linear

dependence of on temperature is implemented in this proposed model to describe

the assumed increases in strength of IKWs with increasing temperature. Since the

angle has limits of [min = 0°, Omax = 550], the Gaussian distribution needs to be

normalized to this region. Thus, the final probability density function of 0 is given

as:

1 exp,P(0) = (N(55(3.32)
F27 e2(N(55) - N(0o)),

where

N() = 1/2 [1 + erf (- ] (3.33)

is the cumulative probability distribution function for a Gaussian distribution. The

critical unlocking stress Tcritical is calculated according Eqn. 3.27, as a function of

0 and APIB energy. If the applied resolved shear stress on the octahedral planes

exceeds this critical value, the average dislocation velocity v2 is taken to be a power

law function of 7-; otherwise these K-W locks do not self-unlock and the velocity of

these screws is zero:

V2 = VS ( S2(T) 

0 otherwise.

Since the rate of the self-unlocking mechanism is actually controlled by the cube slip of

trailing sup)erpartials, the power law form for v2 is similar to the dislocation dynamics

form we will give later for cube slip, with m1 = 20, and S2(T) decreasing with
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increasing temperature. The plastic strain-rate contribution from the self-unlocking

model is given by the following integral form:

7y = Ptotalb/l Po(O)v2(0, T7)dO, (3.34)

where max = 55 °

In this simulation, we assume Pscrew and Po are independent distributions over

the total population of KW-locked screws. There is a chance that a given screw is

locked by very weak K-W locks and also has a very long superkink on it. Therefore,

at an appropriate applied stress, it could be unlocked by both mechanisms. However,

this chance is very small (it is the production of the probability of having longest

superkinks and the probability of very weak K-W lock, by assuming P,,re, and Po

are independent distributions). So in the simulation, we simply superpose plastic

contributions for the two mechanisms directly for the octahedral slip, and

3Yoctahedral = Y1 + - (3035)

3.2.3 Octahedral slip for [001] orientation at temperatures

exceeding Tp,a

As mentioned before, it is commonly agreed that the normal temperature-dependence

of yield strength at temperatures above the peak yielding temperature, Tp,,, is due

to the activation of cube slips. For uniaxial stressing along the [001] orientation,

however, a decrease of yield strength has also been observed at very high temperatures

(> 1000K), even though there are no resolved shear stress components on the cube

planes. Negligible modeling research has been focused on this phenomenon, and the

underlying mechanisms are not well understood.

Rentenberger and Karnthaler [21] carried out studies in this area by a series of

[001]-oriented compression tests on single-crystal Ni3 AI at temperatures in both the

'anomalous' and the 'normal' regions. Strain softening was observed at temperatures

above Tp,, as show in Figure 3-11(a), consistent with the corresponding negative
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strain hardening rate reported in Staton-Bevans [8], as shown in Figure 3-11 (b).

Rentenberger and Karnthaler also presented TEM observations for these different de-

formation temperatures. It was confirmed that for the [001] orientation, the active

slip-systems were always octahedral, whether the sample was deformed above or be-

low Tp,,, but the resulting dislocation substructures are quite different. Figure 3-12

shows the dislocation structure of a sample deformed at 600°C, which is below the

peak-yield temperature for [001]. We can see the dominance of long, locked screw

dislocations, which is the typical substructure for Ni 3Al in the yield anomaly regime.

Figures 3-13 and 3-14 reveal the dislocation structure of samples deformed at 835°C

and 920°C, respectively, both above Tp,,. In these images, screw and edge dislo-

cations are present in roughly equal density, and both are locked with their APB

ribbons lying entirely on the cube plane. Based on these TEM observations, Renten-

berger and Karnthaler proposed that at very high temperatures, and in the absence

of cube-system driving stress, the KW-locked screws/edges can still move via diffu-

sion mechanisms. They also performed compression tests at 835°C under different

applied strain-rates [55], and found that the stress-strain curve showed a prominent

yield drop under the slow strain-rate of 1.1 x 10-4s -1 , while 'normal' hardening be-

havior (hardening without yield drop) was evident under the fast applied strain-rate

of 2.2 x 10-3s -1, as shown in Figure 3-15. The dislocation substructure observed

in the sample under fast deformation is dominated by long locked screws (Figure

3-16(b)), similar to the substructure in the yield anomaly region, and is quite dif-

ferent from the substructure of slow deformation (Figure 3-16(a)). The strain-rate

dependence was explained as follows: under the rapid applied strain-rate, Iapp is

too large for the diffusion mechanism to drive a sufficient dislocation flux, and thus

the stress is soon raised to activate the self-unlocking mechanism, and the normal

hardening stress-strain relation is presented. Conversely, a lower value of jIappl makes

the diffusion mechanism possible.

Rentenberger and Karnthaler carried out a very simple 1-D simulation with John-

ston's model [56], in which the mobile dislocation density was assumed to increase

dramatically with plastic deformation in order to capture the yield drop.
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Here, we propose that the average dislocation velocity due to diffusion can be

expressed as:

vn =ad (_)" m 2exp(H (3.36)

where vd is a reference velocity, m 2 = 1 is the strain-rate sensitivity exponent and Sd

is the deformation resistance. Eqn 3.36 shows the velocity is positively dependent on

temperature, since the diffusion process is accelerated at higher temperature. Con-

sidering that the cross-slipped APB width, w, on the cube plane will be shorter in a

crystal with higher APB energy, the locked screws and edges should have higher mo-

bility in crystals having higher APB energy. Thus, to incorporate this dependence,

the activation enthalpy Hd is formally expressed as H = Hdo - Ay, where y is the

APB energy on the cube plane.

We assume that in the initial portions of the high-temperature loading process,

dislocations are generated and the screws cross-slip to form long KW locks. For each

slip system, the initial total screw dislocation density is assumed to be 101 1ri- 2, and

the initial mobile screw dislocation density is considered very low and is taken to be

106r - 2. With further deformation, more and more of the locked screws can move

with the diffusion mechanism. The mobile dislocation density evolves according to

the following form, as long as it is smaller than the total dislocation density:

Pm - Ptotal S f2 exp (-- (3.37)

In Eqn. 3.37, the term f2 exp (- H) shows that the diffusion mechanism is thermally

activated, and f2 is the attempt frequency.

The total screw dislocation density is considered to decrease due to a dynamic

annihilation mechanism, and the evolution equation is defined as:

Ptotal = -CPPPjtotal Rv ( , (3.38)

where Cp is a constant and R is a characteristic capture radius.
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3.3 Cube-slip

Simulation of the normal region, the temperature region beyond Tp,,, is not the focus

of this thesis work. The cube-slip dislocation dynamics is simply assumed to follow

a standard power-law form:

Ycube = 7o(ST))m (3.39)
S1(T)

where S 1(T) is the cube slip resistance, which is assumed to be linearly dependent on

temperature, in the simulation temperature region (300K - 1100K):

S1(T) = (1000 - 0.75T(K)) MPa, (3.40)

and m1 = 20 is the strain-rate sensitivity exponent, which is derived from the exper-

imental data shown in Figure 3-17 (a). We assume the deformation in the normal

yield range is basically contributed from the cube slip, and due to the relatively low

hardening rate in this range, the plastic strain-rate from cube-slip is close to the ap-

plied strain-rate. Thus, if we plot Eqn. 3.39 in a log-log form (Figure 3-17(b)) and

put in the test data from Figure 3-17 (a) for temperatures 780, 875 and 975K, in is

derived as the average value of the slope for these three cases, which is close to 20.

Cube-slip was first included in the model to make a more complete description

of the temperature-dependence of yield strength in L12 single crystal. Later, we

find that the basic understandings (rate-dependence, temperature-dependence) of the

cube dynamics are also necessary and useful to fulfill thcl simulation for the octahedral

planes, since the abnormal octahedral-slip is accompanied with cross-slips onto cube

planes. That is why the velocity of self-unlocking mechanism is taken to have a

power-law form similar to Eqn. 3.39. Moreover, as we will discuss in Chapter 5, for

some loading orientations (e.g. [111]), the changes of temperature-dependence for

yield strength and strain-hardening are both due to the activation of cube-slip.

92



450 T
400 t

l ::t
~ ;
';:' 250;.i.

I
(/) 1

(/) 200 ~
~ I

!
l50 -r

I;
100.

50

o
o 200 400 600 800

, ,

1000

1 900
1

800

700
--..

600 ~
~

500 '-"
,..I:l

400 ~
~

300

200

lOO

o
1200

Temperature (K)

Octahedral Slip

I Self-unlocking
~ :

Superkink unlocking

Cube Slip
Diffusion
for [001]

Figure 3-1: Schematic illustration of the model framework: Typical temperature-
dependence curves of both the yield strength and the strain hardening rate are plot-
ted. Octahedral slips dominate the yield anomaly region, and, for temperatures
higher than Tp,a, cube slips dominate (for [001]orientation, a diffusion mechanism
dominates) . In the. yield anomaly region, the strain hardening rate monotonically
increases with increasing temperature, until the activation of the self-unlocking mech-
anism.
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Figure 3-2: Schematics of formation of the initial superkink distribution: (a) the
screw segment may advance different distances before it cross-slips and gets locked;
(b) 3-D illustration of distance between two adjacent cube planes on an octahedral
plane, a, and the magnitude of Burgers vector b.
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Figure 3-3: Schematic illustration of the distribution of superkinks as a function of
their height: (a) normal-form (b) logarithm-form
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Figure 3-4: (a) Inaxb, given by Eqn. 3.8 (where q = 0.99 and p' is given by Eqn. 3.4),
decreases with increasing temperature, and depends on the value of Pmin (compres-
sion in [123]). (b) Orientation-dependence of imax with Pi, = 10- 4 and q = 0.99:
the value of Sp, corresponding to the active slip-system for [001], [123], and [ll]
orientations in compression are -0.2357, 0.1347 and 0.1574, respectively.
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Figure 3-5: Screw distribution, Pscrew, as a function of the height of the longest
superkink on the screw: Solid line is with n = 15, dotted line is with h = 10. In both
cases a,, = 1 and lo = 50b.
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Figure 3-6: Screw distribution, Pcrew, as a function of the height of the longest
superkink on the screw: Solid line is with a = 1, dotted line is with a, = 2.5, In both
cases, = 10 and lo = 50b
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Figure 3-7: Schematic illustration of the activation and redistribution of screw dislo-
cations.
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Figure 3-8: Stress analysis for an incomplete K-W lock. The core structure of both
the leading and trailing superpartials is neglected.

100



0 10 20 30 40 50 61
e(Degree)

0 10 20 30
0 (Degree)

0

40 50 60

Figure 3--9: Illustration of f(0) given by Eqn. 3.19 and g(O) given by Eqn. 3.28.
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Figure 3-10: (a) Relation of w and w' vs. 0 and oa; (b) w/dc as function of 6 at stress
free condition and with = 0.8, and d is the cube plane APB width plane under
zero applied stress.
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Figure 3-1:L: (a) Stress-strain curves for single crystal Ni 3A1 in [001] compression tests
[21]. At temperatures higher than T,,, yield drop was observed. (b) Temperature-
dependence of strain hardening rate of three Ni 3Al single crystal compressed in [001]
orientation [8]. The strain hardening rate presents negative value at temperatures
higher than Tp,,.
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Figure 3-12: TEN! observation for deformed single-crystal Ni3Al after [001]compres-
sion at 600°C [21].
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Figure 3-13: TEM observation for deformed single-crystal Ni3Al after [001] compres-
sion at 820°0 [21].
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Figure 3.:.14:TEM observation for deformed single crystal Ni3A1 after [001]compres-
sion at 935°0 [21]
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Figure 3-15: Deformation curves of two specimens in [001] compression at 835°C
with different applied strain-rates [55]. Yield drop is only observed in compression
test with slow applied strain-rate.
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(a)

(b)

Figure 3-16: TEM observation for deformed single-crystal Ni3Al after [001]compres-
sion at 835°C under different applied strain-rates. (a) Itappl = 1.1 x 10-4S-1, (b)
Itappl = 2.2 x 10-3S~1 [55]'-
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Figure 3-17: (a) Temperature and strain-rate dependence of CRSS for (001)[i10] for
single-crystal Ni3 AI(24at%Al) [18].
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Table 3.1: The octahedral slip systems.

Table 3.2: The cube slip systems.

a

1

2
3
4
5
6

(na) [ma]

(100)[011]
(100)[011]

(010)[101]

(010)[101]
(001)[110]
(001)[110]

110

o (n")[m'~] (n'e[ma'e] (se[m%] (se )m0~~~~~~~~ (nao) [ma']ne [m(na ) [m'-'](c)[ah

1 (111)[110] (111)[112] (iil)[."2] (100)[01[]
2 (111)[i01] (111)[121 ] ( '1')[i2_] (010) [101]
3 (111)[01] (111)[211] (11i)[2].I] (001)[110]

4 (111)[110] (111)[112] (.11)[112] (100)[01]

5 (1')[0i]] (11i)[121] (11)[i21] (OI0) [iO]
6 (lii)[Oil] (lii)[29i] (111)[211] (00i)[110]
7 (ill)[1O0] (1l.)[112] (1ii)[112] (i00)[011]
8 (111i)[10i] (11i)[i21] (111)[121] (010)[10i]

9 (11)[011] (111)[21 ] (1)[211] (001)[i0]
10 (]1)[]'10] (].1)['.2] (111)[112] (100)[01 ]
11 (ii1)[101] (1l)[121] (111)[12i] (00)[101]
12 (1 1)[01]' (1[1)[21] (1') [21 1] (001)[110]
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Chapter 4

Finite Element Implementation of

the Proposed Single-Crystal

Plasticity Model

4.1 General Continuum Framework of Crystal

Plasticity

The basic equations of the single-crystal constitutive framework have been described

by Anand [57]. The total deformation gradient, F, mapping a reference configuration

of the material to the final configuration, may be decomposed by the following form

(Figure 4-1):

F = FFp, (4.1)

where FP, the plastic deformation gradient, locally maps the original configuration

to an intermediate configuration which describes the effects of plastic deformation

on an unrotated and undeformed crystal lattice, and det FP = 1. The elastic defor-

mation gradient, Fe, maps the local intermediate configuration to the final deformed

configuration, and is associated with small elastic stretches and arbitrary rigid-body
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rotations. The evolution equation for the plastic deformation gradient is given by the

flow rule:

P = LPFP, (4.2)

where LP is the plastic flow rate. In crystals, LP is comprised of the superposition of

the resolved crystallographic plastic shear rates, Aye, such that:

Lp = .am ® n, (4.3)
a

where moc and n" are unit lattice vectors, defining the slip direction and the slip

plane normal of the slip system a respectively, in a fixed reference configuration. The

plastic shearing strain rate on each system, As, is given by Orowan's equation:

-; = pa bra, (4.4)

where pm is the density of the mobile dislocations for slip system a, b is the magnitude

of the Burgers vector, and va is the average velocity of the mobile dislocations for

slip system a.

During plastic deformation, the crystal lattice may elastically stretch and rotate.

In the deformed configuration, the slip direction and slip plane normal, ma and n ,

are related to the initial lattice directions by the elastic deformation gradient:

ma = Fem; na = Feno. (4.5)

At given temperature, the constitutive equation for stress is given in terms of a

linear elastic relation:

T = [E-], (4.6)

where the elastic strain measure, Ee, corresponding to the Cauchy-Green strain with

respect to the intermediate configuration, is defined as:
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E-2 I{FeTFe I 2}, (4.7)

in which, I2 is the second-order identity tensor.

The work-conjugate stress measure in Eqn. 4.6, T , corresponding to the second

Piola-Kirchhoff stress with respect to the intermediate configuration, is related to

Cauchy stress, T, through the following transformation:

T = det(F)Fe-1TFe-T, (4.8)

and L in Eqn. 4.6 is the temperature-dependent fourth-order anisotropic elasticity

tensor.

4.2 Finite Element Implementation of the Proposed

Constitutive Model

The proposed mechanism-based constitutive model was implemented as a user-defined

material (UMAT) in the FEM package ABAQUS/Standard, and was used with first-

order reduced integration brick (C3D8R) elements to simulate the behavior of single-

crystal Ni:3A 1 subject to uniaxial tension and compression at different temperatures.

As in typical implicit finite element calculations using nonlinear constitutive mod-

els, ABAQUS/Standard applies the discretized principle of virtual work (PVW) to

enforce weak-form equilibrium and traction boundary conditions. An estimated in-

cremental displacement field Au was derived at the beginning of each time step, and

the stress field is calculated based on Au. If the calculated stress field does not satisfy

the PVW equilibrium, the estimated Au will be modified, and the stress field will

be recalculated. This interactive procedure continues until the PVW is satisfied to

within acceptable tolerances. The inputs to the UMAT interface are the total defor-

mation gradient at time t, F(t); the Cauchy stress at time t, T(t); an estimate of the

total deformation gradient at time t* = t + At, F(t*); and a set of state-dependent

variables at time t.
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Given the input variables to the UMAT interface, the subroutine is responsible for

calculating the Cauchy stress at time t*, T(t*); the plastic deformation gradient at

time t*, FP(t*); the material jacobian at time t*, C(t*); and update the state-dependent

variables.

Time Integration Procedure

The determination of the state at time t* from the inputs to the UMAT subroutine

employs a backward Newton solving algorithm.

For crystalline materials the elastic stretch is usually infinitesimal, thus the second

P-K stress measure corresponding to the intermediate configuration is considered to

be linearly related to the elastic Green strain measure as given in Eqn 4.6,

T = [Ee],

with Eqn. 4.7, Ee _ {FeTFe - 2} and Eqn. 4.1, F = FeFP, we can rewrite the

constitutive equation into the following form:

T(t = 2L {FP )FT *)F(t*)FP1(t) - 12} . (4.9)

Assuming that LP is constant over the time increment, time integration of the

plastic flow rule in Eqn. 4.2 leads to:

FP(t*) = exp[AtLP(t*)]FP(t). (4.10)

The inelastic deformation increments taken during the course of the deformation

are typically small, allowing for the exponential in Eq. 4.10 to be approximated by a

Taylor series to give:

FP(t*) - [I2 + AtLP(t*)]FP(t). (4.11)

Inversion of Eqn. 4.11 to the same level of accuracy with the substitution of the
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crystallographic slip rates for the plastic velocity gradient from Eqn. 4.3 leads to:

FP-l(t*) - FP-l(t)[I2 - At ;y(t*)Sa],
a

Sa = m' n.

The determinant of FP-l(t*) calculated by Eqn. 4.12 is not precisely equal to 1, as

it must. Therefore, FP-l(t*) is normalized at each time step to make detFP-l(t*) = 1.

Tile plastic shearing strain rate on each system is defined, at fixed temperature,

as a function of the resolved shear stress on each slip system:

, (t*) = , (T(t*)). (4.14)

where

Ta = mTW(t*)n

Substitution of Eqn. 4.12 into Eqn. 4.9 leads to the following relationship:

T(t*) - tr -_ t t y(T(t*))c", (4.15)

Ttr = 2[B - I2],

B = FP-T(t)FT(t*)F(t*)FP-l(t),

ca= £[K],

Kc = BS" + STB.

(4.16)

(4.17)

(4.18)

(4.19)

All of the quantities in Eqns. 4.16 - 4.19 are known, and Eqn 4.15 can be rewritten
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as the following:

W (T(t*)) = T(t*) - Ttr + At y(T(t*))C- = 0, (4.20)

T(t*) is the solution to the above nonlinear function. The typical Newton method

is applied, and T(t*) is iteratively solved. A column vector, Z , is created by con-

taining the second Piola-Kirchhoff stress tensor as a six-dimensional vector in the

following manner:

Tll(t*) T, (t*)

T2 2 (t*) T 2 (t*)

T33(t*) T 3 (t*)

T1 2(t*) T4 (t*)

T23 (t*) T(t*)

T31 (t*) T6(t*)

According to the Newton method, the solution of the stress after the nth iteration

is given by:

Zn+1 = Zn - F-1[Wn], (4.22)

where Wn is the value of Eqn. 4.20 at the nth iteration,

Wn = [T(t*) - Ttr + At E (T" (t*))C"] , (4.23)

and F is the derivative of Wn, with respect to Tn(t*):

= Z + At C~ T) ' (4.24)

Here I is 6 by 6 identity matrix. In Eqn. 4.23 the W, column vector has the same

format as the Z vector, and in Eqn. 4.24 the tensors T, and Cc are written as column

vectors also.

In the proposed model, the plastic deformation on the octahedral planes is com-

posed by the superkink part and the self-unlocking part, Ad = /~t + ~ for o = 1 - 12.
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For the superkink-unlocking part ry, due to the complicated underlying mechanisms,

the partial derivative term, IaT(t*) can not be explicitly expressed. Thus, a

numerical difference,
A' a A'~la S Sa
AT,,- AT '

is calculated instead, based on a stress difference of AT,, = 0.1%oT,,. For the case of

Ar' = 0, the corresponding numerical difference component is taken to be zero.

For the self-unlocking part, according to Eqn. 3.34 and the definition for the

dislocation velocity, the plastic strain rate can be rewritten as:

2 Ptotal Jcrical 0 OS (T) O, (4.25)

where critical(T' ) corresponds to the strongest IKW that can be unlocked under the

current applied stress. The derivative of the above equation corresponding to the

stress is:

___- a 0 1eu 1 su TO (0yyo,) %) r" l
ftotalb Oma, Po(O) () (( dO(9 toritical ) S2(T) ° S2(T)

T M TaOcritical
Po(Ocritical)[ m 07'" '

[ S2 (T) , tOcritical a

and
07' _ as"a
OT ar"

In Figure 4-2, a one-dimensional form of Eqn. 4.20 is schematically illustrated. Func-

tion W(T(t*)) is composed with two parts, a linear one [T(t*) - tr] and a nonlinear

one ,, A(f(Tn(t*))C . Since this material is very strain-rate independent, the value

of the nonlinear part is nearly zero until T(t*) is very close to the solution, and then

quickly jumps up. Besides, the non-linear part, which actually represents the nonlin-

ear relation of plastic strain and the applied stress, is only physically valid for a certain
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stress range. The applied stress can not make the unlocking activation enthalpy in

Eqn 3.17 negative, and it can not make the resolved shear stress components in the

cube planes larger than the slip-resistance S 1(T) in Eqn. 3.39. When the current

guess (T,(t*)) is smaller than the solution, since the nonlinear components does not

contribute too much until very close to the solution, the slope at the current guess

should be nearly the slope of the linear part, which is 1 in the one-dimensional case.

Therefore. strict application of a Newton update Tn+i(t*) is very likely to be larger

than the critical value of stress which makes Eqns 3.17 and 3.39 physically invalid.

Moreover, in that case, the exponential term in Eqn. 3.17 will generate extremely

large values which will make the iteration fail numerically.

In order to make a stable numerical solution and increase the convergence speed,

the damped Newton method is applied. At the end of each iteration step, the value

of stress for the next iteration Tn+l(t*) = Tn(t*) + AT7n(t*) will be checked to see

whether the stress is in the physically valid range. If not, the increment AT(t*) will

be modified to be half to its current value, and then a new T,,+l(t*) is calculated.

This damping loop will continue until Tn+l(t*) makes each equation physically valid,

and the next Newton iteration loop will begin.

The above analysis is based on simplified one-dimensional model. Since T is a 6-

vector, when using the proportional damping Newton method illustrated above, it is

possible that part of the components in T are getting smaller but others are actually

getting larger. In that case, it is possible that the modulus of the T-vector gets

smaller, but the resolved stress components always exceed the critical value, making

Eqns. 3.17 and 3.39 invalid. The damping method fails in this situation. Thus, the

number of damping loops is limited by a maximum number nma = 10. If, after n,,ma

loops, the estimated Tn+l(t*) still causes breakdown in Eqns 3.17 or 3.39, the current

Newton iteration will be terminated, and the time increment will be justified.

As we analyzed above, due to the special shape of function W and the damping

method, the Newton iteration does not depend too much on the initial value of To,

unless it is very close to the solution. In the simulation, the initial guess of the stress

at time t* is given as:
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T,=o(t*) = T(t). (4.26)

After the iterative solution is found to converge to within a small tolerance

(0.01Pa) for the set of non-linear equations, the state is updated. The plastic defor-

mation gradient at time t* is updated using Eq. 4.11, and the elastic deformation

gradient is calculated by using Eq. 4.1 and inverting the plastic deformation gradi-

ent. Once the elastic deformation gradient at time t* is obtained, the Cauchy stress

at time t* is calculated through Eq. 4.8, and the crystallographic orientations are

updated through Eq. 4.5.

4.3 Calculation of the Material Jacobian

After integration of the material state is completed, the material Jacobian matrix

must be calculated for an implicit time-integration procedure. The Jacobian is needed

to achieve an accurate correction to the incremental kinematics In the formulation of

the element, the material Jacobian matrix C represents the change in the (increment

of ) Cauchy Stress T(t*) with respect to a virtual change in relative strain tensor

Et(t*)

C - OE(t*) (4.27)

and

Et(t*) -- ln(Ut(t*)), (4.28)

where Ut(t*) is the relative stretch tensor. The relative stretch tensor is evaluated

from the polar decomposition of the relative deformation gradient, Ft (t*), such that:

Ft(t*) = Rt(t*)Ut(t*). (4.29)

The relative deformation gradient is determined by the following expression:
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Ft(t*) = F(t*)F-l(t). (4.30)

For small changes in the deformation gradient over the time increment, the rela-

tionship between Et(t*) and Ut(t*) can be approximated by:

(4.31)

Differentiating this equation, the following result is obtained:

dEt(t*) - dUt(t*) (4.32)

Therefore, the material jacobian can be approximated by:

C aT(t*)
aut(t*) (4.33)

For simplicity, indicial notation will be used to develop the equations associated

with the derivation of the material jacobian. Inversion of Eqn. 4.8 takes the form:

Tij = [det(Fe)]- l(FjeTmnF~ jr). (4.34)

Taking the partial derivative of the Cauchy stress with respect to the relative

stretch tensor leads to

aug,
= [det(Fe)]-1[SimklTmnFjn + Fi,, QmnklFjn +

Fie TnSjnkl - FmTmnFjn(Fqp 1Spqkl)], (4.35)

where

&Sjk ki
'9Ukl1 '

(4.36)

(4.37)Qjkl g= il
a Uk 
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From a combination of Eqs. 4.1, 4.28, 4.29 and 4.12, the elastic deformation is

approximated by the following expression:

Fe(t*)- Rk(t*)Ukl(t*)Fm0(t)[6mj - EyX(t*)AtSOj] j (4.38)

Differentiation of Eq. 4.38 with respect to the relative stretch tensor yields

Sijkl - Rtk(t*)Fej(t) - Rik(t*)F .(t) E 7(t*) tS _

R, (t*)U.p(t*)Fpem(t) JtAtSmj, (4.39)

where

a_ a~(t*)OU(t (4.40)

The partial derivative of the second Piola-Kirchhoff stress with respect to the

relative stretch tensor can be found by differentiating Eqn. 4.15. The result of that

operation is:

QijkI = Dijkl - At CJ - At jkI' (4.41)
MY (v

where
1

Dijkl = 2Cijmn8 mnkl, (4.42)2

ijkl = 2ijmn[6mpkSpn + EpnklSpm], (4.43)

and

Eijkl = Fi(t)UFmrj(t) + Fi(t)UnkFlj(t) (4.44)

To complete the set of equations necessary to determine the material jacobian,

an analytical form for J must be found. The crystallographically-resolved plastic

strain rate is a function of the second Piola-Kirchhoff stress and the crystallographic
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dislocation density state; therefore, J can be written as

aJZC= akl(4.45)

Letting

Mk1 _ -7 (4.46)

Eqn. 4.45 yields:

Ji = Mk Qkij (4.47)

Substitution of this result into Eqn. 4.41 and solving for Qijkl leads to the final

expression:

Qijkl = [6im6jn + At E M7anCj] [lmnkI -At E N At E Jnkl-
.Y (Y (Y.

(4.48)

The analytical expression for the material jacobian is an approximate solution,

but the level of error is the same as the level of error in calculating the Cauchy stress

and the dislocation density state at time t* as a result of the Taylor expansions that

were used to simplify the calculation.
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Figure 4-1: Schematic diagram showing the multiplicative decomposition of F =
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Figure 4-2: Illustration of the one dimensional-form of Eqn. 4.20
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Chapter 5

Simulation Results and Discussions

The constitutive model developed in Chapter 3 has been implemented into the finite

element solver described in Chapter 4. Major equations of the model have been

summarized in Appendix A. The simulation geometry used was a unit cube cell,

which is assigned to be a brick (C3D8R) element (Figure 5-1). General periodic

boundary conditions [59] are imposed on the unit cell, and the cell is deformed under

uni-axial (in the 3-direction) loading conditions.

5.1 Selection of Material Constants

The elastic moduli for Ni 3Al used in the simulations are adapted from experimental

data. In Tanaka 's paper [58], the temperature-dependence of C 4 4 was measured and

specified, and the Zener elastic anisotropy factor A 2C44/(Cll - C12) was found to

be nearly temperature-independent. He did not present test data for C11 and C12,

but C12 was found to be less temperature-dependent than C11. Here, we choose C12

as a constant (148GPa [46]) and derive C1 1 by applying the test data for C44 and

assuming A as a constant with the value equal to 3.3 [34]. The elastic moduli are

then defined by the following equations:

C1 = (230- 0.0194 x T)GPa;

C12 = 148GPa;
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C44 = (135 - 0.032 x T)GPa;

C44(C11 - C12)

2

Other material parameters are listed in Table 5-1:

Table 5.1: Material parameters for Ni 3Al

The value of Burgers vector is for the 1/2[101] superpartials. The value of Potal

given by Viguier, et al. is an estimation of the total screw dislocation density for one

active octahedral-slip-system, at the beginning of plastic deformation. This value is

derived from the test data of dislocation density for different plastic strain offsets in

a [123]-loading (a single-slip uniaxial stressing orientation) compression tests.

The fitting material parameters are listed in the Table 5-2. Since a formal param-

eter optimization has not been performed, these parameters may not be the "best"

choice, and a parameter sensitivity study will be presented in section 5.3.

5.2 Simulation Results and Discussions

5.2.1 Summary of Simulation Results of the Macro-mechanical

Properties

Simulations of uni-axial compression tests for Ni 3Al single crystal with a constant

applied strain-rate of 10-4s- 1 were carried out for a temperature range from 300K

to 1100K, in three crystal orientations. Temperature-dependence of the simulated
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Parameter Value Reference

b (m) 2.5 x 10-10 [34]
y,(Jm - 2 ) 0.144 [66]
y(Jm - 2 ) 0.180 [66]

Ptotal(m - 2 ) 1012 [48]

A 3.3 [34]



Table 5.2: Fitting material parameters for Ni 3Al

yield strength (measured at 0.2% offset strain) and hardening rate is presented in

Figures 5-2 and 5-3, together with the experimental data given by Bontemps-Neveu 1

[17]. The simulation results successfully capture the temperature-dependence of yield

strength and the hardening rate. They both increase with increasing temperature

until a peak temperature is reached, and then drop off. For a given orientation, the

peak temperature for hardening rate, Tp,h, is always lower than the peak temperature

for the yield strength, T,,,,. The simulated uni-axial stress-strain curves for the [11]

and the [001] orientations are also presented in Figures 5-4 and 5-5.

Simulation results of compression tests in the [001] orientation at 500K with two

different applied uniaxial strain-rates (10-3s-' and 10-4s-', respectively) are plotted

in Figure 5-6. The yield strength shows a very weak positive dependence on the

applied strain-rate. An increase of 2.5MPa, which is approximately 1.3% of ay is

observed for a 10-times increase in applied strain-rate, and the simulated hardening

rate is nearly strain-rate independent, similar to the experimental results.

1It needs to make clear that, in Bontemps-Neveu's thesis, the hardening rate was marked as
dr/dy, but according to his experimental stress-strain curves, the hardening rate he measured was
actually the average slope of the uniaxial true-stress/true-strain curves (Ao/AE).
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Parameter Value Equation

So (s- 1 ) 10-2 Eqn. A.6 (b)
In 10 Eqn. A.9
OXn 1 Eqn. A.9
o0 (degree) 3 Eqn. A.13
H,(e.v.) 0.3 Eqn. A.11

SK (m/s) 10- 2 Eqn. A.10
vSU(m/s) 10- 3 Eqn. A.16
rnl 20 Eqn.s A.6 (b), A.16
n2 3 Eqn. A.19

Sd(MPa) 800 Eqn. A.19
C, 0.02 Eqn. A.21
R(m) 2.5 x 10- 9(10b) Eqn. A.21



The non-Schmid effects of yield strength were also studied. Figure 5-7 illustrates

that for the [001] orientation, tension strength is higher than the compression strength.

For the other two orientations ([ill] and [123]), compression strength is higher than

that of tension.

We presented above the simulation results of the major macro-mechanical fea-

tures of plastic deformation in Ni 3AI single crystals. However, the objective of the

study in mechanism-based modeling and simulation is far beyond matching and pre-

dicting macro-mechanical properties. Other information achieved from the numerical

simulations, including the evolution of different internal variables and the parameter

sensitivity study, is also necessary in order to understand and evaluate the underlying

mechanisms, and needs full discussion.

5.2.2 Mechanical Properties of Yield Strength

In the simulations, the anomalous temperature-dependence of yield strength is essen-

tially governed by the superkink-unlocking mechanism. The self-unlocking mechanism

mainly acts to reduce the hardening rate in the temperature range from Tp,, to Tp,,.

The major consideration corresponding to the above statement is the small strain-

rate sensitivity. In the self-unlocking mechanism, as proposed by Caillard, the rate

of dislocation dynamics is controlled by the slow gliding on the cube planes. That is

why Eqns. A.6(b) and A.16 have similar power-law forms, both of which are modeled

as strain-rate dependent.

Similar to all other superkink models, the yield strength anomaly is achieved

through the systematic decrease of superkink height with increasing temperature.

Since the activation volume in Eqn. A.11 is very large (- 102b3), for each time

step, only those longest superkinks can be activated and move. This is clearly il-

lustrated in Figure 5-8, in which the screw distribution and the plastic contribution,

Pcrew (l)bPcrewvv"(1, 7-a), of one of the active slip-systems are plotted vs. . The data

were extracted from the simulation of [001]-axial compression at 500K, at a plastic

strain offset of Fp = 0.3%. Since only the screws possessing the longest superkinks can

move, the yield strength is then roughly inversely related to 'max, which monotonically
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decreases with rising temperatures, as shown in Figure 3-3.

A large value of activation volume V is also necessary for the property of small

strain-rate sensitivity. Since the plastic contribution comes from screws with the

longest superkink height very close to 1max, Eqn. A.8 can be rewritten as:

total exp ( H~ (irx, Ta))(5.1)ttl = CintPtotalbP~,.~,~(lma~)VsK exp (H ( Ia''))'(5.1)

where Cit is a dimensionless factor replacing the integration operator, which takes

into account the fact that screws with superkink heights slightly shorter than imna

also contribute to the plastic deformation. The above equation can be rewritten in

the simplified form:

'/l = C exp (A + Bra), (5.2)

where

C = CintPtotalbPscrew(Imaz)vSK, and B = k - 3-5(1r ax/b)b3 (5.3)kT kT

A typical L12 crystal is nearly strain-rate independent, and the change of yield

strength is less than 1% for a factor of 10 change in applied strain rate. Numeri-

cally, if -°a does not change too much, according to Eqn. 5.3, the factor C should

not vary much either. Thus, in order to account for a nearly strain-rate independent

property, the value of the exponential term, exp(A + Bra), must be very sensitive to

a small change in ra. Let app[1] and Yapp[2] two different applied strain-rates, with

Yapp[1] = l 0Yapp[2]. Since hardening is also nearly strain-rate independent, we can rea-

sonably assume that the ratio of the plastic strain-rate under these two conditions is

roughly 10:

~1~1] C exp (A + Br-ll)
i] C exP (A + B[r) = 10 = exp (B(Tr[]- 2])) = 10. (5.4)

l2] C exp (A+ B-r[)

Generally, the critical resolved shear stress is of the order of 102MPa. Thus, to make

a stress change, (] - 2]), less than 1% ( 1MPa), the value of lmax/b defining B
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in Eq. 5.3. has to be of the order of 102.

In this simulation, we did not account for possible temperature-dependence of

the resistance forces for the superkinks. The Hirsch-version of unlocking enthalpy

implemented in the simulation was derived based on a very weak IKW configuration,

with the cross-slipped APB width w - b. Hirsch assumed that the jogs on the cube

plane can move freely, and thus did not consider the effects of jog resistance at the

ends of superkinks, nor did he consider the effects of the temperature-dependence

of w, which is certainly under question. If we do consider the jog resistances, and

assume the height of the cross-slipped jogs on the cube plane increases with increas-

ing temperature, as we did while implementing the self-unlocking mechanism, there

should be a term in the superknink unlocking enthalpy in Eqn. A.11 reflecting the

strength of the IKWs, defined by the distribution of cube APB extent w (or of 0).

The plastic strain-rate corresponding to the superkink unlocking mechanism could

then be revised into a double integration form over both 1 and 0:

la Oaa .
'7 1R = Ptotal jmo A PO(1)Pscrew(l)v'(1, T 9)dedl, (5.5)

where

v (1, Tr, 0) = vSK exp ( Ho() - V(1)r). (5.6)

Eqn. 5.5 is integrated and the strain-rate vs. stress relation is plotted in Figure

5-9. Due to the two independent distributions we applied for 1 and 0, this ;l1-ra

relation is obviously strain-rate dependent. This is the reason that we did not include

the -dependence of the resistance forces into the superkink unlocking mechanism.

A more complex model perhaps could be derived through systematic, mechanistic

coupling of and 0 distribution.

The total dislocation density Ptotal is assumed constant in the simulation. Disloca-

tion density was measured for the single slip plane with loading in [123] orientation at

373K, and Ptotal was reported to increase from 2.5 x 1012m- 2 after 1% resolved plastic

strain to 17 x 1012 m- 2 after 6% resolved plastic strain [60]. Since the material is nearly

strain-rate independent, governed by the exponential part in Eqn. A.10, the changes
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of total dislocation density should not affect the simulation results significantly, and

for this reason any such changes have been neglected in the simulations.

The simulation results successfully captured the temperature-dependence of yield

strength, and the predicted peak temperatures for maximum yield strength are the

same as in the experimental results (Tp,, is equal to 700K, 900K and 1000K, respec-

tively, for the corresponding orientations: [11], [123], and [001]). The temperature-

dependence of yield strength and strain-hardening rate have been plotted, together

with the plastic contribution from different mechanisms for these three simulated ori-

entations, as shown in Figures 5-10, 5-11, and 5-12. It is clearly illustrated that for

the [11l] (Figure 5-10) and [123] (Figure 5-11) orientations, the temperature of peak

yield strength, Tp,,, is the same temperature that the cube slip starts to dominate the

plastic deformation. T,,, has been observed to be the lowest for the [111] orientation

in many experimental works [8, 17]. It has usually been explained by noting that the

maximum Schmid factor on a cube plane (Scb) was the highest in the [111] orienta-

tion. However, the values of Sb for the [ill] and [123] orientations are very close

(0.4722 and 0.4546, respectively), but the peak temperature T,,., differs significantly

for these two orientations (700K and 900K, respectively). In fact, the main reason

for the big difference in Tp,,, is the different ratio of the maximum Schmid factor on

the cube plane to that on the octahedral plane Sb/lSpb, which is 1.7489 for the [ll]

orientation and 1.026 for the [123] orientation. Since Spb for [111] is much smaller

than that for [123], at the same temperature, the uni-axial stress level is much larger

in the former orientation than in the latter one. Thus the cube resolved shear stress

is much larger for [11l] than for [123], even though they have similar Schmid factors

on the cube plane. Another less important reason for the difference in Tp,, is that the

[i11]-axial loading has three active cube slip systems out of the six cube slip-systems

considered, but the [123] orientation only has two.

Since the Schmid factor on the cube planes for [001]-axial loading is zero, cube

slip is never activated for this orientation. The decrease of yield strength in this

orientation at 1100K is due to the activation of the diffusion mechanism. Simula-

tions with two different applied strain-rates were carried out for [001] compression
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at 1100K, and the results are plotted together with the experimental data in Figure

5-5(b). Similar to the test data, at the low applied strain-rate of 1.1 x 10-4s - 1 , a yield

drop is obtained, due to the rapid increase of mobile dislocation density. The plastic

strain-rates of the diffusion mechanism and the evolution of the mobile dislocation

density are plotted in Figure 5-13. At the high applied strain-rate of 2.2 x 10-3s -1,

the simulation results shows a normal hardening. This is because the strain-rate is

too rapid for the diffusion mechanism to provide a sufficient dislocation flux, and the

stress level must be increased to continue to active the self-unlocking mechanism in

order to sustain the dislocation flux. The plastic strain-rate of the diffusion mecha-

nism and self-unlocking mechanism are plotted in Figure 5-14 for the high strain-rate

simulation. The predicted yield strength at a strain offset larger than 2% for the

"fast" loading condition is very close to the test data. However, the simulated high

strain-rate curve shows an abrupt yield point, inconsistent with the gradual yielding

behavior from a much lower stress level observed in the test (Figure 5-5(b)). A pos-

sible explanation is: in the superkink unlocking mechanism, we assume that locked

screw segments are formed "at the very beginning of deformation" without detailed

analysis. Considering that locking of screw dislocations is a temperature-dependent

process, we implement a temperature-dependent 0-distribution as an initial condition,

and the critical unlocking stress is calculated based on this 0-distribution. However,

the process of forming an IKW with cross-slip distance w on the cube plane needs

some time. At the very beginning of the deformation, there should be some just-

cross-slipped K-W locks with very short w values (or high values in 0). These IKWs

could be unlocked by a relatively low resolved shear stress. With further deformation,

the configurations of existing K-W locks are getting closer to the initially-assumed 0

distribution, and the critical unlocking stress is closer to the predicted value; thus a

rounded yield point is to be expected.

The orientation-dependence and tension-compression asymmetry of yield strength

are addressed by introduction of the factor of exp (Spe) defined in Eqn.3.4 for the ini-

tial value of Irlax,, as previously discussed in Chapter 3. Unlike the PPV-type lock

configuration (shown in Figure 2.2 (b)), where the core of the leading superpartials
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extends on a cross-slipping octahedral plane, in our model, we consider a K-W lock

configuration illustrated by Figure 1-4 (b), with the cores of the leading and trailing

superpartials on parallel octahedral planes. Due to the different assumption of the

locked configuration, we don't consider the effects of ,,se, which is the non-Schmid

(edge) component on the cross-slipping octahedral planes, as the PPV model did.

However, the proposed model nonetheless gives a prediction of tension-compression

asymmetry similar to the PPV model. That is, for orientations in the unit crystal tri-

angle close to the corner of [001], tensile strength is higher than compressive strength;

for orientations at the other side of the triangle, the situation is reversed. This is be-

cause, the two terms that govern the non-Schmid effects, rpe (in the proposed model)

and -pe - KTse (in PPV model, Eqn. 2.4) have similar orientation-dependence (for

reasonable values of un suggested in PPV model ), as shown in Figure 5-15.

The (11)[i01] CRSS (at 0.2% offset strain) of the three simulated orientations is

plotted in Figure 5-16. From the experimental data, we find that CRSS for [111] axial

loading is the highest, next is the CRSS for [123] loading, and the CRSS for [011]

loading is the lowest. The simulation results roughly capture this trend, especially

for the [123] and [001] orientations. For the [123] orientation over the temperature

range of 500K - 700K, the simulated CRSS is a little higher than experimental

data. This error mainly comes from the mis-prediction in the hardening rate in this

temperature range, because the yield strength is measured at eP = 0.2%, as it is for

the experimental data. The predicted CRSS for the [111] orientation is a little low,

and very close to the prediction of [123]. This is because Spe for these two orientations

are very close, -0.1574 for [111] and -0.1347 for [123]. Thus the initial value of imax

is very close for these two orientations, and similar values for initial CRSS follow.

As discussed above, following the idea of the PPV model, we tried to capture the

non-Schmid effects of Ni 3Al basically by considering the effects of the non-Schmid

stress components on the constriction-initiated cross-slip process. We have discussed

some flaws of the PPV model in Chapter 2. Here, another point needs to be men-

tioned. If cross-slip is initiated by the constriction of the Shockley partials, it is not

clear, when the non-Schmid component Tpe is negative and expands the partials, what
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causes the constriction. It may be possible that the constriction starts from some lo-

cal defects, but in that case, pe should not affect the cross-slip as much as pointed

by the PPV model. Recently, Martin, et al. [47] reported a large influence of the

stacking fault energy CSF on the yield strength. As shown in Figure 2-12, crystals

with higher YCSF present higher strength. The explanation is, for higher values of

fYCSF , the core of Shockley partials is narrower, and is thus easier to cross-slip. This

is a supportive observation for the constriction-initialed cross-slip process, while no

details of what causes the constriction were specified.

5.2.3 Mechanisms and Mechanics of Hardening Rate

In the superkink-unlocking-mechanism-dominant regime, hardening is due to the con-

tinuing decrease of the longest superkink height with ongoing deformation. Pscrew is

plotted in Figure 5-17 (b) for different values of plastic strain (pI = 0 =* I1Ep = 0.006,

with an increment of Aep = 0.001), for the [123]-axial compression at 400K and 500K,

respectively. It is clear to see the decrease of Imax with plastic deformation, because

the longest superkinks have been activated and redistributed.

We assume in this model, that as temperature increases, the initial value of Ima

diminishes. Thus a similar absolute decrease in Imax will be a larger fraction of its

initial value for the high-temperature condition than it is for the lower temperature.

This is clearly illustrated by Figure 5-17 (b). Because irna is much larger at 400K

(- 300b) than it is at 500K (- 200b), for a plastic strain of Icpl = 0.006, even the

absolute change in Imax for 400K is larger than for 500K due to the "fatter" bell-

shape of Pscr, in 400K, Imax decreases by around 18% in 500K but only 15% at

400K. Since the resolved shear strength is nearly inversely related to Imax, for the

same plastic strain, we expect a larger increase in the yield strength at 500K than at

400K. Therefore the predicted hardening rate monotonically increases with increasing

temperature, based on the proposed superkink unlocking mechanism alone.

The effect of the initial value of i,,ax is also one of the reasons why the simulated

hardening rate is the lowest for the [001] orientation. For the same temperature,

the initial value of Ima4 for [001] is the largest compared to the other two orienta-
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tions. Based on the previous discussion, the percentage change in Inax is the smallest

in [001] orientation, if the absolute change in Imax is similar for the three orienta-

tions. Moreover, for the same plastic deformation, the absolute change in Imaa for

[001]-compression should also be the smallest. The reason is that [001] is a highly

symmetric orientation, and there are totally 8 active octahedral systems. In [001]-

axial loading, the Pscre, "tail" corresponding to the longest superkinks is "eaten up"

less quickly than it is for the other two orientations. In Figure 5-18, the evolution of

P.crew for simulations of compression at 400K in both [123] and [001] orientations has

been plotted. The absolute change in Imax is clearly smaller in [001] than in [123] ori-

entation. Experimental results show that the strain hardening rate is the highest for

the [11] orientation. However, the predicted hardening rate for the [123] orientation

is higher than the other two orientations in the low-temperature regime, inconsistent

with the test data. As we just discussed, this is because for a single slip orientation as

[123], the Pr "tail" is "eaten up" more quickly than in the multi-slip orientations.

As we have analyzed numerically, the superkink unlocking mechanism imple-

mented in the simulation, which dominates the temperature range below Tp,h, can

capture the anomalous temperature-dependence, and roughly capture the orientation-

dependence of the hardening rate in this temperature range. The validity of the

proposed superkink-based hardening mechanism needs further experimental verifica-

tion. Currently, we assume slip-systems to be independent of each other. However,

the interaction of slip-systems for some highly-symmetric orientations (e.g. [001])

might not be neglectable. Further consideration of multi-slip effects might improve

the prediction in the orientation-dependence of the strain hardening rate.

The temperature corresponding to the peak hardening rate, Tp,1 is found to be

smaller than the temperature of peak yield strength, T,, for all three orientations,

with values of 600, 600 and 700K for the [111], [123] and [001] orientations, respec-

tively. The simulated results for Tp,, differ somewhat from the test data, which have

corresponding values of 500, 700 and 800K. The drop of the hardening rate with

temperature for [123] and [001] orientations is due to the participation of the self-

unlocking mechanism, as shown in Figures 5-11 and 5-12. For the [11] orientation,
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the Schmid factor is only 0.27. Thus, even at the peak yield strength condition at

700K, the resolved shear stress in the octahedral plane is still not high enough to

activate the self-unlocking mechanism. For this orientation, the drop of hardening

rate is due to the participation of cube slip, as shown in Figure 5-10, and after the

cube slip dominates, the yield strength starts to drop.

5.2.4 Flow Strength Reversibility

Many research groups [61, 62, and 63] have carried out so-called Cottrell-Stokes exper-

iments and investigated the yield strength reversibility in L12 single crystals, but no

reasonable explanation of this phenomena has yet been established. Among all of the

experimental works, in the author's view, Dimiduk's work is the most impressive. Dif-

ferent from other groups, he did the experiments in the [001] orientation to minimize

the effects of cube slip. And since [001]-loading is highly symmetric, the explanation

that the yield reversibility is due to the activation of the secondary slip-system [64]

is obviously incorrect. He also presented several TEM pictures to describe disloca-

tion substructures in the deformed pre-strained sample, as shown in Figure 5-19. It

is pointed out that both the high-T and low-T characteristic dislocation structures

exist in the same sample (pre-strained at high-T followed by RT deformation). He

then proposed that "some part of the substructure recovers extremely rapidly".

In the current study, we did not propose a way to explain the "extremely rapid

recovery" of the dislocation substructure. But, at least, the proposed model is not

in conflict with the observation. Since we assume that CRSS is basically determined

by the longest superkink height, the yield strength is then governed by the low-T

type substructure, which counts for the yield strength reversibility. Besides, since

the density of low-T type dislocations is smaller in a high-T-pre-strained sample than

that in a virgin sample, oy measured with a high-T-pre-strained sample is expected

to be a little higher than that for a virgin sample, as experimentally observed.
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5.3 Study of Parameter Sensitivity

As we have analyzed, the superkink unlocking mechanism dominates the temperature

range below Tp,~,, and due to the large activation volume assumed for the unlocking

process, the yield strength is closely dependent on the height of longest superkinks.

Therefore, the simulation results for this temperature range is very sensitive to the

value of ira.

We have modeled the initial value of Ima as depending on the assumed probability

for longest superkinks, Pi,, as shown in Figure 3-4. The larger P,,ri is, the smaller

the initial value of lma, and the yield strength is therefore higher. Simulations of the

[123]-compression are carried out for both 400 and 500K, with different values of Pmin

of 10 - 3 and 10- 4 , respectively. The simulations results are presented in Figure 5-20,

and the yield strength is found to be very sensitive to the choice of Pmin/lma. The

difference in the yield strength caused by different values of the Pcrew distribution

can be decreased by adjusting other parameters (e.g., Ho in Eqn. A.11). However,

if we assume Hirsch's version of unlocking enthalpy, even taking H 0o = 0, the yield

strength predicted by applying Pmi = 10-3 is still much higher than the test data.

Similarly, the parameter q 2 in Eqn. 3.2 also affects the initial value of imax

(especially in the low-T region), as illustrated in Figure 5-21. At low temperature

part, Irax responses greatly as q changes from 1 to 0.99, and is less sensitive as q

getting smaller. In the simulation, we assumed q = 0.99.

We have shown in Chapter 3 that the screw distribution (P,,,,,,) depends on the

assumed average number of superkinks each screw (), but is insensitive to the assume

standard deviation a,. Since the value of n changes the shape of Pscrew, but does

not affect the estimation of lma,, the yield strength should not be as sensitive to i

as is the strain hardening rate. This has been illustrated in Figure 5-22, in which

the simulated stress-strain curves of [123]-compression at 500K with different values

of n are presented, together with the respective distributions of Prew,. If the value

2The parameter q in Eqn. 3.2 accounts for the fact that as the free screw segment gets less
screw-orientated as it advances on the octahedral plane, the probability of locking gets smaller.

137



of f is increased, the bell-shape of Pcr, will drift to the right (larger 1). With the

Imax unchanged, this causes a " fatter tail ". Thus, the hardening rate simulated with

larger is smaller, as more deformation is required to reduce Imax, and increase yield

strength.

In the self-unlocking mechanism, 6 mean and the standard deviation, o0, which

govern the distribution of 0 (Eqn. 3.32), are fitting parameters and are defined with

the following considerations: The parameter 0 describes the configuration of K-W

locks. For the weakest IKWs with their APB ribbons cross-slipped on the cube plane

only a very short distance (- b/2), 0 is close to 55°. For the CKWs, 0 = 0°. It

has been proposed (Chapter 2, Figure 2-11) that the weakest IKWs begin to be self-

unlocked at the temperature of peak strain hardening rate, T,a.l Therefore, weakest

IKWs are considered to exist at temperatures around Tp,,n. If we assume that 0 follows

the Gaussian distribution, based on the above statement, we consider the following

two ways to model mean and ao: ,,men decreases with temperature quickly and the

value of as is large; or 0mean barely decreases in the low-temperature region, and the

value of ao is small. For the first case, since o is relatively large, there are always

some weak IKWs in the high-temperature part of the yield anomaly region. For the

[001] orientation, the existence of these relatively weak IKWs means that they can

get self-unlocked at a stress much lower than the experimental results, as shown in

Figure 5-23. Therefore, in the simulation, we define ,9
men and as in the second way.

(It is also possible that ,men decreases rapidly with temperature, as does ao, which

we did not consider in the research).
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Figure 5-2: Temperature-dependence of yield strength for three orientations (red
curves are for the [111] orientation, green curves are for the [123] orientation and
the blue curves are for the [001] orientation). The solid curves are test data from
Bontemps-Neveu [17] (for Ni3(Al, 0.25at.%H J)), and the dotted curves are from sim-
ulation.
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Figure 5-4: Simulated uni-axial stress-strain curves of [11]-compression with an ap-
plied strain-rate of 10-4s-' for different temperatures (300K - 1000K).
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Figure 5-5: (a) Simulated uni-axial stress-strain curves of [001]-compression with
an applied strain-rate of 10-4s-1 for different temperatures (300K - 1000K). (b)
Simulated (dotted) and test data [55] (solid) of uni-axial stress-strain curves of [001]-
compression for 1100K with different applied strain-rates, 1.1 x 10-4s- 1 and 2.2 x
10-3s - 1, respectively.
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Figure 5-6: Strain-rate dependence test: simulation results of [001]-compression tests
at 500K with two different applied strain-rates, 1.0 x 10-4s- and 1.0 x 10-3s - ,
respectively. Both the yield strength and the hardening rate are nearly strain-rate
independent.
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Figure 5-7: Orientation-dependence of yield strength: stress-strain curves of both
tension and compression tests for the three orientations at 400K.
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Figure 5-8: Illustration of the screw distribution (Pscrew(1)) of one active slip system,
and the plastic contribution of these screws, after compression in [001] to a plastic
strain of I = 0.3% at 500K. The plastic contribution essentially comes from the
movement of screws possessing very long superkinks (close to imax).
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Figure 5-9: Illustration of the relation between the plastic strain rate (as defined by
Eqn. 5.5) and the applied stress. The distributions in 1 and 0 were assumed to be
independent.
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Figure 5-12: (a) Temperature-dependence of yield strength and the hardening rate
for [001] orientation; (b) Temperature-dependence of plastic strain-rate from different
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Figure 5-13: Simulation data from [001]-axial compression at 1100 K with an applied
strain-rate of 1.1 x 10-4s-1. (a) Stress-strain curve; (b) Plastic strain-rate vs. strain;
(c) Mobile dislocation density vs. strain.

151

.

Ina

E
CX

._.

·-

600

500

400

300

200

100

Ot

cI-

Z3 E

a.

-
-

-

3 I`-



0.01 0.02 0.03
Strain

(a)

0.04 0.05 0.06

0.04 0.05

Figure 5-14: Simulation data of [001]-axial compression at 1100K with an applied
strain-rate of 2.2 x 10-3s -1 . (a) Stress-strain curve; (b) Plastic strain-rate for both
self-unlocking mechanism and the diffusion mcchailism vs. strain.
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Figure 5-15: M, and Q drawn vs. N for the three boundaries of the crystal triangle to
illustrate that the proposed model and the PPV model can give the similar prediction
on the orientation-dependence of tension-compression asymmetry. M = (r" ')

Tph

where = 0.5, N = M and Q = P. In the PPV model, both non-Schmid stress
-pb - pb

components Tpe and ,,e are considered in the cross-slip process , while in the proposed
model, only Tpe is considered. But M and Q are both negative for the [001] corner
and positive for the [11]-[011] edge of the crystal triangle.
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Figure 5-16: Illustration of the orientation-dependence of CRSS (I{pl = 0.2%): Simu-
lated (dotted curves) and test data (solid curves) of CRSS for different temperatures
in three orientations (red for [Ill], green for [123] and blue for [001]).
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Figure 5-17: (a) Simulated stress-strain curves for [123]-axial compression at 400K
and 500K; (b) evolution of the distribution of screw dislocations in the [123]-axial
compression at both 400K and 500K: P,,,,(1) is plotted for different plastic strain
offsets, from 1cp = 0 to EpI = 0.6% with an increment of 0.1%.
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Figure 5-18: Evolution of the distribution of screw dislocations in compression at
400K. P,,cre:(l) is plotted for different, plastic strain offsets, from IepI = 0 to I[ = 0.6%
with an increment of 0.1%. (a) [123]-axial compression; (b) [001]-axial compression.

156
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Figure 5-19: TEM observations qf dislocation substructures in a high-temperature
pre-strained sample after being subsequently deformed at RT. (a) typical high-
temperature characteristic dislocation substructures; (b) mixture of both high-
temperature and low-temperature characteristic dislocation substructures. [63]
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Figure 5-20: Parameter sensitivity study for different values of Pmi,,: simulated stress-
strain curves of [123]-compression. Dotted curves for Pi,, = 10- and solid curves
for Pmin = 10-4 and with all other parameters the same.
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Figure 5-21: Parameter sensitivity study for different values of q (compression in [123]
orientation, with Spe=-0.1347 ): (a) l,,ax vs. temperature; (b) Uniaxial yield strength
vs. temperature. Dotted curves for q = 1 and solid curves for q = 0.99 and with all
other parameters the same.
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Chapter 6

Conclusions and Future Work

A mechanism-based continuum crystal plasticity model was developed for L12 struc-

ture single crystals. Simulations were carried out, and the results were compared with

the mechanical responses found in experimental observations.

The focus of this study was the yield and hardening behaviors in the anomalous

yield-temperature dependence range (range I). The octahedral screws were found to

be the dominant slip systems in this temperature region, and their movement was

found to be non-planar with frequent cross-slips onto the cube planes. The cross-

slip induced locking of screws and the subsequent unlocking procedure were generally

considered as the origin of yield anomaly. Many micro-mechanisms were proposed

based on certain observations and various assumptions for the dynamics (locking and

unlocking) of screws, as reviewed in Chapter 2. The near rate-independence of yield

strength and hardening rate has posed a dilemma to most of these existing models.

Besides, the very complicated temperature-dependence and orientation dependence

of the yield and hardening rates imply that it is difficult to describe this material

with only a single mechanism.

In range I, development of the underlying mechanisms of the twelve < 111 > [101]

octahedral screw slip-systems was guided by the current understanding of the micro-

mechanisms of the deformation behaviors in L12 structure single crystals. Both

Hirsch's superkink-unlocking mechanism and Caillard's self-unlocking mechanism were

adopted and modified. A superkink-based hardening mechanism was also developed
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and implemented. In range I, for the sake of small strain-rate-dependence of yield

strength and hardening rate, the yield strength was mainly determined by the re-

vised superkink model. Self-unlocking mechanism was activated in some orientations

at the high-temperature part of range I, when the resolved shear stress has reached

to a critical value.

The dynamics of the six < 001 > [101] cube screw slipping systems were described

by a standard power-law form. The cube-slip resistance linearly decreases with rising

temperature, and the cube-slip gradually contributes to the plastic deformation. For

most orientations, the transfer of yield-temperature dependence from abnormal (range

I) to normal (range II) is due to the dominance of cube slips. For the [001] orientation

with zero resolved cube shear stress, a diffusion mechanism was introduced to capture

the normal temperature dependence of yield strength at very high temperatures.

The model proposed in this study has several advantages and certain limitations:

1. The current approach is a comprehensive constitutive modeling of L12 struc-

ture single crystal. Mechanical properties of both yielding and hardening were

studied. The simulation results successfully captured the major mechanical

properties associated with this material, including the temperature dependence

of yield strength (including the [001] orientation) and hardening rate; orienta-

tion dependence of yield strength and hardening rate and the small strain-rate

dependence of yield strength and hardening rate. The current approach did

not give an explanation for the yield strength reversibility, but the proposed

underlying mechanisms do not conflict with the observed phenomena.

2. The current approach was established based on micro-mechanisms representing

current understanding of L12 structure single crystal. All of the mechanical

properties captured by the simulation are based on certain physically-oriented

mechanisms, rather than phenomenological adjustable parameters.

3. The formulation is relatively simple and the parameters are relatively few. The

dominating parameters, such as the activation volume V(lm,,) in the superkink

unlocking part and the critical unlocking stress, Tcritical. in the self-unlocking
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part, were derived based on certain physical bases, and their magnitudes are

consistent with experimental results.

4. Most of the current existing micro-mechanisms are not fully quantitatively es-

tablished, and have not been verified by systematical simulations. The proposed

quantitative approach and the numerical simulation help to understand and

evaluate the existing models and mechanisms. For example, through this study,

we find that due to the small value of Schmid factor on the octahedral planes,

the self-unlocking mechanism is never activated for the [111] orientation, which

means the self-unlocking mechanism can not be used as a complete description.

5. The prediction of the yield strength is quite consistent with the experimental

data., and the predicted hardening rate fairly captures the temperature and

orientation dependence of the testing data. However, the predicted hardening

rate is not very reasonable in the low-temperature part ( 300K - 500K) of

range I. The hardening rate for [111] and [011] is several times lower than the

test data, due to the low consuming rate of the screws with longest superkinks

for this temperature range. To maintain the same plastic strain rate, screws

with longest superkinks are consumed much faster for single slip orientations,

e.g. [123], than for those multi-slip orientations. This is why the prediction of

hardening rate of [123] is relatively higher than the other two orientations.

6. The proposed continuum crystal plasticity model was developed within a frame-

work of several internal state variables (e.g. Pscrew and P), for finite plastic

deformations. The initial states and the evolutions of these internal variables

are defined based on certain assumptions and adjustable parameters, which need

further verification.

Obviously, there remains an abundance of work to be done in this area, on varying

levels of complexity and with the further development in discovering the underlying

mechanisms. For a better and broader approach, some further modifications may be

considered:

164



1. Atomic simulations is a promising approach in the study of the structure,

energetics, cross-slip, and self-unlocking of screw dislocations, providing valu-

able information in understanding the underlying mechanisms for the macro-

mechanical properties.

2. The hardening mechanism with internal variables needs further improvement

to get better predictions in strain hardening-rate (temperature and orientation

dependence); critical experimental documentation of the evolution of internal

state variables (superkink distribution) needs to be carried out to evaluate the

proposed hardening mechanism. For multi-slip orientations, interactions of each

active system should be taken into consideration.

3. Since the L12 structure compounds are usually very composition-dependent,

study in the ternary alloy effects (how does the ternary alloy affect the structure,

the fault energies, cross-slip and the dynamics of the screw dislocations) is

necessary.

4. Mechanisms of dislocation substructure local recovery should be developed in

order to capture the properties of yield strength reversibility presented in the

Cottrell-Stokes experiments.

5. Study of mechanical properties of L12 poly-crystals can be carried out by im-

plementing this single crystal plasticity model into poly-crystal geometry.
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Appendix A

Summary of the Model

The constitutive model developed in this study and described in Chapter 3-4 can be

summarized by the following equations:

T = C[Ee] (A.1)

E = F eTFe -I 2 (A.2)

(A.3)

(A.4)

LP = E
o/

a mo ® no a = 1 - 18 (A.5)

Y (T ) )

octahedral slip a = 1 12 ; (a)

cube slip a = 13 18 (b)

Si(T) = (1000 - 0.75T(K)) MPa.
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F = FFP-1
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For the octahedral slips, the contribution from the superkink unlocking mechanism

(;/ ) is given as:

r = potalb E Psrew,(l)vc(l , ), (A.8)
b

where

Pscre (1) = exp (2[lnW(l)n]2) [lnW()o + n]P()W()l (A.9)

and

V"aU( TT) = VOSK exp H( 7) (A. 10)

in which the unlocking activation enthalpy is given by Hirsch [23] as:

1
H, = H0 - V(l)Tr, and V(1) = 3.5b 3, (A.11)

where the magnitude of activation volume (3.5bb3 ) was estimated by Hirsch according

to the relation of stress and the superkink configuration shown in Figure 2-6(a).

The contribution from self-unlocking mechanism () is given as:

= Ptotalbj Po(O)v2(, T'r)dO. (A.12)

Po is the normalized Gaussian distribution:

exp
P(0) = i P (A.13)P2iru (N(55°) - N(O0))' (A.13)

where

N(O) = 1/2 [ + erf , (A. 14)

a = 3°, and 0 is assumed to be a linear function of temperature:

0 = (-0.1 x T(K) + 127)0 kmax = 550, (A.15)
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V2 =

Here

and

V S2 (T) )ml

0

if T > T critical;

otherwise.

Tcritical() = b bg(),
b b

S2(T) = (370 - .1T(K)).

(A.16)

(A.17)

(A.18)

The diffusion mechanism for the [001] orientation at high temperatures is described

as:

(A.19)= PmbVd ( exp - d
fT 2 (Hd') k

· o _a)2f2 exp (Hd)
Pm= Ptotal( )2 exp( )

Ptotal = -CPPmPtotalRV.

168

where

(A.20)

(A.21)
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