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ABSTRACT 

Polyhydroxybutyrate (PHB) is a carbon reserve found in some bacteria, and under 
nutrient limiting conditions accumulates intracellularly in the form of inclusion bodies. These 
inclusions contain proteins, and the PHI3 within the inclusions exists in an amorphous state. In 
this study a procedure to recover native PHB inclusions was developed, and the isolated 
inclusions were characterized using 13c NMR, western blotting, SDS-PAGE, atomic force 
microscopy, and fluorescence microscopy. A model for the structure of native PHI3 inclusions is 
proposed. 
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CHAPTER 1.INTRODUCTION AND BACKGROUND 

Polyhydroxybutyrate (PHB) is a naturally occurring biodegradable polyester, which 

accumulates in some bacterial cells as a carbon storage reserve (1). It belongs to a class of 

optically active bacterial polyoxesters named polyhydroxyalkanoates (PHAs). PHB inclusion 

bodies were first identified by Lemoigne in 1926 in the bacterial species Bacillus megaterium 

(24). However, it wasn't until the 1960s and 1970s that a significant research effort was applied 

toward understanding these polymers, resulting in the discovery of a wide range of PHAs (7). 

Over 100 different types of PHAs have been identified to date, exhibiting diversity both 

in monomer size, polymer length and co-polymer composition (29), (48). The molecular weight 

varies fiom 200,000 to 3,000,000 Da, depending on the species type and the growth conditions 

(5 1). It is this diversity in structural composition that grants a wide range of properties to this 

family of polymers, which can vary fiom thermoplastic to elastomeric (28). In light of 

decreasing petrochemical reserves, and the hazards of plastic accumulation in the environment, 

many are looking to PHA plastics as a renewable and biodegradable alternative to petrochemical 

based plastics. In order to develop this biotechnology on a large scale, a better understanding of 

the intracellular regulation of such structural variables as molecular weight, side group length, 

and co-polymer composition is essential. 

Figure 1. Generic Chemical Formula of Polyhydroxyalkanoates (1). 



Figure 2. PHB Biodegradable Objects (25). 

PHAs accumulate in the cells within the cytoplasm in the form of inclusion bodies, also 

referred to as granules (7). By utilizing excess soluble substrate and converting it into insoluble 

polymeric inclusions, bacteria and other cells are able to maintain low intracellular concentration 

levels of the soluble monomer, and thus the ability to uptake excess substrate from the 

extracellular environment through concentration gradients. This mechanism of converting 

soluble substrate into insoluble polymeric inclusions gives cells the ability to store large 

quantities of excess substrate intracellularly for use at a later date. Glycogen, starch, 

polyphosphate, cyanophycin, rubber, and polyhydroxyalkanoates all take the form of inclusion 

bodies (50). 

Figure 3. Inclusions (50). 

(a) starch in corn (b) polyphosphate in Vibrio cholerae (c) cyanophycin in Aphanocapsa 6308 (d) rubber 
in Hevea brasiliensis (e) P H B  in Cupriavidus necator. 



Figure 4. Transmission Electron Microscopy of C. necator with PHB Inclusions (55). 

Bacteria were cultured with PHB accumulation at (A) 2.5 hr (B) 5 hr ( C )  9 hr (D) 24 hr Scale Bar = 5um. 

In the case of PHA polymerization, the cell will polymerize excess soluble carbon into 

PHA inclusions, when some essential nutrient for carbon metabolism, such as nitrogen or 

oxygen, is lacking in the environment (38). A model organism for PHI3 biosynthesis is the 

gram-negative bacteria Cupriavidus necator (formerly known as Ralstonia eutropha), and it is 

used in this study. In the presence of excess carbon C. necator can accumulate large amounts of 

PHB up to 90% of the cell dry weight as shown in Figure 4 (5 1). 

PHB is the most studied of all the PHAs, and the mechanisms of PHB polymerization in 

C. necator have been worked out in some detail over the past few decades. Four classes of PHA 

synthases have been identified to date, and are grouped according to their substrate specificity 

and subunit composition (39). The Class I synthase, which exists in C. necator, is composed of a 

65 kDa subunit and acts upon short chain length substrates of hydroxyalkanoates consisting of 3- 

5 carbon atoms (5 1). The basic biosynthesis mechanism in C. necator involves two other 

enzymes in addition to the synthase (PhaC); a thiolase (PhaA) and a reductase (PhaB). These 

three enzymes are encoded in a single operon (35), (36). The biosynthetic pathway for PHB 

polymerization is outlined in Figure 5 below. The mechanisms involve condensation of acetyl- 

CoA into acetoacetyl-CoA by PhaA, which is then reduced into hydroxybutyrateCoA by PhaB, 

and is finally polymerized into the insoluble PHI3 via PhaC (25). 



NADPH NA 
n " SCOA A n \ # 

3P+ -.. - - SCOA f-.. - ' 

Acetyl-CoA Acetoacetyl-CoA HB-CoA PHB 

Figure 5. PHB Biosynthetic Pathway (50). 

The resulting PHB homopolymer has a molecular weight of around 1,000,000 Da, and a 

low polydisperisty (53). The PhaC is reused many times during the synthesis of the PHB chains, 

implying that some regulated termination must occur in order to synthesize this low 

polydispersity high molecular weight polymer. 

PHB depolymerases can be classified as either intracellular or extracellular (1 6). The 

intracellular depolymerases cannot act upon crystalline PHB; however, the extracellular 

depolymerases can act upon both amorphous and crystalline PHB, which is why crystalline PHB 

based commodity materials are able to degrade in the environment (33). 

The highly regular isotactic nature of PHB (Figure 6 and 7 below) is conducive to a high 

degree of crystallization of between 60 - 80%, which is the highest of all naturally occurring 

PHAs. Larger monomer units and co-polymers of PHA show significantly less crystallinity than 

PHB, presumably due to steric hindrances that prevent close packing conformations (I), (56). 

Despite the fact that pure PHB is likely to exist in a highly crystalline state, PHB in inclusion 

form is in an amorphous state. This amorphous state of native PHI3 granules has been shown 

using two independent techniques, X-ray diffraction and 13c solution state NMR, as both of these 

techniques can distinguish solid from liquid material (14),(20),(46). 

X-ray diffraction is used to study the structure of crystalline material. Lattice spacing in 

crystals scatter x-rays producing distinct diffraction patterns, which can be analyzed for 

structural information. Liquids or amorphous materials do not produce diffraction patterns, and 

therefore can be distinguished fiom crystalline material (56),(60). 13c NMR is another technique 

that can differentiate between solid and liquid. It takes much longer to collect spectra from 

solids than it does fiom liquids. This result is due to the ability of liquids to reach an excited 

energy state, and return to equilibrium much faster than solids can. Therefore, under normal 

acquisition conditions (where collection time is on the order of a few seconds), liquids will 

display sharp spectra, whereas solids will display broad spectra or no spectra at all (23), (41). 



Isolation of PHB by many methods can cause irreversible crystallization of the PHB, and 

in this denatured state it is no longer accessible to intracellular depolymerases for degradation 

( 5  1 )* 

Figure 6. Isotactic Structure of PHB Homopolymer. 

Figure 7. Alpha Helix 3D Structure of PHB Homopolymer (34). 

Black = Methyl (CH3), Grey = Oxygen, White = Carbon. The crystalline form of PHB displays a left 
handed helix formation with a two-fold screw axis, the repeat unit 0.596nm. 

Experiments performed by Horowitz and Sanders indicate the amorphous nature of native 

PHB is likely due to a surfactant-like coating on the surface of the inclusions, which maintains 

inclusions as distinct colloidal structures and reduces the likelihood of crystallization(l4). It has 

been demonstrated that certain proteins coat the surface of the granule; in addition a 

phospholipid layer has been proposed to coat the surface of the granule (3),(4). Key proteins 

involved in the biosynthesis of PHI3 have been located at the surface of the inclusions through 



immunochemical labeling and enzymatic assays conducted on purified PHB granules (8), (40). 

These proteins are PhaC, PhaP (or phasin), PHA depolymerases, and PhaR (the negative 

regulator of PhaP) (3 8). 

PhaP is a noncatalytic protein that is associated with the granule surface, and its 

expression is correlated with granule size (Figure 9) (1 1),(44),(58). Recently, three additional 

phasins have been discovered in C. neeator based on sequence homology(37). The 

concentration of PhaP is highly correlated with the production of PHB, and the transcription of 

phaP is induced at the start of nitrogen limited and excess carbon conditions (44). It is thought 

that PhaP is the major constituent of a stabilization layer surrounding granules, which prevents 

coalescence of granules within the cell (19),(38),(59). PhaP represents 5% of total protein within 

the cell when it is grown under conditions of high PHI3 storage, and covers between 27 - 54 % 

of the granule surface(53),(58). By contrast, PhaC is believed to cover between 0.5 - 1.2% of 

the granule surface (53). 

Figure 8. Immunochemical labeled PhaC on PHB Inclusions Surface in C necator (8). 



phaP deletion wild-type phaP over-producer 

Quantity of PhaP 

Figure 9. Granule Size as Affected by the Quantity of PhaP (61). 

In order to better understand the structure-function relationship of native granules in PHB 

biosynthesis, an isolation procedure that preserves native state of the PHB inclusions is essential. 

In this study an isolation technique was developed and characterized with bioanalytical and 

microscopy tools, and a model for native PHB inclusion morphology is proposed. 



CHAPTER 2,MATERIALS AND METHODS 

2.1. ISOLATION OF PHB INCLUSIONS FROM C. NECATOR 

2.1.1. Fermentation for High PHB Production in necator (PHBH culture conditions) 

The enriched media used for culturing C. necator was composed of dextrose free Tryptic 

Soy Broth (Becton Dickenson, NJ, USA Cat#: 286220) at a concentration of 27.5g/L containing 

lOpg/ml of gentarnicin sulfate (Sigma, St. Louis, MO, Cat# G-3632); referred to as 

TSBIgentamicin. All strains of C. necator employed in this study contained a gentamicin 

resistance gene. Frozen stocks of C. necator were stored at - 80°C. The frozen stocks 

inoculated onto TSBIgentamicin 2% agar plates were incubated for 48 h at 30°C. One resulting 

colony was inoculated into a test tube containing 5ml of TSB/gentamicin and incubated for 24 to 

48 h at 30°C. From this test tube 2ml of culture was inoculated into a lOOml TSBIgentamicin in a 

baffled flask and incubated for 24 h at 30°C. This culture was inoculated into 200ml of PHBH 

chemically defined media to an initial OD6- value of 0.5 and was incubated for 24 h at 30°C in 

a baffled flask. The PHBH chemically defined media used in this study has been optimized for 

conditions that allow C. necator to produce high amounts of PHI3 (see formulation below). 

2.1.2. P m  Chemically Defined Media 

A PHB salts solution was prepared by adding to 960ml of deionized water the following: 

6.7ml 1 .OM sodium phosphate monobasic, 12.9ml0.5M sodium phosphate dibasic, 5.2ml0.5M. 

potassium sulfate, and lml 1N sodium hydroxide. To 200ml of PHB salts solution the following 

was added: 2ml 1 OOX magnesium sulfate (3.9g/1 OOml), 2ml 1 OOX calcium chloride 

(0.62g/lOOml), 200~1  of lOOOX trace salts stock solution (40mg cupric sulfate 5 H20, 240 mg 

zinc sulfate 7 H20, 249mg manganese sulfate 1 HzO, 1500 mg ferrous sulfate 7 H20 in a final 

volume of 1 OOml0.1N hydrochloric acid), 4ml of 50% hctose, 2OOpl of 10% ammonium 



chloride, and 200pl of gentamicin (lOmg/ml). All solutions, except the gentamicin stock 

solution, were sterilized by autoclaving before preparing the PHBH media. 

2.1.3. HPLC Quantification for PHB in C. necator 

New glass tubes (VWR, Westchester, PA, Cat# 47729-576) were dried at 80°C overnight 

and then weighed. 3 to l5ml samples were placed into the glass tubes and centrifuged (Sorvall, 

Asheville, NC, RC 5C PLUS centrifuge, SS-34 rotor and rubber adaptors) at 5000rpm for 5 min 

at 4OC. The resulting pellet was washed with the original volume of ice-cold H20. The 

centrifugation step was repeated, the supernatant was pipetted off, and the glass tube was placed 

in a vacuum oven at 80°C to dry overnight. The weight of the dried pellet and glass tube was 

recorded. 30mg of PHB was measured into a glass tube for use as a standard (Aldrich, St. Louis, 

MO, Cat # 363502-100G). lml of concentrated H2S04 was added to all samples, which were 

then boiled for 30 min in a water bath (T 2 90°C). The acid catalyzes depolyrnerization of PHB 

with elimination of water to yield crotonic acid, which is then detected using the HPLC. The 

samples were cooled on ice. The standard was diluted using concentrated H2S04 yielding the 

following final concentrations of PHB: 10,3, 1,O. 1,0.3 mglml. 4ml of 0.0 1N H2S04 (533 pl 

concentrated H2SO4/2L H20) was added to each sample tube, which was then vortexed gently. 

2ml of each sample was filtered into new glass tube using a 5ml syringe with a 0.2pm filter 

(Gelman, AM Arbor, MI, Acrodisc LC 13 PVDF 0.2um). lOOpl of the filtered samples were 

transferred to HPLC vials (Agilent, Palo Alto, CA, Cat# 5 182-0714) containing 900pl of 0.01N 

H2S04. The HPLC was run with a 25p1 injection volume at 50°C for 40 min on a Biorad 

Aminex HPX-87H organic acid column and crotonic acid was detected at 210nm (Biorad, 

Hercules, CA). 

2.1.4. Native PHB Inclusions Isolation with Sonication Followed by Filtration 

C. necator was grown for 24 h using standard conditions for high PHB accumulation as 

outlined above. lOml of the culture was removed and centrifuged (5500rpm, 5 min, 4OC). The 



supernatant was discarded and the pellet was resuspended in 1 Om1 of 0.85% saline. The 

suspension was recentrifuged, and the pellet was finally suspended in 5ml of Tris buffer (pH 7.5) 

and taken for sonication (Misonix, Inc, Farmingdale, NY--formerly Heat Systems, Sonicator 

Ultrasonic Processor XL). Sonication was performed on ice at 4OC with 3 min of total pulse time 

(power = 4.5,30 sec pulse, 15 sec pause). A 0.22pm cellulose acetate filter was used to separate 

the inclusions from the smaller components of the cellular material (Coming Inc, Corning, NY, 

Cat# 430626). The cell lysate was filtered through vacuum, and then the filter was washed with 

minimal amount of PBS (pH 7.3-7.5) in order to retrieve the inclusions from the surface. 

2.1.5. Enzymatic Lysis 

2.1.5.1. With Salt 

50ml of 24 h PHBHculture was centrifbged (5500 rpm, 5 min, 4OC) and resuspended in 

50mgs lysozyme/2ml PBS and incubated at 37OC for 1 h. 0.5 ml of 5M NaCl was added along 

with 20pl of DNase (Roche Diagnostics, Alameda, CA, Cat# 10 776 785 001) and incubated for 

37OC for 1 h. The resulting cell lysate was brought up to a final concentration of lOml using PBS 

(EMD Chemicals, Gibbstown, NJ, USA Cat# 6505). 

2.1.5.2. Without Salt 

24h PHBH culture was centrifuged (5,500 rpm, 4OC, 5 min) and resuspended in 15-20ml 

lysis buffer (50mM Tris HCl pH 8,25mM NaCl, 2mM EDTA) for a final ODsm reading of 20- 

40. The solution was placed at -80°C for approximately 1 h and then thawed at room 

temperature, after which it was vortexed thoroughly. lmglml final concentration of lysozyme 

(lOmg/ml Freshly prepared stock) was added to the solution and it was incubated for 1 h at 37OC. 

50pl of 4mg/ml DNase, 50p1 of 1 M MgS04, and lml of protease inhibitor cocktail (Sigma, St. 

Louis, MO, Cat# P 8465) was added to the solution and it was incubated at 37OC for 1 h. 



2.1.5. PHB Inclusion Isolation by Ultracentrifugation 

To a sucrose density gradient (8ml2.OM, 9ml 1.7M, 8ml ISM, and 9ml 1.25M) 3ml of 

cell lysate was added. 6 tubes were centrifuged at 28,00Orpm, 4"C, and 2 h. The 1.5M11.7M 

interface bands were collected by piercing the tube with a syringe at the location of the band. 

The bands of 3 tubes were pooled together and placed in 18-14 cm long dialysis tubing 

(Spectra/Por, Rancho Dominguez, CA, Cat#: 132700) and the inclusions were dialyzed against 

2L of dialysis buffer at 4OC for at least 2 h (50mM sodium phosphate pH 8.0, 1mM EDTA). A 

Beckrnan L-80 Ultracentrifuge was used with a SW 28 Rotor and Polyallomer tubes of size 25 X 

89mm (Beckman, Fullerton, CA). 

2.2. CHARACTERIZATION OF PHI3 INCLUSIONS 

2.2.1. PhaP Standard 

2.2.1.1. Transformation of Bacteria 

1 pl of DNA (pGY 101) was placed in a test tube and put on ice for a few minutes (63). 

20p1 of competent BL2 1 (DE3) E. coli cells (Stratagene, La Jolla, CA, Cat# 200 13 1) were placed 

into the DNA tube and mixed by flicking the tube. The tube was then placed on ice for 5 min. 

This cell suspension was then placed in a 42°C water bath for 30 sec, and then placed back on ice 

for 2 min. 80pl of high nutrient broth that had been preheated to 37C was added to the cell 

suspension. The cell suspension was placed in a 37°C shaker for 30 min to 1 h. Finally, the 

solution was used to plate out colonies, using a 2% agar/LB plate with ampillicin (100pgIml). 

50p1 of the bacterial solution was used per agar plate. The plates were incubated at 3 7 C  

overnight. 



2.2.1.2. Induction of Bacteria 

A single colony from the LBIampicillin agar plate was taken and placed into a 50ml LB 

broth (250ml baffled flask) wl50pl ampicillin (100pg/ml) and incubated for 24 h. 8ml from a 

50ml sample was placed into a 2.8L baffled flask, with 1L of LB and lml of ampicillin. The 

culture was grown to an ODsw of 0.6 to 0.8 (about 2-4 hours). Isopropyl-p-D- 

thiogalactopyranoside (IPTG) was added to a final concentration of 0. lmM. The culture was 

spun down (apprx 3.4 g wet weight) and processed directly or placed in -80°C freezer. Better 

results were obtained if cells were processed fresh instead of fiozen. 

2.2.1.3. Lysis and Protein Precipitation 

Cell pellets were resuspended in 27ml of TE buffer (50mM Tris 1mM EDTA, pH 7.5) 

with lml of protease inhibitor (Sigma, St. Louis, MO, Cat# P8465). The bacterial solution was 

run through a French Press at 14,000 psi twice (before second run another lml of protease 

inhibitor was added to solution) (SIM Aminco, Spectronic Systems). The solution was then 

centrifbged at 25,000 X g for 30 min. To this supernatant ammonium sulfate was gradually 

added to a final concentration of 3.9gl2Oml as the solution was gently mixed at 4OC (35% 

saturation). The solution was centrifuged at 20,000 X g for 20 min, and the pellet was collected. 

500pl of protease inhibitor cocktail was added to the solution, and 0.36g/ml of ammonium 

sulfate was added gradually, while gently stirring at 4OC (60% saturation). The solution was 

centrifuged at 25,000 X g for 30 min. The pellet was obtained and resuspended in a minimal 

amount of TE buffer. 

2.2.1.4. Desalting 

In order to desalt the solution a Sephadex G-25 column was used with dimensions as 

follows: column L = 20cm, W = 1 .5cm. After ammonium precipitation a total protein content of 

around 180mg was obtained; and after conducting desalting the total protein content was around 

120 mg in 17ml of TE buffer. Six milliliters of this desalted solution was used in the DEAE 

support column for total of around 40mg protein loaded onto the column. 



2.2.1.5. DEAE Support Column 

Around 1 OOml of DEAE support material (Bio-Rad, Hercules, CA, Cat# 156-0020) was 

poured into beaker and equilibrated with TE buffer. Finally, around 80ml of the DEAE 

suppoflE slurry was packed in a column (L = 15cm, W = Scm). The protein was added above 

the solid interface. 40 X 5ml fkactions were collected. Fractions 1-24 were collections of the 

flow through. After the 24& fkaction was collected a salt gradient was set up (Figure lo), with 

TE buffer and 250mM NaCl and fkactions 25-40 were collected. SDS PAGE and 

Spectrophotometric Analysis of fiactions were conducted using standard protocols (Agilent, Palo 

Alto, CA, UV-Vis Spectrophotometer G 1 1 1 5AA). 

Support 

Figure 10. Salt Gradient Set Up. 

22.2. 13c NMR for Detection of Amorphous PHB 

2.2.2.1. Whole Cells 

A 24 h culture of C. necator in PHBH chemically defined media (following standard 

culturing protocol outlined above) was centrifuged at 5500rpm for 5 minutes at 4OC. The 

supernatant was discarded and the pellet (500 mg of wet weight) was resuspended in 600ul HzO 

and lOOul DzO. This suspension was placed in Wilmad Pyrex NMR tubes (Buena, NJ). The 13c 

NMR was conducted on an INOVA 501 (Varian, Palo Alto, CA) using the following conditions: 

1. T=60°C 



2. Acquisition Time (at) = 4.72 1 sec 

3. Delay Time (dl) = 0.279 sec 

4. Recycle Time (at + dl)  = 5 sec 

The 1 1 1  carbon spectrum was visible after 200 transients of data collection. 

2.2.2.2. Purified Inclusions 

Purified PHI3 inclusions (2.1.5.1 ., 2.1.5.2) were analyzed with "C NMR. After dialysis the 

solution was centrifbged at 5500rpm, for 10 min at 4OC. The isolated inclusion pellet was 

resuspended in 600~1  HzO and 100ulD20, which was placed in Wilmad Pyrex NMR tubes 

(Buena, NJ). The 13c NMR was conducted on an INOVA 501 using the following conditions: 

1. T = 60°C 

2. Acquisition Time (at) = 4.721 sec 

3. Delay Time (dl) = 0.279 sec 

4. Recycle Time (at + dl) = 5 sec 

The total time transients needed to view full carbon spectrum varies, depending on the 

concentration of PHB present. Data acquisition can last as little as 2 h to as long as overnight. 

2.2.3. Western Blotting 

The linear range of detection of PhaP is between 2 and 12ng and the linear range of 

detection of PhaC is between 0.5 and 4ng. The protein levels of each sample were estimated 

based on Bradford assay, and diluted/concentrated in order to be detectable within the linear 

range of detection. The samples were boiled in loading buffer for 30 min. Samples containing 

PHB were then centrifbged at 13,000 X g for 6 min and the supernatant was used for further 

analysis. Samples were loaded onto a 15% SDS PAGE gel and run for 70 minutes at 140V in 

tank buffer (1 5.1 g Tris base, 72.0g glycine, 5.0g SDS, in 1L dH20). 

The gel was removed and washed in transfer buffer (6.06g Tris base, 28.8g glycine, 

1600ml dH20) for 30 min. A PVDF membrane (Millpore, Bedford, MA, Cat# IPVH20200) was 

washed for 15 sec in methanol, 2 min in deionized water, and at least 5 min in transfer buffer 

before use. The gellmembrane transfer assembly was packed on ice as per manufacturer's 



instructions, and the transfer was run for 100 min at 80V. After transfer, the gel was carellly 

removed and placed in 1X PBS for a few seconds, and then transferred to a tray with blocking 

buffer (1 0% casein, 0.1% Tween 20, TAE buffer) and left to rock for 1 h. The membrane was 

washed with primary antibody (anti-PhaP blood serum: 20,000X stock, anti-PhaC blood serum: 

1,000X stock, diluted in blocking buffer) for 1 h (both anti-PhaP and anti-PhaC were rabbit 

polyclonal). This was followed by 2 X 5 min blocking buffer washes. The membrane was then 

washed with secondary antibody (all developing reagents were from the Western Light Kit, 

Applied Biosystems, Bedford, MA, Cat# WL IORC). This was followed by 3 X 5 min blocking 

buffer washes, and 2 X 2 min assay buffer washes, and finally the membrane was incubated in 

CSPD substrate solution (3mllmembrane) for 5 min. The membrane was placed in a plastic 

folder and developed using chemiluminescene high sensitivity ( W P  Bioimaging Systems, 

BioChemi System, Upland, CA). 

2.2.3. Zeta Potential 

C. necator was grown under PHBH production conditions. Isolated Inclusions (2.1.5.1 ., 2.1 5 2 )  

were diluted 10X - 20X with deionized water (I = 0.005), until sample was mostly clear 

(approximately 0.1- 0.2% wlv). The sample was analyzed using BIC PALS Zeta Potential 

Analyzer (Brookhaven Instruments Corporation, Holtsville, NY). 

2.2.4. Elemental Analysis 

C. necator was grown under PHBH production conditions. Isolated Inclusions (2.1.5.1 .) were 

centrifuged at 5500 rpm for 10 min, resuspended in 4ml of deionized HzO, and recentrifbged. 

Supernatant was discarded and a small amount of ethanol was added to the pellet. The pellet was 

then placed under nitrogen to dry, and the dried sample was sent to Atlantic Microlabs 

(Norcross, GA) for elemental analysis. 



2.3. IMAGING OF PHB INCLUSIONS 

2.3.1. Imaging Purified PHB Inclusions 

2.3.1.1. Atomic Force Microscopy ('I'M Explorer) 

C. necator was grown using standard PHBH production conditions and the inclusions 

were isolated (2.1.4,2.1.5.2). Isolated inclusions were concentrated 1 OX - 20X by centrifbgation 

(10,000 rpm, 10 min) and resuspended in deionized water (inclusions isolated with sonication 

followed by filtration (2.1.4) were used unprocessed and without total protein determination). 

The total protein content in the concentrated inclusion sample was measured as 0.2-0.6 mglml 

with the Bradford Assay (Bio-Rad, Hercules, CA, Cat# 500-0006). The concentrated inclusions 

were vortexed and then 25 -50pl were placed on an amino-silane coated slide (Invitrogen, 

Carlsbad, CA, Cat# 20- 100 1-25) and incubated for 1 h at room temperature. The slide was 

washed with deionized water and dried for around 1 h. The slide was then placed under the 

AFM for contact mode imaging in air (TM Explorer, Veeco, Santa Barbara, CA), using standard 

SiN3 contact mode tips (Veeco, Santa Barbara, CA, Cat# MSCT-EXMT-BF). 

2.3.1.2. Atomic Force Microscopy (Veeco Multi Mode) 

C. necator was grown using standard PHBH production conditions and the granules were 

isolated (2.1.5.2.). Isolated inclusions were concentrated 10X - 20X by centrifugation (10,000 

rpm, 10 min) and resuspended in deionized water. The total protein content in the concentrated 

inclusion sample was 0.2 - 0.6 mglml as measured with the standard Bradford Assay. Amino 

silane coated glass slides were cut to approximately 1 X lcm, and cleansed with nitrogen gas. 25 

- 50p1 of isolated inclusions were placed on amino silane coated glass slides and incubated for 1 

h at room temperature. After incubation the slides was washed with deionized water and dried. 

The slides were adhered to metal pucks using double sided tape (Ted Pella, Redding, CA, Cat#: 

162 18). Sample was scanned using Olympus AC240TS silicon probes with A1 backside coating 

(Asylum Research, Santa Barbara, CA). The probes had a resonance frequency of 70 - 80 KHz 

in air. The scanning was done at a rate of 1 Hz, a setpoint of value of around 1, a proportional 

gain of 0.5 - 0.8, and an integral gain of 0.3 - 0.6. 



2.3.1.3. Fluorescent Microscopy 

C. necator was grown using standard PHBH production conditions and the inclusions 

were isolated (2.1.5.1,2.1.5.2). The isolated inclusions were then concentrated 10 - 20X by 

centrifugation (10,000 rpm, 10 min) and resuspended in deionized water. Inclusions were 

stained with a mixture of DiO and Nile red (50pg/ml each) and the solution was vortexed 

vigorously to allow for adequate mixing. DiO and Nile red are both lipophilic dyes; however, 

DiO cannot penetrate cell membranes whereas Nile red can. 50p1 of the stained inclusions were 

placed on amino silane coated glass slides and allowed to incubate at room temperature for 1 h. 

The solution was then washed and then a drop of mounting medium (VectaSheild, Burlingame, 

CA, Cat# H-1200) was placed on the glass slide sealing a cover slip over the slide. The slide 

was observed with a deconvolution microscope (Olympus 1x7 1, Middlesex, UK). 



CHAPTER 3.RESULTS AND DISCUSSION 

3.1. ISOLATION OF PHB INCLUSIONS 

Standard PHBH culture conditions for C. necator were used to grow the bacteria for a 

period of 24 h, after which time the culture was analyzed for PHB production using HPLC. The 

PHB present in C. necator expressed as a percentage of cell dry weight is shown in Figure 1 1. 

The PHBH culture conditions were in fact allowing C. necator to accumulate significant amounts 

of PHB in each experiment. 

Figure 11. PHB (% of Cell Dry Weight CDW) in C necator after 24 hours under PHBH growth 
conditions. 
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The effectiveness of various lysis techniques was analyzed via fluorescence microscopy 

and atomic force microscopy (AFM). One of the most common methods of lysis used in the 

purification of PHB inclusions is sonication. However, we observed that sonication was causing 
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inclusion aggregation that increased with increasing sonication times, presumably due to the heat 

generated during the sonication, despite the fact that sonication was conducted on ice. AFM 

images of granules isolated by sonication and filtration showed that inclusions were aggregating. 

Furthermore, the sonication did not completely lyse many cells. The AFM images of the 

inclusions purified via sonication followed by filtration is shown in Figure 12. 

Figure 12. AFM Topography Image of PHB Inclusions Purified Via Sonication Followed by 
Filtration. 

Imaging was conducted in air using contact mode with a scan area of 50 X SOpm. The dark areas 
represent low points and the light areas represent high points. Clusters of aggregates could be observed as 
indicated by the boxes. Objects displaying the rod-like morphology of C. necator cells could be observed 
as indicated by the circles. Magnified images of the boxed and circled objects are shown in Figure 13 and 
14. 



Figure 13. Aggregated PHB Inclusions Topography and Line Profile. 

Magnified topography images of aggregated PHB inclusions boxed in Figure 12 (right) and 
corresponding line profiles (left). The line profiles display the height of the objects along the line drawn 
on the right. Using the line profile data, the width of the objects is measured to be approximately 500nm, 
which corresponds to the expected width of PHB inclusions (1). Both the topography and line profile 
images demonstrate that the space between inclusions remains relatively high, which indicative of PHB 
aggregation. 



Figure 14. Unlysed C necator Cells Topography and Line Profile. 
Magnified topography images of unlysed cells circled in Figure 12 (right) and corresponding line profiles 
(left). The topography data demonstrates the rod-like nature of the objects; akin to C. necator 
morphological structure as observed with TEM (55). The long axis of these objects is 2pm in length, as 
measured by line profile data. Based on the object morphology and dimensions, it is concluded that these 
objects are unlysed cells. 



Inclusions were observed to be aggregated together (Figure 13), while other objects 

looked like whole C. necator cells or cell debris. The whole cells are the long oval shaped 

objects with a length of approximately 2 um in Figure 13 and 14 above. It was concluded that 

the sonication protocol used was causing incomplete lysis, and the filtration to remove the cell 

debris enriched these unlysed cells. Aggregation and incompletely lysed cells made this 

procedure inadequate for the purification of PHI3 inclusions. 

Based on these findings, enzymatic lysis was used to break the cells. Lysozyme is an 

enzyme that degrades the peptidoglycan outer membrane coating of bacteria. Post lysozyme 

addition of a high salt concentration creates an osmotic pressure on the bacterial phospholipid 

bilayer, which is followed by an osmotic pressure in the opposite direction when the cells are 

diluted in PBS. These osmotic forces help break open the phospholipid bilayer, underneath the 

bacterial petidoglycan outer membrane. This lysis was observed with fluorescent microscopy 

and the data are shown be101 

Figure 15. Nile Red and DiO Fluorescent Stain of C necdor Whole Cells. 
PHB accumulating C. necator were cultured and then imaged with fluorescence microscopy (top). Scale 
bar: 5pm. Individual cells from the top image have been magnified A,B,C,D,E (bottom). The PHB 
accumulating intracellularly is stained with Nile red, and the bacterial membrane is stained green with 
DiO as expected. 



Figure 16. Nile Red and DiO Fluorescent Stain of ~ ~ a t i c a l l ~  Lysed C n r c z r  Cells. 
PHB accumulating C. necator were cultured and lysed using salt enzymatic lysis (top). Scale bar: 5pm. 
Individual objects from the top image have been magnified A,B,C,D,E (bottom). The objects are stained 
with both Nile red and DiO (green), indicating that they are lipophilic. As PHI3 is the most abundant 
lipophilic structure in C. necator culture in this experiment, the objects are presumably PHB. That fact 
that PHB is stained with both dyes indicates that complete lysis is occurring. By comparing the objects to 
the scale bar in the top image, the size of the objects is estimated to be 1 - 3 pm. Additionally, the 
objects seem irregular in shape. The large size and irregular morphology of the objects indicate that the 
PHB is aggregating. 

Nile red is a low molecular weight lipophilic dye that can penetrate cell membranes and 

stain hydrophobic objects, whereas DiO is a long ampiphilic dye that cannot penetrate through 

cell membranes. Therefore, when cells are intact the DiO will stain the membrane of the 

bacterial cell, whereas the Nile red will stain the inclusions. However, when the membranes 

have been damaged the DiO's long C18 hydrocarbon chain will have an affinity towards 

lipophilic objects. This results in staining of the inclusions by both DiO and Nile red when 

effective lysis takes place. The fluorescence microscopy results indicate that effective lysis was 

taking place, as both the Nile red and the DiO were able to stain the same objects in the lysed 

cell sample, but not in the whole cells. 

However, aggregation was still taking place to some extent in these samples, which is 

indicated by the size, which are larger than individual inclusions that have diameter of 200 - 

500nm under PHBH growth conditions (1). The reason for this aggregation can most likely be 



attributed to the use of salt concentrations to break apart the phospholipid bilayer due to osmotic 

pressure. PHB inclusions are hydrophobic and thus have a natural tendency to aggregate in the 

cell. However, remarkably they exist as distinct granules. TEM evidence of coalescence of 

inclusions is shown when the bacteria have been growing under PHBH conditions for long 

periods of time (55). Such conditions were not used in this study, therefore intracellular 

coalescence is not expected. 

The natural affinity of the inclusions to aggregate is thought to be prevented by the 

presence of the PhaP or phasin proteins that coat the outer surface of the inclusions (19),(38). 

The mechanism of this stabilization of the inclusions within the cell could be due to surface 

charge repulsion, which is created by the protein/phospholipid layer on the surface of PHB 

inclusions. Zeta potential measurements conducted in this study, confirm that the purified 

granules have a negative surface charge. The addition of salt shields the negative charge on the 

inclusion surface. Thus the original electrostatic repulsion that exists between native inclusions 

can be shielded by the addition salt. As the electrostatic repulsion forces decrease, the van der 

Waals attractive interaction may favor the aggregation of the inclusions. The intermolecular 

forces between inclusions can be calculated using the following equations: (1 5): 

Equation 1. Lennard-Jones Potential. 

W(D) = -,4fD6 + B/D" 
A, B = Material Constants (J m6) 
D= Separation Distance = 1 X 10" - 100 X 10" m 

Equation 2. Van der Waals Attractive Force. 
For two spheres of equal radii derived from the attractive component of equation 1. 

F(D) = ~ ~ 1 1 2 ~ '  
F = Force (N) 
A= Hamaker Constant = 1 0-l9 J 
R = Radius of Sphere (m) = 250 X 10-~m 
D = Separation Distance (m) = 1 X 1 om9 - 100 X 10" m 



Equation 3. Electrostatic Repulsion Force 

F@) = ( (4~d) /&)e~* 
F = Force (N) 
A = Area of Contact (m2) = 1.96 X lo-" m2 
0 = surface charge density (c/m2) = -0.0025 c/m2 
E = permittivity constant = 7.08 x-1° 

K = Debye length = 0.1 X m-' 
D = separation distance = 1 X - 100 X 10" m 

Figure 17. Model of Intermolecular Force Between Two PHB Inclusions. 
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The calculations indicate that electrostatic repulsion is greater than van der Waals 

attraction at the separation distances less than 70nm, this may provide repulsion effects to 

prevent granules from aggregating. When salt is present it can render the electrostatic repulsion 

ineffective through shielding, thus causing the van der Waals attractive forces to dominate the 

interaction. 

Therefore, enzymatic lysis avoiding the salt was selected as the procedure in this study in 

order to minimize shielding of the natural electrostatic repulsion between inclusions. A 

procedure involving a freeze thaw, followed by vortexing, in combination with lysozyme lysis 

was examined. The results are shown in the Figure 18. A large population of round objects can 

be observed. These objects are presumed to be inclusions due to the lipophilic staining of the 

0.001 - 

0.0001 

\ 
\ 3 

I I I I I I 

0 20 40 60 80 100 120 
Separation Distance (nm) 



objects. Additionally, the diameter of the objects falls in the range of what is the expected 

diameter of PHB inclusions based on TEM images (55). Moreover, a minimal amount of large 

coalesced objects were observed. AFM images were collected of these granules, which also 

showed the least number of coalesced inclusions among all the procedures used thus far. The 

results of the AFM experiments are shown later in this section. 

Figure 18. Salt Free Enzymatic Lysis of C necator Followed by DiO Staining. Scale Bar: 5pm. 



The salt-free enzymatic lysis appears to be a suitable method to obtain PHB inclusions 

from in native form from C. necator. The enzymatic lysis procedure was best suited for 

obtaining AFM and fluorescence microscopy images of the PHB inclusions. 

The granules prepared using this enzymatic lysis protocol were put through a 

discontinuous sucrose density gradient ultracentrifugation. The ultracentrifugation resulted in 

two distinct bands, one at the 1.19 g/cm3 - 1.22 g/cm3 density interface, and another at the 1.22 

g/cm3 - 1.26 g/cm3 density interface. A lighter band was seen at the 1.16 - 1.19 g/cm3 density 

interface when large amounts of cell lysate was loaded onto the gradient (Figure 19). These 

results demonstrate that PHB inclusions are present in a range of densities, varying between 1.16 

- 1.26 g/cm3. Horowitz and Sanders showed that amorphous granules had a density of 1.17 - 

1.18 g/cm3, whereas crystalline PHB had a density of 1.245 g/cm3 (1 4). The aim of this study 

was to examine amorphous PHB granules, and therefore out of the two prominent bands, the 

1.19 - 1.22 g/cm3 density band was collected for characterization. The 1.16 - 1.19 g/cm3 band 

could not be analyzed, despite falling in the amorphous density range, because of the low amount 

of PHB present (For theoretical understanding of PHs density see sections 3.4.2,3.4.3). 

Figure 19. PHA Sucrose Density Gradient Showing Two Prominent Bands. 



3.2. CHARACTERIZATION OF PHB INCLUSIONS 

Purified PHB inclusions were characterized using elemental analysis, SDS-PAGE, 13c 
NMR, western blotting and zeta potential. These analyses were used to determine whether the 

isolated inclusions resembled native PHB granules. In particular, the amorphous state, the 

protein content, and the surface charge of the isolated inclusions were examined and compared 

with expected results. The data gathered from these characterization studies and published 

literature was used to formulate a model for the native structure of PHB inclusions. 

An elemental analysis of the purified PHB inclusions is given in Table 1. Elemental 

analysis is used determine the presence of elements as a percentage of sample dry weight. The 

data obtained is compared to what is expected for pure PHB and PHB inclusions. The surface of 

the PHB inclusions is thought to be covered with proteins, the most abundant of which is the 

phasin (PhaP) (19),(58). The PHA synthase (PhaC), the negative regulator of PhaP (PhaR) and 

the intracellular depolymerases (PhaZi) are other proteins thought to be associated with the 

granule surface (38). Western blotting data has quantified the molar ratios of PHB: PhaC and 

PhaP: PHB to be 60: 1 and 2: 1 respectively (53). Using these molar ratio numbers as an estimate 

of the elemental composition of protein (40% C, 10% H, 25% N, 25% O), an elemental 

breakdown for PHB inclusions with the associated proteins is calculated (Table 1). The 

elemental analysis results indicate excess proteins purifying with the inclusions, since the 

nitrogen content in purified inclusions is greater than expect values based on calculations. 

Table 1. Elemental Analysis. 

Element Purified Purified Pure PHB PHB inclusions 
Inclusions Inclusions (calculated) with associated 

(Experiment 1) (Experiment 2) proteins 
(calculated) 

C 53.29% 53.29% 56.00% 55.4% 



SDS PAGE gel analysis was conducted to compare the protein banding pattern of 

unlysed cells to that of lysed cells and purified inclusions. The results of this analysis supported 

the conclusion that a large number of proteins were purifying with the inclusions. In particular a 

large amount of a low molecular weight protein (14kDa) seemed to be a major component of 

both the cell lysate and the purified inclusions. This was unexpected, as the phasin or PhaP 

inclusion surface protein (20 kDa), is the smallest molecular size granule associated protein (1 1). 

Additionally, the SDS-PAGE results showed little difference between the protein banding 

patterns of the lysed cells versus the unlysed cells. After analyzing these results it was 

hypothesized that the lowest molecular weight protein appearing the in SDS-PAGE gel was 

lysozyme, since the dialysis tube molecular weight cut off is 10 kDa. The reason for co- 

purification could not be explained by sedimentation rate. 

Figure 20. SDS PAGE of Analysis of Protein in Samples. 
(1) MW Standard, (2) PhaP Standard, (3) cell lysate, (4)lOX concentrated cell lysate, (5) blank, (6)  MW 
Standard, (7) PhaP Standard, (8) 10X PHB inclusions, (9) 50X PHB inclusions 

One possible explanation for these results was that the sampling technique (pipetting 

supernatant and retrieving interface layer of inclusions) was introducing particles from other 

layers into the sample. This experiment was repeated using an alternative sampling technique, in 

which a syringe was inserted directly into the layer of interest. The results of this technique are 

shown below, and clearly indicate that the lysozyme and the other cellular proteins are 

eliminated from the sample. Additionally, the purified inclusion sample appears to be enriched 

for PhaP, as can be seen by comparing the molecular weight standard to the protein banding 



pattern of the purified PHB inclusions. There is also another prominent high molecular weight 

band co-purifying with the inclusions, but this protein has not been identified in this study. 

Figure 21. SDS PAGE Analysis of Protein in Samples. 
(4) Purified Inclusions (8) Cell lysate (9) PhaP Standard (10) MW Standard 

Another granule associated protein that is of interest is PhaC, however, this protein cannot be 

readily observed in an SDS gel because it is not as concentrated as PhaP. Therefore, western 

blotting was conducted on the purified inclusion sample in order to determine whether PhaC was 

co-purifying with the PHB inclusions. The results of this experiment are shown below. 

Figure 22. PhaC Quantitative Western Blot. 
Left Box: PhaC standard curve in order of least to most concentrated samples (0.5ng, 1 .Ong, 1 Sng, 2.0ng, 
2.5ng, 3 .Ong. 3 . k g ,  4.0ng) Right Box: Purified PHB Inclusions. 

This quantitative data indicates the concentration of PhaC in the purified PHB inclusion 

sample, which was calculated as 2.lng in a 3.75~1 of a 10X concentrated inclusion sample. 

HPLC assay was used to determine the concentration of the PHB in the purified sample, which 

was 0.758 mgsl5ml of inclusion sample. The approximate molecular weight of PHB is around 

1000 kDda, and the molecular weight of PhaC is 64 kDa. Based on the concentrations measured 

experimentally and the known molecular weight of PHB and PhaC, the molecular ratio of 



PHB:PhaC was calculated to be 170:l. These results indicate that the purification protocol in use 

was mild enough to keep at least a certain amount of granule associated proteins (PhaC, PhaP) in 

association with the inclusions. 

Figure 23. PhaC Standard Curve Based on Quantitative Western Blots. 
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A distinguishing characteristic of native PHB inclusions, as opposed to purified PHB, is 

that PHB in inclusion form exists in an amorphous state whereas purified PHB exists in a 60 - 
80% crystalline form (1),(56). The isotactic alpha helical structure of PHB can be closely 

packed forming crystalline structures which have been observed by AFM (13),(34),(52). The 

inclusion form of PHB retains an amorphous state, due to the activation energy barrier needed to 

initiate crystallization. As discussed in section 3.4.1. In order to ensure that the purified PHB in 

inclusions were in an amorphous state, as opposed to a crystalline state, 13c NMR data were 
13 collected. C NMR can be used to distinguish between solid and liquid states, since solid 

material does not exhibit a sharp spectrum under normal acquisition conditions (23), (41). Based 

on the "C NMR results shown in the figure below, it can be confirmed that the isolation 

procedure resulted in a population of mobile PHB since a 13c NMR spectrum was observable, 

and this is in agreement with published work (14). 
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Figure 24. "C NMR Indicating Amorphous PHB. 
Whole Cells (top), PHB Inclusions (bottom). (A) Carbonyl 170ppm, (B) Methine 68ppm, (C) Methylene 
4lppm, (D) Methyl 20ppm. 

The results of the SDS-PAGE, western blots, and "C NMR confirmed that the inclusions 

were co-purifying with both PhaP and PhaC, and were in an amorphous state. Therefore, 

enzymatic lysis followed by sucrose density ultracentrifugation seemed to be purifying 

inclusions that resembled native PHB inclusions. Purified PHB inclusions were used in the 

microscopy studies conducted in the next section. 



33. ATOMIC FORCE MICROSCOPY (AFM) AND FLOURESCENCE MICROSCOPY 

TO OBSERVE PHB INCLUSIONS 

The PHB inclusions obtained via salt free enzymatic lysis followed by sucrose density 

ultracentrifbgation were used in AFM imaging. As detailed above, prior to AFM imaging we 

obtained an understanding the amorphous state, protein composition, and aggregation behavior 

of the PHB inclusions. The purified inclusions were firmly adhered to a glass substrate because 

movement of the objects decreases the resolution of the AFM imaging. Additionally, the 

substrate that the sample is placed on is flat in order to reduce background noise. 

Figure 25. Amino Silane Coated Glass Slide Imaged in Contact Mode Air AFM 



Figure 26. AFM Dry Contact Mode Images of Purified PHB Inclusions. 
20 X 2 0 p  Scan Area (Left) Magnified Image (Right). Dimensions of the labeled inclusions on the right are 
shown in Table 2  below. 

Table 2. Dimensions of PHB Granules From Figure 26. 

PHI3 Inclusion Long Axis (nm) Short Axis (nm) Height (nm) 
A 670 540 280 
B 670 600 230 
C 670 600 290 
D 540 540 250 
E 600 540 260 
F 550 400 200 
G 600 540 200 
H 470 400 220 
I 540 540 230 



Figure 27. Fluorescently Stained Purified PHB Inclusions. 
In the images above PHB Inclusions are stained with lipophilic dyes Nile Red and DiO (green), adhered 
to an amino silane coated glass slide, and imaged with fluorescence microscopy. Scale Bar: 5pm. The 
objects stained are unaggregated PHB inclusions, and are similar in size and morphology that observed by 
TEM measurements(55) and AFM measurements conducted in this study. 
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Figure 28. AFM Images of PHB Inclusions Obtained With Tapping Mode in Air. 
Topography Image of 1 X 1 pm Area (top), Corresponding Phase Image (bottom). Large arrows point to 
globules and small arrows point to filaments. 
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Figure 29. AFM Images of PHB Inclusions Obtained With Tapping Mode in Air. 
Topography Image of 0.8 X 0.8pm Area (top), Corresponding Phase Image (bottom). Large arrows 

point to globules and small arrows point to strands. 
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Figure 30. AFM Images of PHB Inclusions Obtained With Tapping Mode in Air. 
Topography Image of 0.8 X 0.8pm Area (top), Corresponding Phase Image (bottom). Arrows point to 
globules. 
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Figure 31. AFM Images of PHB Inclusions Obtained With Tapping Mode in Air. 
Topography Image (top), Corresponding Phase Image (bottom). Approximately 10% of inclusions 
imaged showed a smooth surface where no globules could be observed. 



In the figures above (Figures 26-3 l), isolated inclusions were fixed to amino silane 

coated glass slides via electrostatic attraction. The amino silane coated slides have a positive 

surface charge, whereas the inclusions have a negative surface charge. Inclusions were 

incubated with the slide and then the slides were washed in order to remove the residues that 

were unattached. Finally, the slides are dried and examined using AFM or fluorescence 

microscopy (for the fluorescence microscopy the isolated inclusions had been stained with a 

lipophilic dye prior to slide attachment). The image of the plain amino silane coated slide 

confirms that the roughness of this slide is negligible compared to the objects being viewed. 

Both the AFM and the fluorescent microscopy show a similar density of round granule-like 

objects in the view field. This supports the conclusion that the objects being seen with AFM are 

in fact round lipophilic PHB inclusion bodies. Some of the inclusions observed with AFM were 

as large as 800pm in diameter, which is greater than the diameter of 200 - 500nm for PHB 

inclusions often observed with TEM of fixed inclusions (55). The AFM images conducted in 

this study were done in air, and in published works AFM images of inclusions in air have shown 

similarly large diameters, perhaps due to some phenomenon associated with inclusion drying (I), 

(4),(55)* 

In order to confirm that the objects in the viewfield were PHB inclusions the purified 

inclusions were analytically examined with HPLC, "C NMR, and elemental analysis. The data 

from these analyses confirmed that PHI3 was present in the purified material. Secondly, AFM 

and fluorescence microscopy were conducted in parallel. In the fluorescence microscopy, the 

lipophilic dyes Nile red and DiO were used to stain the inclusions for observation. Under the 

growth conditions used in this study, no other large lipophilic colloidal object is known to exist 

in the cells. Both the Nile red and DiO should stain the same objects under ideal mixing 

conditions. The patchiness of staining observed in Figure 27 is probably due to inadequate 

mixing. The objects that the lipophilic dyes bind to are presumed to be PHB, due to their 

lipophilic nature and similarity to the size and shape of PHB inclusions as determined earlier. 

Both the fluorescent and microscopy results show a similar density distribution of granules, and 

show minimal aggregation of granules. As such this technique seems like a suitable way to 

study native PHB inclusions using AFM. 

High resolution images of the granules were obtained, and it was shown that most of the 

inclusions displayed a rough surface topology (Figures 28-30). Some of the inclusions imaged 



showed a smooth surface (Figure 3 1). The rough surfaces of the inclusions were analyzed in 

order to determine the dimensions of the surface objects. Two types of surface objects were 

observed: globules and filaments. The globules were the most abundant and are highlighted by 

the large white arrows. The filaments are less abundant and are indicated by the smaller white 

arrows. The width of these objects as measured by AFM was determined as 15.7 +I- 5.9nm for 

the globules and 10.0 +I- 2.7nm for the filaments. However, objects that are approximately the 

same size or smaller than the AFM probe radius of curvature have exaggerated lateral 

dimensions when imaged. This exaggeration was accounted for by using an analysis described 

by Vasenka et al. (57), in which the probe and the scanned objects are represented by 

hemispheres. The equation fiom their analysis was used to calculate heights of objects. 

Equation 4. Object Width Broadening Due to Tip. 

H = w2/8& 
W = exaggerated object width 
R, = probe radius of curvature 
H = actual object height 

The probe radius of curvature was supplied by the manufacturer (IOnm), and the object 

width was measured using the phase images. The object height remains the only unknown 

variable and is assumed to be close to the actual height of the object. The calculated height of 

the globular objects was 3. lnm +I- 0.4nm and the calculated height of the filaments was 1.2nm 

+I- 0.lnm. The globules size range that is expected for globular proteins , and the filaments have 

the height of around two alpha helical chains (34). Additionally, by examining the line profile 

obtained topography AFM data the average granule diameter was calculated as 550 +I- 100nm. 



Table 3. Average Dimensions of PHB Inclusions. 

Long Axis (nm) Short Axis (nm) Height (nm) 
740 470 330 

Average 560 540 290 
Standard Deviation 100 90 70 

3.4. PROPOSED MODEL FOR STRUCTURE OF NATIVE PHB INCLUSION 

Native PHB inclusions resulting fiom the synthesis and degradation of PHB within the 

cell are an important component of PHB biosynthesis. By elucidating the physiology of these of 

unique subcellular structures a better understanding of the structure-function relationship of 

native PHB inclusions in PHB biosynthesis is possible. In this section a compilation and 

interpretation of the experimental data in this study and fiom the literature serve as a basis fiom 

which a working model for PHB inclusion structure is proposed. This model represents the 

current understanding of the nature of PHB inclusions. 



3.4.1. Amorphous State of Native PIIB 

Early X-Ray diffraction experiments conducted on purified PHI3 polymer, show a distinct 

pattern associated with crystalline polymer arranged in a helical conformation (27), (9, (30). 

For a long time it was believed that the polymer existed in this helical crystalline conformation 

intracellularly, in the late 1980s; however, both 13c NMR and wide angle X-Ray scattering 

proved to the contrary, and showed that PHB did not confer the crystalline conformation in the 

native intracellular state (2), (20). 

The motivation behind studying the state of the native polymer initially was to understand 

the irreversible loss of activity of the intracellular depolymerase towards some forms of the 

isolated polymer. In particular treatments such as freezing and thawing, long-term storage at 

4OC, close packing by centrifbgation and drying caused the polymer to become inaccessible to 

the intracellular depolymerase (3 I), (32), (1 0). 

In order to reconcile the differences in behavior between treated and untreated polymer, 

Barnard et al. studied the physical state of the native granules with "C NMR, and confirmed that 

the intracellular polymer existed in a totally amorphous state (2). This work led to the start of a 

new model of native PHB granule structure; not as a close-packed and solid subcellular structure, 

but as an amorphous and fluid subcellular structure. 

In this study 13c NMR technique was used as the basis to determine the state of the 

isolated PHB inclusions. Under the acquisition conditions used, solids do not give high 

resolution NMR spectra since their spin relaxation time is much longer than the time scale in 

which data was collected (23), (41). Since clear peaks are seen corresponding to those expected 

for PHB, the isolated granules are presumed to be in an amorphous rather than solid state. These 

results are supported by published PHB NMR studies (14), (2), (46). 



3.4.2. Structure and Density of Crystalline PHB 
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Figure 32. Packing of PHB Chains in Orthorhombic Unit Cell (34). 

The crystalline form of PHB exists as an orthorhombic unit cell containing four repeat 

units from 3 different chains. The unit cell dimensions have been calculated based on X-Ray 

diffraction data (Figure 32). Based on these dimensions (5.76 X 5.95 X 13.20 A) and the mass 

of the PHB repeat units (4 monomers per unit cell), a theoretical density of 1 .26g/cm3 is obtained 

for crystalline material (34). This is slightly higher than the observed density of crystalline PHB 

of 1 .245g/cm3 due to the fact that PHB usually exists in around 80% crystalline form (14), 

(34),(56). 



3.43. Structure and Density of Amorphous PHI3 

I modeled the structure of native PHB using the statistical random coil conformation. In 

this model the lengths of the bonds and the valence angles between bonds are held constant, and 

are both determined by the chemical structure of the polymer. The rotation around the single 

bonds can take any value, and as the number of single bonds increases in the polymer, the 

number of possible states increases exponentially, reaching incomprehensibly large numbers for 

long polymers such as PHB (6). However, based on a value for the average chain end-to-end 

distance, the average radius of gyration can be obtained. Assuming that the random coil on 

average occupied a spherical volume, with a radius equal to the radius of gyration, an estimate 

for the density of PHB is obtained. 

Figure 33. Random Coil Conformation For Polymers (6). 
Rotational Freedom Around Single Bonds For Random Coil Conformation (left), Chain End-to-End 
Distance (right). 

There are four single bonds per unit of PHB backbone, and there are approximately 

44,000 single bonds (statistical segments) in the backbone of each PHB molecule. Each of these 

statistical segments has a length of around 1 A. Based on these numbers, and using the formula 

for the average radius of gyration, a density is calculated. The equations used are given below: 



Equation 5. Chain End to End Distance. 

r = 21(nlnb) 
b = J(3/(2na2)) 
n = units per chain 
a = length per unit 

Equation 6. Radius of Gyration. 

ds2 = d(816) 
r = chain end to end distance 

The theoretical density calculated for amorphous PHB using this formula is 0.67~1cm~. 

This is a significant deviation from the values reported in literature and in this study (1.17 - 1.22 

g/cm3). In this simplified analysis, only one chain in isolation was analyzed. However, in reality 

there are overlaps of many PHB chains in the inclusion space. As chains exist within the same 

hydrodynamic volume and interact, the density would increase beyond that calculated for 

amorphous PHB. With overwrap of 1.8 PHB chains the density increases to a value of 1.20 

g/cm3, which is what is observed experimentally for amorphous PHB. 

3.4.4. Thermodynamic Energy Barrier to Crystallization 

To understand the thermodynamic energy barrier to crystallization it is important to 

understand the structure of the crystalline unit cell in PHB. PHB alpha helical chains align in an 

antiparallel fashion, and putative hydrogen bonding can form to stabilize the crystal structure. 

Based on the unit cell structure of PHB, the hydrogen bonding that seems most likely is between 

the carbonyl oxygen and a hydrogen f?om the methyl side chain. This would lead to four 

hydrogen bonds per unit cell in the crystalline lattice, and these secondary interactions are 

indicated with dashed lines in Figure 34, and the antiparallel helical conformation presented in 

Figure 35. 



Figure 34. Putative Hydrogen Bonds in a Unit Cell of Crystalline PHB (dashed lines) (34). 

Figure 35. Antiparallel Arrangement of Linear Helical PHB Chains. 



A typical value for hydrogen bonds of this type is 1 KJImol. Given the long length of 

PHB chains, even relatively weak secondary interactions can generate high interaction energy 

density. To crystallize the amorphous random coil polymer, the chain must get fiom a state of 

high entropy but low internal energy (amorphous) to a state of low entropy and high internal 

energy (crystal structure). The higher energy of the crystal structure is due to the hydrogen 

bonds. For this change to occur, a nucleation event must take place, which would start the onset 

of crystallization. For the purposes of this study the nucleation event was taken to be the 

formation of one unit cell in the crystal structure. The activation energy required to start 

nucleation in PHB was calculated using the equations below (assuming constant T and P): 

Equation 7. Gibbs Free Energy. 

AG = AU - TAS 
U = Internal Energy = Hydrogen Bonding Energy 
S = Entropy = NmonoxnersKB 

KB = Boltzrnann Constant 
Nmonomers = number of monomers in chain 

Three PHB chains must come together to form one unit cell, therefore in the thermodynamic 

analysis only 3 chains are modeled using the following values: 

Table 4. Internal Energy and Entropy For Different States of PHB. 

State I. Amorphous State 11. Nucleated PHB State 111. Crystalline PHB 
U=O U=O U = 1 KJIMol 
S = NmonomersK~ s=o s = o  

Based on Equation 1 and the values in Table 4 the activation energy that must be obtained in 

order to achieve one nucleation is was derived to be the following: 

Equation 8. Activation Energy For Amorphous PHB Nucleation. 

Activation Energy = NmOnome,KBT = 1.36 X 10-l6 J 



3.4.5. Nucleation Kinetics of Crystallization 

Experimental work with artificial amorphous granules points to the fact that a surfactant- 

like stabilization layer surrounding the inclusions plays an important role in preventing 

crystallization of the polymer in vivo (14). In particular we see that artificial amorphous granules 

can be created by emulsifying PHI3 dissolved in chloroform with the aqueous surfactant 

cetyltrimethylammonium bromide (CTAB) or the detergent sodium cholate. When these same 

granules are dialyzed against deionized water, the surfactant coating difises down its 

concentration gradient, thus leaving the granules bare, after which crystallization is observed 

(14), (46). The results of the artificial granule experiments conducted by Horowitz and Sanders 

are shown in the figure below. 

Figure 36 13c NMR of Artificial Amorphous Granules (14). 
(a) artificial amorphous granules coated with CTAB (b) artificial amorphous granules coated with CTAB 
incubated at 30°C for 11 months (c) artificial amorphous granules coated with CTAB and then dialyzed 
against deionized water (d) artificial amorphous granules coated with sodium cholate (e) artificial 
amorphous granules coated with sodium cholate and then dialyzed against deionized water ( f )  artificial 
amorphous granules coated with sodium cholate, exposed to soy phospholipids and then dialyzed against 
deionized water the peak at 127 ppm is due to the internal benzene-& capillary standard. 



Based on the experiment conducted on artificial granules, it is apparent that maintenance 

of the granules as distinct colloid particles is extremely important for preserving their 

amorphous state. The noncatylitic phasin protein PhaP has been hypothesized to play a role as a 

biological surfactant for the colloidal stabilization of PHB inclusions. 

Native Denatu ArtifScid 

Figure 37. Crystallization of Native Granules in Response to Physical or Chemical Stress or 
Solvent extraction (1  6). 

3.4.6. PHB Inclusion Associated Proteins 

3.4.6.1. PHI3 Synthase (PhaC) 

Four classes of synthases have been identified to date, and more than 59 PHA synthase 

genes from 45 organisms have been observed (39). Class I synthases create short chain length 

PHAs, that consist of 3-5 carbon monomeric units (26), (12), (1 8). Class I1 synthases create 

medium chain length PHAs, with 6-14 carbons in each monomer (38), (39). Class I11 synthases 

are similar to class I synthases, except they consist of two subunits instead of one (47), (54), 



(36). Class IV synthases, have high homology to Class 111, but require an activator for synthase 

activity (38). 

C. necator has been the model organism for studying the class I synthase. This synthase 

(PhaC) was shown to be situated on the surface of PHB inclusions by immunogold labeling (8). 

Several studies point to the fact that the class I synthase is only active when present as a 

homodimer, and chain elongation has been hypothesized to take place in the presence of two 

PhaC active site cysteines (9), (65). The synthase is a 64 kDa protein, and if it is assumed to be a 

globular it would have a radius of around 3.5nm by comparison to a similar sized protein 

(Bovine Serum Albumin, 66 kDa) (49). 

Each PhaC is responsible for the synthesis of many PHB chains as the enzyme must go 

through multiple termination and re-initiation steps. A key parameter in understanding the 

density of this enzyme on the surface of the PHB inclusions is the ratio between the PHB chains 

and PhaC molecules in an isolated PHB inclusion sample. In this study the number of PHB 

chains and PhaC molecules in the isolated sample of PHB inclusions indicated by quantitative 

western blotting was around 170 PHB chains: 1 PhaC. A similar analysis has been conducted by 

the Tian et a1.(53) reports the ratio of PhaC to PHB in a 4 hour C. necator culture grown on TSB 

is 60 PhaC:l PHB. Additionally unpublished data by the same lab has estimated the amount of 

PhaC:PHB in a 24 hour PHBH C. necator culture to be 200 PhaC: 1PHB(49), similar to the 

estimates obtained in our study. The results &om our study will be used to calculate the amount 

of PhaC on the surface of the PHB inclusions in the last part of this section. 

3.4.6.2. Phasin (PhaP) 

PhaP is the most abundant granule associated protein in the cell, and under PHB 

accumulation conditions represents up to 5% of the total cellular protein content (59), (1 1). It 

has been proposed that this protein acts as a natural biological surfactant, coating the outside of 

the PHB granules, thus preventing coalescence and subsequent crystallization of the granules 

(38). The presence of PhaP within the cell has a great impact on the size of the PHB inclusions. 

When PhaP is overexpressed the granules are smaller in diameter than wildtype; whereas when 

PhaP is not expressed only one large granules exists within the cell (43), (44). 

In western blot analyses of the ratio of PHB chains to PhaP molecules of C. necator cells 

grown in TSB for 4 hours, and in PHBH for 24 hours it was found that around 1-2 PhaP 



molecules exist for every PHB chain(53). The size of the phasin protein is around 20kDa, and if 

it is assumed to be a globular protein then the radius should be around 2.lnm when compared 

with protein of similar size (chymotrypsinogen A, 25 kDa) (49). In this study PhaP co-purified 

with the isolated granules at high levels, and could be detected simply by SDS-PAGE followed 

by Coomassie Blue staining. The ease of detection of PhaP is indicative of the fact that the 

protein is in high abundance within the cell under PHBH culture conditions. As with PhaC these 

results will be used to calculate the amount of PhaP on the surface of the inclusions. 

Figure 38. PHA Production as a Function of PhaP Expression (44). 

(A) wild type C. necator (B) APhaC ( C )  APhaR+ over expression of PhaP (D) APhaP no expression of 

phasin (44) 

In addition to the PhaP phasin described above, three other phasins have been identified 

based on homology with PhaP, these homologous proteins are named PhaP2, PhaP3, and 

PhaP4(37). PhaP2, PhaP3, and PhaP4 have predicted molecular weights of 20.2, 19.5, and 20.2 

kDa respectively, and they have been shown to be granule bound; however, they seem to be 



expressed at much lower levels in the cell as compared with PhaP and therefore will not be 

included in this study. 

3.4.6.3. Phasin Regulator (PhaR) 

PhaR is the negative regulator of PhaP that binds to the upstream region ofphaP. When 

PHB biosynthesis occurs, the levels of PhaR are depressed within the cell, thus causing more 

PhaP to be transcribed (38), (64). PhaR is a 20kDa protein, with a radius of 2.lnm, similar to 

that of PhaP(49). It has been calculated through western blots and stereological analyses that the 

ratio of PhaC:PhaR is around 1:2, which translates to a ratio of approximately 85 PHB: 1 PhaR 

based on the PhaC quantitative western results obtained from this study(53). These results will 

be used to calculate the amount of PhaR on the granule surface. 

3.4.6.4. PHB Depolymerases (PhaZ1, PhaZ2, PhaZ3, PhaZ4, PhaZ5) & 3-HB Oligomer 

Hydrolase (PhaY) 

Several bacteria are capable of degrading PHB. PHB is generally released into the 

environment when polymer accumulating cells die and spill their contents into their 

surroundings. Bacteria have evolved to excrete extracellular depolymerases and utilize this 

crystalline form of PHB in their environment (16), (1 7). Bacteria that secrete extracellular 

depolymerases, do not necessarily possess the ability to synthesize PHB intracellularly (3 8). 

By contrast intracellular depolymerases can only act upon amorphous polymer, and are 

only synthesized by bacteria that are able to synthesize PHB intracellularly. PhaY represents 3- 

HB oligomer hydrolases, which are also involved in breaking down polymer (22), (21). 

Just as the PhaC synthase is located on the surface of the inclusions and serves to 

polymerize excess soluble substrate into insoluble storage polymer, the depolymerases are 

located on the surface to conveniently degrade the insoluble polymer into soluble substrate when 

the cell signals it needs carbon and energy. Intracellular depolymerases are not as well 

understood as extracellular depolymerases (62), (42). However, some work has been done to 

characterize these intracellular depolymerases. In particular, PhaZl has been studied by Tian et. 

al. who have observed that in C. necator cells grown in TSB the ratio of PhaC: PhaZ 1 goes fiom 

5: 1 at 4 hours to 1 : 1 at 24 hours (53). The molecular weight of PhaZ 1 is 47 kDa and assuming 

it's a globular protein its radius is assumed to be around 2.8nm based on comparison to a similar 



sized protein (ovalbumin 43 kDa) (53). Since in this study, PHB accumulating conditions are 

used to culture the cells, PhaZl along with other depolymerases are probably not being highly 

transcribed. For this reason the lower ratio of 5 PhaC: 1 PhaZl (or 850 PHB: 1PhaZl) will be 

used to calculate the amount of PhaZl on the surface of the granule. 

3.4.7. PHI3 Inclusion Lipid Monolayer 

Past microscopy studies have revealed what seems like a lipid monolayer surrounding the 

native inclusions. In Figure 39, electron microscope images compare the thickness of the 

cellular membrane to the granule membrane (3). The cellular membrane observed as having 

double the thickness of the granular membrane, leading to the hypothesis that a phosholipid 

monolayer coats the surface of the granule. Additionally, work analyzing the composition of 

isolated granules has found that 0.5% (wlw) of the PHB inclusions is composed of lipids (38). 

However, more work understanding the component of the granule stabilization layer in needed to 

confirm the presence of lipids on the surface of the granule. 

Figure 39. Comparison of PHB granule surface layer and cellular membrane in Rhodospirillum 
rubrum (3). 



3.4.8. PHI3 Inclusion Surface Charge Density 

One mechanism by which PHB inclusions are thought to remain as distinct colloidal 

entities within the cell is via electrostatic repulsion. For electrostatic repulsion to take place, the 

granules must possess a surface charge density. 

Zeta potential experiments conducted in this study revealed that the inclusions have a 

negative surface charge density (BIC PALS Zeta Potential Analyzer). Dilute amounts of purified 

PHB inclusions were studied under an electric field, in an aqueous solution of ionic strength I = 

0.006. At this ionic strength the Debye length IS" is approximately 1Onm. The Smoluchowski 

equation was used to calculate zeta potential based on mobility measurements since Ka >> I 

(where K is the Debye length and a is the inclusion diameter). 

Equation 9. Smoluchowski Equation. 

P = 
p = v/E = electrophoretic mobility 
v = velocity 
E = electric field 

= zeta potential 
E = electric permittivity 
11 = viscosity 

By inserting the electrophoretic mobility value obtained fiom the experiment into the 

Smoluchowski Equation, a value of -32.0 mV is obtained for the zeta potential. In order to 

calculate the surface charge density the linearized Poisson Boltzman equation, along with the 

parallel-plate capacity model for surface potential were used. 

Equation 10. Linear PB Equation with Debye Huckel Approximation. 
tJ = E K ~ ~  

ol = surface charge density (of inclusion or zeta potential surface) 
E = electric permittivity 
K = Debye length 
Y = surface potential (of inclusion or zeta potential surface) 



Equation 11. Parallel Plate Capacity Model. 
(Yo - Y5)/6 = aij/&ij 

Yo = inclusion surface potential 
Ys = zeta potential 
6 = distance between zeta potential surface and surface of granule 
as = charge density at zeta potential surface (obtained from linear PB equation) 
~8 = electricity permittivity 

Once YO is calculated, it is applied in the linear PB equation to calculate the inclusion 

surface charge density, in this case calculated to be -0.00225 c/m2. This value is equivalent to 

lel70 nm2, which is the approximate surface charge density on the PHB granule. 

3.4.9. PHB Inclusion Mass Density 

Based on the results of the ultracentrifbgation experiments conducted in this study, the 

density of the purified PHB inclusions was found to be in the range of 1.19 - 1.22 g/cm3. This 

density range is slightly higher than 1.17 - 1.1 8 g/cm3 observed by Horowitz et. al. of the PHB 

homopolymer. Using a middle value of the PHB inclusion density range observed in this study 

of 1 .20g/cm3, considering that the molecular weight of PHB is 1 X 1 o6 Daltons, and that the size 

of PHB inclusions is between 200nm and 500nm, the number of chains in a PHB granule can be 

approximated to be between 3000 - 50,000 chains per PHI3 granule. 

3.4.10. PHB Inclusion Structural Model 

Based on the work reviewed in this section a model for the structure of native PHB 

granules is presented. In particular this model will take into account the fact that PHB granules 

exist as distinct amorphous colloidal structures within the cell, with a stabilization layer 

consisting of the granule associated proteins PhaP, PhaC, PhaR, and PhaZ1. Superimposed on 

top of this stabilization layer is the negative surface charge density of the inclusions likely due to 

the proteins or putative phospholipids. 



However, before proceeding with the model, an understanding of the distribution density 

of each granule-associated protein on the surface of the inclusion should be calculated. Based on 

the data collected in this study and in published works, the ratio of PHB chains to each granule 

associated protein of interest was obtained. This value was used to get a number for the proteins 

present in a 200nm diameter and a 500nm diameter PHB granule, and the results are shown in 

Table 5. 

Table 5. Number of Proteins Per PHB granule. 

PHB Inclusion Diameter 
Size (nm) 

# of PhaC molecules 
170PHB: 1PhaC 

# of PHB chains 

# of PhaP molecules 
1PHB: 1 .5PhaP 

3000 

# of PhaR molecules 
85PHB: 1PhaR 

# of PhaZl molecules 
850PHB:lPhaZl 

It is assumed that all proteins are globular proteins. The radii of PhaC, PhaP, PhaR, and PhaZl 

are taken to be 3.5,2.1,2.1, and 2.8nm respectively (49). The surface area that each globular 

protein occupies is calculated by the following equation: 

Equation 12. Effective Surface Area Occupied by Globular Protein 

SA (protein) = 4r2 

A square is used, rather than a circle to calculate the area occupied by each globular 

protein, because close packing is assumed. For the purposes of this situation the surface that the 



proteins are attached to can be assumed to be flat, as the granule is many orders of magnitude 

larger than the proteins, and the curvature of the inclusions will not affect the protein close 

packing. 

Figure 40. Close Packing of Spheres on a Planar Surface. 

By calculating the area occupied by each granule associated protein, and then multiplying 

by the number of protein molecules associated with each granule (Table 5), we can calculate the 

percent of the surface of the granules that is covered with each protein was determined. Since 

volume increases with the cube of the radius, whereas surface area only increases with the square 

of the radius, the percent protein coverage will become greater as the granules increase in size. 

The results of these calculations are shown in Table 6. 



Table 6. Percent of Protein Coverage on PHB Granule Surface. 

PhaC PhaP PhaR PhaZl 
Radius 3.5 nm 2.1 nm 2.1 nm 2.8 nm 

Area Occupied by One 50 nm2 20 nm2 20 nm2 30 nm2 
Protein 

Area Occupied by 900 nm2 35000 nm2 600 nm2 100 nm2 
protein on Granule of d = 
200 nm 

Percent of total Granule 0.7% 27.1% 0.5% 0.1% 
(d = 200 nm) Area 
Occupied by protein 

Area Occupied by 1 4400nm2 590000 nm2 10000 nm2 1900 nm2 
protein on Granule of d = 
500 nm 

Percent of total Granule 1.8% 74.4% 
(d = 500nm) Area 
Occupied by Protein 

Average Percent of 1.2% 50.1 % 0.9% 0.2 % 
granule covered by 
protein 

Based on the calculations above a consolidated model for the surface of PHB inclusions 

can be obtained, in which the most prominent granule associated protein is PhaP, after which 

there is PhaC and PhaR, followed by PhaZ1. The spaces in between these proteins contain a 

phospholipid monolayer. The surface has a charge density of le/71nm2, leading to a total charge 

of 1830 e to 1 1 100 e (depending on the size of the granule). Underneath the complex stability 

layer, lies the bulk of the inclusion, which is composed of amorphous PHB polymer. A 

schematic of this model is shown in the Figure 41. 



0 1 PhaP: 
1 PHB 

0 1 PhaR: 
100 PHB 

1 PhaZ1: 
1000 PHB 

Figure 41. Schematic of the Stabilization Layer on Native PHB Inclusions. 



CHAPTER 4.CONCLUSIONS 

1. PHB inclusions in a native state without with proteins (PhaP and PhaC) intact at the surface 

were isolated from C. necator. The purified inclusions subjected to elemental analysis, SDS- 

PAGE, western blots, 13c NMR, and microscopy. 

2. Granule diameter was obtained by AFM measurements. The granules, oval or round in shape, 

have an average diameter of approximately 550nm +/- 100nm. TEM indicates diameters 

between 200 - 500nm (55). 

3. 13c NMR spectra confirmed that the PHB exists in an amorphous state with a density between 

1.19 - 1.22 g/cm3 as indicated by density gradient ultracentrifugation. The PHB molecular chain 

was modeled considering a random chain conformation a chain overwrap number of 1.8 

described the amorphous state of native inclusion PHB. 

4. PHB related proteins exist on the isolated PHB inclusions surface as confirmed SDS-PAGE, 

western blot , and AFM. The average diameter of the globules observed on the inclusion surface 

was measured as 3.lnm +I- 0.4nm which is within the range of estimated inclusion associated 

proteins (2.lnm - 3.5nm). The surface charge on the PHB inclusions as determined by zeta 

potential measurements is 1 e/70nm2. 

5. The model of PHB inclusion proposed integrates experimental data from this study and 

published work to represent our current understanding of the structure of native PHB granules. 

This model combines amorphous PHB overwrap number and density, surface charge density, 

surface protein coating, and size of inclusions and globule proteins based on AFM analysis. This 

model, it is hoped, will serve as a drawing board for overall understanding the structural 

property-function relationship of PHI3 inclusions and PHB biosynthesis. 



CHAPTER 5.RECOMMENDATIONS FOR FUTURE WORK 

Preventing granule aggregation, together with maintaining amorphous PHB and granule 

associated proteins, resulted in a purification technique that produced high resolution AFM 

images of native PHB granules. This purification technique can be used as a tool to study 

inclusion morphology. As a first step, identification and confirmation of the objects on the 

surface of the PHB inclusions could be conducted by immunogold labeling granule associated 

proteins (PhaP, PhaC, PhaR, PhaZ) and imaging the surface of the granules. This technique has 

been used in the past with DNA (49, and AFM images can distinguish the location of the gold 

label. Since the material properties of gold colloids differ from that of globular proteins, 

potentially the labeled proteins can be differentiated from the unlabelled proteins using AFM. 

This experiment may allow a direct identification of protein of the granule surface as was 

envisioned for this study. 

Dennis et al. claimed that there are two are smooth and rough inclusions(4). The smooth 

inclusions may have lost the protein coating, and therefore may be in a crystalline state. The 

surface and mechanical property differences between smooth and rough inclusions could be 

explored further with AFM nanoindentation conducted on the surface of the inclusions, and 

differentiate the surface features of protein covered versus exposed PHB chain inclusions. 

Finally, in order to complement the AFM and microscopy studies, hrther biochemical 

analysis of purified inclusion composition could be conducted. In particular, very little is 

understood about the putative monolipid layer of the surface of inclusions. Using inclusions 

isolated in this study an analysis of lipid content can be conducted. This could determine if 

lipids are present, and if present the relative amount of lipid to inclusion PHB estimated. 



CHAPTER 6.APPENDICES 

6.1. PhaP PURIFICATION 

PhaP was isolated according to the protocol described in the materials and methods section in 

order to obtain a standard from which to identify PhaP in isolated inclusions. The results of the 

purification are shown the gel below. 

Figure 42. Fractions of Isolated PhaP. 

(1) Some intacthome clipped PhaP (2) Almost all intact PhaP (3) Almost all intact PhaP (4) Almost all 

clipped PhaP (5) Some intact/some clipped PhaP. 

6.2 PURIFYING PHB INCLUSIONS ON GLASS USING ANTIBODY 

6.2.1. Purification of IgG fraction of Antibody 

1 ml of Protein A Sepharose FF (GE Healthcare, Piscataway, NJ, Cat# 17- 1279-0 1) was 

packed into a 0.5cm diameter glass column and the column was equilibrated with 50ml of 

binding buffer (20mM sodium phosphate pH 7) at 4OC. lml of rabbit anti-PhaP blood serum was 



loaded onto the column and the flow through was collected. Ten lml fractions were collected 

while flowing binding buffer through the column. The flow rate of buffer through the column 

was kept at a rate below lmllmin for the whole experiment. Seven, 1 ml fractions were collected 

in tubes containing lOOpl titration buffer (lM Tris-HCl pH 9) while flowing elution buffer (0.1M 

sodium citrate pH 3) through the column. The column was washed with 50ml of dH20, 5ml of 

elution buffer, and then 50ml of binding buffer in order to regenerate the column. The Azso for 

each of the column fractions was recorded using a spectrophotometer. Fractions containing a 

significant amount of protein were collected and run on an SDS PAGE gel (lOug protein/lane). 

The fractions containing IgG were pooled using arnicon ultra filter (Billerica, MA, Cat# 

UFC901008) by centrifugation at 4OC, 5000 rpm, and 15 min, and stored in buffer containing a 

final concentration of 0.2% NaN3 at 4OC. 

6.2.2. Acetone Powder Purification 

Acetone powders were prepared by growing AphaP (or AphaC) cell culture after 75 h on 

PHBH media, which was centrifuged down to around 5.758 wet weight of pellet (strains courtesy 

of the Sinskey Lab, MIT). The pellet was resuspended in 6ml of 0.85% saline and left on ice for 

5 minutes. 0.46ml of -20°C acetone was added to the solution which was then vortexed 

vigorously and then left to incubate at O°C for 30 min. The resulting precipitate was centrifbged 

at 12,000 X g for 10 min. The pellet was resuspended in fresh acetone (35m1, -20°C) with 

vigorous vortex mixing and then allowed to incubate at O°C for 10 min. Pellet was collected by 

centrifugation at 12,000 X g for 15 min, and then transferred to filter paper and allowed to air dry 

at room temperature overnight. The dried pellet was then crushed using mortar and pestle, and 

then stored in an airtight container at room temperature. The total acetone powder obtained was 

456mgs per 5.75 g wet weight of cells. 

800pl of anti-PhaP (or anti-PhaC) blood serum was incubated with 1 OOmg of AphaP (or 

AphaC) acetone powder at 4OC with periodic mixing for 30 min. Supernatant from 12 min 

centrifugation at 12,000 X g was isolated and incubated with another lOOmg of AphaP (or 

AphaC) acetone powder at 4OC with periodic mixing for 30 min. The resulting solution was 



centrifuged at 12,000 X g for 12 minutes and the resulting supernatant was the acetone powder 

purified blood serum. 

6.23. Antibody Attachment to NHS coated glass slides 

Purified IgG from anti-PhaP blood serum was incubated on NHS coated class (Nanocs, 

New York, NY Cat#: NGS 0002) slide for 20 h. The slide was washed with 1% ethanolamine 

for 30 minutes. The slide was then washed with PBS (pH 7.3-7.5) for 30 min, which was 

followed by a wash with BlockAid (Invitrogen, Carlsbad, CA, Cat# B- 107 10) diluted with and 

equal volume of PBST (PBST = PBS with 0.1% Tween 20). This was followed 2 X 5 min PBST 

washes. The slide was then washed with secondary antibody (all developing reagents were fiom 

Western Light Kit, 2ul in 1 Om1 PBST) for 1 hour, followed by 2 X 5 min PBST washes, 2 X 2 

min assay buffer washes, and finally incubation with 3ml of CSPD development solution for 5 

min. The slide was developed using chemiluminescence at high sensitivity (10 min development 

time). 

6.2.4. Antigen attachment to Antibody coated glass slides 

Purified IgG from anti-PhaP blood serum was incubated on NHS coated glass slide for 20 

h. The slide was washed with 1% ethanolamine for 30 min. The slide was then washed with 

PBS (pH 7.3-9.5) for 30 min, which was followed with BlockAid wash (1 BloackAid: 1 PBST, 

PBST = PBS with 0.1 % Tween 20). The slide was then washed with DH5WpGY3a+ cell lysate 

(strain courtesy of the Sinskey Lab, MIT) for 2 h, followed by 2 X 5 min PBST washes. The 

culturing procedure for DH5&/pGY3a+ is explained at the end of the protocol. This was 

followed with an Anti-GFP (Abcam, Cambridge, MA, Cat# ab6661-100) wash for 1 h (3p1 in 

lOml), 3 X 5 minute PBST washes, 2 X 2 min assay buffer washes, and finally a 3ml CSPD 

substrate incubation for 5 min. The slide was placed in development folder and developed for 10 

min using chemiluminescence at high sensitivity. 



6.2.5. DHSaIpGY3a+ culture and lysis conditions 

40ml of 24 h lOOml LB media culture was centrifuged and resuspended in 1 Om1 of PBS. 

lml of E.coli protease inhibitor cocktail was added. lOml of cell suspension was sonicated for 4 

rnin on high (30 sec pulse, 15 sec pause). lml of protease inhibitor cocktail was added cell lysate. 

DHS&/pGY3a+ is a strain of E. coli that constitutively expresses PhaP-GFP. 

6.2.6. Specific Interaction between Antibody and PHB Inclusions 

Four 26p10.5 mglml spots of antibody (IgG fraction, rabbit polyclonal) were placed on 

an NHS coated glass slide and allowed to incubate for overnight and 30 rnin at RT and PH:7.3- 

7.5. The four spots were the following: 

i. 1 = IgG purified from anti-PhaP blood serum 

ii. 2 = IgG purified from anti-PhaC blood serum 

iii. 3 = anti-GFP (Invitrogen, Carlsbad, CA, Cat# A1 1 122) 

iv. 4 = anti-MYC (Upstate, Charlottesville, VA, Cat# 06-549) 

The slide was washed with 1% ethanolamine for 1 h, followed by a wash with BlockAid 

(1 : 1 PBST) for 1 h, and then a PBST wash for 5 min. The slide was then washed with RE 101 8 

(strain courtesy of the Sinskey Lab, MIT) cell lysate for 30 min. The RE 10 18 culture condition 

are detailed at the end of this protocol, this was followed with 3 X 5 rnin PBS washes. The slide 

was then washed with anti-GFP (all developing reagents were from Western Light Kit, 3pl in 

lOml PBS) for 1 h, followed by 3 X 5 min PHs washes, 2 X 2 minute assay buffer washes, and 

finally 3ml CSPD incubation for 5 min. The slide was placed in a plastic development folder 

and imaged using chemiluminescence superhigh sensitivity for 10 rnin exposure. 

6.2.7. RE1018 culture and lysis conditions 

A 48 h PHBH culture (50ml) was centrifuged down and resuspended in 1 ml protease 

inhibitor cocktail, 1 ml PBS, and 50mg lysozyme and left to incubate at 37OC for 1 h. 0.5ml of 



5M NaCl was added along with 20p1 of DNase (10U/p1) and the solution was incubated at 37'C 

for 1 h. The cell lysate was brought up to a final volume of 1 Om1 with PBS. RE 10 18 is a C. 

necalor strain that expresses PhaP-GFP, rather than wildtype phasin. 

6.2.8. Methodology 

6.2.8.1. Anti-PhaP IgG 

Anti-PhaP IgG fraction was purified in order to have a relatively pure and sufficient amount of 

anti-PhaP with which to work with for the surface chemistry experiments. The results are shown 

in the gel below. 

Figure 43. Isolated Fractions of Anti-PhaP IgG. 
(I), (8), (9), (10) flow through fractions (2) MW standard (3), (4), (5) ,  (6), (7) Anti-PhaP IgG fractions 

6.1 3.2 Anti-PhaC IgG 

Anti-PhaC IgG fkaction was purified in order to have a relatively pure and suficient amount of 

anti-PhaC with which to work with for the surface chemistry experiments. The results are shown 

in the gel below 



Figure 44. Isolated Fractions of Anti-PhaC IgG. 
(1)  MW standard (2) - (7) Anti-PhaC IgG fractions, (8) - (10) flow through fractions 

6.2.8.3. Acetone Powder Effectiveness 

Acetone powders were made and incubated with anti-PhaP in order to determine whether they 

were able to purify the PhaP one step further. Based on the results of western blots that used 

acetone treated anti-PhaP and regular acetone powder, it was determined that acetone powders 

were not increasing the purity of the antibody, but rather served to decrease the activity of the 

antibody. 

Figure 45. Regular anti-PhaP to detect PhaP (right) & Acetone powder treated anti-PhaP to detect 
PhaP (left) 



6.2.8.4. Monitoring Attachment onto Glass Slide 

An attempt to develop an affinity slide that selects PHB from a solution of cell lysate, by use of 

antibodies was attempted. The results of the preliminary experiments are shown in the figure 

below. 

Figure 46. Monitoring Attachment to Glass Slide with Chemiluminescence. 
(Top) Covalent attachment of anti-PhaP IgG to NHS coated glass slide as indicated by 
chemiluminescence. (Middle) Binding of PhaP-GFP onto anti-PhaP IgG/NHS coated glass slide as 
indicated by chemiluminescence. (Bottom) Non-specific binding of PHB (PhaP-GFP strain) with 
antibody treated spots on NHS coated glass slide. Four spots from leR to right anti-PhaP IgG, anti-PhaC 
IgG, anti-GFP IgG, anti-myc IgG (negative control). 
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