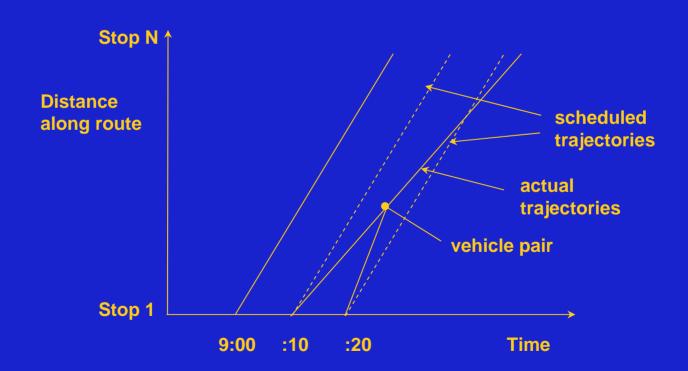
Performance of a Single Route

Outline

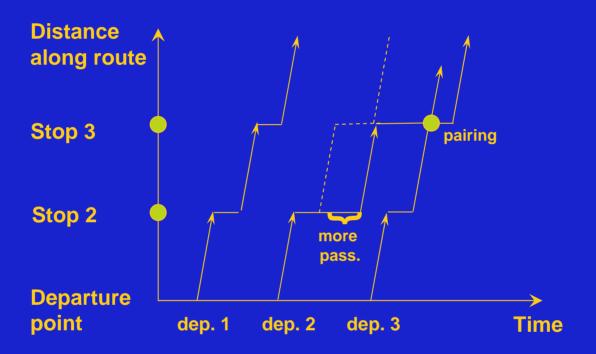
- 1. Service variation along route
- 2. Running time models
- 3. Dwell time models

Service Variation Along Route

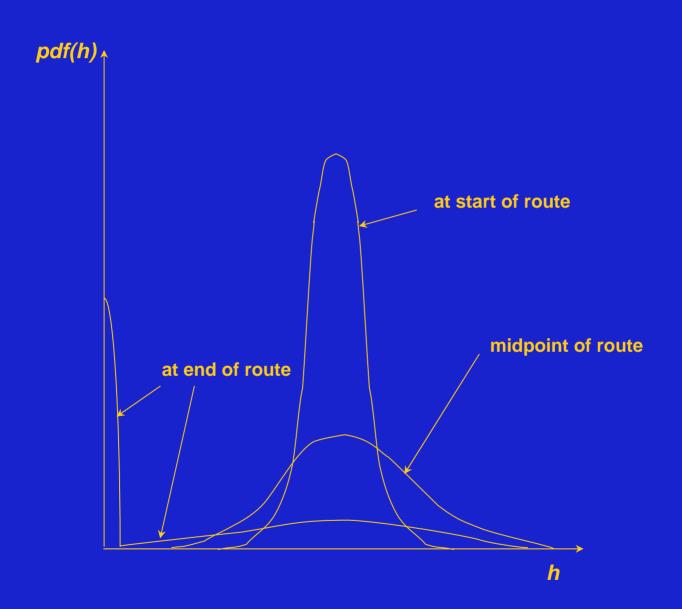
- Service may vary along route even without capacity becoming binding:
 - the headway distribution can vary along the route, affecting E(w)
 - at the limit vehicles can be paired, or bunched
 - this can also result in passenger load variation between vehicles



Service Variation Along Route (cont'd)



Service Variation Along Route (cont'd)



Factors Affecting Headway Deterioration

- Length of route
- Marginal dwell time per passenger
- Stopping probability
- Scheduled headway
- Driver behavior

Simple model:

$$e_i = (e_{i-1} + t_i) (1 + p_{i-1} \cdot b)$$

where e_i = headway deviation (actual-scheduled) at stop i

 t_i = travel time deviation (actualscheduled) from stop i-1 to i

 p_i = passenger arrival rate at stop i

b = boarding time per passenger

Mathematical Model for Headway Variance*

$$\text{var}(h_i) = \text{var}(h_{i-1}) + \text{var}(\Delta t_{i-1}) + 2p_{i-1}(1-p_{i-1})(c \bullet \overline{q}_{i-1} + 1)^2$$

$$+ 2c^2 \text{ var}(q_{i-1}) \Big[1-\rho_q + p_{i-1}\rho_q \Big] 1 - p_{i+1})$$

$$+ c(1-p_{i-1})^2 \bullet \text{cov}(\Delta q_{i-1}, h_{i-1})$$
 where:
$$\text{var}(h_i) = \text{headway variance at stop } i$$

$$\text{var}(\Delta t_i) = \text{variance of the difference in running time }$$

$$\text{between successive buses between stops } i-1 \text{ and } i$$

$$p_i = \text{probability bus will skip stop } i$$

$$c = \text{marginal dwell time per passenger served at a stop } i$$

$$q_i = \text{mean number of passengers per bus served at stop } i$$

$$1 = \text{the constant term of the dwell time function }$$

$$\text{var}(q_i) = \text{variance of the number of passengers served }$$

$$\text{per bus at stop } i$$

$$\rho_q = \text{correlation coefficient between the passengers served }$$

$$\text{by successive buses at a stop }$$

$$\text{cov}(\Delta q_i, h_i) = \text{covariance of the difference in number of }$$

$$\text{passengers served by successive buses and the }$$

$$\text{headway at stop i }$$

^{*} Adebisi, O., "A Mathematical Model for Headway Variance of Fixed Bus Routes." Transportation Research B, Vol. 20B, No. 1, pp 59-70 (1986).

Vehicle Running Time Models

Different levels of detail:

- A. Very detailed, microscopic simulation:
 - represents vehicle motion and interaction with other vehicles, e.g. buses operating in mixed traffic, or train interaction through control system

B. Macroscopic:

- identify factors which might affect running times
- collect data and estimate model

Running Time includes dwell time, movement time, and delay time:

- dwell time is generally a function of number of passengers boarding and alighting as well as technology characteristics
- movement time and delay depend on other traffic and control system attributes

Typical bus running time breakdown in mixed traffic:

50-75% movement time

10-25% stop dwell time

10-25% traffic delays including traffic signals

Dwell Times

- Vehicle dwell time affects:
 - system performance
 - service quality
- A critical element in vehicle bunching resulting in:
 - high headway variability
 - high passenger waiting times
 - uneven passenger loads
- Dwell time impact on performance depends on:
 - stop/station spacing
 - mean dwell as proportion of trip time
 - mean headway
 - operations control procedures

EXAMPLES:

Commuter rail ---> little impact of dwell time on performance

Long, high-frequency bus route ---> major impact Light rail ?

Dwell Time Theory

- Dwell time depends on many factors:
 - Human, modal, operating policies & practices, mobility, weather, etc.
- For a given system we have the following possible models:
 - Single door, no congestion and interference:
 DOT = a + b(DONS) + c(DOFFS)
 - 2. Single door with congestion and interference:

Dwell Time Theory (cont'd)

- For a given system we have the following possible models ...
 - 3. Single car with m doors:

$$DT = max(DOT_1 ..., DOT_m)$$

With balanced flows:

4. *n*-car train:

$$DT = max(DT_1, ..., DT_n)$$

With balanced flows:

MBTA Green Line Analysis

- Branching network of 28 miles (45 km) and 70 stations
- 52-seat ALRVs operate in 1-, 2-, and 3-car trains
 - high floor, low platform configuration
 - 3 doors per car on each side
 - single side boarding/alighting
- Trunk service in central subway:
 - 10 or 14 stations on round-trip
 - 1- to 2-minute headways
 - peak flows ≈10,000 passengers/hour

Models with Crowding Term

A. One-car trains:

DT =
$$12.50 + 0.55*TONS + 0.23*TOFFS$$

(8.94) (3.76) (2.03)
+ $0.0078*SUMASLS$ (R² = 0.62)
(6.70)

SUMASLS = TOFFS*AS + TONS*LS

B. Two-car trains:

DT =
$$13.93 + 0.27*TONS + 0.36*TOFFS$$

(7.43) (2.92) (3.79)
+ $0.0008*SUMASLS$ (R² = 0.70)
(2.03)

Predicted Dwell Times

ONS	LPL	1-Car DT	2-Car DT
0	any #	12.5	13.9
10	<53	20.3	20.2
10	150	35.6	21.0
20	<53	28.1	26.5
20	150	58.7	28.1
30	<53	35.9	32.8
30	150	81.8	35.1

Findings

- Dwell times for ALRVs are quite sensitive to:
 - Passenger flows
 - Passenger loads
- The crowding effect may well be non-linear.
- Dwell times for multi-car trains are different form those for one-car trains.
- The dwell time functions suggest high sensitivity of performance to perturbations
- Effective real-time operations control essential
- Running mixed train lengths dangerous
- Simulation models of high frequency, high ridership light rail lines need to include realistic dwell time functions.