Macro Design Models for a Single Route

<u>Outline</u>

- 1. Green Line Dwell Time Model
- 2. Introduction to analysis approach
- 3. Bus frequency model
- 4. Bus size model
- 5. Stop/station spacing model

Models with Crowding Term

A. O	One-car trains:				
DT =	12.50 + 0. (8.94)	.55*TONS + (3.76)	0.23*TOFFS (2.03)		
+ (0.0078*SUM (6.70)	IASLS	(R ² = 0.62)		
SUM/	ASLS = TOF	FS*AS + TON	S*LS		
B. Tv	vo-car train	s:			
DT =	13.93 + 0. (7.43)	.27*TONS + (2.92)	0.36*TOFFS (3.79)		
+ (0.0008*SUM (2.03)	IASLS	(R ² = 0.70)		

Nigel H.M. Wilson

Predicted Dwell Times

ONS	LPL	1-Car DT	2-Car DT
0	any #	12.5	13.9
10	<53	20.3	20.2
10	150	35.6	21.0
20	<53	28.1	26.5
20	150	58.7	28.1
30	<53	35.9	32.8
30	150	81.8	35.1

Findings

- Dwell times for ALRVs are quite sensitive to:
 - Passenger flows
 - Passenger loads
- The crowding effect may well be non-linear.
- Dwell times for multi-car trains are different form those for one-car trains.
- The dwell time functions suggest high sensitivity of performance to perturbations
- Effective real-time operations control essential
- Running mixed train lengths dangerous
- Simulation models of high frequency, high ridership light rail lines need to include realistic dwell time functions.

Introduction to Analysis Approach

- Basic approach is to establish an aggregate total cost function including:
 - operator cost as f(design parameters)
 - user cost as g(design parameters)
- Minimize total cost function to determine optimal design parameter (s.t. constraints)

Variants include:

- Maximize service quality s.t. budget constraint
- Minimize consumer surplus s.t. budget constraint

Nigel H.M. Wilson

Bus Frequency Model: the Square Root Model

Problem: define bus service frequency on a route as a function of ridership

Total Cost = operator cost + user cost

$$Z = c \bullet \frac{t}{h} + b \bullet r \bullet \frac{h}{2}$$

where Z = total (operator + user) cost per unit time

c =operating cost per unit time

t = round trip time

h = headway – the decision variable to be determined

b = value of unit passenger waiting time

r = ridership per unit time

Minimizing Z w.r.t. h yields:

$$h = \sqrt{\frac{2ct}{br}} \text{ or } \sqrt{2\left(\frac{c}{b}\right)\left(\frac{t}{r}\right)}$$

Nigel H.M. Wilson

Square Root Model (cont'd)

This is the Square Rule with the following implications:

- high frequency is appropriate where (cost of wait time/cost of operations time) is high
- frequency is proportional to the square root of ridership per unit time for routes of similar length

Frequency

Frequency-Ridership Relationship

Nigel H.M. Wilson

Square Root Model (cont'd)

 load factor is proportional to the square root of the product of ridership and route length.

Bus Capacity-Ridership Relationship

Nigel H.M. Wilson

Square Root Model (cont'd)

Critical Assumptions:

- bus capacity is never binding
- only frequency benefits are wait time savings
- ridership ≠ f (frequency)
- simple wait time model
- budget constraint is not binding

Possible Remedies:

- introduce bus capacity constraint
- modify objective function
- introduce r=f(h) and re-define objective function
- modify objective function
- introduce budget constraint

Bus Frequency Example

If: c =\$90/bus hour,

- *b* = \$10/passenger hour.
- *t* = 90 mins,
- r = 1000 passengers/hour,

Then: $h_{OPT} = 11$ mins

Bus Size Model

Problem: define optimal bus size on a route

Assumptions:

- Desired load factor is constant
- Labor cost/bus hour is independent of bus size
- Non-labor costs are proportional to bus size
- Bus dwell time costs per passenger are independent of bus size

Using same notation as before plus:

- w = labor cost per bus hour
- p = passenger flow past peak load point
- k = desired bus load the decision variable to be determined

Then
$$Z = w \cdot \frac{t}{h} + b \cdot r \cdot \frac{h}{2}$$

Now $h = \frac{k}{p}$ by assumption above
 $\therefore \quad Z = \frac{wtp}{k} + \frac{brk}{2p}$
Minimizing Z w.r.t. k gives: $k_{OPT} = \sqrt{\frac{2p^2wt}{rb}}$

Nigel H.M. Wilson

Bus Size Model (cont'd)

Result is another square root model, implying that optimal bus size increases with:

- round trip time
- ratio of labor cost to passenger wait time cost
- peak passenger flow
- concentration of passenger flows

Previous example extended with:

- p = 500 pass/hour,
- w = \$40/bus hour;

all other parameters as before:

Then: *h_{OPT}* = 55

Stop/Station Spacing Model

Problem: determine optimal stop or station spacing

Trade-off is between walk access time (which increases with station spacing), and in-vehicle time (which decreases as station spacing increases) for the user, and operating cost (which decreases as station spacing increases)

Define	Z	=	total cost per unit distance along route and per headway
and	T _{st}	=	time lost by vehicle making a stop
	С	=	vehicle operating cost per unit time
	S	=	station/stop spacing - the decision
			variable to be determined
	Ν	=	number of passengers on board vehicle
	V	=	value of passenger in-vehicle time
	D	=	demand density in passenger per unit
			route length per headway
	Vaco	,=	value of passenger access time
	W	=	walk speed
	c _s	=	station/stop cost per headway

Stop/Station Spacing Model (cont'd)

$$Z = \frac{T_{st}}{s} (c + N \cdot v) + \frac{c_s}{s} + \frac{s}{4} \cdot D \cdot \frac{v_{acc}}{w}$$

Minimizing Z w.r.t. s gives:
$$S_{OPT} = \left[\frac{4w}{Dv_{acc}} \left[c_s + T_{st} (c_v + Nv)\right]\right]^{1/2}$$

Yet another square root relationship, implying that station/stop spacing increases with:

- walk speed
- station/stop cost
- time lost per stop
- vehicle operating cost
- number of passengers on board vehicle
- value of in-vehicle time

and decreases with:

- demand density
- value of access time

Bus Stop Spacing

U.S. Practice

- 200 m between stops (8 per mile)
- shelters are rare
- little or no schedule information

European Practice

- 320 m between stops (5 per mile)
- named & sheltered
- up to date schedule information
- scheduled time for every stop

Stop Spacing Tradeoffs

- Walking time
- Riding time
- Operating cost
- Ride quality

Walk Access: Block-Level Modeling

Results: MBTA Route 39*

Adapted from: Furth, P.G. and A. B. Rahbee, "Optimal Bus Stop Spacing Using Dynamic Programming and Geographic Modeling." Transportation Research Record 1731, pp. 15-22, 2000.

AM Peak Inbound results •Avg walking time up 40 s •Avg riding time down 110 s •Running time down 4.2 min •Save 1, maybe 2 buses

Nigel H.M. Wilson

Bus Stop Locations and Policies

- Far-side (vs. Near-side)
 - less queue interference
 - easier pull-in
 - fewer ped conflicts
 - snowbank problem demands priority in maintenance
- <u>Curb extensions</u> benefit transit, peds, and traffic (0.9 min/mi speed increase)
- <u>Pull-out priority</u> (it's the law in some states)
- <u>Reducing dwell time</u> (vehicle design, fare collection, fare policy)