
Nigel H.M. Wilson 1.258J/11.541J/ESD.226J, Fall 2003 1
Lecture 15:  October 23

Macro Design Models
for a Single Route

Outline
1. Green Line Dwell Time Model
2. Introduction to analysis approach
3. Bus frequency model
4. Bus size model
5. Stop/station spacing model
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Models with Crowding Term

A. One-car trains:

DT = 12.50  + 0.55*TONS  + 0.23*TOFFS
(8.94) (3.76) (2.03)

+ 0.0078*SUMASLS (R2 = 0.62)
(6.70)

SUMASLS = TOFFS*AS + TONS*LS

B. Two-car trains:

DT = 13.93  + 0.27*TONS  + 0.36*TOFFS
(7.43) (2.92) (3.79)

+ 0.0008*SUMASLS (R2 = 0.70)
(2.03)
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Predicted Dwell Times

ONS LPL 1-Car DT 2-Car DT

0 any # 12.5 13.9

10 <53 20.3 20.2

10 150 35.6 21.0

20 <53 28.1 26.5

20 150 58.7 28.1

30 <53 35.9 32.8

30 150 81.8 35.1
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Findings

• Dwell times for ALRVs are quite sensitive to:
• Passenger flows
• Passenger loads

• The crowding effect may well be non-linear.

• Dwell times for multi-car trains are different 
form those for one-car trains.

• The dwell time functions suggest high 
sensitivity of performance to perturbations

• Effective real-time operations control 
essential

• Running mixed train lengths dangerous

• Simulation models of high frequency, high 
ridership light rail lines need to include 
realistic dwell time functions.
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Introduction to Analysis Approach

• Basic approach is to establish an 
aggregate total cost function including:
• operator cost as f(design parameters)
• user cost as g(design parameters)

• Minimize total cost function to determine 
optimal design parameter (s.t. constraints)

Variants include:
• Maximize service quality s.t. budget constraint
• Minimize consumer surplus s.t. budget constraint

Total Cost

User Cost

HopT
Headway

Operator Cost

Cost
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Bus Frequency Model:
the Square Root Model

Problem:  define bus service frequency on a 
route as a function of ridership

Total Cost = operator cost + user cost

Z = c•
t
h

+ b• r •
h
2

where Z = total (operator + user) cost per unit time
c = operating cost per unit time
t = round trip time
h = headway − the decision variable to be determined
b = value of unit passenger waiting time
r = ridership per unit time

Minimizing Z w.r.t. h yields:
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Square Root Model (cont’d) 

This is the Square Rule with the following
implications:
• high frequency is appropriate where 

(cost of wait time/cost of operations time) is high

• frequency is proportional to the square root of 
ridership per unit time for routes of similar 

length

Ridership

Frequency

Capacity

Constant 
Load Factor

Frequency-Ridership Relationship
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Square Root Model (cont’d)

• load factor is proportional to the square 
root of the product of ridership and 
route length.

Ridership

Passengers/ 
bus

Bus Capacity-Ridership Relationship

Bus 
Capacity

t1

t2

t1>t2

Load Factor >1                      
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Square Root Model (cont’d) 

Critical Assumptions:
• bus capacity is never binding

• only frequency benefits are wait time savings

• ridership  ≠ f (frequency)

• simple wait time model

• budget constraint is not binding

Possible Remedies:
• introduce bus capacity constraint

• modify objective function

• introduce r=f(h) and re-define objective function

• modify objective function

• introduce budget constraint
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Bus Frequency Example

If: c = $90/bus hour, 
b = $10/passenger hour.
t = 90 mins, 
r = 1000 passengers/hour,

Then: hOPT = 11 mins
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Bus Size Model

Problem:  define optimal bus size on a route
Assumptions:

• Desired load factor is constant
• Labor cost/bus hour is independent of bus size
• Non-labor costs are proportional to bus size
• Bus dwell time costs per passenger are independent of 

bus size

Using same notation as before plus:
w = labor cost per bus hour
p = passenger flow past peak load point
k = desired bus load - the decision  variable to be 

determined

  

Then Z = w •
t
h

+ b • r •
h
2

Now h =
k
p

by assumption above

∴ Z =
wtp

k
+

brk
2p

Minimizing Z w.r.t. k gives: kOPT =
2p2wt

rb
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Bus Size Model (cont’d)

Result is another square root model, implying 
that optimal bus size increases with:

• round trip time
• ratio of labor cost to passenger wait time cost
• peak passenger flow
• concentration of passenger flows

Previous example extended with:
p = 500 pass/hour, 
w = $40/bus hour; 
all other parameters as before:

Then:
hOPT = 55
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Stop/Station Spacing Model

Problem:  determine optimal stop or station 
spacing
Trade-off is between walk access time (which 
increases with station spacing), and in-vehicle time 
(which decreases as station spacing increases) for 
the user, and operating cost (which decreases as 
station spacing increases)

Define Z = total cost per unit distance along route 
and per headway

and Tst = time lost by vehicle making a stop
c = vehicle operating cost per unit time
s = station/stop spacing - the decision 

variable to be determined
N = number of passengers on board vehicle
v = value of passenger in-vehicle time
D = demand density in passenger per unit 

route length per headway
vacc = value of passenger access time
w = walk speed
cs = station/stop cost per headway
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Stop/Station Spacing Model 
(cont’d)

  

Z =
Tst

s
(c + N • v ) +

cs

s
+

s
4

• D •
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w

Minimizing Z w.r.t. s gives:

sOPT =
4w

Dvacc
cs + Tst (cv + Nv )[ ]⎡ 

⎣ 
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⎤ 
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Yet another square root relationship, implying that 
station/stop spacing increases with:

• walk speed
• station/stop cost
• time lost per stop
• vehicle operating cost
• number of passengers on board vehicle
• value of in-vehicle time

and decreases with:
• demand density
• value of access time
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Bus Stop Spacing

U.S. Practice
• 200 m between stops (8 per mile)
• shelters are rare
• little or no schedule information

European Practice
• 320 m  between stops (5 per mile)
• named & sheltered
• up to date schedule information
• scheduled time for every stop
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Stop Spacing Tradeoffs

• Walking time
• Riding time
• Operating cost
• Ride quality
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Walk Access: 
Block-Level Modeling

Main street
with existing
stops(a)

Shed line

(b)
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Results: MBTA Route 39*

Existing route

Continuous 
model opt.
MBTA guideline
Discrete opt.
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Adapted from:  Furth, P.G. and A. B. Rahbee, “Optimal Bus Stop Spacing 
Using Dynamic Programming and Geographic Modeling."  Transportation 
Research Record 1731, pp. 15-22, 2000.

AM Peak Inbound results
•Avg walking time up 40 s
•Avg riding time down 110 s
•Running time down 4.2 min
•Save 1, maybe 2 buses
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Bus Stop Locations 
and Policies

• Far-side (vs. Near-side)
• less queue interference
• easier pull-in
• fewer ped conflicts
• snowbank problem demands 

priority in maintenance

• Curb extensions benefit transit, peds, 
and traffic (0.9 min/mi speed 
increase)

• Pull-out priority (it’s the law in some 
states)

• Reducing dwell time (vehicle design, 
fare collection, fare policy)
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