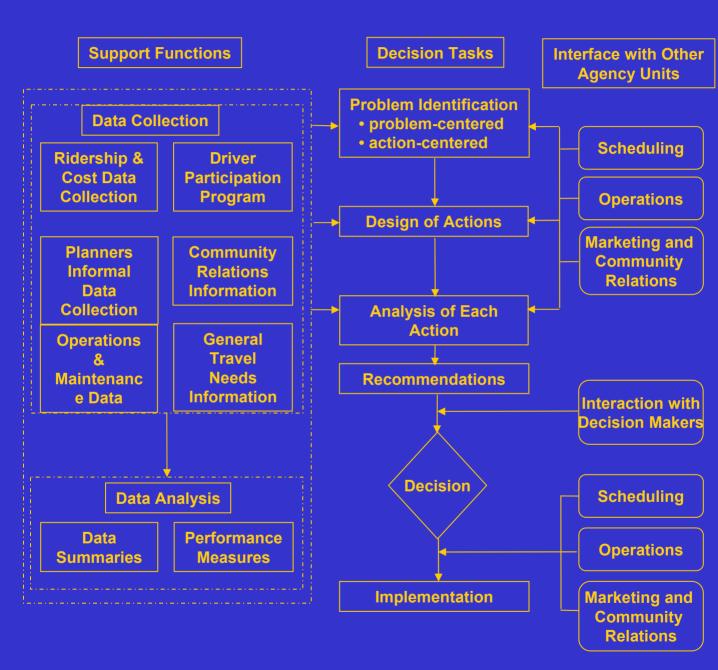
DATA COLLECTION NEEDS AND TECHNIQUES

Outline

- 1. Possible SRTP Improvements (wrap-up)
- 2. Service Quality Monitoring
- 3. Problems with Transit Data
- 4. Framework for Data Collection
- 5. Data Needs
 - Precision
- 6. Manual Data Collection Techniques

The Problem-Centered Approach

Problem	Indicators	Possible Actions
A. Poor productivity	Rev/cost	Decrease frequency
	Pass/veh hr	Eliminate route or route segments
	Load	Modify schedule
B. Overcrowding	Load	Increase frequency
C. Unreliable Service	% of trips late	Increase allowed time
		Modify route


The Action-Centered Approach

GENERIC ACTION

FAVORABLE ROUTE CONDITIONS

A .	Are	ea Coverage Level	
	1.	Eliminate Route Segment	Low ridership generation on segment Vehicle savings possible from elimination Higher frequency possible from elimination
В.	Ro	ute Structure Level	
	1.	Split Route	Low productivity Uneven load profile Long route
	2.	Zonal	Tapering load profile Long route High ridership
	3.	Express/Local	High ridership Tapering load profile Long route Large time differential local/express
C .	Scl	neduling	
	1.	Increase Frequency	Overcrowding Moderate rather than high ridership Even load profile
	2.	Decrease Frequency	Low productivity and loads Headway below policy levels
	3.	Eliminate Trips	Low ridership on trips High cost savings from elimination
	4.	Increase Running/ Layover Time	Poor schedule adherence High loads
	5.	Partial Deadheading	Large imbalance in flows Large time differential in service/deadhead High frequencies
	Ni		1.541J/ESD.226J 3

Proposed Short-Range Transit Planning Process

Techniques Used to Collect Route Level Information/Data from Riders

	Under 50 buses (42)	51 to 200 buses (34)	201 to 500 buses (16)	501 to 1000 buses (9)	Over 1000 buses (10)	Total
Focus groups	7	9	6	5	4	31
General market research	12	18	8	3	5	46
On-board surveys	33	29	13	7	8	90
media-based surveys	2	3	3		2	10
Meetings with organized riders' groups, community councils, etc.	13	13	7	5	6	44

Techniques Used to Collect Route Level Information/Data from Operators

	Under 50 buses (42)	51 to 200 buses (34)	201 to 500 buses (16)	501 to 1000 buses (9)	Over 1000 buses (10)	Total
Operator quality circles	8	7	3	2	3	23
TQM (Total Quality Management)	9	5	1	4	1	20
Special union- management meetings	10	12	5	5	7	39
Route or garage- based teams or task forces	4	8	6	5	6	29
Employee suggestion plans or comment processes	29	30	13	9	7	88

Service Quality Monitoring

Increasing recognition of importance of monitoring and reporting service quality and customer satisfaction on a regular basis:

Customer Satisfaction Index

5 agencies (Akron, Chicago, Minneapolis, Philadelphia and Portland) attempted to develop a CSI for the transit industry (funded by IDEA Program)

MBTA Service Quality Report Card It would include measures of:

- => Comfort -- passenger crowding
- => Communications -- response time to complaints, waiting time for information calls, calls completed successfully
- => Convenience -- population coverage, service frequencies, trip times
- => Customer Satisfaction -- complaints
- => Reliability -- elevator and escalator availability, schedule adherence, missed trips, vehicle breakdowns
- => Security -- crime, passenger injuries

plus results of Customer Satisfaction Survey

Issues:

Is information meaningful at system level? Will results help identify areas where improvement can be achieved? Can the additional data collection and analysis be justified?

Nigel H.M. Wilson

Problems in current data collection programs

Great variation in data collection resources

Variation in techniques used

No statistical approach incorporating

- Required accuracy
- Data variability
- Little trust in data
- Inefficient use of data

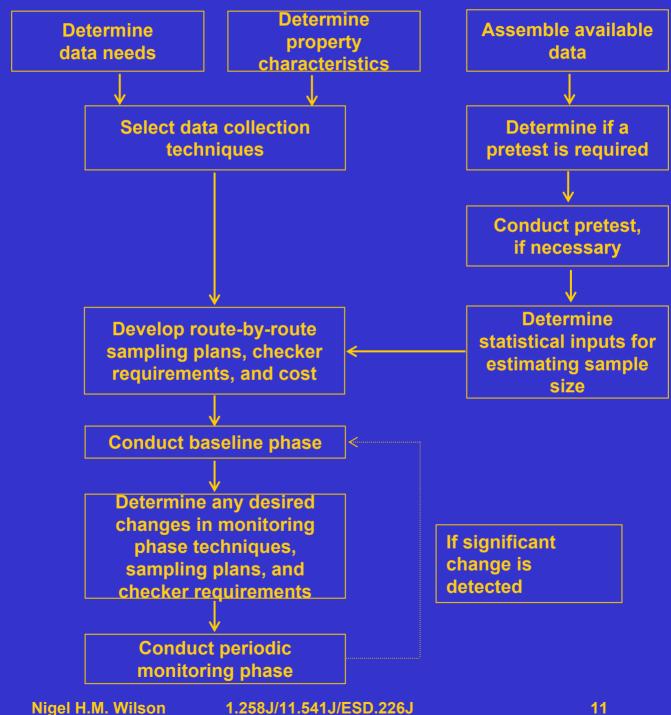
Major limitation on use of other analytic methods

Size of Checker Force by System Size

	Under 50 buses	51-200 buses	201-500 buses	501- 1,000 buses	over 1,000 buses	Total
None	32/27*	18/11	4/7	1/6	2/7	58/58
1-5	6/12	16/22	8/5	1/0	2/0	33/39
6-11	1/1	0/1	3/2	3/1	1/1	8/6
12-20	0	0	0/1	3/1	1/0	4/2
over 20	0	0	0	1/1	4/2	5/3
Total	40	34	15	9	10	108

* Full Time/Part Time

Source: TCRP Synthesis Report "Bus Route Evaluation Standards", Synthesis of Transit Practice 10, Transit Cooperative Research Program, 1995.


Weekday Check Frequency by System Size

	Under 50 buses	51-200 buses	201-500 buses	501- 1,000 buses	over 1,000 buses	Total
1 set per pick per year	9/9*	7/10	2/1	4/1	2/0	24/21
2 sets per pick per year	5/6	3/3	1/0	2/1	5/1	16/11
1 set per alternate pick	1/0	1/2	2/1	0	0	4/3
Once per year	11/8	10/5	1/5	2/4	0/4	24/26
Every other year or less frequently	7/8	9/13	9/8	1/3	3/5	29/37

* Point Check/Ride Check

Source: TCRP Synthesis Report "Bus Route Evaluation Standards", Synthesis of Transit Practice 10, Transit Cooperative Research Program, 1995.

Summary of Data Collection Program **Design and Implementation**

Lecture 6, Fall 2003

Data Needs in Baseline Phase

A. <u>Route (or Stop) Specific</u> Load (at peak point -- other key points)* Running time Schedule adherence Total boardings (i.e., passenger-trips) Revenue Boardings (or revenue) by fare category Passenger boarding and alighting by stop Transfer rates between routes Passenger characteristics and attitudes Passenger travel patterns

B. System Wide

Unlinked Passenger Trips Passenger-miles Linked Passenger trips

* at specified points; not averaged throughout a trip

Nigel H.M. Wilson

Precision and Confidence Level

Accuracy of an estimate has two dimensions. "Mean boardings per trip is 33.1."

Exactly 33.1??? "Mean boardings per trip is 33.1, plus or minus 10%" – precision "Mean boardings per trip is 33.1, plus or minus 3.3" – tolerance

Are you sure?

"I'm 95% confident that mean boardings per trip is 33.1, plus or minus 10" – precision and confidence level

To simplify matters:

- hold confidence level fixed (90%)
- vary precision to reflect different levels of accuracy

National Transit Database specification for annual boardings, pass-miles: <u>+</u>10% precision at 95% confidence level

Desired Accuracy

System boardings for management purposes: _____±3% quarterly – equivalent to ± 1.5% for annual estimate On-time performance, systemwide: Suppose percent on time is 80%. Choose tolerance: $80\% \pm \%?$ (I'll choose 4%) Convert to "absolute equivalent tolerance" $AET = 0.5 \text{ tol / sqrt}[p^*(1-p)], \text{ where } p = expected proportion$ $AET = 0.5 (4\%) / sqrt[0.8^*(0.2)] = 5\%$

Tolerance naturally improves as the proportion moves toward the extremes (0%, 100%). AET is the tolerance you'd get if the proportion were 50%.

Expected proportion	Tol corresponding to <u>+</u> 5% AET
50%	5%
60% or 40%	4.9%
70% or 30%	4.6%
80% or 20%	4%
90% or 10%	3%
95% or 5%	2.2%

Recommended Tolerances

Peak Load (also boardings): Routes with 1-3 buses	
Routes with 4-7 buses	±30%
	±20%
Routes with 8-15 buses	±10%
Routes with >15 buses	± 5%
Vehicle trip time:	
Routes with trip time ≤ 20 mins	±10%
Routes with trip time ≥20 mins	± 5%
On-time performance	±0.1

Operator (trip cards)

•Traffic Checker (with handheld device) –ride check (on/off and running time) –point check (load and headway)

•Farebox

- -passenger counts
- -revenue counts only
- Automatic Passenger Counters

Passenger Surveys

Types Of Counts And Readings

Type of Count/ Reading	Description	Corresponding Deployment Options
On/off count	Ons and offs by stop; also time at time points. In rare cases, ons may be by fare category	Ride check/APC
Boarding counts	Boardings by trip, by fare category, may be also by stop	Ride check Driver count Electronic fareboxes
Load counts	Load on bus as it passes a point; also time at that point	Point check
Revenue count	Revenue by fare type	Electronic fareboxes
Transfer counts	Count of transfer tickets sorted by original and final route	None
Route origin/ Destination count	Count of passengers by O/D stop pair	Special
Survey	Passengers respond to questions, either written or verbal	Special

Method of Checking by System Size

	Under 50 buses	51-200 buses	201-500 buses	501- 1,000 buses	over 1,000 buses	Total
Manual	25	16	8	5	7	61
Manual with Hand Helds	5	9	4	3	2	23
Automated Entirely	1	0	0	0	0	1
Automated with Manual Supplements	0	5	2	1	1	9
Fare box only	9	4	1	0	0	14
Total	40	34	15	9	10	108

Source: TCRP Synthesis Report "Bus Route Evaluation Standards", Synthesis of Transit Practice 10, Transit Cooperative Research Program, 1995.

Nigel H.M. Wilson

Use of Passenger Counting Technologies and Procedures

Number of systems	Total	> 1000 buses	250-1000 buses	< 250 buses
Technology/Procedure				
Checkers, Pencil and Paper	23	8	11	4
Electronic Registering Fareboxes	23	6	11	6
On-Board Surveys	15	2	11	2
Vehicle Operator Trip Cards	14	3	9	2
Estimate from Passenger Revenue	13	5	8	0
Checkers and Hand-Held Units	13	3	7	3
APC in use	8	2	5	1
APC Testing	5	1	3	1
Smart Cards	2	0	1	1
Number of Systems	33	9	17	7

Source: TCRP Synthesis Report "*Passenger Counting Technologies and Procedures*", Synthesis of Transit Practice 29, Transit Cooperative Research Program, 1998.

Nigel H.M. Wilson

Mapping Data Needs to Data Collection Techniques

		Load		Unlinked Pass.		Revenue	
Collection Technique	Counts and Readings	Peak Point	Other	Total	By Fare Category	By Trip	By Segment
Ride Check	On/off counts	=	=	=			
Point Check							
-peak point	Load count		=				
-end point	Load count						
	Farebox reading	=		=	=		
-multiple point	Load count						
	Farebox reading	(1)	=			(2)	=
Driver Check	Boarding Count				=	=	=
Electronic Farebox	Boarding Count			=	=	=	=
APCs	On/off count	=	=	=			
Special	O-D count Survey	=	=	=			

KEY: = if applicable, blank if not applicable

- NOTES: (1) If peak point is included
 - (2) If end points are included

Mapping Data Needs to Data Collection Techniques (cont'd)

			Running Time				
Collection Technique	Counts and Readings	Ons, Offs by Stop	Pass. Miles	By Trip	By Segment	Schedule Adherence	Travel Patterns, Transfer Rates
Ride Check	On/off counts	=	=	=	=	(1)	
Point Check -peak point -end point	Load count Load count					=	
-multiple point	Farebox reading Load count Farebox		(2)		=		
	reading	(3)	(4)	=	=		
Driver Check	Boarding Count						
Electronic Farebox	Boarding Count						
APCs	On/off count	=	=	=	=	=	
Special	O-D count Survey	=	=	=	=	=	=

KEY: = if applicable, blank if not applicable

NOTES:

- (1) Cannot be used to check headways unless consecutive trips are checked
 - (2) Round trip only if one end point is checked
 - (3) Can provide a rough estimate
 - (4) If end points are included

Nigel H.M. Wilson

Improving Traffic Checker Data

Point check observed 70 passengers on a trip.

- Uncontrolled: load could be anywhere between 41 and 81.
- Large random variation compounded by systematic overcount
- Controlling error: verification counts, immediate feedback, retraining
- Have the checker board the bus to count

Improving Traffic Checker Data (cont'd)

- Preprinted forms:
 scheduled trips, stop lists
- Handheld devices
 - reduce coding errors
 - real-time error detection
 - load checks
- Have checkers code their own data
 - immediate graphical feedback
- Watch for fabricated data