SRTP AND SERVICE QUALITY MONITORING

Outline:

- 1. Measures and Standards (cont'd)
- 2. Current Practice in SRTP
- 2. Possible Improvements
- 3. Service Quality Monitoring

Service Quality

Most agencies have formal procedures for monitoring service delivery focussing on on-time performance, typically defined as 0 minutes early to 5 minutes late.

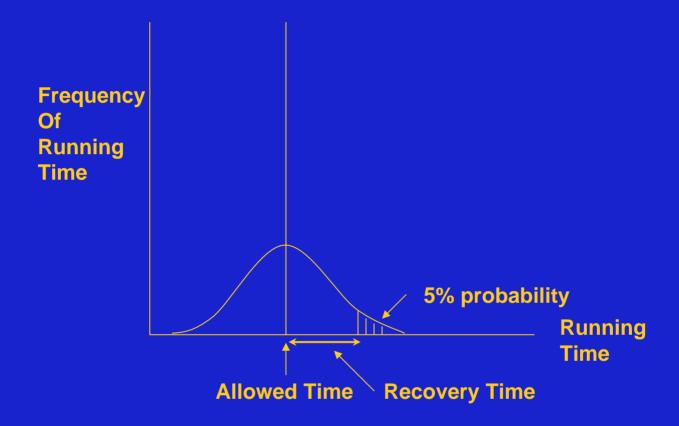
About two-thirds of agencies report rush hour on-time performance of 90% or above.

Example: MBTA

Local low frequency (headways > 10 minutes) bus service:

 75% of trips should depart 0-5 minutes after scheduled terminal departure times and arrive 0-5 minutes after scheduled terminal arrival times.

Local high frequency (headways ≤ 10 minutes) bus service:


- 85% of trips should have headways no greater than 150% of scheduled headway.
- 95% of trips should have travel times no more than 5 minutes above scheduled times.

Most agencies also keep route level information on:

- Passenger complaints
- Missed trips
- Accidents

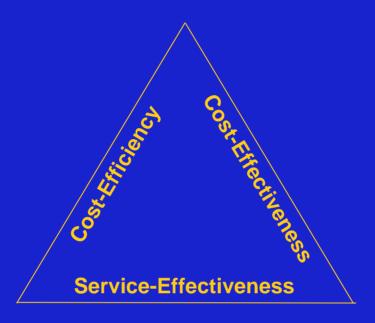
Reliability

Want 95% of departures to be on-time

Implies a recovery time of (2x standard deviation of running time)

where std dev.=
$$\sqrt{\frac{\sum (t_i - t_{mean})^2}{n-1}}$$

Economic/Productivity Measures


<u>Measure</u>	% of Agencies Using Measure	Minimum Standard (Median)		
Passengers/veh hr	78%	11-35 pass/veh hr		
Cost/Passenger	63%	3 x system average		
Passengers/veh mile	58%	1-3 pass/veh mile		
Passengers/trip	53%			

Two most critical measures in assessing route performance:

- passengers/veh hour
- subsidy/passenger

SERVICE INPUTS

Labor Capital Fuel

SERVICE
OUTPUTS
Vehicle Hours
Vehicle Miles
Capacity Miles
Service Reliability

SERVICE
CONSUMPTION
Passengers
Passenger Miles
Operating Revenue
Operating Safety

Alternative Benefit Measures

REVENUE

PROS: - relevance to financial concern

- related to willingness to pay

CONS: - discounts value of reduced fare trips

- favors higher income users

PASSENGERS

PROS: - reflects number of people who benefit

- values each passenger equally

CONS: - doesn't reflect trip length

PASSENGER MILES

PROS: - weights longer trips more

- most reflective of some benefits

CONS: - hardest to measure

- favors higher income passengers

Alternative Cost Measures

NET COST (Subsidy)

PROS: - usually most directly constrained

CONS: - hardest to estimate

COST

PROS: - may also be directly constrained

CONS: - hard to estimate

VEHICLE MILES

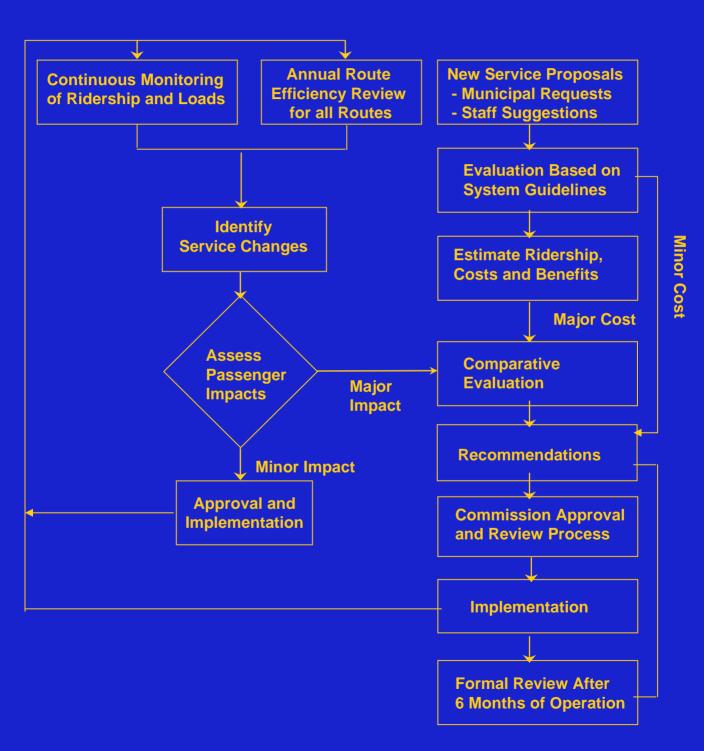
PROS: - easy to measure

CONS: - directly reflects only 30% of bus costs

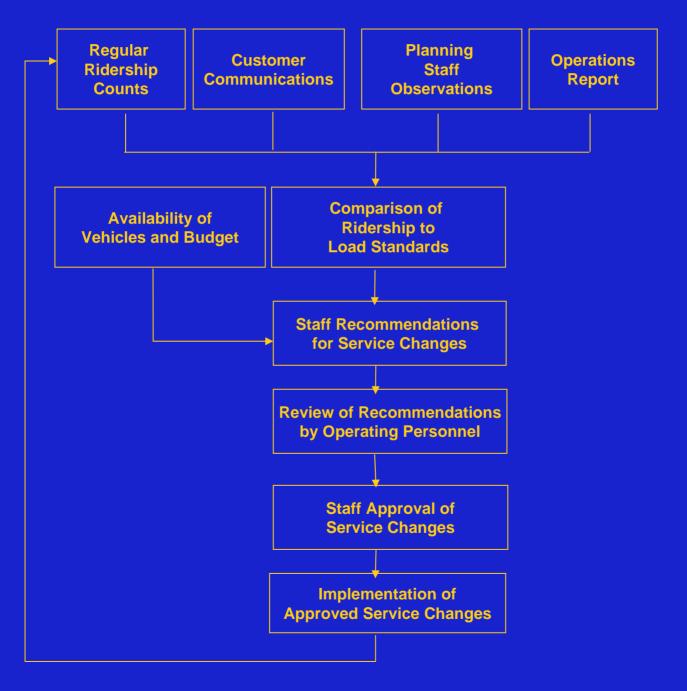
- penalizes fast services

VEHICLE HOURS

PROS: - easy to measure


- related to >50% of bus costs

CONS: - doesn't reflect cost differences between peak and off-peak services


Issues in Setting Up a Short-Range Transit Planning Process

- Role of budget constraints in the process
 - => before budget is set
 - => after budget is set
- Role of standards and constraints vs investing resources to obtain best ridership results
- Consideration of new service options vs protection of existing services
- Allocation of analysis/planning effort to "problem" routes vs other routes
- What form of standards/guidelines to use
- Focus on individual routes or route as component of system

TTC Service Standards Process: Overview

TTC Service Standards Process: Ridership Monitoring and Service Adjustment

TTC Service Standards Process: Route Efficiency Review Program

TTC New Services Criteria

- 1. Must serve people beyond 300 meters from current TTC service
- 2. Must maximize interconnections with rapid transit
- 3. Must result in a net benefit for customers
 - net benefit is measured by change in weighted travel time with

weighted travel time =

A*in-vehicle time + B*waiting time + C*walking time + D*transfers

and A = 1.0, B = 1.5, C = 2.0, D = 10.0

TTC Financial Standards and Comparisons

Single measure used to evaluate service change proposals is:

customers gained (lost) per dollar spent (saved)

Used for evaluating:

- new service proposals
- possible service reductions
- fare changes

The financial unit is the net cost (cost-revenue) associated with the change.

Currently, the threshold for new service is 0.23 new customers per dollar spent.

Services with performance of less than 0.23 customers per dollar spent are examined for possible cost reduction annually.

Service Change Process

- Major service changes evaluated twice per year resulting in a ranking against other proposals and productivity for existing services
- Board provided with recommended service changes and ranked list of all other proposals evaluated and system average performance
- Experimental services are designated and evaluated after six months operation

A Critique Of Current Practice

- Focus is on poorly-performing routes.
- Data limitations -- both type and quality.
- Measures not always closely tied to objectives.
- Focus on individual route performance rather than network contribution.

Important Factors

- Multiple Goals of Agency
- Constraints on Planning Resources
- Limitations of Technical Analysis

Suggested Modifications

- Action-Centered Screening
- Explicit Recognition of Multiple Objectives

Summary of Generic Actions By Level

A. Area Coverage Level

- 1. New route
- 2. Route extension
- 3. A small set of routes replaced by a new set
- 4. Route abandonment
- 5. Shortening a route
- **6**. Route realignment

B. Route Structure Level

- 1. Route splitting
- 2. Zonal service
- 3. Express/local service
- 4. Linking two routes

C. Scheduling Level

- 1. Changes in route frequency
- Changes in departure times of individual trips 2.
- Changes in layover time, positioning time, etc. 3.
- **Modify running times** 4.
- **5**. Partial deadheading

The Problem-Centered Approach

	<u>Problem</u>	<u>Indicators</u>	Possible Actions
Α.	Poor productivity	Rev/cost	Decrease frequency
		Pass/veh hr	Eliminate route or route segments
		Load	Modify schedule
В.	Overcrowding	Load	Increase frequency
C.	Unreliable Service	% of trips late	Increase allowed time
			Modify route

The Action-Centered Approach

GENERIC ACTION

FAVORABLE ROUTE CONDITIONS

A. Area	Coverage	Level
---------	----------	-------

1. Eliminate Route Segment Low ridership generation on segment

Vehicle savings possible from elimination
Higher frequency possible from elimination

B. Route Structure Level

1. Split Route Low productivity

Uneven load profile

Long route

2. Zonal Tapering load profile

Long route High ridership

3. Express/Local High ridership

Tapering load profile

Long route

Large time differential local/express

C. Scheduling

1. Increase Frequency Overcrowding

Moderate rather than high ridership

Even load profile

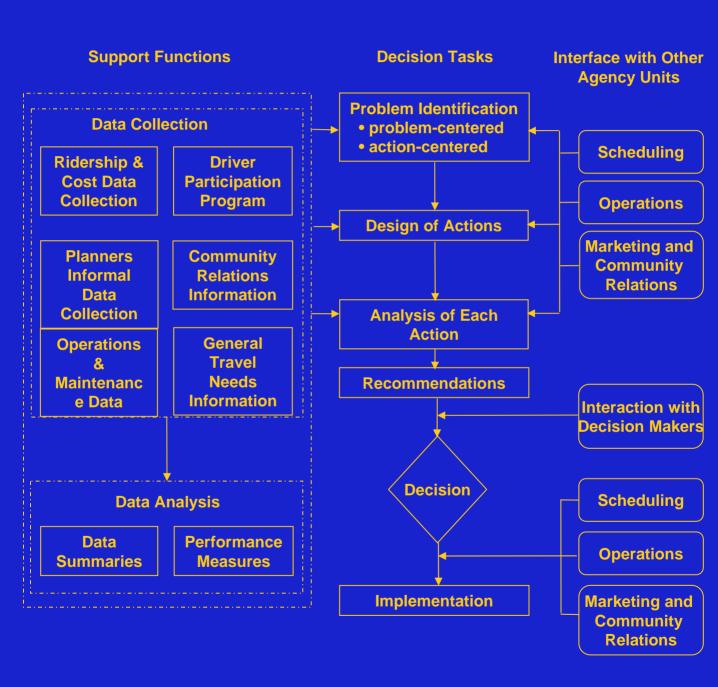
2. Decrease Frequency Low productivity and loads

Headway below policy levels

3. Eliminate Trips Low ridership on trips

High cost savings from elimination

4. Increase Running/ Poor schedule adherence


Layover Time High loads

5. Partial Deadheading Large imbalance in flows

Large time differential in service/deadhead

High frequencies

Proposed Short-Range Transit Planning Process

Techniques Used to Collect Route Level Information/Data from Riders

	Under 50 buses (42)	51 to 200 buses (34)	201 to 500 buses (16)	501 to 1000 buses (9)	Over 1000 buses (10)	Total
Focus groups	7	9	6	5	4	31
General market research	12	18	8	3	5	46
On-board surveys	33	29	13	7	8	90
media-based surveys	2	3	3		2	10
Meetings with organized riders' groups, community councils, etc.	13	13	7	5	6	44

Techniques Used to Collect Route Level Information/Data from Operators

	Under 50 buses (42)	51 to 200 buses (34)	201 to 500 buses (16)	501 to 1000 buses (9)	Over 1000 buses (10)	Total
Operator quality circles	8	7	3	2	3	23
TQM (Total Quality Management)	9	5	1	4	1	20
Special union- management meetings	10	12	5	5	7	39
Route or garage- based teams or task forces	4	8	6	5	6	29
Employee suggestion plans or comment processes	29	30	13	9	7	88

Service Quality Monitoring

Increasing recognition of importance of monitoring and reporting service quality and customer satisfaction on a regular basis:

Customer Satisfaction Index

5 agencies (Akron, Chicago, Minneapolis, Philadelphia and Portland) attempted to develop a CSI for the transit industry (funded by IDEA Program)

MBTA Service Quality Report Card It would include measures of:

- => Comfort -- passenger crowding
- => Communications -- response time to complaints, waiting time for information calls, calls completed successfully
- => Convenience -- population coverage, service frequencies, trip times
- => Customer Satisfaction -- complaints
- => Reliability -- elevator and escalator availability, schedule adherence, missed trips, vehicle breakdowns
- => Security -- crime, passenger injuries plus results of Customer Satisfaction Survey

Issues:

Is information meaningful at system level?
Will results help identify areas where improvement can be achieved?
Can the additional data collection and analysis be justified?