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Abstract 

High-frequency heavy rail operations are subject to performance vari­
ability, partly due to the impact of passsenger loads on the system. Specif­
ically, vehicle dwell times at stations contribute to much of the running 
time and headway variations, constraining performance and service qual­
ity. Typically, dwell time is a function of passenger alighting and board­
ing volumes, and of the on-board crowding level. Based on observations 
made at stations on the MBTA Red Line, models showing linear effects in 
passenger boardings and alightings but nonlinear effects in the on-vehicle 
crowding level explains about 90% of the observed variation in dwell times. 
Furthermore, the nonlinear contribution of on-vehicle congestion is shown 
to be detrimental only to the boarding process. This lends to poten­
tial operations improvements if rationalized passenger movements can be 
achieved at high-volume stations. 

1 Motivation 

In any mode of public transportation, dwell time is a key parameter of system 
performance, service reliability and quality. Indeed, dwell time might represent 
a significant fraction of the total trip time along a serviced transit line, thus 
affecting travel time and system capacity. 
In the case of heavy rail transit systems, where headways are short and running 
times between stations are roughly nonvarying across trains, dwell time is the 
main factor causing headway variability. Higher headway variability lowers ser­
vice reliability in terms of on-time performance, and decreases service quality 
through longer waiting times and higher perceived on-board crowding levels. 
Clearly, dwell-time is a function of some parameters that are not always control­
lable, such as door closing and opening mechanisms, vehicle loading conditions 
(which depends on both the train and platform configurations), and passen­
ger arrival rates at stations. Nevertheless, a priori knowledge of dwell time at 
stations is most useful because: 

- It gives insight into the travel time and headway variations over time of 
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day. Combined with ridership information, it can yield effective timetables 
in order to maximize the throughput of the system. 

- Efforts can be made at critical stations to enforce smaller dwell-time by 
modifying some of the abovementioned parameters. For instance, better-
designed vehicles can lead to significant savings in vehicle loading and 
unloading times, two main components of dwell-time. 

As an illustration, recent efforts have been made by the Metropolitan Tran­
portation Authority (MTA) of New York to reduce dwell times at Grand Cen­
tral Station. Those efforts bore fruit as customer reaction was generally positive 
and rush dwell times improved by 10%, leading to a capacity increase of one 
train/hour (i.e., 2,000 customers during the peak hour). 
In view of the important impacts of dwell-time on the overall performance 

of a rail transit system, we will attempt to derive dwell time models that show 
ease of use, consistency with respect to a priori considerations and predictability 
power. After a review of some current models and the theoretical aspects of dwell 
time modeling, a data collection procedure is described. Then a new model based 
on this data is presented and analyzed. 

2 Theory and Current Dwell Time Models 

Dwell time is defined as the time elapsed between the door opening and the 
door closing of a train sitting at a station. Clearly, in the absence of real-time 
operations (e.g., holding trains at stations), this time is devoted to the load­
ing and unloading processes of the train, along with door opening and closing 
processes. Therefore, boardings and alightings at stations are likely the most 
significant factors causing dwell time variations. 
We note that factors other than passenger loads and behavior also affect dwell 
times. Kraft [1] identified 7 major groups for these factors: human, modal, oper­
ating policies, operating practices, mobility, climate and other system elements. 
Yet, those factors are often constant in a given system or are beyond the knowl-
edge/control of the operator. In consequence, given a particular rail system, 
those factors will be included in a dwell time model by 

• grouping the system specific factors into a constant term. 

• including the unknown factors in an error term. 

Therefore, key factors for a straightforward model specification would be 
simply the number of passengers boarding and alighting, along with some mea­
sure of the crowding level in the train (e.g., arriving passenger loads). The first 
two variables are directly observable from the platform and can be collected 
with more or less resources depending on the station configuration and the rid­
ership. The crowding level is harder to estimate and use because an accurate 
count of on-board passengers would require on-vehicle checks that are costly 
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while an approximate measure of the crowding level might not lead to a satis­
factory model. Alternatively, if a new data collection is not affordable, accurate 
passenger boarding and alighting rates at stations (if known) could be used to 
infer passenger movements and loads. 
We can first specify a simple model by assuming that the time Tdoor required to 
move passengers through a door increases independently and linearly with re­
spect to the number of passenger boardings and alightings. This is equivalent to 
stating that the boarding and alighting phases are not interfering during Tdoor: 

Tdoor = a + b · Bdoor + c · Adoor (1) 

where 

Tdoor = door  open  time, 

Bdoor = number of passengers boarding through door,

Adoor = number of passengers alighting through door,

a, b, c = estimated parameters.


Adding a linear term containing the effect of congestion on-board would lead 
to: 

Tdoor = a + b · Bdoor + c · Adoor + d · Congestiondoor (2) 

where Congestiondoor reflects one or several of the following potential inter­
ferences: 

1. The interference between alighting passengers and those staying on-board 
( through-standees) 

2. The interference between boarding passengers and through-standees 

3. The interference between the alighting and boarding passenger streams 

4. The interferences among alighting passengers as their number increases 

5. The interferences among alighting passengers as their number increases 

Thus, the dwell time for a single car k can be taken as the longest Tdoor for 
all m doors of the car: 

DTk = max(Tdoor 1, Tdoor 2, . . .  , Tdoor m)  (3)  

Similarly, the total dwell time for an n-car train is the longest of the car 
dwell times: 

DT = max(DT1, DT2, . . .  , DTn)  (4)  

Given inputs about the passenger loads and movements at a station, we want 
to minimize the train dwell time at the station. Clearly, this minimum dwell time 
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is reached when passenger loads and movements are evenly distributed over all 
doors and cars. In this case, the dwell time can be rewritten as follows: 

a b c d 
DT = + B + A + Congestion 

nm nm nm nm 
(5) 

= �0 + �1 B + �2 A + �3 Congestion 

where 

B = total number of boardings,

A = total number of alightings, and

Congestion reflects the overall on-board congestion.


Previous works (see [1] and [2]) have suggested that a simple dwell time 
model derived from (5) explains significant part of the dwell time variation 
when applied to non-congested situations: 

DT = �0 + �1 B + �2 A (6) 

In the case of the MBTA Green Line, T.M. Lin and N.H.M. Wilson have 
found in [2] that the model: 

¯DT =11.73 +0.42 · B +0.49 · A (R2 = 0.68) (7) 

(7.44) (7.59) (6.22) 

explains about 70% (R2) of the dwell time observations for the two-car trains 
on the Green Line, with all estimated coefficients significant (i.e., the t-statistics 
within parenthesis are all greater than 2.00). Several attempts were also made 
in [2] to include the car congestion effects on dwell time. One of the best models 
for the two-car trains was: 

¯DT =13.93 +0.27 · B +0.36 · A +8 10−4 · SU M ASLS (R2 = 0.70) (8) 

(7.44) (7.59) (6.22) (2.03) 

where the last term is defined by 

AS = number of arriving standees,

LS = number of departing standees,


and

SU M ASLS = A · AS + B · BS


The congestion term attempts to capture the interfering effects of types (1) 
and (2) mentioned on page 3. 

The new model presented in the next section is based on the results found 
in [2], but shows some significant improvements with respect to the effects of 
the number of door and the crowding on dwell times. 
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3 Study of the MBTA Red Line 

3.1 The data collection procedure 

A simple data collection procedure provided us for the necessary data to build 
a new dwell time model for the Red Line. Data was collected during Spring and 
Fall 1999 at Kendall and South Station on the Red Line, during the morning 
peak period. Except at Park Street station, only one platform is used for each 
direction of the line, thus only doors on one side were monitored to observe 
passenger flows. 
Since we sought a dwell time model in the form of (5) (averaging passenger 

loads and movements over all doors and cars), only the total number of boardings 
and alightings, along with the total number of through standees were collected. 
Nevertheless, the latter was transformed so that the congestion level of the train 
was taken as the crowding level of the most congested cars. This is because those 
cars might lead to bottleneck during the boarding and alighting phases and drive 
the increase in dwell time. 
Therefore, by only measuring dwell time, counting passengers movements 

through entrances and exits, and observing congestion levels (from the platform) 
of the most crowded cars the necessary data were obtained. Four people were 
needed for the data collection, each person being assigned several tasks (e.g., 
counting passenger movements through turnstiles). Clearly, depending on the 
labor resources available, counts at a car level and not at a entrance/exit level 
would be preferred for better accuracy. 

3.2 The dwell time model 

Given the prior analysis, we assumed that a simple and common dwell time 
model could be carried out for all types of trains (i.e., three and four-door car 
trains on the Red Line) and all stations where only one platform was used for 
loading and unloading (i.e., all but Park Street Station). Those assumptions 
were statistically tested1 with the data collected at South Station and Kendall 
Station. 
A total of 54 data points were used, combining three-door and four-door car 
trains. All dwell times were less than 1.5 min and passenger movements and 
loads showed enough variation to allow us to use an Ordinary Least Squares 
regression on our data. The statistical packages SST and MINITAB were used 
for the regression analysis. 

The final dwell time function includes two major factors, the number of 
passengers boarding and alighting per door, plus one congestion term2: 

1 Details are given in Appendix B

2The hypothesis and analysis that lead to this model are discussed in Appendix A
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DT =12.22 +2.27 · Bd +1.82 · Ad +6.2 10
−4  ·  TS3  

d  Bd  (  ̄R
2  = 0.89) (9) 

(12.82) (7.11) (9.07) (4.70) 

where 

Ad = alighting passengers per door, 
Bd = boarding passengers per door, and  
TSd  = through standees per door, 

i.e., total through standees divided by the number of doors 

The model fits 90% of the data: more precisely, 87% of the observations 
deviate from the value predicted by the model by less than 5 seconds. Besides, 
the congestion term can be easily interpreted in terms of interference between 
the boarding passengers and the through-standees3: 
We can interpret the group of terms 

dBd = (2.27 + 6.2 10−4  ·  TS32.27 · Bd + 6.2 10
−4  ·  TS3  

d)Bd  

as the marginal boarding time multiplied by the number of boardings (on av­
erage by door). If we plot this marginal rate against the number of through 
standees per door TSd  (see Fig. 1), we notice that the marginal boarding time 
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Figure 1: Marginal Boarding Time 

3 Refer to Appendix A for more details 
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through a door is an increasing function of the number of through-standees (i.e., 
the arriving standees who do not alight). This clearly meets our a priori con­
dition about the effect of crowding on dwell-time variation: under 3 standees 
per door, the crowding effect is negligable but beyond this threshold, an ”in­
cremental” standee per door worsens significantly the boarding process. Neither 
on-board standees nor the passengers on the platform seem to affect the alight­
ing process or at least to only a minor extent. This might be explained by the 
discipline of the passengers who alight and board without interfering with each 
other. Therefore, the bottleneck that drives the dwell time variation is the on-
board congestion that precludes fast boarding. Note that this adverse effect is 
all the more important as most of the boardings may occur at the already con­
gested cars. Our model actually overestimates the marginal boarding time since 
average boardings are used to explain the dwell time variation. 

4 Operational Implications 

The analysis performed on the data collected at Kendall and South Stations 
show that dwell time, which consist of the time needed for all passengers to alight 
and board, is highly sensitive to the presence of standees in the car. This suggests 
that, in the absence of measures to improve the alighting and boarding processes 
on the platform, on-board congestion and boardings can interact negatively so 
that dwell time increases rapidly between successive stations. This leads in turn 
to train bunching and deterioration of service quality (longer waiting times at 
stations and crowding conditions in the train). 
Past efforts by transit authorities at London, Hong Kong and New York City 
have shown that dwell time reduction thanks to safer and more orderly boarding 
results in improved throughput. 

5 Conclusion 

This research has emphasized the variability of dwell time with respect to pas­
senger movements and loads. A simple model, which is accurate and consistent 
with a priori considerations, has been estimated and has underlined the effect 
of on-board congestion on boarding times for the non-Park Street Stations of 
the MBTA Red Line. Moreover, this effect was shown to be non-linear: it was 
better approximated by a polynomial function of the number of standees. 
This sensitivity of dwell time to ridership variations exposes train operations to 
uneven headways and running times, leading to a deterioration in service quality 
and capacity. It is believed that the model presented lays the basis for a bet­
ter identification of the critical stations for maintaining high-frequency service 
during peak periods. 
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A Model Specifications 

We tried to represent as accurately as permitted the mechanisms that drive 
the four components of the dwell-time, i.e. door opening time, aligthing time, 
boarding time and door closing time. In comparison with the models developed 
by T.M. Lin in [2] (see equations (7) and (8)), the model presented in equation 
(9) captures some new effects described below: 

1.	 The difficulty encountered by T.M. Lin to model dwell times for multiple-
car trains is circumvented by dividing our data by the total number of 
doors. This means that we consider the case where movements and loads 
are evenly distributed. Although this is unlikely the case for most stations, 
this model specification gives us a lower bound on the dwell time. 

2.	 In congested situations, we can realistically represent the additional dwell 
time by considering the variation of the marginal alighting and boarding 
times with respect to the crowding level. 
In the case of the boarding process, we suggest that the increment of 
marginal boarding time is a function of the number of standees remaining 
in the vehicle after the alighting process (through standees). This formu­
lation accounts for instance for the increasing difficulty of boarding with 
the congestion level of the car. 
Therefore, an additional component g(TSd)  ×  Bd  can be added to the 
dwell-time equation, where g is a piecewise increasing function represent­
ing the additional average marginal boarding time. Under a threshold 
value of TScrit , there is no interaction between boarding passengers and d 

. For TSd  �  TScrit standees, so that g(TSd) =  0  for  TSd  �  TScrit	 , f is an d	 d 
increasing function of TSd. 

Similarly, we can consider an additional term f(ASd) × Ad accounting for

the interaction of standees -when the train arrives at the station- with the

aligthing passengers, where:


ASd is the number of arriving standees per door,

and f is a function with a shape similar to g (see figure 2 below).


We approximate our functions f and g by two polynomial functions of order 
3. Thus, 

DT =�0 + �1Ad + �2Bd + �3TSd  ×  Bd  +  ... 

+ �6TS3 	
d × Ad 

(10) 
d × Bd + �7ASd × Ad + ...+ �10AS3 

A stepwise regression was performed and lead us to the simpler form pre­
sented on page 6: 

DT = 12.22 + 2.27 · Bd + 1.82 · Ad + 6.2 10
−4  ·  TS3  

d  Bd  (11) 
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Figure 2: Marginal Boarding Time 

B Statistical Tests of The Model 

1.	Test of a Single Model for Kendall and South Stations 
A Chow-test was performed to ensure that the model defined by equation 
(9) can apply to the two different datasets collected respcetively at Kendall 
and South Station. The result of the test validates the hypothesis that we 
can use a single model for different stations of the Red Line (except for 
Park Street Station). 

2.	Test of Serial Correlation 
The Durbin-Watson statistic given in Table 2 (2.37539) does not indicate 
serial correlation since 4 − du � 2.37539 � 4, which indicates uncertainty 
at a 95% level of confidence. 

3.	Test of Heteroscedaticity

No presence of heteroscedasticity was shown by a White test.


C Data and Statistics 
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Table 1: Data Statistics 

DT Ad Bd TS3Bd  
Mean 28.91228 3.42106 3.59966 2.27069e+003 

Standard deviation 13.15469 2.72049 2.99871 4.88231e+003 
Minimum 13.00000 0.50000 0.66670 0.00000e+000 
Skewness 1.48377 0.98774 2.4134 2.91847 
Maximum 77.00000 10.08330 17.44440 2.28061e+004 

Table 2: Regression Statistics of equation (9) 

Dependent Variable: DT 
Independent Estimated Standard t-
Variable Coefficient Error Statistic 

1 12.22254 0.95346 12.81913 
Ad 1.82224 0.25623 7.11170 
Bd 2.26925 0.25010 9.07354 

TS3  
d  Bd  6.20604e-004 1.31822e-004 4.70791 

54. 
R2 

R̄2 

Number of Observations 
0.89981 
0.89380 

Sum of Squared Residuals 8.16318e+002 
Standard Error of the Regression 4.04059 
Durbin-Watson Statistic 2.37539 
Mean of Dependent Variable 27.75926 
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