Vehicle Scheduling

Outline

- 1. Timetable Development
- 2. Fleet Size
- 3. Vehicle Scheduling

Timetable Development

Can translate frequency into timetable by specifying headways as:

- equal -- appropriate if demand is uniformly distributed across period
- balanced load -- appropriate if there is substantial variation in demand over period
- clockface or not -- do headways repeat every hour

Timetable Development

If we have N departures in peak period:

equal headway solution:

$$H = \frac{Peak\ Period}{N}$$

balanced load solution:

Fleet Size Requirement

Salzborn's Fleet Size Theorem:

Given:

l(k,t,s) = # of departures from terminal k by time t following schedule s a(k,t,s) = # of arrivals at terminal k by time t following schedule s

and:

d(k,t,s) = l(k,t,s) - a(k,t,s), deficit function at terminal k at time t following schedule s

Fleet Size Requirement

Salzborn's Fleet Size Theorem:

Then:

N(s), the minimum size fleet to serve schedule s, is given by:

$$N(s) = \sum_{k \in T} \max_{t} (d(k,t,s))$$

for T terminals

Also, $N(s) \ge \text{Max } \# \text{ of trips in simultaneous operation.}$

Fleet Size Required

The deficit function, or minimum required fleet size, may be reduced by:

- shifting departure and/or arrival times
- adding deadhead trips between terminals

Vehicle Scheduling Problem

Input:

- -- A set of vehicle revenue trips to be operated, each characterized by:
 - -- starting point and time
 - -- ending point and time
- -- Possible <u>layover arcs</u> between the end of a trip and the start of a (later) trip at the same location
- -- Possible deadhead arcs connecting:
 - -- depot(s) to trip starting points
 - -- trip ending points to depot(s)
 - -- trip ending points to trips starting at a different point

Vehicle Scheduling Problem

Observations:

- -- there are many feasible but unattractive deadhead and layover arcs, generate only plausible non-revenue arcs
- layover time affects service reliability, set minimum layover (recovery) time

Vehicle Scheduling Problem (continued)

Objective:

- -- Define vehicle blocks (sequences of revenue and non-revenue activities for each vehicle) covering all trips so as to:
 - -- minimize fleet size (i.e. minimize #crews)
 - -- minimize non-revenue time (i.e. minimize extra crew time)

Observation:

-- these are proxies for cost, but a large portion of cost will depend on crew duties which are unknown at this stage of solution.

Vehicle Scheduling Problem (continued)

Constraints:

- -- Minimum vehicle block length
- -- Maximum vehicle block length

Variations:

- -- each vehicle restricted to a single line vs. interlining permitted
- -- single depot vs multi-depot
- -- vehicle fleet size constrained at depot level
- -- routes (trips) assigned to specific depot
- -- multiple vehicle types

Example: Single Route AB

A B (Central City)

Results of earlier planning and scheduling analysis:

	AM Peak Period	Base Period
	(6-9 AM)	(after 9 AM)
Headways	20 min	30 min
Scheduled trip time	40 min	35 min
(A⇒B or B⇒A)		
Minimum layover tim	e 10 min	10 min

Dominant direction of travel in AM is A⇒B

Depart A	Arrive B
6:00	6:40
6:20	7:00
6:40	7:20
7:00	7:40
7:20	8:00
7:40	8:20
8:00	8:40
8:20	9:00
8:40	9:20
9:00	9:35
9:30	10:05
10:00	10:25
10:30	11:05
11:00	11:35

Depart A	Arrive B	Depart B	Arrive A
6:00	6:40	6:50	7:30
6:20	7:00	7:10	7:50
6:40	7:20	7:30	8:10
7:00	7:40	7:50	8:30
7:20	8:00	8:10	8:50
7:40	8:20	8:30	9:10
8:00	8:40	8:50	9:30
8:20	9:00	9:15	9:50
8:40	9:20		
9:00	9:35	9:45	10:20
9:30	10:05	10:15	10:50
10:00	10:25	10:45	11:20
10:30	11:05	11:15	11:50
11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
	9:30	10:05	10:15	10:50
	10:00	10:25	10:45	11:20
	10:30	11:05	11:15	11:50
	11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
	9:30	10:05	10:15	10:50
	10:00	10:25	10:45	11:20
	10:30	11:05	11:15	11:50
	11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
	10:00	10:25	10:45	11:20
	10:30	11:05	11:15	11:50
	11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
	10:00	10:25	10:45	11:20
	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
2x				7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
2				9:30> y
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
	10:00	10:25	10:45	11:20
	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
2x				7:50
3x				8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
2				9:30>y
3				9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
3				11:20
	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
2x				7:50
3x				8:10
4x	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
2				9:30>y
3				9:50
4	8:40	9:20> y		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
3	10:00	10:25	10:45	11:20
	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
2x				7:50
3x				8:10
4x	7:00	7:40	7:50	8:30
5x	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
2				9:30>y
3				9:50
4	8:40	9:20>y		
5	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
3				11:20
5	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

Example: Vehicle Blocks

```
Block 1: Depot - A (6:00) - B (6:50) - A (7:40) - B (8:30) - A (9:30) - B (10:15) - A (11:00) - B (11:45) - ...
```

Block 2: Depot - A (6:20) - B (7:10) - A (8:00) - B (8:50) - Depot

Block 4: Depot - A (7:00) - B (7:50) - A (8:40) - Depot

Block 5: Depot - A (7:20) - B (8:10) - A (9:00) - B (9:45) - A (10:30) - B (11:15) - ...

Vehicle Scheduling Model Approaches

Heuristic approaches:

1. Define compatible trips at same terminal *k* such that trips *i* and *j* are compatible iff :

$$t_{s_j} - t_{e_i} > M_k$$

 $t_{s_i} - t_{e_i} < 2 D_k$

where t_{s_i} = starting time for trip j

 t_{e_i} = ending time for trip i

 M_k = minimum recovery/layover time at terminal k

 D_k = deadhead time from terminal k to depot

Vehicle Scheduling Model Approaches

- 2. Apply Restricted First-in-First-out rules at each terminal
 - (a) Start with (next) earliest arrival at terminal; if none, go to step (d)
 - (b) Link to earliest compatible trip departure; if none, return vehicle to depot and return to step (a)
 - (c) Check vehicle block length against constraint: if constraining, return vehicle to depot and return to step (a); otherwise return to step (b) with new trip arrival time
 - (d) Serve all remaining unlinked departures from depot

Time-Space Network Representation

Time-Space Network Representation

Time-Space Network Representation

